ON THE QUESTIONS OF THE NUCLEAR LEVEL DENSITY AND THE E1 PHOTON STRENGTH FUNCTIONS

PDF Version Also Available for Download.

Description

New results were derived from average level spacings of neutron resonances for the spin dispersion parameter of the nuclear level density, which demonstrated the influence of shell effects, as well as the interplay of nucleon pairing correlations for nuclei in the mass range from {sup 29}Si to {sup 241}Pu. The volume and surface components of the nuclear level density parameter, as well as the shell-damping factor, were determined as, a{sub v} = 0.076 {+-} 0.009 MeV{sup {minus}1} , a{sub s} = 0.180 {+-} 0.047 MeV{sup {minus}1}, and y{sub 0} = 0.047 {+-} 0.04 MeV{+-}, respectively. The effective nucleon mass at ... continued below

Physical Description

20 pages

Creation Information

MUGHABGHAB,S.F. & DUNFORD,C.L. November 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

New results were derived from average level spacings of neutron resonances for the spin dispersion parameter of the nuclear level density, which demonstrated the influence of shell effects, as well as the interplay of nucleon pairing correlations for nuclei in the mass range from {sup 29}Si to {sup 241}Pu. The volume and surface components of the nuclear level density parameter, as well as the shell-damping factor, were determined as, a{sub v} = 0.076 {+-} 0.009 MeV{sup {minus}1} , a{sub s} = 0.180 {+-} 0.047 MeV{sup {minus}1}, and y{sub 0} = 0.047 {+-} 0.04 MeV{+-}, respectively. The effective nucleon mass at the Fermi surface is derived as m*/m = 1.09 {+-} 0.13. New evidence is presented for a dipole-quadrupole interaction term in the primary E1 transitions of average resonance capture data. This evidence is obtained by testing a proposed generalized Landau Fermi liquid model for spherical and deformed nuclei, which includes the effect of the dipole-quadrupole interaction. The Landau-Migdal interaction constant and the effective nucleon mass, are determined as F{sub 0}{prime} = 1.49 {+-} 0.08, and m*/m=1.04 {+-} 0.07, respectively.

Physical Description

20 pages

Notes

INIS; OSTI as DE00759026

Source

  • XIII INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND NUCLEAR ENERGY, VARNA (BG), 09/27/1999--10/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--NCS-66978
  • Report No.: KB0401040
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 759026
  • Archival Resource Key: ark:/67531/metadc706038

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 15, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 9, 2015, 10:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MUGHABGHAB,S.F. & DUNFORD,C.L. ON THE QUESTIONS OF THE NUCLEAR LEVEL DENSITY AND THE E1 PHOTON STRENGTH FUNCTIONS, article, November 15, 1999; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc706038/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.