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Conditions for Similitude Between the Fluid Velocity
and EIectric Field in Electroosmotic Flow

E. B. Cummings, S. K. Griffiths, R. H. N1lson and P. H. Paul
San&la National Laboratories

Livermore, CXlfornia 94551-0969

Electroosmotic flow is fluid motion driven by an electric field acting on the net fluid charge produced by charge
separation at a fluid-solid interface. Under many conditions of practical interest, the resulting fluid veloci~
is proportional to the 10CSJelectric field, and the constant of proportionality is everywhere the same. Here we
show that the main conditions necessary for this similitude are a steady electric field, uniform fluid and electric
properties, an electric Debye layer that is thin compared to any physical dimension, and fluid velocities on all
inlet and outlet boundaries that satisfy the Hehnholtzd3moluchowski relation normally applicable to fluid-
solid boundaries. Under these conditions, the velocity field can be determined directly from the Laplace
equation governing the electric potential, without solving either the continuiw or momentum equations.
Three important consequences of these conditions are that the fluid motion is every-where irrotational, that
fluid velocities in two-dimensional channels bounded by parallel planes are independent of the channel depth,
and that such flows exhibit no dependence on the Reynolds number.

Introduction

Mlcrofluidic systems are finding increasing use
in the separation, identification and synthesis of a
wide range of chemical and biological species [1,2,3].
Employing transverse channel dimensions in the
range from several to a few hundred microns, such
systems may permit the large-scale integration of
wet anal~lcal methods in a manner analogous to
that already achieved in microelectronics. Appli-
cations for microfluidics now under development
include such diverse processes as DNA sequenc-
ing, immunochromatography, and the identific~
tion of explosives and chemical and biological war-
fare agents. The analytical methods used in these
processes include traditional chromatography, elec-
trochromatography and electrophoresis.

One promising method for driving fluid motion
in microfluidlc systems is electroosmosis [4]. Here,
motion is induced by applying an electric field to a
fluid that is bounded by an insulating solid. Since
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charge separation generally occurs at a fluid-solid
boundary, a layer of fluid near the interface carries
a net electric charge. The applied field acts on this
net fluid charge to produce a body force that drhws
fluid motion. The region of net charge is usually
confined to a thin Debye layer immediately adjacent
to the surface, so the body force is nearly coincident
with the bounding surface. The resulting boundary
or sheath velocities impmt a plug-like motion to the
remaining neutral fluid inside a channel.

Electroosmotic flows offer several important ad-
vantages over pressure-driven flows for the small
physical dmensions characteristic of microfluidic
systems. First, electroosmosis provides a direct
means of transporting fluids in microchannel net-
works using only applied electric fields. Further,
fluid speeds in electroosmotic flows are independent
of the transverse ,tube or channel dimension over a
wide range of conditions, making this technique ex-
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tensible to extremely small physical scales. In con-
trast, pressure driven flows require that the pressure
grtilent increase inversely with the square of the
transverse channel dimension to maintain a given
fluid speed. Finally, the profile of the fluid veloc-
ity across a channel is essentially flat whenever the
Debye layer thickness is small compared to the chan-
nel width. Because of th~, analyte samples can be
transported over long ranges with little hydrody-
namic dispersion [5].

Direct numerical simulation of electroosmotic
flow is a challenging task [6]. In addition to the
usual Navier-Stokes and species transport equa-
tions, the electric field equation must also be solved,
and these equations are generally coupled through
the unknown charge densi~. Further, these solu-
tions must resolve length scales ranging from a De-
bye layer thiclmess of perhaps 10 nm, to channel
widths on the order of 100 pm, and to device lengths
of nearly 10 cm. These widely disparate length
scales, spanning roughly seven orders of magnitude,
make traditional numerical meshes impractical for
all but the very simplest geometries. Moreover,
these disparate length scales persist in the problem
even when the fluid transport and electric poten-
tial are not coupled, necessitating either a highly
nonuniform computational mesh or the use of mul-
tiple meshes to address separately the Navier-Stokes
and Poisson equations. One means for avoiding this
problem is to assume that the Debye layer thickness
is very small compared to any channel dimension.
In thu case, the electric potential is governed by
the much simpler Laplace equation, but the Navier-
Stokes equations describing fluid motion must still
be solved [7]. This complexity in solving the most
general equations governing electroosmotic flow mo-
tivates our present interest in one unique aspect of
these flows: under fairly broad conditions of practi-
cal interest, the steady velocity field of an electroos-
motic flow is uniformly proportional to the electric
field.

Such similitude between the fluid velocity and
electric field was previously revealed by Morrison [7]
for the motion of a single particle in an unbounded
fluid. In that work, he showed that the elec-
trophoretic particle speed was independent of the
particle shape and that fluid motion outside the De
bye layer was irrotational provided that the particle
was free of external forces and moments other than
those induced by the applied electric field. Here
we examine internal flows bounded by the walls of
channel or capillary networks and derive the condi-
tions necessary and sufficient for similitude. When

these conditions are met, both the electric potential
and fluid velocity fields can be computed by solving
only the Laplace equation.

Preliminary Observations

Many of the conditions necessary for similitude
between the electroosmotic fluid velocity and ap-
plied electric field cam be discerned by counter ex-
ample. For instance, body forces acting on the fluid
appear only near fluid-solid boundaries when the
Debye layer is thin, so an electric field suddenly ap-
plied will produce a fluid transient as the neutral
fluid accelerates. Such a transient cannot etilbit
similitude with the steady electric field, thus we see
that the velociw and electric fields must be at least
quasi-steady. Applied electric fields ramped at suf-
ficiently low rates can, of course, satisfy this condi-
tion.

Similarly, any applied pressure difference be-
tween the ends of a channel will produce a veloc-
ity profile that is at least in part parabolic. This
nonuniform fluid velocity is clearly not simiiar to a
uniform electric field, so a uniform pressure on all
inlet and outlet boundaries is generally required for
similitude. Flows induced by gravi~ likewise can-
not resemble an applied uniform electric field.

When the thickness of a channel is smaller than
the Debye length, a net charge is present ever~here
in the fluid. In this case, an applied uniform electric
field produces a uniform body force resulting in a
parabolic velocity profile like that of flows driven
by pressure or gravity. Only when Debye layers are
thin can the veloci~ field in the neutral fluid be
uniformly proportional to the applied electric field.
Thus thm Debye layers are necessary for similitude.

Similitude of the hvo fields also requires sev-
eral less stringent conditions. These include uniform
densi~, viscosi@ and conductivi~ of the neutral
fluid, a uniform surface potential at the fluid-solid
interface, and a Debye layer conductance in the dl-
rection of fluid motion that is very small compared
to that of the neutral fluid. In all but very special-
ized cases, the channel walls must also be imperme-
able, and the conductivi~ of the solid must be negli-
gible compared to that of the neutral fluid. Counter
examples supporting these requirements are appar-
ent from the results that follow.

Finally, the fluid velocity on all inlet and outlet
boundaries must also be proportional to the electric
field. That th~ condition is necessary follows dL
rectly from the definition of similitude: the flow is
uniformly proportional to the electric field. Here we
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show that th~ condition, along with the necessary
conditions above, is sufficient for global .cimiMude
between the fluid veloci~ and electric field.

Equations Describing Electroosrnotic Flow

To derive the conditions suilicient for simili-
tude, we consider a simply or mukiply connected
fluid volume, bounded in its entirety by a mix of
two surface types. The surfaces S1 describe the in-
terface betieen the fluid and an impermeable inau-
latiig solid, while the surfaces S2 describe inlet or
outlet boundaries.

The electric potential within this volume is gov-
erned by the Poisson equation relating the diver-
gence of the electric field to the local charge density,

v . (ev#) = –p., (1)

where e is the dielectric constant of the fluid and p~
is the local charge density. The local charge density
may be related to the electric potential through the
Boltzmann d~tribution or simiiar relationa.

Boundary conditions for the electric poten-
tial on the charged surface may be speciiied either
through a prescribed density of the surface charge
in conjunction with the governing equation (1) or,
alternatively, as a prescribed wall potential with re-
spect to the potential of the adjacent neutral fluid.
The latter is generally preferred since the wall or
zeta potential is often known or can be obtained
from simple experiments. Finally, the applied elec-
tric field is generally specified by prescribed poten-
tials on inlet and outlet boundaries.

Restricting our attention to liqtid flows, the
working fluid may be considered incompressible and
the continuity equation reduces to

V.u=o. (2)

Under the additional assumptions that the flow is
steady and that the fluid viscosity, p, is constant,
the momentum equation becomes

p(u.v)u= –Vp + pevf#J+ pv%.1. (3)

where p is the uniform fluid density. Using the vec-
tor identities of Eqs. (Al) and (A7), the momentum
equation can also be written as

-pux(vxu) = –V(p+fu.u)

+peV@– PVX(VXU). (4)
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This form of the equation is again generalIy applica-
ble only to an incompressible fluid having constant
viscosi@

Boundary conditions on the fluid veloci~ fol-
low directly from the nature of the fluid-solid inter-
face. Since no flow crosses the impermeable solid
boundaries,

u-ii = O on S1, (5)

where ii is a unit vector locaIly normal to the inter-
face. The veloci~ tangential to these impermeable
boundaries must also obey the no-slip condition at
the fluid-solid interface,

u+= O on S1, (6)

where ? is any unit vector lying in the plane of the
boundary. We will next consider an alternate form
of Eq. (6) describing the fluid velocity at the outer
edge of the Debye layer.

Tl& Debye Layer L=lt

Assuming that the Debye layer thickness, A,
is much smaller than the channel width, a, a
boundary-layer approximation may be used to se-
quentially solve for the velocity fields in the regions
within and outside the Debye layer. Under all fore-
seeable conditions, the Reynolds number based on
the Debye layer thickness is extremely small, so the
inner Debye-layer solution can be constructed by
considering only the balance between electric and
viscous forces. The maximum velocity at the outer
edge of the layer is then used as a boundary condi-
tion in calculating the larger-scale outer flow field.
Sequential soIution procedures of this type are best
justified using the formalism of matched asymptotic
expansions [9]. Here we present only an outliie of
the matching procedure for first-order terms.

To identi~ nonessential terms, the governing
equations are fist rewritten in terms of normal and
tangential coordinates resealed by the Debye layer
thickness and the geometric length scale, respec-
tively. The electric potential is then split into an
appIied field da(r) having no normal gradients and
an intrinsic component q$(q) having no tangential
gradients or at most a tangential gradient induced
by linear polarization that is proportional to the
applied field. In the latter case, polarization of the
intrinsic field can be accounted for by a suitable
choice of the dielectric constant. After dropping
those terms of order A/a and smaller, the resulting
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Poisson and momentum equations are combined to
obtain a balance between viscous and body forces,

d2u d2&
P-@ = —v$.,‘e dqz (7)

where q is the scaled coordinate normal to the sur-
face. Since the intrimic field exists only within the
Debye layer and gradents within this layer are much
steeper than those outside, &, du/dq, and d$Jdq
all must vanish as q ~ cm. Subject to these bound-
ary conditions, Eq. (7) can be integrated twice to
obtain the Hehnholtz-Smoluchowski equation [4]

C(
u~ = –Fvda, (8)

relating the veloci~ at the outer edge of the De-
bye layer, Um, to the applied field gradient, V~a,
and the wall potential or zeta potential, ~. Later,
in solving for the bulk fluid motion, this relation-
ship will be used aa a boundary condition on all S1
surfaces.

In reality, the viscosity and dielectric constant
vary in crossing the Debye layer. Equation (8) re-
mains valid in such cases provided that these prop-
erties are evaluated at their nominal or bulk values
and the zeta potential is viewed as a constitutive pa-
rameter. In this sense, the zeta potential accounts
for the property variations, as well aa the usual influ-
ences of surface chemistry, buffer pH, and the like.
For present purposes it is only important that the
zeta potential be the same on all surfaces, in keep
ing with our earlier assumption of uniform fluid and
surface properties.

Outside the Debye layer, the charge density
and intrinsic field & both vanish. The applied elec-
tric potential in this region is thus governed by the
Laplace equation

V2+ = v2q5a= o, (9)

subject to prescribed potentiala on Sz boundaries
and a zero-flux condition on all S1 boundaries. For
any non-zero fluid conductivity, the latter is equiv-
alent to

V$.ii = O on S1, (lo)

where again ii is a unit vector locally normal to
the interface. Fluid velocities on S1 are given by
the Hehnholtz-Smoluchowski relation, so it remains
only to specify velocity conditions on the inlet and
outlet boundaries, Sz.

In splitting the inner and outer regions we have
neglected terms of order A/a and smaller. One such
term involves convective transport normal to the
surface. As a result, no account is made of charge r~
distribution resulting from convective charge trana-
port. However, these polarization effects are unim-
portant provided that the Peclet number based on
the Debye layer thickness, electroosmotic speed and
ion diffusivity remains small. This is expected
in most practical applications. Convective charge
transport tangential to the surface cannot influence
charge distribution within the Debye layer so long
as this dutribution does not vary along the surface.

Conditions for Similitude

From continui~ and the Laplace equation gov-
erning the electric potential in the neutral fluid out-
side the Debye layer we can write

V.(u+avd) = o, (11)

where a = e~/IJ is a constant. Thk expression ap
plies without any loss of generali~ since V2# = O
describes the electric field in this region and Vu = O
describes continuity. The term u + cYV# is thus
solenoidal [10], and hence there exists some vector
function @ such that

u=–cYv(#)+vx$. (12)

The condition for similitude between the local elec-
tric field and the local fluid veloci~ is therefore
equivalent to the condition that V x ~ = O. When
this latter condition ia satisfied at all points in the
flow, the steady fluid veloci~ is proportional to the
electric field and the constant of proportionality is
everywhere the same.

Since the fluid outside the Debye layer is elec-
trically neutral, the body force peV@ in this region
vanishes. Dropping this term, the momentum equa-
tion (4) may be rewritten in terms of the vorticity,

–puxw= –V(p+; u.u) –pvxw, (13)

where the vorticity w is

W=vxu=vx.(vx+). (14)

Note that the far right side of this result is ob-
tained by dropping terms of the form V x V@ since
by Eq. (A3) they are identically zero. Taking the
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curl of Eq. (13) likewise eliminates the gradient of
the total pressure on the righbhand side, yielding

pvx(wxu) =pvzu. (15)

The corresponding elliptic equation governing the
vector function 1$is given directly by the definition
of the vorticity in Eq. (14). The coupled equations
(12), (14) and (15) thus generally describe incom-
pressible flow within any three-dimensional volume.
There are no restrictions on the shape of this vol-
ume, and the domain of the volume may be either
simply or multiply connected.

Boundary conditions for the function # are de-
rived from the primitive conditions on the normal
and tangential components of the fluid veloci~. Be
cause the boundary condition on the tangential fluid
velocity is automatically satisfied by the first term
on the right of Eq. (12), the remaining potilon of
the velocity must satis&

Vx@=O on S~. (16)

Note that this condition also satisfies the require-
ment that the normal component of the fluid ve-
locity vanish everywhere on the impermeable fluid-
solid boundary. Also note the Eq. @6) makes no
statement about the fluid vortici~ on the S1 sur-
face. Despite the fact that u = –aV# everywhere
on thk boundary, it is not necessarily the case that
w = -CYV x (V+) vanishes. Although this appears
to be the curl of a gradient, which would ordinar-
ily be identically zero, such is not the case since
u= –@q5 applies only on the boundary and there-
fore conveys nothing of how the velocity varies mov-
ing into the fluid. Thus it is impossible to make any
a pn”ori claim that vorticity vanishes at the fluid-
solid boundaries of an electroosmotic flow.

To show the conditions under which V x @ is
identically zero, we now substitute Eq. (14) into
Eq. (15) yielding

pvx[(vxf)xu)] =J@(vxc), (17)

where
<Gvx+. (18)

From Eq. (16), the boundary condition for ~ is

~=0 on S1. (19)

Given this homogeneous governing equation and
boundary condition on S1, we see that a necessary

and sufficient condition for ~= O everywhere is that
$ = O on the inlet and outlet boundaries S2. By
Eq. (12), this is equivalent to requiring

u = –crV~ on S’2, (20)

Thus the fluid velocities on all inlet and
outlet boundaries must satisfy the Hehnholtz-
Smoluchowski relation normally applicable to fluid-
solid boundaries. This result is the most general
condition for similitude between the fluid velocity
and electric field. When this condition is satis-
fied, along with the other restrictions previously de-
scribed, the fluid veloci~ is uniformly proportional
to the gradient of the electric potential.

Consequences

Similitude between the fluid velocity and
electric field has several important consequences.
Firstly, the flow is everywhere irrotational out-
side the Debye Iayer, regardless of the geometry
of bounding surfaces. All fluid motion within the
domain is simply potential flow, and the vortic-
ity defined by Eq. (14) is exactly zero. Such flows
cannot maniiest closed cells of fluid recirculation.
Thus, electroosmotic flows satii&ing the conditions
for similitude cannot contain any vortex, regardless
of how complex the geometry may be. The absence
of vorticity further implies, according to Eq. (13),
that the total pressure is everywhere uniform and
is therefore the same on all inlet and outlet bound-
aries. This automatically holds when the condition
u= —ctV@ is satisfied on these boundaries.

Secondly, the veloci~ field under the condi-
tions for similitude exhWs no dependence on the
Reynolds number. This is because any potentiid
flow satisfies the @ll Navier-Stokes equations for
aII Reynolds numbers. These solutions thus remain
valid even when inetilal forces are not negligible.

Finally, under the conditions for similitude, the
velocity field in any two-dnensional channel is in-
dependent of the channel depth, provided that the
depth is uniform and the electric field is vertically
uniform on all inlet and outlet boundaries. For
similitude to hold, the top and bottom boundaries
of these two-dimensional channels must be electri-
cally insulated planes. Given these restrictions the
electric field can have no vertical component, and
all horizontal planes through the channel are equiv-
alent. The electric field, and hence the fiuid veloc-
ity, are then truly two-dmensional and will show no
dependence on the channel depth.

7

——.- ,‘?.,. -; ,,. , . .. ... ..,. -~,,,; ,-. i, .. . . .;:.. .2::.$ %,?
-.



Practical Realization of Similitude

The condition u = –cYVr# on the surfaces S2
is effectively satisfied in many practical devices em-
ploying electroosmotic flow. This condition natu-
rally arises for flow in any long channel between fluid
reservoirs maintained at iixed potentials by embed-
ded electrodes. Such arrangements are common in
electrochromatographic systems. Although this S2
boundary condition may not be satisfied very near
an electrode, and in fact cannot be satisfied on an
electrode surface, the flow field in a long narrow
channel should relax to satisfy th~ condition within
a few channel widths of its ends. This condition may
thus be satisfied on the interior of a complex channel
network, even if it is not satisfied everywhere.

In considering conditions on the boundaries S2,
we must keep in mind that these inlet and outlet
surfaces need not be the physical ends of a chan-
nel or channel network. The surfaces S2 are simply
defined as open boundaries that may be crossed by
the fluid, so their positions can be specified rather
arbitrarily. Thus any portion of a device bounded in
its entirety by S1 and S2 surfaces will etilbit simili-
tude between the velocity and electric field when the
necessary conditions me satisfied and u= –aV@ on
all specified Sz surfaces. It follows immediately that
any subset of such a domain will also exhibit similit-
ude since the velocities on all S2 boundaries of the
subset must satisfy u= –crV&

One of the necessary conditions for similitude
is that all S1 surfaces are electrically nonconductive
relative to the working fluid. While this condition is
readily satisfied by many materials of practical im-
portance, it contains a hidden and somewhat subtle
constraint. No electrodes or conductive elements
may appear within the domain bounded by S1 and
S2 if simiitude is to hold in a rigorous sense. Thus,
even if there exists a set of S2 boundaries satis&ing
the sufficient condition for similitude, an imbedded
electrode within the domain will violate the neces-
sary condition that no electric currents cross the S1
boundaries. From a practical view, this means that
some devices, such as electrokinetic pumps, may
never etilbit sirnihtude.

Aa described above, one consequence of simil-
itude is that the total pressure is the same on all
inlet and outlet boundaries. This uniformity may
thus also be viewed as a necessary condition for
similitude to hold. At. low fluid speeds, this new
condition is readily satisfied by holding the static
pressures tied and uniform on the inlet and outlet
boundaries. However, the required equali~ of the
total pressures becomes more difficult to ensure as

the dynamic pressure increases. For example, a dif-
ference in cross-section area between a channel inlet
and outlet yields dfiering fluid speeds at the ho
ends. If the dynamic portion of the total pressure is
not negligible, this produces a difference in the total
pressures. In such a case the static pressures must
be adjusted to ensure that the total pressures are
once again equal. This, of course, would not be very
practical. Fortunately, the fluid speeds in most real
applications are sufficiently small that dynamic con-
tributions to the total pressure are negligible from
a practical point of view.

Even in cases where the conditions for simil-
itude are locally violated, the region of nonzero
~ may be small. If we assume that If] << Iul,
the left term in Eq. (4) can be approximated by
(u. V)& + (aV#-V)crV@. The momentum equation
can then be decomposed into two components:

(a!vqhv)av(j + y = o, (21)

where pi is the static pressure field of the potential
flow satisfying all boundary conditions on S’l. This
component vanishes because the total pressure is
uniform. The second component is

(u.v)c+~ - q = o, (22)

where p. represents a pressure mismatch induced by
~ or imposed by the boundary conditions on S2. The
left-most term of Eq. (22) is the steady convective
derivative of ~, hence if U is a characteristic speed,
a is a characteristic dimension transverse to the di-
rection of motion, L is the length of the streamline,
and 1 is the distance traveled along a streamline, we
may write

/4cl#KJ ~ Apa. —.
d-t’ p L pa2

(23)

Note the term V2~ is approximated as –1~1/a2 in
keeping with the condition that V x < vanishes on
S’l. The solution to Eq. (23) for ICIis

IC(41-JlEOle-e’’Rea +*, (24)

where Re= = pUa/p is the Reynolds number based
on the transverse dimension. Hence, ~ decays
rapidly at low Reynolds numbers if no applied pres-
sures appear on S2. Pressure gradients produce
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a persistent ~ field. Simiiar dimensional analysis
shows that unsteady, purely electroosmotic flow pro-
duced by a step in applied voltage decays to the
similitude solution with a time constant -p a2/p,
during which the flow proceeds a distance - aRe=.
Hence steps in the applied potentials can SISOpro-
duce a Reynolds number dependence as the bulk
fluid relaxes to the steady irrotational flow. Based
on these observations, flows may exhibit a Reynolds
number dependence when the boundary conditions
are unsteady or are incompatible with the potential-
flow solution. ThB may explain the evidence of a
weak dependence on the Reynolds number in previ-
ous numerical analyses of electroosmotic flow [6].

Summary

In many cases of practical interest, the fluid
velocity of an electroosmotic flow is proportional to
the appIied electric field and the constant of pro-
portionality is everywhere the same. Here we have
shown that necessary conditions for such sirnilkude
include a quasi-steady electric field, uniform fluid
density, and uniform viscosi~ of the neutral fluid
outside the Debye layer. The condition of uniform
viscosity may be relaxed in the special case in which
gradients of the viscosity are everywhere orthogonal
to gradients of the fluid velocity. Further, the De-
bye layer thickness must be small compared to any
channel dimension, and the conductance of the layer
in the direction of fluid motion must be small com-
pared to that of the neutral fluid. In addhtion, all
solid surfaces bounding the fluid must have a uni-
form surface charge or surface potential, must be
impermeable to flow, and must be electrically non-
conducting relative to the fluid. The last of these
implies that conductors and electrodes may not ap-
pear anywhere within the domain of similitude.

To derive the remaining less-obvious conditions
required for similitude, the velocity field was ex-
pressed as the sum of a component uniformly pro-
portional to the electric field and a residual com-
ponent of unknown value. Using the full three-
dimensional stream-function and vorticity formu-
lation of the steady Navier-Stokw equation, we
showed that the unknown residual component van-
ishes everywhere if and only if the veloci~ on all
inlet and outlet boundaries satisfies the Hehnholtz-
Smoluchowski relation normally applicable to the
fluid-solid interface. This condition, along with the
necessary conditions above, is both necessary and
sufficient for similitude between the velocity and
electric field. The resulting electroosmotic flows are

9

irrotational and therefore have a uniform total pres-
sure. This proof employs no assumptions regard-
ing the geometry of the channel, so the results are
equally applicable to simple channels, channel net-
works, and complex three-dimensional geometries
such as those in the interior of packed beds.

When the conditions for similitude are fully sat-
isfied, the resulting fluid motion is simply a poten-
tial flow. As a result, the flow is irrotational, the
total pressure is uniform, and the fluid velocity field
exhibits no dependence on the Reynolds number.
However, if dynamic pressures are large, care must
be taken to ensure that the total pressures on all
inlet and outlet boundaries remain equal. Fortu-
nately, dynamic pressures are rarely significant in
systems of practical interest.

The principal benefit of similitude is that mod-
eliig these flows is greatly simplified. Both the elec-
tric field and the velocity field are obtained from a
single solution of the Laplace equation. The Navier-
Stokes and Poisson equations need not be solved,
and thin boundary layers on the channel walls need
not be resolved. Moreover, under the conditions
for simiMude, flow in No-dimensional channel net-
works bounded by parallel planes is independent of
the channel depth provided that the depth is uni-
form and the electric potential is vertically uniform
on the inlet and outlet boundaries. In this case the
flow is strictly two-dmensional amdtwo-dimensional
models may be employed. Thus, recognition of
similitude is useful in modeliig for the design and
evaluation of channel junctions, nozzles, injectors,
flow dividers, control devices and other such com-
ponents of microfluidic systems.

Beyond these mathematical benefits, simiMude
provides useful physical insight into the design and
operation of ekctroosmotic systems. For example,
the. absence of vorticity generally impedes mixing
processes. Thus long range species transport with
little mixing or dispersion benefits from the condi-
tions for similitude. In contrast, irrotational flows
may not be desirable when mixing is the goal. The
conditions for simiitude in this ctie aIso provide
guidance in the means to produce vorliciw by vio-
lating one or more of the requirements.

Nomenclature

U characteristic speed
a characteristic transverse dimension
2 distance traveled along a streamline
L length of streamline within domain
S boundary surface
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temperature
local fluid velocity
velocity constant: a= e~/,u
dielectric constant
effective surface electric potential
Debye length
kinematic viscosity
vortici~ vector
charge density
electric potential
stream function vector

Subscripts and Superscripts
1 on fluid-solid boundary
2 on inlet and outlet boundaries
i intrinsic
a applied
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Appendix: Useful Vector Identities

Advective dyad:

(U.v)u = ;V(u.u) - Ux (Vxu) (Al)

Commutation of cross product:

Uxv= —Vxu (A2)

Curl of a gradient:

Vxvs=o (A3)

Divergence of a curl:

V.(vxu)=o (A4)

Curl of a cross product:

VX(UXV) = UV-V –vV.U+ (vV)U– (wV)V (A5)

Gra&ent of a dot product:

V(uv) = (Uv)v + (V.v)u+ux(vxv) +Vx(vxu)
(A6)

Laplacian of a vector:

V2U=V(V.U)– VX(VXU) (A7)

,
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