Effect of finite particle interaction time in granular systems

PDF Version Also Available for Download.

Description

Almost all previously published theoretical papers that propose constitutive relations for granular flows use some form of kinetic theory, which neglects effects of finite particle interaction time and multiparticle interactions. In dense systems, these effects contain essential physics and determine the evolution of the stress system in granular flows. In this paper, the authors shall demonstrate the importance of these effects and study the behavior of the granular stress in a dense system. The particle interaction time is a random variable in a granular system, and they show that its probability distribution obeys an exponential law. The temporal decay of ... continued below

Physical Description

8 p.

Creation Information

Zhang, D.Z. & Rauenzahn, R.M. July 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Almost all previously published theoretical papers that propose constitutive relations for granular flows use some form of kinetic theory, which neglects effects of finite particle interaction time and multiparticle interactions. In dense systems, these effects contain essential physics and determine the evolution of the stress system in granular flows. In this paper, the authors shall demonstrate the importance of these effects and study the behavior of the granular stress in a dense system. The particle interaction time is a random variable in a granular system, and they show that its probability distribution obeys an exponential law. The temporal decay of this probability represents the destruction of contacts between particles and is related to the relaxation of the collisional stress in a granular system. By considering the balance between creation and destruction of contacts, they derive a constitutive relation for collisional stress. Depending on the form of the model chosen to approximate forces developed during particle interactions, the constitutive relation can predict either viscoelastic or viscoplastic behavior of the collisional stress. Numerical simulations are performed to verify the theoretical findings and to study further the properties of dense granular systems.

Physical Description

8 p.

Notes

OSTI as DE98003468

Source

  • International conference on multi-phase flow, Lyon (France), Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98003468
  • Report No.: LA-UR--98-207
  • Report No.: CONF-980643--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 663214
  • Archival Resource Key: ark:/67531/metadc706232

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 25, 2016, 4:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhang, D.Z. & Rauenzahn, R.M. Effect of finite particle interaction time in granular systems, article, July 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc706232/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.