Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

PDF Version Also Available for Download.

Description

Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam ... continued below

Physical Description

57 p.

Creation Information

Varner, R.L.; Blankenship, J.L.; Beene, J.R. & Todd, R.A. February 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.

Physical Description

57 p.

Notes

INIS; OSTI as DE98052484

Source

  • Other Information: PBD: Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98052484
  • Report No.: ORNL/M--6390
  • Grant Number: AC05-96OR22464;FG05-95ER86029
  • DOI: 10.2172/672048 | External Link
  • Office of Scientific & Technical Information Report Number: 672048
  • Archival Resource Key: ark:/67531/metadc706112

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 19, 2016, 8:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Varner, R.L.; Blankenship, J.L.; Beene, J.R. & Todd, R.A. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report, report, February 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc706112/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.