Performance limits of fusion first-wall structural materials.

PDF Version Also Available for Download.

Description

Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, it is generally concluded that high performance fusion power systems will be required in order to be economically competitive with other energy options. As in most energy systems, structural materials operating limits pose a primary constraint to the performance of fusion power systems. It is also recognized that for the case of fusion power, the first-wall/blanket system will have a dominant impact on both the economic and safety/environmental attractiveness of fusion energy. The first-wall blanket structure ... continued below

Physical Description

23 p.

Creation Information

Smith, D. L.; Majumdar, S.; Billone, M. & Mattas, R. F. November 12, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, it is generally concluded that high performance fusion power systems will be required in order to be economically competitive with other energy options. As in most energy systems, structural materials operating limits pose a primary constraint to the performance of fusion power systems. It is also recognized that for the case of fusion power, the first-wall/blanket system will have a dominant impact on both the economic and safety/environmental attractiveness of fusion energy. The first-wall blanket structure is particularly critical since it must maintain high integrity at relatively high temperatures during exposure to high radiation levels, high surface heat fluxes, and significant primary stresses. The performance limits of the first-wall/blanket structure will be dependent on the structural material properties, the coolant/breeder system, and the specific design configuration. Key factors associated with high performance structural materials include (1) high temperature operation, (2) a large operating temperature window, and (3) a long operating lifetime. High temperature operation is necessary to provide for high power conversion efficiency. As discussed later, low-pressure coolant systems provide significant advantages. A large operating temperature window is necessary to accommodate high surface heating and high power density. The operating temperature range for the structure must include the temperature gradient through the first wall and the coolant system AT required for efficient energy conversion. This later requirement is dependent on the coolant/breeder operating temperature limits. A long operating lifetime of the structure is important to improve system availability and to minimize waste disposition.

Physical Description

23 p.

Notes

OSTI as DE00750446

Medium: P; Size: 23 pages

Source

  • ICFRM (9th International Conference on Fusion Reactor Materials), Colorado Springs, CO (US), 10/10/1999--10/15/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-98463
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750446
  • Archival Resource Key: ark:/67531/metadc706169

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 12, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 3:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smith, D. L.; Majumdar, S.; Billone, M. & Mattas, R. F. Performance limits of fusion first-wall structural materials., article, November 12, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc706169/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.