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A VALIDATION OF BAYESIAN FINITE ELEMENT
MODEL UPDATING FOR LINEAR DYNAMICS

Fran~ois M. Hemezl and Scott W. Doebling2
Engineering Sciences & Applications, ESA-EA, M/S P946
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

This work addresses the issue of statistical
model updating and correlation. The updating
procedure is formulated to improve the predictive
quality of a structural model by minimizing out-of-
balance modal forces. It is shown how measurement
and modeling uncertainties can be taken into account
to provide not only the correlated model but also the
associated confidence levels. Hence, a Bayesian
parameter estimation technique is derived and its
numerical implementation is discussed. Two
demonstration examples that involve test-analysis
correlation with real test data are presented. First, the
validation of an engine cradle model used in the
automotive industry shows how the design’s
uncertainties can be reduced via model updating. Our
second example consists of employing test-analysis
correlation for identifying the degree of nonlinearity of
the LANL 8-DOF testbed.

NOMENCLATURE

The recommended “Standard Notation for
Modal Testing & Analysis” proposed in Reference [1]
is used throughout this paper.

1. INTRODUCTION

In structural dynamics, the method of
obtaining a correct parametric representation of a test
article is to create a finite element (FE) model of the
system and correlate this model with measurement
data taken from the system itself or some of its
components [2]. Applied essentially to linear
systems, this approach has been found quite
effective when modal data are used in the correlation

process, because 1) experimental procedures in the
form of modal tests permit to identify these modal
parameters; and 2) the same quantities can be
extracted easily from a FE model when the response
of interest involves the low-frequency spectrum of
the dynamics. This procedure is illustrated in Figure 1
where the FE matrices or a subset of design variables
are optimized until the test-analysis correlation (TAC)
is found acceptable.
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Figure 1. Illustration of Test-AnaIysi
C&’relation and FE Model Updati_ng.

.Since many correlation metrics can be
formulated, countless model updating and damage
detection techniques have been proposed and
validated for the past three decades, a
comprehensive review of which can be found in
Reference [3]. For example, we cite TAC metrics
based on the difference between identified and
computed frequencies [4], the distance between test
and analysis mode shapes [5], the change in mode
shape curvature [6], the cross-orthogonality between
test and analysis mode shapes ~], or the verification
of “hybricY equations of motion where the system’s
representation is given by a parametric model and the
dynamics are described by measurements [8-1O].
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As the inverse problems of health monitoring
and damage detection grew increasingly popular in
the past years, variability has been observed to be a
major obstacle to the practical implementation of
correlation and FE updating software. Measured
response levels and identified modal parameters may,
for example, vary according to environmental
conditions, such as temperature and humidity [1 1].
Recently, full-scale damage detection experiments
on various bridges [12-13] have shown that modal
parameter variability can “hide” the effects of damage,
therefore, making it very difficult to assess the
structural integrity of a system based on its dynamic
response.

Nevertheless, well-defined statistical tools are
available for analyzing variability in test data and taking
advantage of it. For example, using statistical tests it
can be assessed if frequency variations are significant
or not. Conversely, confidence intervals can be
obtained by perturbing an experimental or a
computational model [14]. Then, feeding these
confidence intervals together with the baseline data
to a correlation and FE model updating package might
help improving the correlation by taking advantage of
the statistical distribution of test data and modeling
uncertainties. It is this approach, summarized
Figure 2, that this work aims at validating.
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Figure 2. Interactions Between Statistical
Treatment of Test Data, Test-Analysis

Correlation and FE Model Updating.

We emphasize that the theory and
implementation of the correlation technique used
here have been first proposed by Alvin in Reference
[15]. Rather than attempting to improve the algorithm,
this work shows using two experimental testbeds how
the approach illustrated in Figure 2 can help us
defining our modeling rules, which is after all what FE
model updating is all about.

2. EXPERIMENTAL TESTBEDS

A brief description of the two experiments
used for validating the statistical correlation technique
is provided in this Section. With the GM engine cradle
testbed, our aim is to show how modeling rules can
be established from a statistical-based correlation.
With the LANL 8-DOF testbed, we investigate
whether the covariance data provide any insight as of
the degree of nonlinearity of the system tested.

2.1 The GM Engine Cradle Testbed

Our first testbed is a simplified model of
engine support constructed and tested by GM. The
structure consists of two tubular Iongerons welded to
two transverse beams. A very crude FE model is
illustrated in Figure 3 it involves essentially 116
Euler-Bernoulli beam elements, 4 rotation and
translation springs and it features a total of 672 active
DOFS. The most uncertain aspects of the model are
the four welded connections and the associated joint
compliance.

Figure 3. Geometry, Modeling and
Measurement Locations of the GM Engine

Cradle Testbed.

For TAC purposes, we select the subset of
16 nodes indicated in Figure 3 by the solid dots.
Three translation measurements are available at each
instrumented node. The structure is tested in a free-
floating configuration and a description of the first
three non-rigid identified modes is given in Table 1.

Table 1. Description of Identified Mode
Shapes of the Engine Cradle Support.

Identified Description of
Frequency Mode Shape Vector

79.0 Hz Out-of-phase Bending-1 of Longerons
170.6 Hz In-phase Bending-2 of Longerons
174.5 Hz Out-of-phase Bending-2 of Longerons



Table 2 shows atypical correlation attempted
between the test data and the FE model prior to any
parametric adjustment. Despite our simplistic
modeling (no offsets, for example, are introduced to
account for the sensors and their off-centered
measurement points), the lowest end of the
frequency spectrum is captured with reasonable
accuracy. ft can be observed in Table 2 that no
systematic error seems to have been introduced in
the FE model since the first four FE modes are too
stiff, compared to the identified dynamics, while the
next three are too flexible.

Table 2. TAC Before FE Model Updating
(Identified System Vs. Nominal FE Model).

Identified FE Model Frequency MAC
Frequency Frequency Error

79.0 Hz 89.4 Hz 13.2’%0 98.9’%
170.6 Hz 178.4 HZ 4.61?40 96.9%
174.5 Hz 180.8 Hz 3.6’ZO 98.4%
214.7 Hz 224.8 HZ 4.770 97.8%
250.9 Hz 200.6 Hz -20.0’%0 98.6’70
312.2 Hz 251.1 HZ -19.6% 97.170
315.8 Hz 288.5 HZ -8.6Y0 96.3%

Further details on the GM engine cradle
testbed are available from Reference [15]. A
thorough investigation is presented where the author
correlates unambiguously the first 14 identified
modes using the same Bayesian updating method
and a more sophisticated FE model.

2.2 The LANL 8-DOF Testbed

The IANL 8-DOF (which stands for Los
Alamos National Laboratory eight degrees of
freedom) testbed consists of eight masses
connected by linear springs. The masses are free to
slide along a center rod that provides support for the
whole system. Boundary conditions are unrestrained.
Figure 4 shows the experimental testbed that is
instrumented with eight accelerometers and where
excitation is provided using either a hammer or a
shaker. Modal tests are performed on the nominal
system and on a damaged version where the stiffness
of the fifth spring is reduced by 14Y0.

Figure 4: LANL 8-DOF Testbed.

Table 3 compares the seven flexible modes
identified with the nominal and damaged systems.
Hammer excitations and data averaging are used for
these series of tests. Large damping ratios can be
observed. It suggests that the sliding mechanism and
the friction it generates play an important role in the
dynamics measured. Also, the reduction of stiffness
translates, as expected, into a reduction of modal
frequencies.

Table 3. Identified Modal Parameters For
the Nominal and Damaged Systems.
Nominal Modal Damaged Modal

Frequency Damping Frequency Damping

22.6 Hz 8.570 22.3 Hz 13.670
44.5 Hz 4.3% 43.9 Hz 5.0?40
65.9 Hz 3.370 64.8 Hz 3.570
86.6 Hz 5.070 85.9 Hz 5.970
99.4 Hz 2.6% 99.7 Hz 3.69!0

113.0 Hz 1.5?!0 113.2 Hz 2.0’%0
133.2 Hz 0.770 131.9 Hz 1.870

Correlation results are shown in Table 4
between the identified modal parameters of the
damaged system and results obtained with the
nominal (undamaged) FE model. The modal
assurance criterion (MAC) illustrates the excellent
agreement between test and model vectors since
most values are above 90Y0, despite the unmodeled
stiffness reduction and the effect of friction.

Table 4. TAC Before FE Model Updating
(Damaged System Vs. Nominal FE Model).

Identified FE Model Frequency MAC
Frequency Frequency Error

22.3 Hz 21.8 Hz -2.3’XO 99.7%
43.9 Hz 43.0 Hz -2.OYO 99.470
64.8 Hz 63.0 Hz -2.8Y0 99.470
85.9 Hz 80.8 Hz -6.OYO 93.2%
99.7 Hz 95.6 Hz -4.170 98.5?40

113.2 Hz 110.3 Hz -2.59’o 93.l~o
131.9 Hz 116.8 Hz -11.570 77.970

It is interesting to notice that this FE model is
already too flexible compared to the damaged test
article (FE frequencies in Table 2 are all smaller than
identified frequencies) even though structural
damage has not been introduced in the model at this
stage. Therefore, prior to our damage detection
experiment, the model is correlated with the nominal
(undamaged) system in an attempt to increase its
stiffness and provide a better starting point.
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The LANL 8-DOF testbed is designed for

validating modeling and TAC techniques for
nonlinear, transient dynamics. To this effect, a contact
mechanism can be added that makes two masses
impact each other during the modal tests. In this work,
however, only linear (no impact) configurations are
investigated, whether they feature damage (in the
form of stiffness reduction) or not.

3. DETERMINISTIC FE MODEL UPDATING

In this Section, we present the deterministic
FE model updating technique developed in
References [9] and [15-1 6]. For simplicity, we restrict
ourselves to the case where only undamped modal
data are considered. However, generalization to
arbitrary data and inclusion of dissipative modeling
offer no difficulty other than programming challenges.

3.1 Formulation of FE Model Updating

The method consists of minimizing the modal
residue vectors defined as out-of-balance forces
acting on the FE model when the reference dynamics
are represented by a set of identified modal

parameters (tD2;{@}). The residue vectors are

obtained by satisfying

[NP)]{O}=@’[Jo]{@}+{~f(w)} (1)

where [M(P)] and [K(P)] represent the model’s

mass and stiffness matrices, respectively. These
depend on design variables {p} which express the

parametric nature of FE representations. Here, we
define model updating as the procedure by which
these variables {p} are optimized to minimize the

distance between test data and FE simulations.

Clearly, the out-of-balance residues exhibit
the largest entries at DOFS where the equilibrium is
violated the most. (In the best case scenario, the
numerical model is a perfect representation of the
structure, no measurement noise is affecting the test
data, and the residue vector in equation (1) is equal to
zero because the equation of vibration must be
satisfied.) Hence, the source of modeling error can be
isolated by reviewing these out-of-balance forces and
by investigating the elements connected to DOFS
where they are the largest. This approach is referred
to as force-based modal updating since entries of

residues {R~ (p, o)} in equation (1) are consistent

with forces. Then, an objective function J(p) is

defined that represents the 2-norm (Euclidean norm)
of our residue vectors

J(p) = Rf(P>@) + ~llP - Poll (2)

The objective function includes a minimum
change term, or regularization term, that helps
reducing the numerical ill-conditioning characteristic
of inverse problems. From an engineering point-of-
view, it simply means that an optimum design {p} is

sought after that brings the least possible change to

the original design {PO}.

Finally, optimization algorithms are used for
minimizing the objective function while satisfying
constraints on the design. Typical choices are order-
zero algorithms (the simplex method) and order-one
algorithms (Gauss-Newton, BFGS and Levenberg-
Marquardt, for which documentation can be found in
Reference [17]). Gradients are required with order-
one optimization methods. They can either be
calculated with a centered finite difference scheme,
which is accurate but becomes computationally
intensive with large dimensional FE models or they
can be estimated analytically based on definition (l),
which is computationally efficient but may yield
convergence difficulties if the mode shapes are
highly sensitive to design changes.

3.2 Matching Test and FE Discretizations

The reason why the objective function (2) can
not be minimized directly using, for example, a first-
order Taylor’s expansion comes from the fact that,
usually, measurements available are incomplete.
Therefore, a mismatch appeam in definition (1)
between the identified mode shape {$} (known at

measurement locations only) and the full-size FE
matrices. Either model reduction or vector expansion
must be implemented prior to calculating the modal
residues. In the first case, reduced-order FE matrices
become nonlinear functions of the design variables;
in the second case, it is the expanded vectors that are
made implicitly dependent on the design.

To preserve the ability to locate modeling
errors using out-of-balance forces at each DOF of the
discretization, we chose to expand the test vectors.
Hence, missing mode shape components are
calculated by solving a system of linear equations I
obtained by differentiating the objective function (2)
with respect to any non-measured mode shape DOF.



4,- BAYESIAN PARAMETER ESTIMATION

Prior to applying the concepts of statistical
inference to our inverse problem, the basics of
Bayesian estimation are presented in Section 4.1, the
solution procedure is derived in Section 4,2 and a key
issue is discussed in Section 4.3.

refer to as the “Bayesian estimator in the remainder.
The reader is referred to Reference [18] for further
details and a comprehensive list of publications where
these theories are explicated. Note that, for
engineering applications, the assumption of normal
distributions is the usual assumption when dealing
with test data and it also applies to material and
geometty uncertainties to a great extent.

4.1 Theoretical Background
4.2 Practical Solution Procedure

The linear problem of parameter estimation
consists of determining the optimal parameters {P}

such that the following system of (linear) equations is
satisfied

{y} = {yO}+[A@J]({P}- {%})+ {e} (3)

In equation (3), vectors {y} and {e} would

typically represent measurements obtained through
the instrumentation of a physical system and the
associated measurement noise, respectively. Mattix
[A(p)] is the parametric model used for best-fitting

the test data. We can see that, to obtain the best
possible curve fit, it is desirable to minimize the error
vector {e}. Dealing with nonlinear parametric models
(which is what we are eventually interested in for our
structural dynamics application) basically consists of
solving similar systems of linearized equations where
matrix [A(p)] represents the gradient, with respect to

parameters {p}, of the nonlinear model

[1{Y} ={W)}+{’}, [4P)]= -$’(P)(4
Hence, the solution procedure for nonlinear

models can be summarized as follows: t) Calculate

the gradient matrix [A(po)] at current design {PO};

2) Solve the linearized estimation problem (3); and 3)
Advance the solution and keep iterating until
convergence. Clearly, the core problem of parameter
estimation, whether linear or not, is represented by
the linear system of equations (3).

When it is assumed that the random variables
are normally distributed, it can be shown that many
popular statistical estimators all provide the same
solution. For example, we cite the least-squares, the
madmurn likelihood, the minimum mean square error
and the best linear unbiased (BLUE) estimators. All of
these are obtained by minimizing different objective
functions but they yield the same estimator that we

Since many objective functions can be used
as starting points, we define for clarity the Bayesian
estimator as the optimal set of parameters {p} that

minimize the cost function .7(P) defined by

J(p) = {e}’[See]-’{e}
(5)

+({p} - {PO})T[$J-’({P} - {~o})

In equation (5), matrices [s,,] and [s,,]

represent covariance matrices of the error and
parameter change terms, respectively. tf left constant
throughout the optimization, the procedure simply
becomes a generalized least-squares minimization.
However, in the general case, the solution procedure
consists of solving the system of equations obtained
by writing the necessary Kuhn-Tucker condition
~(p) = O. It can be verified that its solution is

{P}={PO}+[$J-’[OO)]TIL?]-’{YI
(6)

-[SW]-* [A(Po)]~[See]-’[A(Po)]{Po}

where

[$r]=[~p,r+[A(P,)]T[~..]-l[A(PO)]0’)
Equations (6-7) show that many matrix

inversions are required to compute the solution: this
is a practical reason why covariance matrices are
usually approximated and kept as simple as possible.
For example, the covariance matrfx of the optimized
design can be estimated as

[sppf-)=[[spp]’+[~~[see]-’[$]) (8)

Equation (8) is based on a first-order
approximation where it is assumed that the original



covariance of the model [SPP] is “smail” compared to

the covariance of the error [s.,], which happens

when the model is a fair representation of the system.
Another approximation commonly used is to consider

that covanance matrices [s,,] and [SPP]are diagonal.

This keeps the matrix inversions in equations (6-8) to
their simplest possible expressions and yields
significant computational savings.

Nevertheless, we emphasize that our main
interest in the Bayesian estimation procedure
outlined previously is that it provides an update of
variances L$PP(i,~) as the model is optimized. These
variances characterize the statistical distribution of the
design {p}. An illustration is given in equation (8):

even though approximations are made, the diagonal

entries of the inverse covariance matrix [SPPl_l

increase because a positive semi-definite matrix is
added. In other words, variances SPP(~,~) of design

variables p(~) decrease, which basically means that

the Bayesian estimation can only improve our
knowledge of the system.

4.3 Approximation of Covariance Matrices

As mentioned previously, a critical issue of
Bayesian estimation is to approximate the various
covariance matrices. The procedure we have found
general and effective is to implement a first-order
Taylor’s expansion as discussed briefly in this
Section.

The covariance between random variables
{a} and {b} is defined as

[S~]= E[(a-E[a])(b-E[b])’] (9)

where E[] denotes the expected value. In our
structural dynamics application, random variables
such as {a} depend on measured quantities that
feature covariance matrices of their own. For example,
the error {e} can be defined as the difference
between test and analysis eigenvalues and modal
tests usually provide accurate estimations of the
measured eigenvalue’s variances. For simplicity, we
denote these (measured) variables as {q} and the

corresponding covariance matrix as [Sgg]. Then, a

first-order Taylor’s expansion of a random variable {a]

about the current set of modal parameters {qo} can

be written as

{a}-E[a] = {a(q)} -{a(qO)}

[1=:(%)({4}-{!?0})
(lo)

Finally, substituting the previous expansion
in definition (9) provides a first-order approximation for
the covariance matrix between random variables {a}
and {b} where gradients are obtained (usually,
explicitly) from the equation of motion and the TAC
metrics

‘s=J=[3’)l(11)

In our numerical implementation, covariance
matrices are approximated using this procedure,
then, they are reduced to their main diagonal for
providing cheap storage and matrix inversion.
Practically, a zero covariance at an off-diagonal entry
(i,j) means that random variables a(i) and b(j) are

uncorrelated, which is generally the assumption made
when dealing with measurement noise or modeling
uncertainties (and when no systematic source of error
can be justified).

5. BAYESIAN FE MODEL UPDATING

After having discussed the general theory of
Bayesian parameter estimation, it is now applied to FE
model updating. Rather than showing how to derive
the entire procedure, we provide a brief summary in
Section 5.1 and the key issue of mode shape
expansion is discussed in Section 5.2. The reader is
referred to Reference [15] for more details.

5.1 Formulation of the Inverse Problem

In the light of Section 4, generalizing our FE
model updating procedure to include the Bayesian
estimation concept is rather trivial. The objective
function (5) is minimized using error vectors {e}

defined as our modal residues (l).

One major difference with the linear case
described in Section 4 is that the state equation that
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relates the error {e} to variables {p} is no longer

linear. Measurement incompleteness introduces an
implicit relationship between expanded test vectors
and design variables. To minimize the objective
function, we must therefore employ the same
optimization algorithms as before (see Section 3) and
centered finite differences are used whenever
gradients are needed.

The last remaining difficulty is the calculation
of covariance matrices for our modal residue vectors.
According to the procedure outlined in Section 4.3,
they are first estimated using order-one expansions,
then reduced to their main diagonal. Whh modal data,
the only two variables to consider in the generic
solution (11) for a given mode are the identified

eigenvalue @2 and mode shape {@}. Their

variancelcovariance data are denoted by s~ and

[s@@], respectively. Then, the covariance of modal

residues is approximated from equation (11) as

[&uzl=%m@{#}{@}T)[mw
(12)

+[z][P][s@j][P]T[z]T

where [Z] = ([K] – ~2[MJ) is the dynamic stiffness

matrix and where the notation is simplified to
[M] = [M(P)] and [K]= [K(P)] for clarity. In

equation (12), matrix [P] represents the modal

expansion: it is a transformation matrix that projects
the measured mode shape {@} into the full-order FE

space. Many different expansion techniques can be
implemented, which is why matrix [P] is left

somewhat arbitrary here. For more details, Reference
[19] provides a description of popular expansion
matrices that can be used.

This concludes our presentation of the
Bayesian estimation technique applied to FE model
updating. In the next Section, we emphasize the
coupling between covariance matrices and modal
expansion because it is, to our opinion, the key issue
of the computational procedure.

5.2 Incomplete Measurement Coupling

To show how coupling is introduced between
covariance matrices and modal expansion, we need
to explicit the expansion matrix.

For simplicity, we partition symbolically the
expansion matrix according to the measured and non-
measured DOFS. Usually, the part of the projection
matrix acting on instrumented DOFS is simply equal to
the identity because the expanded mode shape is
required to reproduce the test data at measurement
points. As mentioned previously, modal expansion
results from solving the system of linear equations
obtained by differentiating the objective function (5)
with respect to non-measured DOFS. By doing so, it
can be verified that, for a given mode, the expansion
matrix consistent with our cost function is equal to

[

[I]

‘p]= -([z21mR1-’[z21)-’([z21T[&R[41)41)1
(13)

!n equation (13), notations [~] and [z,]

represent partitions of the dynamic stiffness matrix
the first one is a restriction to the columns of
instrumented DOFS while the second one is a
restriction to the columns of non-measured DOFS.
Comparing equations (12) and (13) shows that the
projection and covariance matrices are required to
calculate each other. Clearly, solving the system of
nonlinear equations (12-13) for [P] and [SM] is out

of the question, even with small FE models. Instead, it
is resolved in a staggered way modal expansion (13)
is performed using the covariance matrix from
previous iteration; then, variances are updated with
equation (12) using the newly expanded test data.

As pointed out in Reference [18], this
computational procedure is similar to the predictor-
corrector steps of Kalman filtering. Nevertheless, we
have witnessed the high computational requirement
of handling the coupling (12-13). Also, numerical
difficulties may arise during modal expansion (13)
where ill-conditioned systems of equations must be
inverted.

6. ILLUSTRATION OF MODEL iMPROVE-
MENT WITH THE GM ENGINE CRADLE
TESTBED

The Bayesian parameter estimation
procedure is first applied to the GM engine cradle
testbed. Our purpose is to assess by how much our
very simple FE model can be improved and to
estimate the degree of confidence the analyst can
have in the updated model.



The updating discussed here consists of
using only the first three identified modes to refine
the model. These are provided at 48 measured
translations, meaning that 79!0of the model’s DOFS
are measured, a ratio of measurement points typical of
those encountered in the automotive industry. The
modulus of elasticity of each element is allowed to be
modified but reductions smaller than 50% of
increases greater than 200!40are not permitted. This
approach is chosen, rather than grouping elements
that belong to the same component together, for
checking how consistent corrections brought to the
model are. We also mention that our software is
currently being validated under the form of a Matlab
toolbox for FE modeling, parametric adjustment and
optimization of structural dynamics models.
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Figure 5. Convergence of the Updating.

Figure 5 illustrates a typical convergence
curve obtained when the GM engine cradle model is
updated. A total of ten optimization are performed
using the gradient-based BFGS algorithm. Usually, a
single optimization is sufficient to identify most of the
modeling error, as shown in Figure 5 by the steep
slope of the curve during the first optimizations.

We have learned from this application the
high cost of coupling FE model updating to Bayesian
estimation. Up to one hour of CPU time is spent per
optimization, when running Matlab 5.1 on a Silicon
Graphics RI 0,000 processor. One reason is that
Matlab is an interpreted rather than compiled
language. Another is that singular systems of
equations must be inverted when covariance matrices
are updated, which requires special algorithms that
are not available for sparse matrices in Matlab’s core
environment. These are therefore custom-made or
replaced with full-matrix algebra, both solutions being
very expensive in terms of CPU time.
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Figure 6. Updating of the GM Engine Cradle
FE Model.

Figure 6 shows the updating results. Bars
represent the percentage of change brought to each
element of the model. Modifications are brought
essentially to the first transverse beam stiff nesses
are increased by 1201%0in average near the two joints
and decreased by half in the center. The second
transverse beam is not modified significantly.
Although it is not enforced during the updating,
Figure 6 shows that the two Iongerons receive the
same correction, which is actually expected due to
the symmetry of the geometry and the mode shapes
used during the updating (refer to Table 1).
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Figure 7. Final Variance Data For the
Adjusted GM Engine Cradle FE Model.

Variance data after the tenth optimization are
illustrated in Figure 7. The Bayesian estimation is
initialized with a uniform 10% variance of all moduli of
elasticity. Figure 7 shows that most values are
reduced to less than 1Yo.This is especially true for the
two Iongerons, which basically means that the family
of models that could be used for representing the
Iongerons exhibits very little dispersion. The larger
variance levels can be seen as an indication of where
the modeling is still faulty. For example, the first
longeron exhibits slightly more dispersion than the

,.,,,. , --
~.,.:



‘other one. These higher variance results are
associated to FEs located where the first transverse
beam is welded, which is consistent with the
significant refinement brought to the first beam.

Table 5. TAC After FE Model Updating
(Identified System Vs. Adjusted FE Model).

Identified FE Model Frequency MAC
Frequency Frequency Error

79.0 Hz 80.6 Hz 2.0% 98.5%
170.6 Hz 171.8 Hz 0.770 96.8%
174.5 Hz 173.3 Hz -0.6Y0 98.2%
214.7 Hz 210.3 Hz -2.1’?40 97.5’?40
250.9 Hz 239.6 Hz -4.5!40 96.6%
312.2 Hz 276.1 Hz -1 1.6% 95.570
315.8 Hz 359.7 Hz 13.9% 96.3%

Finally, Table 5 gives the TAC between the
updated FE model and test data. It should be
compared to Table 2 before updating. Clearly, the
correlation is improved significantly. The first mode
that was 13% too stiff before updating is now
predicted with an acceptable 27. frequency error.
Corrections brought to the first transverse beam are
consistent with this improvement the first mode
features out-of-phase bending of the Iongerons and,
therefore, it is expected to be very sensitive to
modifications of the transverse beam component.

In conclusion, we measure the success of the
update by the fact that modes 4-7 that were not
included in the correlation procedure are predicted
with better accuracy by the updated FE model.
Furthermore, variance data in Figure 7 can be used to
indicate where further improvement is needed. We
emphasize that, without Bayesian estimation, such
information would simply not be available.

7. ILLUSTRATION OF NONLINEARITY
ASSESSMENT WITH THE LANL 8-DOF
TESTBED

[n this Section, we discuss an application of
Bayesian estimation to the updating of a simple model

. that does not account for a source of nonlinearity
otherwise present in the test data. Our goal is to
suggest another potential use of variance
information, namely, the detection of nonlinearity
sources.

As previously, only the first three identified
modes are used during model refinement. These are
provided at all translation DOFS, therefore, alleviating

any type of modal expansion of FE matrix reduction.
The axki stiffness of each spring is allowed to be
modified. It is recalled that the experiment consists of
identifying a 14% reduction at spring number 5 and
that friction is not included in the modeling.
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Figure 8. Updating of the LANL 8-DOF FE
Model (Top: TAC With Undamaged Data;

Bottom: TAC With Damaged Data).

Results of two updates are illustrated in
Figure 8. First, the model is adjusted to match the
nominal, undamaged system (top of Figure 8). tt can
be noticed that a stiffer system is produced as a result
of this correlation. The first spring stiffness is changed
by nearly 22%: we attribute this large variation to the
driving point measurement and its attachment system
that are not modeled, although the total mass is
correct. [n a second stage, this adjusted model is
updated again, this time using the damaged test data
(bottom of Figure 8). It can be observed that the
location and extent of damage are predicted with
reasonable accuracy.

Table 6. TAC After FE Model Updating
(Damaged System Vs. Adjusted FE Model).

Identified FE Model Frecwencv MAC
Frequency Frequency - Err~r

22.3 Hz 22.3 Hz 0.270 99.8%
43.9 Hz 44.3 Hz 1.0% 99.770
64.8 Hz 65.7 Hz 1.4% 99.7%
85.9 Hz 83.9 Hz -2.4!40 96.9%
99.7 Hz 99.6 Hz -0.470 99.7%

113.2 Hz 110.1 Hz -2.7Y0 92.1%
131.9 Hz 117.6 Hz -10.970 75.2%

Final results of this correlation ate presented
in Table 6. As before, a significant amelioration over
figures presented in Table 4 (before updating) is
noticeable. While MAC values remain essentially
unchanged, the prediction of the first five modes is
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iniproved which is encouraging considering that only
modes 1-3 were used during updating.
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Figure 9. Final Variance Data For the
Adjusted LANL 8-DOF FE Model.

Variance data obtained after the optimization
are pictured in Figure 9. The contrast with results of
Section 6 is striking: although the updating is clearly
successful (the structural damage is identified and the
TAC is improved), variance data remain close to their
original 10?40level throughout the model. (The reader
should not be mislead: the variance does not
increase after updating, as we have seen that it is
mathematically impossible. It is the ratio of updated
variance to updated stiffness that increases for some
springs,) Although this example does not constitute a
formal proof, we believe that these residual high
dispersions point to a systematic modeling erro~ the
friction not introduced in our linearized FE model.
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Figure 10. Updating of the LANL 8-DOF FE
Model and Final Variance Data Obtained

Using Numerically Simulated “Test” Data.

To verify this hypothesis, one final test is
performed. Using our nominal FE model, “test” data
are simulated numerically with a reduction of 14% of
the fifth spring stiffness. Updating is then performed
with the numerical data instead of the experimental
data. The first one of Figure 10 shows the updating
result and the second one illustrates the updated
variance. The conclusion is that variances obtained
with the test data are much higher than those
obtained with the simulated data. In both cases, the
sensing configuration is the same, modes 1-3 are
used for the update and measurement noise is not an
issue. We conclude that the parametric form of the FE
model is inappropriate to capture the measured
dynamics while it is obviously correct in the case of
simulated data.

8. CONCLUSION

We present an application of Bayesian
parameter estimation concepts to finite element
model updating. The updating procedure is
formulated to improve the predictive quality of a
structural model by minimizing out-of-balance modal
forces. The critical issues of modal expansion and
covariance matrix updating are addressed.

Practically, this procedure enables
measurement and modeling uncertainties to be
considered not as ‘nuisance” any more but as
additional inputs provided to the correlation
procedure. [n return, confidence levels associated to
the correlated model can be assessed.
Demonstration examples using real test data, linear
and nonlinear systems are discussed to illustrate the
benefits of this approach. Although this work remains
a first step in the overall assessment of the method,
we conclude to the usefulness of Bayesian model
updating provided that some numerical difficulties can
be resolved.
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