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ABSTRACT

This report documents the accomplishments in our LDRD project. A phenomenologi-
cal model was developed for multicomponent transport of charged species with si-
multaneous electrochemical reactions in concentrated solutions, and was applied to
model processes in a thermal battery ceil. A new general fhmework was formulated
and implemented in GOMA (a multidimensional, multiphysics, finite-element com-
puter code developed and being enhanced at Sandia) for modeling multidimensional,
multicomponent transport of neutral and charged species in concentrated solutions.
The new framework utilizes the Stefan-Maxwell equations that describe multicom-
ponent diffusion of interacting species using composition-insensitive binary diffusion
coefficients. The new GOMA capability for modeling multicomponent transport of
neutral species was verified and validated using the model problem of ternary gas-
eous diffusion in a Stefan tube. The new GOMA-based thermal battery computer
model was verified using an idealized battery cell in which concentration gradients
are absent; the full model was verified by comparing with that of Bernardi and New-
man (1987) and validated using limited thermal battery discharge-performance data
from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover,
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a new Liquid Chemkin Software Package was developed, which allows the user to
handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (par-
ticularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capa-
bility was developed for modeling pore- or micro-scale phenomena involving
convection, diffusion, and simplified chemistry; this capability was demonstrated by
modeling phenomena in the cathode region of a thermal battery cell.
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1. INTRODUCTION

This report documents work performed in our LDRD project titled “A Phenomenological Model
for Multicomponent Transport with Simultaneous Electrochemical Reactions in Concentrated
Solutions”, which was divided into four sub-tasks: 1) development of a new GOMA-based elec-
trochemical computer model for a thermal battery cell (GOMA refers to a multidimensional, mul-
tiphysics, finite-element computer code developed and being enhanced at Sandia); 2)
development of a new Liquid Chemkin software package; 3) estimation of Stefan-Maxwell diffu-
sion coefficients for liquid-phase processes; and 4) microscale modeling of diffusion-controlled
transport in a thermal battery cell using the Lattice-Boltzmann method. In the following, some
background information and motivation for the project are presented. Salient features of thermal
battery processes are discussed, and some relevant previous works are briefly reviewed. Lastly, a
short description of the report’s organization is given.

Many processes (e.g., thermal batteries, stockpile metal corrosion, electroforming, and LIGA fab-
rication of iMEMS devices) involve liquid-phase species transport with electrochemical reactions
and are important to Sandia’s DP mission. In the case of thermal batteries (the focus application
of this project), the process involves multicomponent transport of charged species with simulta-
neous electrochemical reactions in a concentrated solution. More specifically, in a thermal battery
cell, an interacting molten mixture of electrolytes is transported between electrode surfaces where
electrochemical reactions take place. In terms of their importance, thermal batteries are employed
as the primary power source in nuclear weapons because of inherent advantages such as long
shelf life, fast activation, rugged construction, and high reliability (see Guidotti 1995 for a
detailed technology review of thermal batteries and comments on future research and develop-
ment directions). Most applications use lithium alloys (e.g., LiAl or Li(Si)) as anodes, metal-sul-
fides (e.g., FeS or FeS2) as cathodes, and molten salts (e.g., LiC1-KCl, LiC1-LiBr-KBr, LiBr-KBr-
LiF, LiCI-LiBr-LiF) as electrolytes. They are usuaUy activated by melting the solid electrolytes
using a pyrotechnic heat source based on Fe and KC104; typical operating temperatures are
between 350 and 550°C. Two important characteristics of lithium and sulfur based thermal batter-
ies are high open-circuit potential and high theoretical energy density. Reduced electrolyte
decomposition, lowered ohmic resistance, and decreased mass-transfer limitations are the main
advantages of employing molten salt electrolytes. High temperature operation also results in rela-
tively fast electrochemical reactions. Operating at higher temperatures, however, causes increased
corrosion and increased volatility and volubility of the active materials (cf. Bemardi 1986, Ber-
nardi and Newman 1987).

Complex multi-physics phenomena occur in a thermal battery process including: i) thermody-
namics (open-circuit potentiaI sets the upper bound for the total cell voltage); ii) multi-species dif-
fusion in a concentrated solution (solventless molten salt electrolyte) driven by gradients in both
concentration and electrical potential where the conventional Fick’s first law does not apply; iii)
convection caused by diffusion and/or electrochemical reactions having molar volume differences
between the products and reactants; iv) energy transport (heat loss to the environment and Joule
heating are the two main sources responsible for temperature gradients and time-dependent
behavior of cell temperature); v) electrochemical reactions at electrolyte/electrode interfaces



(chemical composition and phases vary significantly as the state of discharge changes). Besides
multi-physics phenomena, a thermal battery process involves multiple length scales ranging from
submicron dimensions in electrode pores to a fraction of a millimeter in the electrode and separa-
tor regions in the direction of ionic transport, and up to several centimeters in the direction normal
to ionic transport and at the system unit level. Inherent in the multi-physics phenomena of species
diffusion, convection, heat transfer, and electrochemical kinetics are multiple time scales. Lastly
and very importantly, a thermal battery process is multi-dimensional mainly due to two factors: 1)
energy transport occurs in both the direction of species diffusion and the direction normal to spe-
cies diffusion because of heat losses in these two directions, particularly at the system (i.e. full
battery) level; 2) thicknesses of the electrode and separator disks or plates are nonuniform because
of manufacturing difficulties (in practice, electrodes and separators are very thin, about 250 pm).

Accurate prediction of battery performance (e.g., discharge voltage vs. time) requires proper
descriptions c)f diffusion of charged species (driven by concentration and electrical-potential gra-
dients), energy transport, electrochemical reactions, and thermodynamic potentials. The classical
dilute-solution framework based on Fick’s first law is generally valid only for non-interacting
species diffusing in dilute solution and is not appropriate for describing multicomponent diffusion
in concentrated solventless solutions as in thermal batteries. A concentrated solution theory was
employed by Pollard and Newman (1981) to provide a framework for the description of isother-
mal transport processes in a mixture of two binary molten salts with a common ion. They con-
verted the binary diffusion coefficients into three transport properties, namely an effective
diffusion coefficient, an effective electrolyte conductivity, and a transference number. This
approach describes the flux equations in terms of diffusion, migration, and convection. Pollard
and Newman (198 1) further employed this specific framework in modeling a LiA1/LiCl-KCl/FeS
thermal battery cell. Bernardi and Newman (1987) extended the work of Pollard and Newman
(1981) to model a LiA1/LiCl-KCl/FeS2 thermal battery cell. Tribollet and Newman (1984)
employed the Stefan-Maxwell equations in developing a model that describes the species trans-
port in a concentrated solution. They then used the model to treat the steady state and the imped-
ance of an electrochemical interface. We are not aware of any published work that uses the
Stefan-Maxwell description of diffusion fluxes to model battery processes, although Meyers
(1998) recently used such a formulation for a fuel cell.

Comprehensive thermal finite-element computer models of two thermal battery systems were
developed by Dobranich (1995), and they enable the predictions of temperature distributions
within individual cells. However, prior to the present work, predictive capabilities did not exist at
Sandia for computing voltage-vs.-time battery performance either at the cell level or at the system
level.

This report is organized as follows. In Chapter 2, the development of a GOMA-based thermal bat-
tery model and some case-study results are presented. Here, a new general framework and its im-
plementation in GOMA for modeling multi-dimensional multicomponent transport with
simultaneous electrochemical reactions in concentrated solutions are described. Verification and
validation of the new GOMA-based capability developed in this project were carried out in sever-
al steps. First, the new GOMA capability for modeling multicomponent transport of neutral spe-
cies was veriiied and validated using the model problem of ternary gaseous diffusion in a Stefan
tube. Next, the new GOMA-based thermal battery computer model was verified using an ideal-
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ized battery cell in which concentration gradients are absent. Lastly, the full model was verified
by comparing with that of Bemardi and Newman ( 1987) and validated using limited therrnal-bat-
tery discharge-performance data from the open literature (Dunning 198 1) and from Sandia
(Guidotti 1996). h Chapter 3, the development of a new Liquid Chemkin software package is de-
scribed; this new capability allows the user to handle many aspects of liquid-phase kinetics, ther-
modynamics, and transport (particularly in terms of computing properties). In Chapter 4, the
estimation of Stefan-Maxwell diffusion coefficients for liquid processes is discussed. In Chapter
5, the development of a Lattice-Boltzmann-based capability for modeling pore- or micro-scale
phenomena involving convection, diffusion, and simplified chemistry is presented; the capability
was demonstrated by modeling phenomena in the cathode region of a thermal battery cell. Lastly,
a list of publications, technical presentations, and technical memoranda produced in this project is
provided.
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2. DEVELOPMENT OF A GOMA-BASED THERMAL BATTERY
CEIL MODEL AIW) COMPUTED RESULTS OF CASE STUDIES

2.1 Governing Equations, Boundary Conditions, and Numerical Solution
Methods for a Thermal Battery Cell

A cutaway view of a typical thermal battery system, which normally consists of a stack of cells, is
shown in Figure 2.1 a. Atypical cell (shown in Figure 2. lb) consists of the anode, the separator, the
cathode, and the heat source, which is ignited to provide the energy for melting the solid electrolyte
prior to battely discharge. In the present work we focus on predicting phenomena during battery
discharge, i.e. after the solid electrolyte is completely melted. Consequently, a cell consisting of
only the anode, the cathode, and the separator (as shown in Figure 2. lc) is of interest in the present
work. In practice, a reservoir (thickness much smaller than the separator) is often present to allow
overflow of the electrolyte melt; for simplicity it is ignored in the present work (the presence of a
reservoir does not create modeling difficulty since it can be considered as part of the separator with
a porosity of unity). The physical phenomena that occur in a thermal battery cell can be briefly
summarized as follow: right before battery discharge is to start, the heat pellets are ignited and
burned, which provides thermal energy to melt the solid electrolyte. Once the electrolyte is in
molten form, ‘battery discharge begins. During discharge, as indicated in Figure 2. Id, electrons are
produced from the oxidation electrochemical reactions in the negative electrode (anode) and are
consumed by the reduction reactions in the positive electrode (cathode). These electrons are
conducted through the wire, which connects the thermal battery cell and the load, from the anode
to the cathode. When the electrons are being conducted from the anode through the wire to the
cathode, Li+ ions are simultaneously migrating from the anode to the cathode through the
electrolyte solution (Figure 2. id).

Figure 2. la Cutaway view of a typical thermal-battery system
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The goveting equations describing the phenomena in a thermal battery cell are presented below.
The primary and auxiliary variables, boundary conditions for the primary variables, and initial
conditions for the mole fraction of each species, porosity, and temperature are given. The present
model is based on the macroscopic treatment of transport in the electrode regions developed by
Newman and Tobias (1962); that is, the liquid electrolyte phase and the solid electrode phase are
treated as two superposed continua. This macroscopic approach can be justified using volume
averaging (see Newman and Tobias (1962) on the detailed development of the macroscopic theory
of electrodes; see also Newman and Tiedemann (1975)). An m-dimensional thermal battery cell
with an electrolyte consisting of n ionic species can be described by the n+5+zn primary variables
and (2n+2)rn+-n+2 auxiliary variables listed in Table 2.1.

Table 2.1. Unknowns for a Multi-dimensional Therrnal-Batterv Cell

Name No ofQ— -

n*
1
1
1 **
m
1
1

n-m
n.m

n

m
m
1
1

Type

primary
primary
primary
primary
primary
primary
primary

auxiliary
auxiliary
auxiliary

auxiliary
auxiliary
auxiliary
auxiliary

Unknown Descri@ion Units

Mole fraction of ionic species i
Electrical potential in solid electrode volt
Electrical potential in liquid electrolyte volt
Porosity or electrolyte volume fraction
Superficial mass-average velocity mfs
Hydrodynamic pressure in electrolyte Nim2
Cell temperature K

Superficial diffusive flux of species i (wrt u) mole/m2-s
electrochemical potential gradient of species i J/mole-m
Rate of production/consumption of species i mole/m3-s
per unit electrode volume

Superficial current density in solid electrode A/m2
Superficial current density in electrolyte Ajm2

Electrolyte density kg/m3
Total molar concentration of electrolyte mole/m3

* n is the total number of ionic species in the liquid electrolyte
** m is the problem dimension; e.g., m = 3 for a three-dimensional process.

2.1.1 Governing Equations

Mole Fractions of SDecies 1 throuzh n-1. The principle of species mass conservation describes the
mole fractions of species 1 through n- 1 (n is the number of ionic species):

:( Ecxi) +V . (ucx~) + v . el~ = r~ (2.1)

where the rate of production or consumption of species i is given by Faraday’s law
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combined with Butler-Volmer kinetics:

In Equation (2.1), the molar flux, Ji, is given by the Stefan-Maxwell flux model:

(
M.$; V~i + 3iVT’ - )x;Vp =

xiJj – xjJi

c~Dijj*i
(2.3)

where the gradient of the electrochemical potential, VWi,is given by

‘-2 dlllyi
V~i = ziFV@2 + ~vxi ‘RT Z (~)T ,Vxl ‘%vT + TVP (2.4).

L
1=1

The Multi-dimensional Multi-com~onent Molar Diffusive Flux. An equation relating the molar
diffusion fluxes with respect to the mass average velocity is the constraint of zero total difisive
mass flux:

~ MiJi = O (2.5).

i=l

Replacing the first equation (i.e. i = 1) in Equation (2.3) by Equation (2.5) and casting the result-
ant equation set in matrix-equation form give:

bJ=d (2.6)

where b is a matrix of dimension N by N with N being the product of number of species (n) and
the dimension of the problem (m), i.e. N = n - m . Components of ~, b, and d are:

diq = O for iq = 1,..:, m.

diq = ST
[

(WMq + ~@7q +(vp)q] for iq= (k - l)m + q; q = 1,..., rn;

k =2, 3,..., n.

bi j, = Mk
9

for iq= 1,..., rn;jq = (k - l)m +g; q = 1,..., m; k= 1,2,..., n.

b. =0Zq.iq for iq= 1,..., m;jq =1,..., N but jq # (k - l)nz + q;

q= 1,..., w?; k= 1,2,..., n.

13



bi j, = ‘Lq Cd)kl
for iq=(k - I)rn+q;jq= (l- l)m+~; .jq#~q;

k= 2,3,..., n; 1=1,2,..., n;l+k.

biqi, = -i& for iq= (k - l)m + q; q = 1,..., m; k = 2,3,..., n.

l:ek

Mole Fraction of S~ecies n. Consistency condition dictates the mole fraction of species n:

(2.7).

Electrical Potential in Solid Electrode. The principle of charge conservation between the liquid
electrolyte phase and the solid electrode phase can be used to describe the electrical potential in the
solid electrode:

n

V-iz= –V. il=F~ziri (2.8).
iel

SuDefilcial Current Densitv in Solid Electrode. Ohm’s law governs the supertlcial current density
in the solid electrode:

il = –(sv@l (2.9).

Substituting Equation (2.9) into Equation (2.8) yields a Poisson equation that governs the electrical
potential in the solid electrode:

n

V _(_~V@l) = –F ~ zi~i (2.10).
i=l

Electrical Potential in Liauid Electrolyte. The constraint of electroneutrality, which is assumed to
be satisfied everywhere within the liquid electrolyte phase, provides an equation for the solution
of the electrical potential in the liquid electrolyte:

(2.11).

Equation (2. 11) is an algebraic constraint, which, though simple, is not convenient to use since it
destroys the banded structure of the matrix that results from the finite-element formulation of the
governing partial differential equations (the direct use of Equation (2.11) reduces the
computational efficiency that can otherwise be achieved from exploiting the banded structure in
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the resultant matrix equations). This issue is not unique to the finite element formulation of the
governing equations; the same reduction in computational efficiency also arises when solving the
governing equations using finite difference methods. A preferred equation for the electrical
potential @2 in the liquid electrolyte is one in which @2 appears explicitly, thus preserving the
banded matrix structure and ensuring the non-zero diagonal entry. Multiplying Equation (2.1) by

ziF (the product of charge number of species i and the Faraday constant), summing the resultant
equation from i = 1 to i = n and applying the electroneutrality constraint, Equation (2. 11), yields:

i=l i,=l

Solving Equation (2.6) for ~i and substituting into Equation (2.12) gives:

it=l i=llz=nz+l

NN

V . ~ ~ Fzitb~~xk*
n–2

x(
~lnyll

)
i=lk=rn+l l= 1 ax” TYPVX1

(2.12).

(2.13)

where b~~ are the components of the inverse of b and K is given by:

“G: 5 zi’z~i (–b~~ )xkl (where i’ ~.z~+I and k’=
k-l—+1) (2.14).

??2
i=lk=rn+l

Equation (2. 13) is a Poisson equation similar to Equation (2.10) with a variable electrical
conductivity that implicitly depends on time and position via the mole fractions and their gradients;
ako there are two additional source-term contributions in Equation (2.13) accounting for effects of
concentration gradients and nonideal behavior.

Sut)erflcial Current Density in Liauid Electrolyte. The current density in the electrolyte is the result
of transport of all the charged species; consequently,

n

iz = F ~ ziJi (2.15).

i=l
Porositv or Electrolyte Volume Fraction. An overall electrode material balance provides an
equation for the determination of porosity (cf. Pollard and Newman 1981):

15



(2.16).

Superficial Mass-average Velocitv. When so desired, the Brinkmanequation for fluid flow through
a porous medium can be used to determine the supetilcial mass-average velocity (cf. Gartling et
al. 1996):

ap() L-vu=-
TtZ” ‘C2

Vp + @% –
($’’”’’+!)u

(2.17)

where p is the liquid-electrolyte viscosity, and PB the 13rinkman viscosity. It should be noted that
the convective flux contribution to the total flux is insimificant as compared to the diffusive flux
contribution in thermal battery processes involving molten-salt electrolytes; convective flow is
included here for completeness and to ensure that the accuracy of the electrolyte material balance
is maintained (cf. Pollard and Newman 1981).

Hwh-odvnarnic Pressure in Liauid Electrolyte. An overall mass balance on the electrolyte yields an
equation that can be used to solve for hydrodynamic pressure in the electrolyte:

(2.18).

Temperature in Liauid Electrolyte. The first law of thermodynamics is used to determine the
temperature distribution in the liquid electrolyte (cf. Bird et al. 1960):

DT
—= V.k~VT+Q

“P Dt
(2.19)

where the source term, Q, refers mainly to the Joule heating effect although it can include other
effects such as viscous dissipation and heat generation from electrolyte solidification. Equation
(2. 19) describes multi-dimensional heat transfer that occurs in both the ionic transport direction
and the direction normal to ionic transport; it can also capture the effects due to nonuniformity of
electrode and separator thicknesses. If temperature gradients in the electrolyte are negligible (e.g.,
if we have a single-cell battery and the electrodes and separator are sufficiently thin), a lumped
energy transport model that accounts for Joule heating and heat loss from the cell at the cellhir
interfaces, as put forth by Pollard and Newman (1981), can be used:

16



mcp~T

(

au.
——
2A dt )= ‘“-v-Tw I-h(T-T”)

(2.20).

Densitv of Licmid Electrolyte. An equation of state is required to relate the electrolyte density to
field variables such as species mole fractions, temperature, and pressure. For the LiC1-KCl
electrolyte system, an empirical correlation is available (Pollard and Newman 1981):

P = 1.735 – o.3xLi + (2.21).

Total Molar Concentration of Electrolyte. From the definition of total molar concentration of an n
component mixture,

(72 )-1

c=‘E”’*’J (2.22).

Stefan-Maxwell Diffusivities. The solution of Equation (2.6) requires values of the Stefan-
Maxwell diffusion coefficients, Dti. In a mixture of n ionic species the quantities typically
measured are: an effective electrical conductivity K’, (n-2) independent transference numbers tic
and (n.-l)(n-2)/2 effective diffusion coefficients Dke as well as mean electrolyte activity
coefhcients yfi for neutral combinations. The Z)ti values can be determined from these measured
quantities. For example, for an electrolyte mixture consisting of two salt species A and B
decomposing into ions 1,2, and a common ion 3, Larson (1998) inverted the equation of Pollard
and Newman (1979) to obtain:

(2.23),

(2.24),

(
~ dlnyA

‘ZZZ3CF 2 ‘;CX3 ‘1 ‘dlnx~
D;: = D;; =

‘( )

z3~3tc
l+—

RTKe z~x, 1
– X2 V$V~De(CA + c~)

(2.25).
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An alternative method of determining Dti is performing molecular dynamics simulations. Chapter
4 presents a systematic study on the estimation of Stefan-Maxwell diffusion coefficients for liquid
processes.

Electrochemical Reactions and Thermodynamic ODen-circuit Potential in the Electrode Regions.
The governing equations presented above, Equations (2. 1- 2.20) and (2.22), are generic in that they
are valid or applicable in all thermal battery processes. Thermal battery systems differ mainly due
to: 1) the chemical make-up and compositions of the electrodes and electrolytes employed, which
control the ell~ctrochemical reactions and thermodynamic open-circuit potentials involved; 2) the
geometry of the electrodes, the separator, and the heat source layer; 3) thermal insulation on the
outer surface of the thermal battery system. The electrochemical reactions not only affect the
species mass balances via the species production/consumption rates (thus the electron flux or
current density output by the battery cell) but also determine the thermodynamic open-circuit
potentials (thus the battery-cell voltage). In this sub-section, we discuss the electrochemical
reactions and the associated thermodynamic open-circuit potentials in a Li(Si)/LiCl-KCl/FeS2
thermal battery cell in which the anode is made of Li(Si), the cathode FeS2, and the electrolyte
LiC1-KCl mixture. The predecessor of the Li(Si)/LiCl-KCl/FeS2 cell is the LiA1/LiCl-KCl/FeS cell
that was developed more than twenty years ago (see, e.g., Nelson et al. 1979, Gay et al. 1985) and
its popularity was due to the fact that an inexpensive current collector (iron) can be used in the FeS
electrode. The Li(Si)/LiCl-KCl/FeS2 system is a more recent development that offers higher cell
voltage, which makes it possible to reduce the number of cells per battery or to increase the
maximum power achievable relative to the LiA1/LiCl-KCl/FeS cell (cf. Bemardi 1986). As
discussed by IGuidotti (1995), the Li(Si)/LiCl-KCl/FeS2 system and its variants (mainly in
electrolyte make-up and compositions) are of key interest to Sandia National Laboratories. The
electrolyte systems other than LiC1-KCl that have been studied at Sandia and the Argonne National
Laboratory include (see, e.g., Guidotti 1995): CsBr-LiBr-KBr, LiBr-KBr-LiF, LiC1-LiBr-KBr,
LiC1-LiBr-LilP, which all involve four charged species.

The discharge process in the anode can be described by the following oxidation electrochemical
reactions, which are based on the phase composition given by Wen and Huggins (198 1) (Bernardi
1986, Bemardi and Newman 1987):

I. Li3.25Si + Li23$Si + 0.92Li+ + 0.92e-

11. Li2.33Si + Lil.71Si + 0.62Li+ + 0.62e- (2.26).

III. Li171Si -+ Si + 1.71Li++ 1.71e-.

The thermodynamic open-circuit potentials, relative to LiAl, corresponding to these

electrochemical reactions in the anode are (Bemardi 1986, Bemardi and Newman 1987):

u 1,0 = -0. 187529+ 0.0000731 T
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u 11,0 = – 0.088097 -I-0.0001122T (2.27)

% o = - 0.0345+ O.OOO1O56T

where the UJ,~ have a unit of volts and T has a unit of K or Kelvin.

The discharge process in the cathode is much more complex and not yet well understood. The
reduction electrochemical reactions in the cathode at 450°C are (Tomczuk et al. 1982, Bernardi
1986, Bemardi and Newman 1987):

a. 2FeS2 + 3Li+ + 3e- + Li3Fe2Sq

b. Li3Fe#A + 0.47Li+ + 0-47e- + 1.58Liz2Fe08S2 + 0.84Fe0.S@ (2.28)

c. Fel-~S and Li2+XFel.XS2 produce Li2FeS2

d. Li2FeS2 + 2Li+ + 2e- -+ 2 Li2S + Fe

where x and x‘ are compositional variables ranging from 0.2 to O and 0.125 to O, respectively.

The open-circuit potentials corresponding to these electrochemical reactions in the cathode are
(Bemardi 1986, Bemardi and Newman 1987):

u a, o = 1.4251 + 0.00047852’

u b, O = 1.208771 + 0.000651427’ (2.29)

u = ubo+
0.130129 – 0.000638122’

[)

qc2*FeS2
c, o 1 – [2.2(4x’0 – 2)/(2x’o– 0.8) – 3] ~;e~ ~

2

‘d, O = 1.43211 – 0.000147T

where the Uj, ~, are given relative to a two-phase (u-B) LiA1-alloy reference electrode (as in
Equation 2.27, the Uj,~ here also have a unit of volts and T has a unit of K or kelvin); qC is state-
of-discharge-(the number of coulombs of charge passed for reaction c per unit volume of the
electrode); VFesz is the molar volume of FeS2; &~eS2 is the initial volume fraction of FeS2 in the
cathode; and X’. , is a compositional variable given by (Bemardi 1986, Bemardi and Newman
1987):

X’. = 0.91658- 9.240x10-5 (Z’- 273.15) (2.30)



with T having a unit of K, Specifically, X’Ois defined in such a way that the second product of
Reaction b has the temperature-dependent composition Fex.OS. It can then be shown that the
quantity in square brackets in Equation (2.29) is proportional to the electrode utilization during the
Reaction b step. In equation (2.29) the term inside the big brackets in the equation for UC,~ is a
function of fractional utilization of the starting cathode material (FeS2), f=,~2, and is given by

qCz~FeSz (fFes2 - fFes2, b)
(2.31)

‘;eSz F = (fFes2, ~- fFes2, b)nc

where f~,~y ~ and f=,~ ,, are the fractional utilization of the starting cathode material (FeS2)

evaluated at the end of fieactions b and c, respectively; and nCis the number of electrons consumed
per mole of FeS2 in Reaction c. Specifically, f=,~z ~ = 0.4S4 and f~e~~. = 0.5, nc = 0.53, and f~.~2
is related to discharge time and current density by (Bemardi and Newman 1987):

fFeS, =

Similarly, a fractional utilization

fLi325si

It~Fes2

4Lc&;es2F
(2.32).

of the starting anode material (Li325Si) is defined as

It~Li3@i
= (2.33).

3.25L_c? , o:F
U JJL3,25D L

Clearly, in Equation (2.29) the open-circuit potentials, Uj,O, in regions a, b, and d depend on
temperature only whereas that in region c depends on temperature as well as linearly on utilization
of the electrode material.

Interracial Area and Excharvze Current Densitv for the Cathode. According to Paxton and Newman
(1997), the effective interracial area per unit electrode volume, a, in a porous electrode containing
spherical particles is proportional to the volume fraction of active material. Thus, it can be expected
to vary linearl y with the fractional utilization of electrode material, jl For step a (or Reaction a
region) in the discharge of the FeS2 electrode, the active material is exhausted when f ~,sz = 0.375.
so

a= “J’-%:)
(2.34).
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As for the exchange current density, it should have an Arrhenius temperature dependence, so

Ell

()‘2 T~
i. = io, oe (2.35)

where E is the activation energy. Combining Equations (2.34) and (2.35) yields a model for the
product of interracial area per unit electrode volume by exchange current density, which is a
function of the fractional utilization and cell or electrolyte temperature:

aio
= aoio70(’-f%)~;(;-i) (where”’’~es2’’”)”)

(2.36).

In Equation (2.36) both f~es2 and T are computed as functions of time during the battery
simulation. If the current density is constant, then f~es, is proportional to t,and if the lumped-
parameter energy equation is used, then T will decay exponentially with t. In any case, the product
aio will generally decrease over time, leading to a decline in the cell voltage. Equations similar to
Equation (2.36) can be developed for Reaction b, c and d regions in the cathode and for the anode.

2.1.2 Boundary and Initial Conditions

Boundary conditions for Equations (2. 1), (2.8), (2. 10), (2. 13), (2. 17), and (2. 19) are as follow.
At the electrode current collectors and the cell/environment or cellkiir interfaces,

VXi = O

v@2 = o

u=,

At the anodic current collector,

01=0

At the cathodic current collector,

01 =V and i2=t)
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(2.38),

(2.39).

(2.40).

(2.41).



At the anode/separator and separator/cathode interfaces,

il=() (2.42).

At the cell/environment interfaces, when the full energy transport model (Equation 2. 19) is
employed:

-k~VT. n = h(T-Ta) (2.43).

When the lumped energy transport model (Equation 2.20) is used, no boundary condition is
needed.

Lastly, initial values of species mole fractions, porosity, temperature, and velocities are specified:

& &o,= ~ = ?’O,and u = U“ (2.44).

2.1.3 Numerical Solution Methods

Constant total cell voltaqe with variable current densitv . In this case the solution process is
straightforward since all the boundary conditions are known a priori. We employed GOMA
(Schunk et al. 1998), a multidimensional multi-physics finite-element code developed and being
enhanced at Sandia National Laboratories, as the basic platform for solving the set of highly
nonlinear and. coupled partial differential equations as described in Section 2.1.1. GOMA provides
an efficient framework of finite-element analysis and fully coupled implicit solution scheme via
Newton’s method. GOMA also provides a second-order accurate predictor-corrector time
integration scheme with adaptive control of the time step in solving transient problems. Readers
who are interested in the details of numerical solution methods in GOMA are referred to the
GOMA manual (Schunk et al. 1998). In the present work the new multidimensional Stefan-
Maxwell model as described in Equation (2.6) was implemented in GOMA- The species mass-
balance equation in GOMA was modified to include the effect of porosity variation and to
incorporate Butler-Volmer kinetics, accounting for the productioticonsumption of species from
electrochemical reactions in the anode and cathode regions. The voltage equation (in GOMA prior
to this work) was modified to incorporate the variable electrical conductivity as described in
Equation (2. 14) and the various source terms as given on the right hand-side of Equation (2.13).
The thermal transport (or temperature) equation (also in GOMA prior to this work) was modified
and used to solve Equation (2.10) for the electrical potential in the solid electrode. Lastly, Equation
(2.20) was integrated explicitly to obtain electrolyte temperature; similarly, Equation (2.16) was
integrated explicitly to yield porosity.

Time-de~endent total cell voltage with constant current densitv. This is how thermal batteries
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operate in practice and thus is of importance to thermal battery designers at Sandia. In this case an
iteration on total cell voltage is required since the boundary condition for the electrical potential
in the electrode at the cathodic current collector is not known a priori; instead, its value is dictated
by the constant current density in the separator (in the separator, all the current density is carried
by the electrolyte phase). To predict the total cell voltage as a function of time in this case, a
driver routine that wraps around GOMA was written. The driver routine, which is essentially a
root-finding program based on a secant method, searches for the voltage at each time step required
to keep the current density constant during a transient simulation. Figure 2.2 shows a diagram (or
flow chart) of the driver-routine operation. A battery-cell simulation is initiated by specifying the
desired constant current density and picking two values of the total cell voltage that are expected
to bound the voltage. The driver routine picks an initial value of the total cell voltage and per-
forms a GOMA run (in which total cell voltage is specified as the boundary condition for @l at
the cathodic current collector) for a specified time step. At the end of the time step the current
density (sampled at the center of the separator) computed by GOMA is compared against the
desired value. If the computed current density is within a pre-specified tolerance of the desired
current density then the driver routine proceeds to the next time step. If the computed current den-
sity from the simulation is not within the pre-specified tolerance then a secant method is used to
adjust the value of the battery voltage and the GOMA run for the time step is repeated. A given
time step may be repeated several times until the computed current density and desired current
density agree to within the specified tolerance.

Adjustment to the total cell voltage at a time step is made with a secant method. The secant
method is based on a modification of the formula for Newton’s method given by

f(Xi)

‘i+l ‘xi–— fl(Xi)

For the secant method f ‘(x) in Newton’s formula is approximated by the formula

f (xi) -f (xi_ ~)
f’(xi) G

Xi–Xi_~

(2.45).

(2.46)

Substituting Equation (2.46) into Equation (2.45) yields the following formula for the secant
method (cf. Dahlquist and Bjorck 1974)

‘i_ If (xi) ‘Xif (xi -~)
‘i+l = f (xi) -f (xi -1)

Figure 2.3 shows a schematic of the convergence process for the secant method.
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Figure :2.2. Diagram of driver routine for voltage iteration with constant current density.

Y

root

x
x i–1 xi Xi+.j- Xi+z voltag=

Figure 2.3. Schematic of convergence for the secant method.
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2.2 Verification and Validation of the Stefan-Maxwell Flux Model in
GOM.A Ternary Gaseous Diffusion in A Stefan Tube

In this section, we report on a verification and validation study of the multidimensional Stefan-
Maxwell model implemented in GOMA in this project. The ternary gaseous diffusion in a Stefan
tube is an ideal test problem for the Stefan-Maxwell flux model because of the availability of a
closed-form analytical solution and experimental data for concentration profiles along the axis of
the tube; ternary diffusion in a Stefan tube has become a classical test problem for the Stefan-
Maxwell flux model (see, e.g., Duncan and Toor 1962, Getzinger and Wilke 1967, Carty and
Schrodt 1975, Taylor and Krishna 1993). The present study focuses on the verification and
validation of species concentration profiles along the tube as predicted by the Stefan-Maxwell flux

model in GOMA.

The Problem. Figure 2.4 shows a schematic diagram of ternary gaseous diffusion in a Stefan tube.
The three neutral species, acetone (species 1), methanol (species 2), and air (species 3), which form
a vapor mixture, diffuse within the Stefan tube; acetone and methanol diffuse upward while air
diffuses downward. The length of the tube (or diffusion path) was 23.8 cm. Pressure and
temperature of the vapor mixture were maintained at 99.4 kPa and 328.5 K, respectively. At the
inlet (bottom), mole fractions of each species were kept, respectively, at: xl = 0.319, x2= 0-528,
and X3= O.153; at the outlet (top), only pure air was present: xl= O, x2 = O, and X3= 1. When the
process is maintained at steady state, which is what we consider here, the total flux (diffusive and
convective; averaged across the tube) of each species is uniform along the tube. It should be noted
here that the convective flux of each species is a result of diffusion; that is, we have diffusion-
induced convection. For the conditions as stated above, Taylor and Krishna ( 1993) reported the
following exact values of total fluxes of acetone and methanol (which they calculated numerically
usin a fourth-order Runge-Kutta method): N1 =

F
1.783 x10-7 mole/(cm2 s), N2 = 3. 127x10-7 mole/

(cm s), which are in excellent agreement with the following values determined experimentally by
Carty and Schrodt ( 1975): NI = 1-779x10-7 mole/(cm2 s), N2 = 3.121 x10-7 mole/(cm2 s). The total
flux of air was kept at zero: N3 = O.

Analytical Solution. The Stefan-Maxwell flux equations for an ideal ternary mixture of neutral
species, when written in terms of the total fluxes Ni and with concentration gradients as the only
driving force, are

3 xiNj – xjNi
VXi = ~

cDij
j=l

(2.48),

where xi is the mole fraction of species i, c the total mokr concentration of the mixture, and Dij the
Stefan-Maxwell diffusion coefficients. As shown by Evans (1999), in 1-D approximation,
Equation (2-48) can be integrated analytically to arrive at closed form solutions for xl, X2, and X3,
respectively:
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N1 NI(~12-~13)
xl =-

N1 + N2 +
x~–

D13(N1 + N2) -D~(D23N1 + D13N2)

[ [

(N+N)1

N1 NI(D12-D13) CD12
2 (z-L)

+ e
;Vl + N2

~13(~* +~2) ‘Dfl(~23~I + D13~2)

(2.49)

(2.50),

X2 = l–x*–x3 (2.51)

where L is the length of the tube and equal to 23.8 cm, z the coordinate along tube, X3l=. ~ the mole

fraction of species 3 (air) at the inlet (Z = O) and equal to 0.153. At constant temperature and

pressure the total molar concentration, c, and the binary diffusion coefficients, Dij, are constant.

For P= 99.4 lc~a and T= 328.5 K, using ideal gas law we have c = ~T = 3.64x10-5 mole/cm3.

Values of Dlz:, D13, and D23 have been reported by Carty and Schrodt (1975) (these Dij values were

determined from their experiment): D12 = 0.0848 cm2/s, D13 = 0.1372 cm2/s, and D23 = 0.1991

cm2/s. We applied the boundary conditions at the inlet and the outlet in Equations (2.49) and (2.50)

to yield a pair of nonlinear algebraic equations in terms of IVl and N2, which were solved

numerically to give: N1 = 1.7834x10-7 mole/(cm2s) and N2 = 3.1274x 10-7 mole/(cm2 s). Our

computed values of N1 and N2 are in excellent agreement with those calculated by Taylor and

Krishna (199:3) and those experimentally determined by Carty and Schrodt (1975).

GOMA Mod(4. To compute species mole fractions using GOMA in this problem, in Equation
(2.1) porosity is set to unity and the mass (or transient) and source terms are set to zero to yield

v-(ucxJ+v, Ji=o

and

x3 = 1–X1–X2

fori=l,2; (2.52)

(2-53).

In Equation (2.52) the diffusive flux, Ji, is given by the Stefan-Maxwell equations
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3

VXi = x

xiJj _ x3Ji

cDij
j=l

for i =2,3; (2.54)

which is a simplified version of Equation (2.3); specifically, concentration gradient is the ordy
driving force for diffusion, the mixture is ideal, and porosity is set to unity. Equation (2.54) is cou-
pled with Equation (2.5) (the constraint of zero total diffusive mass flux) to give rise to a matrix
equation like Equation (2.6) that is solved to yield J], J2, and J3.inEquation(2.52)tieVelOCitY

field, u, can be described by the Navier-Stokesequation at steady state,

pu”vu= - Vp + pv% + pg (2.55)

where the gauge hydrodynamic pressure, p, is given by the continuity equation of the mixture at
steady state,

V.pu=o (2.56)

and the density of the mixture in Equations (2.55) and (2.56) is taken to obey the ideal-gas law,

3 3
(P+p) 3 ~x.=—

P = RT Z i ~ RpTZMixi=cZMixi
(2.57).

i=l i=l i=l

In Equation (2.57) P is the reference or base pressure of the mixture (= 99.4 kPa in our problem
here), which is orders of magnitude larger than the gauge hydrodynamic pressure, p (i.e., P>>p ).

The boundary conditions for xi areas shown in Figure 2.4:xl=0.319, Xz= 0.528, and X3= 0.153
at the inlet, and x1 =0, x2=0, andx3= 1 at the outlet. As for velocity boundary conditions, per-
fect slip is assumed along the tube walls (in order to approximate 1-D flow); that is, velocity gra-
dients are set to zero along tube walls. To obtain the velocity component in the axial direction, UZ,
at the inlet and outlet planes (velocity profiles are taken to be flat at both the inlet and the outlet
planes), we have from the definition of mass-average velocity and the relation between mass and
molar fluxes:

3 3

(2.58).

,i=l i=l
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Accordingly, at the inlet plane UZ= 0.014 cm/s and at the outlet plane UZ= 0.019 crrds using values
of N, = 1.7834x10”7 mole/(cm2s) and N2 = 3. 1274x10-7 mole/(cm2 s). To be consistent with the
analytical solution, we have Ur= O (i.e. the r-component velocity vanishes) at both the inlet and
the outlet planes.

In summary Equations (2.52), (2.55) - (2.56) (along with Equations 2.53,2.54,2.5, and 2.57 and
the boundary conditions as discussed above) are solved simultaneously (i.e., in a fully coupled
fashion) in GOMA to yield the species mole fractions, xl, x2, and X3.

Results - Com.mrisons of GOMA Predictions with Analytical Solution and Experimental Data.
Figure 2.5 shows a comparison of species mole fractions between the computed GOMA prediction
and the analytical solution whereas Figure 2.6 presents a comparison between GOMA prediction
and the experimental data of Carty and Schrodt (1975). Excellent agreement is seen in both
verification (CJOMA vs. exact solution) and validation (GOMA vs. experimental data).

●

Screen- — --

——— —— ——.

F////
Gas mixture :

I
acetone (species 1)
methanol (species 2)
air (species 3)

x~=o, x~=o, xj=l

z = L = 23.8 cm( outlet)

P = 99.4 kpa

T= 328.5 K

Xl= 0-319, X2= 0.528, X3= 0.15:
z=() (inlet)

, Liquid mixture
(acetone and methanol)

Fib~re 2.4 Schematic diagram of ternary gaseous diffusion in a Stefan tube

(Taylor and Krishna 1993)
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2.3 Verification of the Electrochemical Model in GOMA modeling of
an idealized battery cell

An idealized battery-cell problem in which concentration gradients are absent was suggested by
our consultant, Professor John Newman of UC Berkeley, as a mean of verifying the electrochemi-
cal model implementation in GOMA. This problem has an analytical solution and brings out
several aspects of a battery cell, including electrical potential differences in both electrolyte and
electrode regions and chemistry in the electrode regions. The solution of this problem has been
used to provide a check on several aspects of the implementation of the thermal battery simulation
in GOMA. The model problem is to determine the electrical potential fields and the current den-
sity in a battery ceil consisting of an anode region, a separator region, and a cathode region as
shown in Figure 2.7.

r I 1

anode
current=

4

anode region
collector

separator region

I
I

cathode region

cathode
# current

collector

X=o x=LaS X=LCS x=L
$~=o anode/sep~ator separator/~ athode +~=v

i2=0 interface interface i2=0
~d@l/dx=O (or il=O)~

~z is continuous

Figure 2.7. Cell description and boundary conditions.

The assumptions made to allow an analytical solution to the problem are: one-dimensional,
steady-state operation with linearized Butler-Volmer kinetics, constant properties, and negligible
concentration gradients. No chemical reactions are assumed to take place in the separator region.
Ohm’s law hcllds for the current densities in the solid electrode and the liquid electrolyte phases:

d$l~l=.~—
dx (2.59),

az~2.–K_
dx

(2.60)

where i 1, c. and $1, and iz, K, and +Z are the current densities, electrical conductivities, and
electrical potentials in the electrode and electrolyte phases, respectively- In the liquid electrolyte
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phase there is no electrode material so i ~ is zero; similarly, i2 is absent or zero in the solid elec-
trode phase. From the law of charge conservation, we have

Integrating Equation 2.61 yields:

where I is the total current density drawn from the battery cell.

From Faraday’s law and using the Butler-Volmer expression for kinetics, we have

[

a~F aCF
di2 @$l-$2-uo) -~($] -42- ~o)

x
= aio e –e 1

(2.61).

(2.62)

(2.63)

where a is the interracial area per unit electrode volume, iO is the exchange current density, cxa
and Ue are anodic and cathodic transfer coefficients, respectively, F is the Faraday constant, R
is the universal gas constant, T is the temperature, and UO is the thermodynamic open circuit
potential (here, we consider only a single electrochemical reaction, respectively, in the anode and
cathode regions). Linearizing the Butler-Volmer expression and letting Ua = cxc=0.5 yield:

di2 aiOF

z = ~($1 -02– u.) (2.64).

Differentiating Equations 2.59 and 2.60 and using Equations 2.61 and 2.64 lead to the following
equation, which holds in both the anode and cathode

d2Y
—=BY
dx2

where

y=$l–4)2-uo

regions:

(2.65)

(2.66)

and

aiOF(O+K)
B=—

RT OK
(2.67).
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The boundary conditions are:

@l= O,iL=Oatx = O (at the anodic current collector) (2.68), .

01 =V, iz=Oatx = L (at the cathodic current collector) (2.69),

il = O and @2 is continuous at x = Las (at the anode/separator interface) (2.70),

il = O and @2 is continuous at x = LC~ (at the cathode/separator interface) (2.71).

The solution c)fEquation 2.65 in the anode region (applying boundary conditions, Equations 2.68
and 2.70, and constraint 2.62 for the total current density) is

where UO a is the thermodynamic open-circuit potential in the anode region. From

dY I=-=
z -JZ(021 + Uo, ~)sinh(@La~) - ~ cosh(~La~)

Kz = ,La~ X=o

Equation 2.72 can be re-written as:

Y(x) = -J-
{[

CT+ Kcosh( fi~a~) 1cosh(~x) – sinh(ax)
am Ksinh(@La~) }

(2.72)

(2.73)

(2-74).

Since

(2.75),

(2-76).

Combining Equations 2.66,2.73, and 2.76 yields an expression for $1 in the anode region:
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~ lx I[o + Kcosh(m&)]
___

K
$1 =

KCJn sinh(@La~)

1 + C/K
(2.77),

in terms of the solution Y(x) and the total current density 1. The variation of $2 in the anode
region then follows from 2.66. Thus the potentials in the solid electrode and liquid electrolyte
phases in the anode region are determined once the total current density is known.

Similarly, the solution of 2.65 in the cathode region (applying boundary conditions, Equations
2.69 and 2.71 and constraint 2.62 for the total current density) is

Y(x) = -(+zlz=o+ UO,C- V)cosh[@(L-x)]+~ sinh[@(L -z)]
C@

where UO ~ is the thermodynamic open-circuit potential in the cathode region. From,

dY =1

x
; = m($,l +Uo c -V)sinh[@(L-LC~)]-

x = LC~ X=o ‘

~ cosh[~B(L –LC~)]
o

Equation 2.78 can be re-written as:

Y(x) = -J-
{[

6+ Kcosh[a(~–&)] 1cosh[@(L–x)] –
GA/% Ksinh[@L– Lc~)]

1sinh[~(L–x)] .

From 2.75 and using boundary condition 2.69, ~z in the cathode region is

‘$2(X)= 44&+:(L-x+v-@~)

(2.78)

(2.79)

(2.80).

(2.81).

Combining Equations 2.66,2.79, and 2.81 yields an expression for ~1 in the cathode region:
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~{cr+Kcosh[@(L -LC~)]}
Y+:(L-x)+

$1 = v+
w@sinh[m(L – LC~)]

1 + G/K
(2.82) .

in terms of the solution Y(x) and the total current density 1. The variation of @2 in the cathode
region then follows from Equation 2.66.

In the separator region (Las< x < LC~)there is only the electrolyte phase thus i ~ and $ ~ are unde-
fined, yielding a linear variation of ~z:

d$z
iz = ~ = –K—=

dx
constant

+4 - ~(Lc~ - Las) = 021X= ~
x=La~ K es

(2.83)

(2.84).

Now applying, the internal conditions, Equations 2.70 and 2.71, to Equation 2.84 and using Equa-
tions 2.66 and 2.77 yield

ILa~ I[a + Kcosh(~La~)]
;yIx=&+~+

=-uoa -
lcsinh (@LaJ

$2 (2.85)
x = Las > 1 + 0/K

and using Equations 2.66 and 2.82 gives

I{a+Kcosh[J%(L -Lc~)]}1(L ;LcS)–:ylz . Le, +

$21 = V–uo,c+
ws@sinh[a(L-LC~)]

(2.86).
x z Lczs 1 + O/K

Substituting Equation 2.74 evaluated at x = Las into Equation 2.85, substituting Equation 2.80

evaluated at x = Lc~ into Equation 2.86, and substituting the results into Equation 2.84 yields the
final expression for the total current density:

I = (G+ K)(7Jo, c-uo, a-v)+

{

L + :(Lc~ -Las) + ’62+ ‘2)coth(@LaJ + (2.87).
OKa@

coth[@(L– LCJ]}+
}

~{csch(@LaJ + csch[@(L -Lc~)]} .
@
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The following example is provided to illustrate the solution and to serve as a verification on the
electrochemical-model implemer$ation in GOMA. Let Las = 0.33 cm, LC, = 0.67 cm,
L = 1.0 cm, aiO = 0.05 A/cm , 2!’ = 723 K, a = 1900 ohm-* cm-l, K = 2 ohm-lcm-l ,
V = 1.25 volt, UO , = 1.35 volt, UO,~ = 0.0 volt , F = 96487 Coulomb/mole, and
R = 8.314 J/mole-K. Figure 2.8 shows the variation of the electrolyte potential $Z across the
cell. At the current collectors the slope of the curve is zero, thus satisfying the boundary condi-
tions that the electrolyte current density iz is zero at these boundaries. Also note the linear varia-

< xs L.C~ noted above in Equation 2.84. The resultstion of @2 in the separator region (Las –

shown in Figure 2.8 agree with those shown in Figure 3 of Larson (1998). Also shown in Figure
2.8 is the predicted variation of $Z across the cell from a GOMA calculation; the agreement is

good. The total current density I for this case is 0.0128 A/cm2, in agreement with the value
given by Larson (1 998). Figures 2.9 and 2.10 show the variation of the electrode potential $, in
the anode and cathode regions, respectively; both analytical and GOMA results are presented,
and the agreement is excellent. In Figure 2.9, the electrode potential is zero at the anode current
collector in agreement with the boundary condition, and the gradient of @~ is zero at the anode/
separator interface in agreement with the condition that i I = O at the interface. Similarly in Fig-
ure 2.10, the potential is equal to V (=1.25 volt) at the cathode current collector in agreement
with the boundary condition, and the gradient of $ ~ is zero at the separator/cathode interface in
agreement with the condition that i ~ = O at the interface.
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Figure 2.8. Variation of electrolyte potential $2.
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2.4 Results of Base-Case Study, Verification and Validation, and
Design-Parameter Studies for the GOMA Thermal Battery Cell
Model

There are three sub-sections in this section. To illustrate the application or utility of the GOMA
thermal battery cell model, we first report, in Sub-section 2.4.1, results from a base-case study:
computed predictions of species mole fractions, electrical potentials in the liquid-electrolyte and
solid-electrode phases, average porosity in anode and cathode, electrolyte temperature, cell current
density, and total cell voltage by solving the governing equations, Equations 2.1,2.7,2.10,2.13,
2.16 and 2.20 (along with auxiliary equations, Equations 2.2,2.6,2.9,2.15,2.21, 2.22) along with
the boundary conditions (Equations 2.31-2.32,2.34- 2.36) and initial conditions (Equation 2.38)
in GOMA. In Sub-section 2.4.2, we document a study of verifying the GOMA thermal battery cell
model by comparing its predictions with those of Bemardi and Newman (1987) for a LiAl/LiCl-
KC1/FeS2 cell; and we also report results on validating the GOMA thermal battery cell model by
comparing GOMA predictions with limited thermal battery discharge-performance data from the
open literature (Dunning 198 1) for a LiAllLiC1-KCl/FeS2 cell and from Sandia (Guidotti 1996) for
a LiSi/LiCl-KCl/FeS2 cell. Lastly, in Sub-section 2.4.3, we document parametric studies (in which
three key parameters were varied) for a cell operating under constant current density conditions.

2.4.1 Results of Base-Case Study

To focus on the electrochemical aspect of the thermal battery process, we set the velocity vector to
zero throughout; this is justifiable because the rate of change of the convective flux is orders of
magnitude (about 10A) smaller than the rate of changes of the diffusive flux and the rate of
electrochemical reactions. To simplify our analysis further, we employed a lumped energy-
transport model with Joule heating neglected. Table 2.1 lists the process parameters used in the
base-case study. Figure 2.11 displays the finite-element mesh employed in our base-case study.
This mesh has a total of 120 quadratic elements, which result in a total of 2025 unknowns. As can
be seen in Figure 2.11, the mesh is scaled in the direction normal to the current collectors and
toward the eIectrode/separator interfaces in order to properly capture the rapid changes in species
mole fractions. Results of a mesh-refinement study are presented in Figure 2.19.

Constant total cell voltaxe and varvirw cell current densitv. Computed predictions for the case of
constant total cell voltage (V = 1.7 Volts) are presented in Figures 2.12-2.17. Figure 2.12 shows
the Li+ mole-fraction distribution in the direction normal to the current collectors at various times.
Clearly, the zero-gradient boundary conditions at the current collectors are met. The mole fraction
of Li+ increases with time in the anode region due to Li+ production reactions; similarly, it
decreases with time in the cathode region due to the Li+ consumption reaction. Figure 2.13 displays
profiles of the electrical potential in the electrolyte at various times. Again, the zero-gradient
boundary conditions at the current collectors are met; as time increases, the electrolyte potential
level rises with decreasing potential difference between the collectors, indicating the decrease of
cell current density with time (cf. Figure 2.16). Figures 2.14a and 2. 14b show the profiles of the
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solid-phase electrical potential in the anode and cathode regions, respectively. The zero-gradient
boundary conditions at the anode/separator and separator/cathode interfaces are met and the slopes
at the current collectors are finite; as time increases, the electrode potential level rises in the anode
but drops in the cathode; in both electrodes the potential differences between the current collectors
and the separator/electrode interfaces decrease, indicating the decreasing cell current density.
Figure 2.15a and 2. 15b display the average porosity, respectively, for the anode and the cathode.
As expected, average porosity in the anode rises because of the consumption of the solid anode
material; in contrast, the average porosity in the cathode drops because of the deposition of solid
materials generated from the reduction reactions. Figure 2.16 shows that for the Base Case
conditions (constant cell voltage of 1.7V and process parameters given in Table 2.1) the cell
current density rises slightly during the first 90 seconds or so; it then starts to drop - first slowly
but then the rate of drop accelerates as time increases. Lastly, Figure 2.17 shows the average
temperature as a function of time in the cell. The cell temperature decreases with time due to the
loss of heat to the surroundings, as expected.

Table 2.1. Process Parameters Used in the Base Case

Electrode and separator dimensions:

La= 0.088 cm
L~ = 0.07 cm
LC= 0.046 cm

Electrical conductivity of Solid Electrode:

Oa= 250000 S2-1cm-l

Gc= 1900 !2-1 cm-l

Stefan-Ma~well diffusivities:

Dl~ = 4.5x.10-5 cm2/s

D13 = 4.5x.10-5 cm2/s

Dz3 = 4.5x.10-5 cm2/s

Initial porosity of electrodes:

Cao= 0.275

EC*= 0.244

Porosity of separator:

Es= 0.244

Total mass of the battery cell:

m = 2.863I4 g

Cross-sectional area of electrode disks:

Initial and ambient temperatures:

To= 846 K, T, = 298 K.

Heat capacity of the battery cell:

CP = 0.874 J/g-K

Heat transfer coefficient:

h = 1.25x10q W/cm2 - K

Anodic transfer coefficients:

%,anode. = ‘.5, %,armde= 0.5.

Cathodic transfer coefficients:

~a,cathode = 1.0, ~c,~athode s 1.0.

Exchange current density for anodic reaction:

aio,m~e = 10 A/cm3.

Exchange current density and activation energy
for cathodic reaction at zero utilization:

aio,o ~athode= 20 A/cm3.

E =20 kcal/mole

A = 7.917 cm2 (electrode disk diameter= 1.25”)

38



Anode

Interface

:: \
Cathodic Current

Figure 2.11 Finite-element mesh used in the case-study calculations
(a total of 120 elements and 2025 unknowns)

Collector

0.300 w I 1 I I I I w.. . . . . .....;.. -. ........ ... .. .. .

0-296 _———————

“,.,,,,.. .“.-..- -.,,. ..”, . .-

0.292
+.-
A
+

: 0.288

0
“3 a
~>

& 0.284
aJ

z

z
0.280

0.276

~.>
\

.,
0.272

~-...-....-—; /
1 1 I I I I I I

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21
OISTRNCE

Distance from the anodic current collector (cm)
Figure 2.12 Sample prediction: mole fraction of Li+ across batte cell

%with constant cell voltage (Parameters are listed in Ta le 2. 1)

39



I I I I i I I

o -

---- ..... ...... ... ... .... ,,,--, ,- ,“,-

.“ .-- . ...
“’..-........,,..,..

-15

_30 _>

-’-.-..--., :

‘L
‘....... . .

-+5

-60

Time
Increasing

-75

I I
0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Distance from the anodic current collector (cm)

Figure 2.13 Sample prediction: electrolyte electrical potential across battery cell
with constant cell voltage (Parameters are listed in Table 2.1)

. ~1 , , t , *J

.....

,-

.:.

C2 1.71xoc3

z
~

-a
.=

G 1.7ccm2-
a

5
a

-a
0

.+ 1.7CQ301
~

0

; .——....--___.__ -

f,7
O,fs 0.16 0.17 0.18 0.19 0.2

Distance frolm anodic current collector ( 10-3 cm) Distance from anodic current collector (cm)

(a) (b)

Figure 2.14 Sample prediction: electrical potential in the solid electrode phase across
the anode and the cathode with constant cell voltage
(Parameters are listed in Table 2.1).
(a) in the anode region; (b) in the cathode region.

40



h
0.34-

.-

~“

5
0.32-

a

o:
U

$

<
0.28-

Cell Voltage = 1.7 V

0.26
0 WI &oo W.a

Battery discharge fime (seconds)

(a)

0.4

Cell Voltage = 1.7 V

o~
o

Battery discharge time (seconds)””

(b)

Figure 2.15 Sample prediction: evolution of average porosity in electrodes
with constant cell voltage (Parameters are listed in Table 2.1).

(a) Anode; (b) Cathode.

0.4 r I

Cell Voltage = 1.7 V

Battery dischige fime (seconds)

Figure 2.16 Sample prediction: evolution of battery-cell current density
with constant cell voltage (Parameters are listed in Table 2.1 ).

41



900

700

600

,oo~
o 300 600 900

Battery discharge time (seconds)

Figure 2.17 Sample prediction: evolution of electrolyte
(Parameters are listed in Table 2. 1)

Cell Current Density = 24.6 rnA/cm2

1
0 3oa 600 900

Battery discharge time (seconds)

Figure 2.18 Sample prediction: evolution of total cell voltage with constant
cell current density (Parameters are listed in Table 2.1).

42



— Coarse mesh-60 elements
-— Finer mesh -120 elements

\

Cell CurrentDensity= 24.6mA/cm2\
0 300 @30 903

Tone (sewids)

(a)

0.4

%
o
c 0.34-
C5
G.-
QA 0.32

/

.=

g

o
a 0.3 / Cell Voltage = 1.7 V

g /“
z 028

;//
— Coarsemesh-60 elements
— Finermesh-120 elements

4

0.26 ~
o 3ca w 900

Battery discharge time (seconds)

(c)

1 — Coarsem+sh-60 ekments
—- Finermash -120 elemets

I
0.3 I

h
Ceil Voltage= 1.7V

0.2

0,1 t

I
——

\.

‘b
300 Wo — 900

Battery discharge time (seconds)

(b)

——

— Coarse mesh-60 elements
--- Freermesh- WQ elements

Cell Voltage = 1.7 V i
‘\

\

\

\=’-
0

0 300 600

Battery discharge time (seconds)

(d)

Figure 2.19 Effects of Mesh Refinements on Selected Computed Predictions

o

a) total cell voltage vs. time,

b) cell current density vs. time,

c) average porosity in anode vs. time,

d) average porosity in cathode vs. time.

43



Constant cell (current densitv and varvin~ total cell voltage. Figure 2.18 displays the computed
prediction of total cell voltage as a function of time for the case of constant ‘current density (I=
24.6 mA/cm2). As can be seen from Figure 2.18, the total cell voltage decreases slowly for the first
5 minutes or so but drops more rapidly afterward.

The effect of mesh refinement on several results of interest is presented in Figure 2.19, which
shows that doubling the total number of mesh elements from 60 to 120 has a very small effect on
the computed predictions. Consequently, the 60-element mesh was used in the case-study
calculations. With this 60-element mesh and for the case of constant cell voltage and varying cell
current density, approximately 30 minutes of CPU time were required to simulate 15 minutes of
discharge time on a 400 MHz SUN ULTRASPARC workstation. For the case of constant cell
current density and varying cell voltage (again with the 60-element mesh), approximately 8 hours
of CPU time were required to simulate 15 minutes of the voltage-vs.-time curve; the significant
increase in computer time was due to the iteration required on the voltage boundary condition.

It should be pointed out that the effects of input- (or process-) parameter uncertainties on the
statistical variations of computed output variables (e.g. species mole fractions, electrical potentials,
cell current density, cell voltage, etc.) have not been investigated. Such effects can be significant,
depending on the input-parameter uncertainty distributions, as shown by one of the authors of this
report (Chen 1995, 1996; Chen and Cairncross 1997) in two non-deterministic analyses,
respectively, for thermal response of a metal-plate object subject to a participating engulfing pool
fire and for a liquid polymeric-film drying process. In short, estimation of process parameters (e.g.
exchange current density, activation energy, diffusion coefficients, etc.) and assessing the effects
of their uncertainties on battery discharge performance remain a challenge that awaits future
efforts.

2.4.2 VerWlcation and Validation

To verify our GOMA thermal battery cell model, we computed the discharge cell voltage as a
function of time for a LiAl/LiCl-KCl/FeS2 cell that has been studied by Bernardi and Newman
(1987) using a different model formulation (in which the total flux is subdivided into diffusion,
migration, and convection) and a numerical solution technique based on the finite difference
method. The relevant parameters for this verification study are listed in Table 2.2. Figures 2.20a&
2.20b compare the GOMA predictions of dynamic cell voltage with those of Bemardi and Newman
(1987) for twcl sets of operating conditions and up to the end of the first reduction electrochemical
reaction in the cathode (i.e. Reaction a in Equation 2.28). Clearly, predictions from the two models
agree very well except toward the end of Reaction a where percent utilization of the cathode
starting material, FeS2, approaches 37.5. The discrepancy near 37.5% utilization is mainly due to
the fact that we employed a sequential reaction mechanism in the present GOMA model (i.e. only
one reaction is allowed to proceed in each reaction region as presented in Equation 2.28) whereas
Bemardi and Newman (1987) allowed simultaneous reactions. Incorporation of the simultaneous
reaction mechanism in the present GOMA battery-cell model awaits future efforts.
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Table 2.2. Process Parameters Used in the Verification of the GOMA Thermal Battery Cell Model

Electrode and separator dimensions:

La= 0.32 cm
L~ = 0.2146 cm
LC= 0.2146 cm

Electrical conductivity of Solid Electrode:

Ca = 250000 Q-l cm-l

cc= 1900 Q-l cm-l

Stefan-Maxwell diffusivities:

Dlz = 3.5x10-5 cm2/s

D13 = 3.5x10-5 cm2/s

D2~ = 3.5x10-5 cm2/s

Initial porosity of electrodes:

0 = 0.755Ea

Ec0 = 0.755

Anodic transfer coefficients:

%,mode = 0.5, %,mode = 0-5-

Cathodic transfer coefficients:

%,cathode = l.O~ %,cathode = l.O

Exchange current density for anodic reaction:

ai~,mode = 10 A/cm3.

Exchange current density for cathodic reaction:

aio,cathode= 5 A/cm3.

Porosity of separator:

E,= 0.755

In Figure 2.20b the cell voltage predicted by GOMA is compared with the experimental data of
Dunning (198 1) for a LiA1/LiCl-KCl/FeS cell that operates with an isothermal temperature of

?450° C, a cell current density of 50 mA/cm , and an initial LiCl molar concentration of 68%- Aside
from the initial period of discharge where 5%utilization is close to zero and the end of Reaction a
where % utilization approaches 37.5, the agreement between GOMA prediction and experimental
data is very good. The discrepancy near 37.5% utilization can be attributed to the sequential
reaction mechanism employed in the GOMA model whereas the discrepancy near O% utilization
may be due to measurement uncertainties and/or the start-up phenomena that is not captured in the
model.

In Figures 2.21 and 2.22 the GOMA thermal battery ceil model is further validated against the
experimental data provided by Ronald Guidotti of the Power Source Engineering Department
(formerly Thermal Battery Development and Manufacturing Department) at Sandia for a LiSi/
LiC1-KCl/FeS2 cell operating under nonisothermal conditions with a constant current density of
24.6 mA/cm2. The other process and model parameters are those listed in Table 2.1. Figure 2.21
shows the electrolyte (or cell) temperature as a function of time whereas Figure 2.22 displays cell
voltage as a function of time. Aside from the initial start-up period of 15 seconds or so, the cell or
electrolyte temperature as predicted by GOMA agrees almost perfectly with the experimental data
for the first 10 minutes or so of discharge time. Discrepancy arises afterward due to several factors:
1) the Joule heating effect, which has been neglected in the present model, but which can be
important as the cell voltage deviates significantly from the thermodynamic open-circuit potential;
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2) time-dependent heat capacity of the cell due to the formation and solidification of known and
unknown intermediate compounds as heat is lost to the surroundings – in the present GOMA
model, the heat capacity of the cell is kept constant; 3) temperature gradients within the cell, which
may arise as battery-cell discharge proceeds and more and more intermediate compounds are
formed in the electrode regions. Similarly, the cell voltage as predicted by GOMA agrees almost
perfectly with the experimental data for the first 10 minutes or so of discharge time, but
discrepancy arises after that and becomes more pronounced at longer times. This maybe attributed
to the following factors: 1) precipitation of KC1 and LiCl salts during discharge, which results in
the further reduction of porosity in the cathode and thus additional drop in the cell voltage – this
effect can eventually result in pore plugging and thus shut off the battery discharge process (cf.
Pollard and Newman 198 1); 2) a difference between the reduction electrochemical reaction in the
cathode and that presented in Equation 2.28 when the cell temperature is well below 450°C (which
is the case when discharge time exceeds 10 minutes, as shown in Figure 2.21); 3) formation and
solidification of unknown intermediate compounds, which affect not only electrode chemistry but
also the species transport processes and properties; 4) discrepancy in cell temperature between
model prediction and experimental data.

2.4.3 Design-Parameter Studies

In this sub-section we document the effects of three key design parameters on the battery-cell
performance. The ability to explore the dependence of battery performance on battery design
parweters is of critical interest to the thermal battery designers at Sandia. The three key design
parameters selected are cell current density, cathode thickness, and heat transfer coefficient. Cell
current density is the most important design parameter because it specifies the power output by the
battery. The electrode thicknesses are relevant because the battery-cell volume depends on them.
Since thermal. batteries are usually designed so that they are cathode limited, we have chosen to
study the effect of the cathode thickness here. Lastly, the heat transfer coefficient controls the rate
of heat lost to the surroundings in our lumped energy-transport model. It should be pointed out that
time and budget constraints prevented us from conducting more extensive parameter studies;
however, the results reported in this sub-section should help illustrate how the GOMA thermal
battery cell model can be employed to study battery performance with respect to various process
design parameters. The other process and model parameters are those listed in Table 2.1.

Results of our design parameter studies are presented in Figures 2.23-2.25: the effect of cell
current density on discharge cell voltage is shown in Figure 2.23, the effect of cathode thickness is
shown in Figure 2.24, and the effect of heat transfer coefficient is shown in Figure 2.25. With the
process conditions chosen (as listed in Table 2.1 ) and at the discharge time of 15 minutes, lowering
the heat transfer coefficient from 2.5x 10-4 W/cm2-K to 0.625x 10q W/cm2-K (a factor of 4) results
in an almost 30% increase in the cell voltage, whereas raising the cell current density from 10 mA/
cm2 to 50 mA/cm2 (a factor of 5) produces a drop in the cell voltage of only 7?Z0.Effect of the
cathode thickness is even less significant: increasing the cathode thickness by a factor of 46 (from
LC= 0.01 cm to LC = 0.46 cm) raises the cell voltage by merely 2910.It should be emphasized that
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these results apply to a discharge time of 15 minutes and for the process conditions chosen (as
listed in Table 2.1) only. It is expected that as discharge time increases, the effects of current
density and cathode thickness on cell voltage will significantly increase. Lastly, the effect of the
heat transfer coefficient on the cell temperature is presented in Figure 2.26. As expected, the heat
transfer coefficient has a significant effect on the cell temperature, and this in turn strongly affects
the cell voltage.

A comment is in order before closing this chapter. Due to time and budget constraints, in the
present work we have not studied the effects of electrode-thickness non-uniformity, which will
introduce the multi-dimensional transport phenomena that the present GOMA model was designed
and developed to handle. Carrying out such a study to examine the effects of electrode-thickness
non-uniformity on the cell voltage, though, awaits future efforts.

Listof Symbols
(seeTable 2.1 for others)

A - electrode cross-sectional area (m2)

a - interracial surface area per unit volume (m-l)

t - inertial coefficient

CA,B- mokir concentration of salts A,B (moles/m3)

CP - specific heat at constant pressure (J/kg-K)

De - effective diffusion coefficient (m2/s)

Dij - Stefan-Maxwell diffusion coefficient of species ij pair (m2/s)

F - Faraday constant (96487 C/mole)

h - heat transfer coefficient (W/cm2-K)

ijo,ref - exchange current density for reaction j (Nm2)

Z- total currentdensity (A/cm2)

kT - thermal conductivity (J/m-s-K)

k - permeability (m2)

ikfi - molecular weight of species i (kg/mole)

m - mass of cell (kg)

~i - molar flux of species i (moles/m2-s)

nj - electrons transferred in reaction j

P - pressure (N/m2)
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Q - heat source term in energy equation (W/m3)

R - gas constant (8.314 J/mole-K)

~i - partial molar entropy of species i (J/mole-K)

s ~j - stoichiometric coefficient of species i in reaction j

Z’a - ambient temperature (K)

2’.,2’0- initial temperature (K)

t - discharge time (s)

tic - transference number of species i with respect to common ion velocity

U~- olpen-circuit cell potential (V)

Uj, ” - theoretical open circuit potential of reactionj (V)

u, u“ - superficial mass average velocity, initial velocity (m/s)

V- total cell potential (volts)

Fi, ti~ - partial molar volume of species i (m3/mole)

xko - mole fraction of species k at the electrode surface

Xi, x: - mole fraction of species i, initial mole fraction of species i

xi,~ - value of xi at node k

zi - charge number of species i

~aj - anodic direction transfer coefficient of reaction j

~Cj - cathodic direction transfer coefficient of reaction j

~kj - effective reactor order of species kin reaction j

‘y~ - activity coefficient of salt A

yi - activity coefficient of species i

s, s“ - porosity or electrolyte volume fraction, initial porosity

c - electrode-phase conductivity in electrode (L2-1m-1)

K - effkctive ionic electrolyte conductivity (~-lm-l)

~ - viscosity (kg/m-s)

V1A - stoichiometric coefficient of species 1 in salt A

y~ - local finite-element basis function of node k

@, - electrical potential in solid electrode

Oz - electrical potential in liquid electrolyte

ol,~ - value of ml at node k

@z,~ - value of @2 at node k
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3. CONDENSED-PHASE ENHANCEMENTS TO CHEMKIN

The Chemkin and Surface Chemkin software packages developed at Sandia are widely used in
the solution of chemically reacting flow problems. The original Chernkin is applicable to (ideal)
gas-phase processes such as those occurring in flames, while Surface Chemkin is designed to handle
gas-surface interactions of the type found in, for example, chemical vapor deposition. In order to
deal with systems involving condensed phases, and in particular those involving electrochemistry,
one might wish to have available a corresponding version of Chernkin. Actually, the formalisms
adopted in Surface Chemkin are sufficiently general that it can be adapted for this purpose, especially
if one.makes use of the multiple materials capability. Therefore, it is not necessary to develop an
entirely separate software package. On the other hand, it is necessary to supply routines that deal
with features that are specific to condensed phases; these include, but are certainly not limited
to, various kinds of nonideal solution behavior, potential-dependent electrode kinetics, and vastly
different transport properties. In this section we discuss the development and current status of a
new Liquid Chemkin package that is designed to provide this capability. Even though a fair amount
has been accomplished, the evolution of this package is ongoing and can be expected to continue
indefinitely as new kinds of condensed phase behavior are added. As suggested above, the program
is subsidiary to Surface Chemkin, just as the latter can be run only in conjunction with gas-phase
Chemkin. Each package has its own Interpreter and subroutine library, and the capabilities of any
or all of them may be needed in order to model a particular situation.

It should be mentioned at the outset that part of the capability for dealing with condensed phases
has been incorporated into Surface Chemkin rather than being made a part of the new package. This
has been done only if significant economies in coding would result. These features will be considered
first, after which the Liquid Chemkin package itself will be described. This documentation is not
intended to serve as a complete user’s manual, but it should allow an experienced Chemkin user to
understand how Liquid Chemkin can be employed.

3.1 Enhancements to the Surface Chemkin Interpreter

Even when only condensed phases are being considered, the Surface Chemkin Interpreter
is to be used to process the phase and species ‘declarations, thermodynamic data, and chemical
reaction mechanism(s). However, since different phases will in general exhibit different kinds
of thermodynamic and transport characteristics, a method is needed to make this known to the
Interpreter. This is done by declaring for each phase a number (possibly zero) of “formulations”,
using the keyword FORM and a slash-delimited formulation type (which is case-insensitive and
may be truncated to three letters). For example, if activity coefficients for the phase are to be
computed from the Debye-Huckel theory, then one line in the Interpreter input file might be

BULK/SOLUTION/ FORM/Debye-Huckel/

Each valid formulation is associated with a subroutine in the Liquid Chemkin library which will per-
form the necessary computations when the property in question is requested. Multiple formulations
can be used for a given phase if they refer to different properties, but formulations corresponding
to the same property are mutually exclusive. At present only three formulations have been im-
plemented, all dealing with activity coefficients (nonideal solution behavior): ‘Debye-Huckel’,
‘Regular’, and ‘Series’; these will be discussed later in detail. Formulations for various transport
properties are expected to be added in the near future.
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The activity coefficient ~ for a particular species in a bulk mixture is ordinarily defined with
respect to one of two principal conventions: the standard state can be either the pure component
(unit mole fraction) or a hypothetical ideal solution of unit molality (moles of solute per kg of
solvent). The choice of convention is made known to the Surface Chernkin Interpreter through the
species declarations. If the keyword SOLV appears with one of the species names, then the mole
fraction convention is used for that species (the solvent, which must appear last), and the molality
convention is used for all other species in that phase. Note that the need to compute modalities
is the ordy reason for declaring a solvent. If there is no such declaration, then the mole fraction
convention is used for all species in the phase. As one example, an aqueous solution of AgN03
and CU(N03)Z might be presented to the Interpreter as follows:

BULK/SOLUTION/ FORM/Debye-Huckel/

CU(+)2(AQ)
N03(-) (AQ)
AG(+) (AQ)
H20(L) /SOLll/ /1. 0/
ENI.)

As usual, the number 1.0 following the H20 declaration refers to the species density.

The handling of chemical reactions by the Interpreter has been enhanced by allowing for
electrode processes that obey Butler-Volmer kinetics. (The mathematical details will be given
below in the clescription of the corresponding library routine.) This is best illustrated by means of
an example: for the oxidation of copper to cupric ions in aqueous solution, one might have

Cu(s) = (3J(+)2(AQ) + 2ELEC 3. 000E-03 0.0 0.0
TRAN / 0.75 0.25 /
OPVOLT / 0.3395 /

The three Arrhenius parameters following the reaction represent not a rate constant, but rather the
standard state exchange current density, which is understood to be given in A/cm 2. Accompanying
the keyword TRAN are the anodic and cathodic transfer coefficients; they must be listed in this
order, regardless of the direction in which the reaction is written. The keyword OPVOLT signifies
the standard state open circuit potential in Volts; alternatively, one can use the keyword OPERGC
to give the value in erg/C, which is an unconventional unit but which is actually the one used
internally by Surface Chemkin. (The use of cgs rather than S1 units in the Chernkin suite appears
rather unfortunate when electrochemical features are added.) More generally, if one wishes to
define a temperature-dependent open circuit potential, then one can provide the two parameters a
and b in the linear expression a + UT, where T is in Kelvins. The decision to supply an open
circuit potential is optional; if neither OPVOLT nor OPERGC is used, then the necessary value is
calculated internally from the thermodynamic data for the species involved in the reaction.

The string ELEC appearing in the reaction is actually a reserved keyword that denotes an
electron being transferred; it is not a declared species, because the electron does not exist in free
form (as it does, for example, in a plasma). Thus, the electron is excluded from the composition
vector for the bulk phase and from the mass-action expression for the reaction kinetics, as it should
be. However, its contribution to the free energy change for the reaction cannot be ignored, because it
has a nonzero standard state entropy, even though its standard heat of formation is defined to be zero.
This dilemma has been resolved by requiring that the electron be declared in the Chemkin Interpreter
as agasphase species, but with a standard entropy appropriate to the electrode reaction(s) in question
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(15.6 cal/mol . K for processes in aqueous solution, as opposed to the value of 4.98 cal/mol . K
from the Chemkin data base). Surface Chemkin is programmed to seek and use this value in the
necessary free energy calculations. This procedure is clearly an artifice, but it should not cause
problems unless one wishes to deal simultaneously with plasmas and condensed phase electrode
reactions —a highly unlikely eventuality.

3.2 Enhancements to the Surface Chemkin subroutine library

Several routines in the Surface Chemkin subroutine library have been added or modified in
order to implement some of the features discussed above. (The other features are covered by Liquid
Chemkin.) Some descriptive and background information on these routines will now be given.

SKMTX and SKXTM: These routines convert from modalities rnk to mole fractions ~k, and vice
versa, for a given phase. These simple transformations can be
been identified. For SKMTX the formulas are

.k=+#’+pJ-l7
and

..=(l+i%p-’
where W is the molecular weight. On the other hand, SKXTM

1000 xk
mk .

x~w$

The molality of the solvent is not normally considered to be
Eq. (3.3) actually gives a valid result for this species.

SKSOLW This simply returns the species index (if any) for the

carried out only if a solvent s has

k+s (3.1)

(3.2)

uses

(3.3)

a useful or relevant quantity, but

solvent in each phase.

SICRRI?T This is an existing core routine (not normally called by the user) that calculates the forward
and reverse mass-action rate constants kf and kT for a variety of different kinds of reactions. It has
now been augmented to
Butler-Volmer equation.

and

handle electrode reactions, using a reformulated version of the standard
For a reaction written in the anodic direction, the expressions used are

kfd- [( )]~ neFA@ – AGO @@j)
n~F ‘Xp RT

[(kr=~exp ~
)]

n,FA@ – Ad YXqj)
neF

(3.4)

(3.5)

Here i~ is the standard state exchange current density (calculated from the three Arrhenius pa-
rameters supplied by the user), ne is the signed stoichiometric coefficient of the electron (positive
for an anodic reaction), F is Faraday’s constant, aa and ctC are the anodic and cathodic transfer
coefficients, A@ is the surface potential (an input property, like the temperature T), and A@ is the
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standard free energy change for the reaction as written. AGO is calculated either from the specified
open circuit potential,

AGO = n,FA@~ (3.6)

or, in the absence of any specification, from thermodynamic data for the species. Finally, @@j) is
a correction factor defined by

the pj being the unsigned stoichiometric coefficients (or reaction orders) for the reactants in the
anodlc direction. ~(qj) is defined in exactly the same way and refers to the cathodic direction.
Equation (3.7) is similar to Eq. (37) in the Surface Chemkin manual (Coltrin et al., 1996), which
should be consulted for the meaning of the rest of the notation.

If the reaction in question is written in the cathodic direction, then n. <0, and the appropriate
equations for the rate constants are

[(kf=~exp ~
)]

–neFA@ + AGO ~(qj)
neF

(3.8)

and

[(kr=~exp ~
)]

–neFA@ + AGO @@j)
neF RT

(3.9)

Note that pj and qj still refer to the anodic and cathodic directions, respectively.

SKFARD: This returns the value of Faraday’s constant, 96486.7 C/mol.

SKSPOT This routine allows the user to insert a value for the surface potential A@ into the Surface
Chemkin work array, from which it can be accessed by SKRRPT. The purpose of this device is to
eliminate the need to add A@ to the call lists of SKRRPT and those routines that access it. Such
changes should obviously be avoided whenever possible.

3.3 The Liquid Chemkin Interpreter

The purpose of the Liquid Chemkin Interpreter is to read, check, and store data relating to
the various “formulations” declared in the Surface Chernkin input file. Thus, the input to Liquid
Chernkh is basically a user-supplied physical property data base for the problem in question.
Ideally, the user could draw upon one comprehensive data base to solve a multitude of problems,
just as is done with the Chernkin transport package. This may indeed be possible in the future, but
Liquid Chemkin must first be developed to a much higher level.

Each line in the Liquid Chemkin input file refers to a particular species and to a particular
formulation. Of course, a species may appear on several different lines if there are multiple
formulations. As one eXample, we can consider the fOllOWinginpUt file fOr the AgNOs/Cu(N@)’2
solution alluded to earlien

H20(L) Debye/1. 3874 -0.003361 8. 8911e-6 0.30163 2. 6839e-5 2. 1348e-7 4.6/
W(+)2(AQ) Ion / 6.0 /
N03(-) (AQ) Ion / 3.0 /
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AG(+)(AQ) Ion / 2.5 /

Each record consists of aspeciesnarne, a keyword, andaslash-delimited set ofparameters(separated
by spaces). Each keyword refers to a specific formulation type; in this case, ‘Debye’ and ‘Ion’
(case-insensitive) both refer to the ‘Debye-Huckel’ formulation, the difference being that the former
is used for the solvent and the latter is used for all of the solutes. The first six parameters for the
solvent are expansion coefficients Ao, Al, A2, Bo, I?l, and B2 to be defined below, while the last
parameter is an overall effective ionic radius for the solutes in Angstroms. The lone parameter for
each solute is its individual effective ionic radius, also in Angstroms.

At present, the Liquid Chemkin Interpreter is programmed to recognize two other keywords,
namely ‘Regular’ and ‘Series’; these obviously correspond to the two remaining formulations
mentioned earlier. They might be used as follows:

! Regular solution
C6H6 Regular / 59500. 89. /
C6H12 Regular / 53000. 109. /
C6H14 Regular / 47200. 132. /
! Molten salt electrolyte
LICL(L) Series / KCL(L) O. -21864. 145900. -361320. 362000. -126260. /
KCL(L) Series / LICL(L) O. 2619.2 -77534. 209000. -204850. 69674. /

The two parameters for a component of a regular solution are the volubility parameter d~ in
(erg/cm3)l/2 and the liquid molar volume vk in cm3/mol. The ‘series’ case is more compli-
cated, because here the parameters for a given species depend upon the identities of the other
species present in the phase. For this reason, the ‘Series’ formulation is presently restricted to
binary mixtures. The first parameter for a species A is the identity of the other species B, and the
six numbers are coefficients in a series expansion of T in TA in powers of ~B. Again, the precise
definition will be given below.

3.4 The Liquid Chemkin subroutine library

The main purpose of the Liquid Chemkin subroutine library is to carry out computations specific
to each of the formulations that have been defined. There are also many higher-level routines that
use the results of the basic computations to return auxiliary quantities that maybe of greater interest
to the user. Some information on the major routines will now be presented.

LKDEB: This core routine calculates the activity coefficients yk (and their temperature derivatives)
for all of the species in a Debye-Huckel phase (an electrolyte solution). For each solute, the equation
used is

–A(T)z~11/2
b ~k =

1 + B(T)qJ1/2
(3.10)

where zk is the ionic charge, rk is the effective ionic radius mentioned above, and I is the total ionic
strength of the solution:

(3.11)

A(T) and B(T) are functions characteristic of the solvent, and they are here represented by simple
power series expansions, using the coefficients supplied to the Interprete~

A(T) = AO+ Al~+ A2T2 (3.12)
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B(T) = B()+ Ill T + I@ (3.13)

The activity coefficient of the solvent is given by the following relation, which can be obtained
from the Gibbs-Duhem equation after assuming that each of the radii r~ can be replaced by a single
average value ~:

[

–4W.A 1 11/2

1000 ln(~~x~) + W. ~(m~ in ~~ + rn~) = ~r # – 1—+*ln(l + 13r11/2) (3.14)
Br

k+s

LKREG: This uses the Scatchard-Hildebrand theory (Prausnitz, 1969) to compute the activity
coefficients fc~rall species in a regular solution. The basic equation is

(3.15)

where
~ x~?-)ki$k

5= k~ Xk’t)k
(3.16)

k

When dealing with a binary mixture, one occasionally has a need for the composition derivative
d In ~A/d in x,4. For a regular solution, the result is simply

d hl VA
=h~A.

–2XAVA

d h xA ZB(ZAVA + XBVB)
(3.17)

LKSER: This routine evaluates power series representations for the activity coefficients, and, as
noted above, it applies only to binary mixtures. Assuming that expansion coefficients % have been
provided for species A, one has

I

h~A=~~~~~ (3.18)

n=2

According to the Gibbs-Duhem equation, the activity coefficient of species B is then given by

(3.19)

The truncation of the series in Eq. (3.18) after n = 7 is completely arbitary; however, @ is omitted
in order to satisfy the condition that 7A = 1 when ~B = O, and c1 is omitted in order to avoid
creating a logarithmic singularity in Eq. (3. 19) at that point. Nevertheless, if expansion coefficients
have been provided for both species, then Eq. (3.19) is not used; instead, Eq. (3. 18) (with obvious
changes in notation) is used for species B as well.

From Eq. (3.18), the derivative d in 7A/d in xA is given by

dln~A xB– 1 7
x

n—1

d h xA = T .=2 ‘%XB
(3.20)
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In theory, d h ‘)’B/dIn xB has the same value, and this is precisely true if Eq. (3. 19) is used. However,
if coefficients are specified for both species, then the two derivatives may not be equal (implying a
thermodynamic inconsistency), and the two results should therefore be averaged before being used.

LKSTMX2: This is a rather specialized routine whose purpose is to return transport properties for
a molten salt. Specifically, it is designed to calculate the three binary Stefan-Maxwell coefficients
in a mixture of two 1-1 molten salts with a common ion. However, the computations are not really
predictive, but instead use three experimentally accessible transport properties as inputs. Let us
suppose that salt A contains ions 1 and 3, while salt B contains ions 2 and 3. The three required
inputs are then the electrical conductivity K of the mixture, the transference number t: of ion 1
relati~e to the common ion velocity, and the effective salt difisivity D based on a mo~e fraction
driving force. The first step is to determine the diffusivity 27 based on a thermodynamic (chemical
potential) driving force:

‘=D(l+a)-’ (3.21)

the derivative typically being obtained from a call to LKSER, using the above-mentioned averaging
if necessary. The Stefan-Maxwell coefficients are then given by

1 2F2C 2t;t;.—
D]2 = RTK + DXAXB

(3.22)

1 2F2C

()

2t; ~ t;—— — ——
D13 = RTK DXA

(3.23)
xB

1 2F2C 2t;—— —
‘D*3 ()

l–~
= RTK ~XB XA

(3.24)

where t; = 1 – t; and c is the total concentration of salts A and B. Note that this routine does not
rely on any input to the Liquid Chemkin Interpreter.

LKACOF: This routine returns activity coefficients for all of the species in alI of the phases, using
calls to core routines such as LKDEB to do the actual calculations. If no appropriate formulation
has been declared for a given phase, then the activity coefficients for that phase default to unity.

LKDLNG: This is similar to LKACOF but returns ~ in -yk/t3T instead of ~~. In this case the default
value is zero.

LKD2LNG: This returns ~ 2 in Tk/6’T2 for every species, again defaulting to zero.

LKDLNGX: This returns the two values d hI ~A/d In xA and d In TB/d h xB for each binary phase.
As noted above, the two values should be equal if the Gibbs-Duhem equation is to be obeyed, but
deviations from this can arise with some formulations. The default values are zero.

L~A: This routine converts a vector of mole fractions (or, in the case of surface species, site
fractions) for all species to a vector of activities, with the effects of nonideality potentially included
for all of the phases. The activity ak of species k is given by either

or
ak = ykmk
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depending upon whether the mole fraction convention or the molality convention is being used.

LKXTCZ: This is a generalization of the Surface Chemkin routine SKATCZ. It converts a vector
of mole fractions (or, in the case of surface species, site fractions) to a vector of concentrations (or,
in the case of bulk species, activities) for use in the rate expressions. It differs from SKATCZ only
in that it treats bulk species just as does LKXTA, whereas SKATCZ leaves the inputs for the bulk
species unchanged.

LKHML: This returns the partial molar enthalpy Hk of each species. Basically, it generalizes the
Surface Chemkin routine SKHML by correcting for nonideality according to

LKCPML: This returns the partial

~ 8h~kHk=H:– RT ~

molar heat capacity CP~
Surface Chemh routine SKCPML. The relevant equation is

(3.27)

of each species, building upon the

(3.28)

LKSML: This, returns the partial molar entropy sk of each species, calculated from

~ in Tk
Sk=S~–RT~–Rlnak (3.29)

An important distinction between LKSML and the Surface Chemkin routine SKSML should be
noted here. Whereas SKSML returns the standard state entropy for each species, the values returned
by LKSML are partial molar quantities that also include a contribution from the entropy of mixing
(as well as any effects of nonideality). The weighted sum of these values over a given phase then
provides the average entropy ~ for the phase directly. In Surface Chemkin, on the other hand, the
entropy of mixing must be included explicitly in the calculation of ~.

LKHMS, LKCPMS, LKSMS: These simply re-express the corresponding partial molar quantities
in mass units-

LKHORT, LKCPOR, LKSOR: These return the dimensionless properties Hk/R~, CPk/R, and
Sk/R.

LKHBML, LKCPBL, LKSBML: These return the molar-average thermodynamic properties ~,
UP, and ~ for each phase. ~, for example, is computed from

~ = ~x@k (3.30)

k

LKHBMS, LKCPBS, LKSBMS: These routines express the phase averages on a mass basis. ~ls
is equivalent to saying that they return mass-average properties, because

Hk
(~)-1 ~ xkH~ = ~ Yk ~ (3.31)

k k“

where the yk are mass fractions.
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LKMD:This routine provides theeffective ionic radii that were declined tothe Inteqreter. Of
course, this is not relevant to all of the species, and the default value is set to zero even for ions.

LKINIT This is the Liquid Chemkin initialization routine. It reads the linking file created by the
Interpreter and sets up the integer, real, and character work arrays. As with Chernkin and Surface
Chemkin, the initialization routine must be called before the other ro@ines in the library can be
used.



4. ESTIMATION OF STEFAN-MAXWELL DIFFUSION COEFFICIENTS

FOR LIQUID PHASE PROCESSES

4.1 Introduction

Diffusion may be defined (Newman, 1991, p. 269) as the motion of species relative to

the bulk fluid motion as a result of nonuniform thermodynamic potentials. In a binary

system (species 1 and 2) diffusion due to concentration gradients (sometimes called or-

dinary diffusion to distinguish it from thermal diffusion, pressure diffusion, and forced

diffusion caused by e.g. gradients in the electrical potential) is described by Fick’s first

law which serves to define the binary diffusion coefficient, (D,,, and which relates the

diffusion flux of a species to its concentration gradient (Bird et al., 1960, p. 502, Table

16.2-1, Eqn. E):

J,=c, (v,–v)= –LkqD,2vx, . (4.1)
P

In Equation (4.1) J1 is the molar diffusion flux of species 1 relative to the mass aver-

age velocity of the mixture, v; c1 is the molar concentration of species 1; v, is the av-

erage velocity of species 1; c is the molar concentration of the mixture; p is the mass

density of the mixture; M, is the molar mass of species 2; xl is the mole fraction of

species 1. Note that the diffusion flux is specified relative to a frame of reference (in

this case the mass average velocity of the mixture) whereas the binary diffusion coeffi-

cient is independent of the reference frame. There are severzil versions of Fick’s first

law (cf. Table 16.2-1, Bird et al., 1960, p. 502) depending on the chosen reference

frame and the chosen flux quantity (mass, moles, etc.); however all the expressions

have the sarrie diffusion coefficient D,, and can be derived from the expression for the

mass diffusion flux relative to the mass average velocity, jl:

j, = p, (YI–v) =–p@12v~ (4.2)

where Y] is the mass fraction of species 1. According to Mills (1995, Ch. 9, p. 818),

Equation (4.2) is shown from kinetic theory of gases to be an appropriate form of

Fick’s first law for binary gas mixtures and dilute liquid and solid solutions.
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In general, however, when species 1 is not a dilute species, the mixture may be

nonideal, and the driving force for diffusion is the gradient of chemical (or electro-

chemical) potential VP]. For constant temperature and pressure and no gradient of the

electrical potential, the chemical potential gradient of species 1 is given by (Guggen-
.

heim, 1967):

.

RTVpl=—
[1
l+?!EL v~,

z dinxl

where yl is the activity coefficient of species 1. It can be

(4.3)

shown from the Stefan-

Maxwell Equations (4.8) (shown below) for a binary system that

[1
J, =-$ M*D,, l+= Vx,.

1
(4.4)

In comparing Equations (4.1) and (4.4) the relation between the binary diffusion coef-

ficient (D,,and the Stefan-Maxwell diffision coefficient Dlz is:

()9),2 =D,2 1+*
din xl

(4.5)

as pointed out by Lightfoot et al. (1962) and also noted by Danckwerts (1971), New-

man (199 1), pp. 63-64 and p. 268, Taylor and Krishna (1993), pp. 23-26, and Wessel-

ingh and Bollen (1997). The binary diffusion coefficient @12in a binary liquid solution

can be strongly concentration dependent and usually increases with temperature; typi-

cal binary diffusion coefficient variations with composition are 30~0 to more than

1009Io(Bird et al., 1960, p. 504). In most cases the experimental diffusion coefficient

reported in the literature is the binary diffusion coefficient CDlz;determining the Stefan-

Maxwell diffusion coefficient 1112requires information on the activity coefficient Y1.

In some binary systems the Stefan-Maxwell

pendent (Wesselingh and Krishna, 1991, Ch.

but this is not always the case (Rutten, 1992,

coefficient D12 is less concentration de-

9; Bird et al., 1960, Ch. 18, Fig. 18.4-2)

Appendix B). It is noted that Fick’s first

law may also be valid for mixtures or solutions of more than two species if species 1 is

a minor constituent (e.g., a trace species in a mixture or a dilute solute species in a liq-

uid solution in which the interactions are primarily between the solute species and the

solution such that the flux of species 1 depends only on its own concentration gradient

and not on the gradients of any other species in the mixture or solution).
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In general, in a multicomponent system the diffusion flux of any one species due to

concentration gradients depends in a complex way on concentration and concentration

gradients of the other species (Bird et al., 1960, p. 567):

[1n %–j
xj~ —

,=, (A,
k#j .P.xszj.k

Vxk (4.6)

where Gj is the partial molal Gibbs free energy of species j; the Dij are the multicom-

ponent diffusion coefficients; ~}c) is the (concentration gradient) molar diffusion flux

of species i relative to the mass average velocity. Note that D ii = O and D ~ # Dji in

general (however, in a binary system D12 = D21). Noting that

[:),Px.jk=RT[d12x’))Tpx=.k
(4.7)

Equation (4.6) reduces to Equation (4.4) for a binary system where Dlz = Dlz (the

multicomponent diffusion coefficient D ,2 and the Stefan-Maxwell diffusion coefficient

D12 are equal in the binary system).

In a multicomponent system, there are several disadvantages to the diffusion flux for-

mulation of Equation (4.6) that arise from the nature of the multicomponent diffusion

coefficients Dij. First, theoretical expressions for Dij are available only for gas mixtures

(the complex calculations necessary to evaluate the kinetic theory of gas expressions

make the evaluation of the fluxes in Equation (4.6) costly compared with the Stefan-

Maxwell approach discussed below;. see Dixon-Lewis, 1968); second, there is no sim-

ple physical interpretation for the D,j values; third, the multicomponent diffusion coef-

ficients are dependent on concentration and the choice of velocity to which diffusion is

relative (mass averaged velocity, molar averaged velocity, volume averaged velocity,

etc); fourth, since they are not symmetric (D ~ # Dji ), there are n(n- 1) independent co-

efficients in an n component system (02); and fifth, since D ii = O, the diffusion flux

of species i given by Equation (4.6) does not depend explicitly on the concentration (or

mole fraction) gradient of species i (this can severely degrade the convergence charac-
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teristics of some common iterative numerical schemes that solve the species conserva-

tion equations; see Coltrin et al., 1986).

Alternatively, diffusion in multicomponent liquid mixtures can be described by the

Stefan-Maxwell equations (these equations are often referred to as the Maxwell-Stefan

equations; see e.g., Wesselingh and Krishna, 1991) relating the diffusion fluxes (mass

or molar) of the species to the driving forces for diffusion (Lightfoot et al., 1962),

which in an isothermal, isobaric system of charged and/or uncharged species, consist of

gradients of electrochemical potentials :

&vPi = ~j~i ‘iJ~~xjJi (4.8)
11

In Equation (4.8), V~i is the gradient of electrochemical potential of species i; and Dti

is the Stefan-Maxwell diffusion coefficient of the species (i, j) pair (see Chen et al.,

1998). Note that although the molar diffusion fluxes with respect to the mass average

velocity have been used, the fluxes in Equation (4.8) can be relative to any frame of

reference; this is because differences in fluxes (actually velocities) appear in this

equation.

Some advantages of using the Stefan-Maxwell formulation (Lightfoot et al., 1962;

Riede and Schliinder, 1991, p. 611; Krishna and Wesselingh, 1997, p. 869; Pinto and

Graham, 1986; Graham and Dranoff, 1982) compared with the diffusion flux formula-

tion given in Equation (4.6) include (a) a more physical interpretation of the coeffi-

cients D~ (inverses of binary interaction drag coefficients), (b) independence of the

velocity reference frame, (c) less concentration-dependent coefficients in some cases,

(d) fewer coefficient evaluations since Dti=Dji, and (e) in the case of electrolyte mixt-

ures, coefficients that are less dependent on other ions present in the system. In this

memo we describe our approach for determining the Stefan-Maxwell diffusion coeffi-

cients for three types of liquid mixtures: (1) multicomponent liquid mixtures of neutral

species, (2) multicomponent liquid mixtures of charged species in a solvent including

ion-ion and ion-solvent interactions, and (3)

salts.

multicomponent liquid mixtures of molten
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4.2 Mixtures of Neutral Species

4.2.1 Binary Mixtures

Theories of diffusion in liquids are not as well developed as is the kinetic theory of

gases. An early theory of diffusion in liquids is the hydrodynamical theory based on

the Nemst-Einstein equation which was developed to describe Brownian motion (parti-

cle motion in liquids; see Mills, 1995, ch. 9, p. 895):

(4.9)

where f12 (defined as the force required to give species 1 a speed of unity, i.e., force per

unit speed) is the friction coefficient of a solute (designated species 1) in a solvent

(designated species 2), k is the Boltzmann constant, and T is the temperature. As-

suming creeping (Stokes) flow, the Stokes-Einstein equation for diffision of species 1

in species 2 is obtained:

D,2 = ‘T
4w2&

(4.10)

where ~ is the viscosity of the pure liquid solvent and R] is the radius of the diffusing

solute particle or molecule. Equation (4.10) was developed for large spherical particles

in a liquid solution; it must be modified to give reasonable agreement with measured

values of binary diffusion coefficients in liquids. A recent modification due to Rutten

(1992) is more accurate for similar sized molecules:

(4.11)

where Rz is the radius of the solvent species; similarly when species 1 is the solvent

and species 2 is the solute then the analogous formula (Wesselingh and Bollen, 1997)

is:

Djl+l =
kT

(4.12)
4m71R: f R, “

An empirical modification of the Stokes-Einstein Equation (4.10) is the Wilke-Chang
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formula for dilute solute species 1 in solvent species 2 (Reid et al., 1987, p. 598):

*,+, = 7.4xlo4(@42)”2T
D]i ~z~0.6 (4.13)

where $ is a dimensionless association factor for the solvent species, Mz is the solvent

molar mass in g/mole, T is the temperature in K, qj is the solvent viscosity in centi-
.

poises, and ~ is the molar volume of the solute species in cm3/mole; the units of

D ~+1 are cm2/s. The Wilke-Chang formula was tested on more than 250 solute-
.

solvent systems (Reid et al., 1987), and the average error was about 10%. The above

Equations (4. 11)-(4. 13) apply when the solute species is infinitely dilute in the solvent.

A method of accounting for the effects of variable composition by linearly weighting

the infinitely dilute diffusion coefficients using the mole fractions as the weighting

functions is due to Darken (Reid et al., 1987,p.611):

D,z “+1 + x2D~~+} .= XID21 (4.14)

Another method for determining the effects of composition on the diffusion coefficient

is the logarithmic expression due to Vignes ( 1966):

lnlllz = xl in D~I_’l+ Xzin D~~_’*.

Note that interchanging the indices in Equations (4.14) or (4.15) produces

suit, i.e., D,z = Dzl.

(4.15)

the same re-

According to Wesselingh and Bollen (1997), Equation (4.14) applies when species 1

and 2 are similar chemically and of similar size; then the diffusion coefficients at the

two limits don’t differ significantly, and as noted by Rutten (1992) Equations (4.14)

and (4. 15) yield similar results. When the species are of different size, the diffusion

coefficients at the two limits do differ considerably, and Equation (4.15) is recom-

mended. Reid et al. (1987, p. 614) recommend the use of Equation (4.15) for estimat-

ing the effect of concentration on the diffusion coefficient.
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4.2.2 Multicomponent Mixtures

1

As pointed out in Kooijman and Taylor (1991) and Wesselingh and Bollen (1997), the

Stefan-Maxwell equations are only useful for predicting diffusive transport in multi-

component liquid mixtures if the Stefan-Maxwell diffusivities D~ in multicomponent

liquid mixtures can be determined. Wesselingh and Krishna ( 1991) and Kooijman and

Taylor (199 1) have generalized the Vignes formula, Equation (4.15), to a multicompo-

nent systcm consisting of n species:

Dti = fi(q”’p (4.16)
k=l

where Dj’+] is calculated from:

(4.17)

An alternative to Equation (4.16) for determining the Stefan-Maxwell diffusion coeffi-

cients in a multicomponent liquid mixture has recently been described (Wesselingh and

Bollen, 1997) using free volume theory. A primary notion in the theory is that the

mixture contains openings with volumes approximately equal to the molecular volume.

A self diffusion coefficient Dt~,i is derived assuming hard spheres of equal size and

density; the model uses a statistical description of free volume for spherical particles

to yield:

[)f.Di~,i = Dfi,iexp - 0.7A (4.18)
‘F,i

where the exponential term is the fraction of space consisting of holes larger than the

molecules of species i. Equation (4. 18) is for the self diffusivity in a pure substance.

In a mixture, the effective self diffusion coefficient is then given by

Di~,~ff

(1

q.
= D~’#iexp -0.7 —

VF,,

where

(4.19)

(4.20)
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and

p=~xipi. (4.21)
,=1

The tilde in Equations (4.18)-(4.21) denotes a pure substance property; ~ is the molar

volume of pure substance i ; V~i is the free molar volume of species i in the mixture;

d, is the molecular diameter of species i. The free volume of the mixture is assumed to

be the molar average of the free volumes of the pure substances, and the free volume of

a single component is assumed to be proportional to the surface fraction a, of that

component:

zVF=* xivF j
j=l

vF,i=~vF
xi

where

(-)2/3
xi viOi=

~xj(vj y“ -
j=]

(4.22)

(4.23)

(4.24)

The Stefan-Maxwell diffusion coefficients are given by:

(4.25)
Di~>~KDj~,,ff

Dg =

[$xk’Dk’effr

In deriving Equation (4.25), the following assumptions are made: (a) the tracer i# is as-

sumed to have identical physical properties to species i; (b) the Stefan-Maxwell diffu-

sion coefficients are assumed to be the geometrical average of the self diffusion coeffi-

cients:

(4.26)

and (c) the self diffusion coefficients are related to the effective diffusion coefficients

by
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‘i’eff=[~xk’Di#kr(4.27)

Note that the self diffusion coefficients in Equation (4.26) are not given by Equation

(4.18), which is for a pure substance. The derivation of Equation (4.25) is given in

Wesselingh and Bollen (1997) in terms of the Stefan-Maxwell friction coefficients (J

which are related to the Stefan-Maxwell diffusion coefficients by:

[,=2 (4.28)
Y

The theoly described by Wesselingh and Bollen (1997) is applicable to mixtures of ap-

proximately spherical molecules with similar size and chemical structure that interact

as hard spheres. The sequence of steps to evaluate Dv in Equation (4.25) is as follows:

(1) Evaluate V,,i from Equation (4.23), using Equations (4.22) and (4.24);

(2) Substitute V,,ifrom step 1 into Equation (4.19) to obtain D,~,~ff,using Equations

(4.20) and (4.2 1) to evaluate DOi#,t;

(3) Perform steps 1 and 2 for each species i and evaluate Dtifrom Equation (4.25).

The required parameters are the molecular diameters di; molar masses Mi; molar vol-

umes ~ ; and free molar volumes V~i of each species i. The parameters can be deter-

mined or estimated for a variety of mixtures of neutral species as noted by Wesselingh

and Bollen (1997, pp. 596-600). Examples of the determination of D&using Equations

(4.19)-(4.25) are given in the Appendix.

4.3 Mixtures of Charged Species ,

Diffusion of electrolytes has been modeled using the theory of Debye and Huckel. The

theory has been applied to determine activity coefficients in dilute electrolyte solutions

and the results are valid only in the limit of infinite dilution due to the neglect of short-

range interaction forces between ions in concentrated electrolyte solutions (Newman,

1991; Phto and Graham, 1986). In comparing the commonly used form of the elec-

trolyte diffusion equations derived from the theory of irreversible thermodynamics

with the Stefan-Maxwell Equations (4.8), Graham and Dranoff (1982) found that the

Stefan-Maxwell diffusion coefficients were (a) less concentration dependent than the
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phenomenological coefficients of irreversible thermodynamics and (b) less dependent

on the presence of other ions in the system. Pinto and Graham (1986) relate the Stefan-

Maxwell coefficients to the viscosity of the solution and limiting ionic nobilities; they

state that “the coefficients of the Stefan-Maxwell equations, unlike the coefficients of

other flux equations, can be individually identified with physical phenomena occurring

during the diffusion process.”

The Stefan-Maxwell diffusion coefficients (or binary interaction parameters) defined

by Equation (4.8) are not easily measured (Miller, 1967, p. 632). In solutions of elec-

trolytes the quantities that are usually measured are (a) the transference numbers, ti,

which are the ratios of current carried by species i to the total current (when concentra-

tion gradients are negligible), (b) the electrical conductivity, K, of the solution, and (c)

the diffusion coefficient of the salt, D, based on a concentration gradient.

4.3.1 Binary Electrolyte in a Solvent

In a binary electrolytic solution composed

man (Chapter 12, p. 268, and Chapter 14,

of a cation, an anion, and a solvent, New-

p. 298) has related the quantities that are

usually measured (described above) to the Stefan-Maxwell coefficients The results

are:

‘0-=(z+::):
‘“+=*)

1 z+z_c,F’ (Z+ - Z&t:?:

‘=– RTK -D+_ Z+V+C,D

[1dlny+.
D=D~ l+—

co dlnm

1

[

– RT 1 + cot:—= ——
K c~z, z_F2 D+_ c+DO_

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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where the symbols +, -, and o refer to the cation, anion, and solvent, respectively; F is

the Faraday constant (96487 C/mole); CT is the total molar concentration; c, is the

concentration of the electrolyte (salt); z is the signed charge number of the ion; y+. is

the mean mola.1 ionic activity coefficient of the electrolyte; v is the stoichiometric co-

efficient; D is the diffusion coefficient of the electrolyte (salt) based on a thermody-

namic driving force (Newman, 1991, p. 268); D is the diffusion coefficient of the elec-

trolyte (salt) based on a concentration gradient (Newman, 1991, p. 268) and m is the

molality (ofthe solution (moles of electrolyte per kg of solvent). Note that the transfer-

ence numbers given in these equations are for the ions with respect to the solvent ve-

locity. Newman (1991, Ch. 14, Fig. 14.1) shows that the Stefan-Maxwell diffusion co-

efficients DO+ and DO_ (the neutral/ion interactions)

concentration (on a log scale) for an aqueous solution

D+ increases with the square root of concentration.

are reasonably independent of

of KCI; the ion-ion coefficient

For a dilute solution of a single salt it can be shown (Newman,

248) that the salt diffusion coefficient is given by:

z u D_ – Z_U_D+D=++

Z+u+– z_u_

991, Ch. 11, pp. 247-

(4.34)

where Ui is the ionic mobility which is related to the ionic diffusion coefficient D: by

the Nem:$t-Einstein equation:

Di = RTui (4.35)

where R k the universal gas constant. Ionic equivalent conductance, ~i, are typically

reported in the literature (Newman, 1991, pp. 254-255; Reid et al., 1987, p. 620);

these are related to the ionic mobility by:

2, = IZ;IF%, . (4.36)

The transference numbers are related to the ionic equivalent conductance by:

,; =1-~~ = (~+ta.) (4.37)
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Substituting (4.36) and (4.35) into (4.34) gives:

D=–
RT(Z+ -z_ )a+A_

(4.38)
F2z+z_(A+ +a_) “

This expression is equivalent (using the electroneutrality condition V+Z+= –v_z_ ) to

the infinite dilution diffusion coefficient given in Robinson and Stokes (1959) on page

288 (called the Nernst-Hartley relation):

Do = m’.+ d z%
Fv+z+m (4.39)

where v+ and v_ are the stoichiometric coefficients of the cation and anion, respec-

tively; ~+ and %_ are limiting (zero concentration) ionic conductance with units of

(A/cm2)/(V/cm)(mole/cm3); and R is the gas constant in units of J/(mole-K) to give the

diffusion coefficient in units of cm2/s.

For the effects of concentration, Reid et al. (1987, pp. 621-622) recommend an empiri-

cal correlation that has been applied to systems with concentrations as high as 2N

(where

N is g-equivalent of solute per liter of solution):

( ‘~)D= DO:(cO~o)-* l+nz— (4.40)

where co is the molar density of the solvent, ~0 is the partial molar volume of the sol-

vent, qO and q are the viscosity of the solvent and solution, respectively, in centi-

poises, m is the molality of the solute in moledlcg of solvent, and y+ is the mean mo-

lal ionic activity coefficient of the solute.

4.3.2 Multicomponent Electrolyte Solution (with a solvent)

By relating the Stefan-Maxwell equations describing a single electrolyte in a solvent

under conditions of zero current with the Nemst-Hartley relation, modified for electro-

phoretic and concentration effects, Pinto and Graham (1986) arrived at the following

fi.mc
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tional form of the Stefan-Maxwell diffusion coefficients:

/0

where ~1(,coi, tv~) is a mobility

Dj = H-y, (co:>O);).f2(+3 (n) (4.41)

function, fz (d) is a concentration dependent relaxation

effect, and j~( q) is a correction factor for the viscosity change of the solution with

concentration. Applied to the case of tracer diffusion in a solution of a single electro-

lyte they determined the Stefan-Maxwell diffision coefficients when ions i and j are

similarly charged (both positive or both negative):

and when ions i and k are oppositely charged:

(4.42)

(4.43)

ci)~is the infinite dilution mobility of species i ; q“ is the viscosity of the solvent; q

is the solution viscosity; x, is the total ionic mole fraction; and Ati and Ai~are con-

stants which must be determined. Predictions of tracer diffusivities in single electro-

lyte solutions at concentrations up to 4M were made using Equations (4.42) and (4.43),

and good agreement with experimental values was obtained.

4.3.3 Soi!ventless Electrolyte Solutions

The preceding discussion of charged species diffusion coefficients in electrolyte solu-

tions was for electrolytes in a solvent, usually water. In some important applications

(e.g., thermal batteries) the mixture consists of electrolytes without neutral species, and

the electrolytes typically form a concentrated mixture.

4.3.4 Molten Salt Mixtures consisting of Two Salt Species and a Common Ion

Pollard and Newman (1979) studied the transport equations including the Stefan-

Maxwell formulation for the case of two salt species and a common ion; they formu-

lated the equations in several reference frames. The formulation follows the approach
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taken by Newman (1991, Ch. 12) for a single electrolyte in a solvent (discussed above).

First the Stefan-Maxwell Equation (4.8) is written for two ionic species ( 1 and 2; e.g.,

Li+ and K+formed when a mixture of LiCl and KC1 dissociates):

[

RT CICZ
C,vp, = —

1
— v2-v, )+~(v3-v, )
LJCT 12 13

[

RT C,C1
c2vp2 = —

-1
-(v, -v, )+~(vr v,) ~

CT D21 23

75

(4.44)

(4.45)

Then, using the expression for the current density:

i = F~ziNi (4.46)
jql

Equations (4.44) and (4.45) are combined to yield equations for the molar fluxes:

N, =CIV1 =–
v;v; D t~i

cAvpA + —+ C1V3
RT Z1F

N2 = C2V2 = –
v;v; D t~i

cBvpB + —+ C2V3
RT ZZF

(4.47)

(4.48)

where A and B designate the two neutral salt species (e.g., LiCl and KC1) which disso-

ciate into

MA =v:M~ +v:hf~ (4.49)

(the M’s and v’s being the chemical symbols and stoichiometric coefficients of the

species, respectively); Cr is the totfl concentration; CA= c1 / VIA; c~ = C2/ V:; the ef-

fective diffusion coefficient D based on a thermodynamic driving force (gradient of

chemical potential) is given by:

D= ()Z;CTI V,AV:
9

& ; -Z:c, + Z;C3

’23 ’13 ’12

(4.51)



and the transference numbers t; of the ions relative to the velocity of the common ion

(species 3; e.g., Cl-) are:

‘;=’”’;=[=742-51““
(4.52)

Note that tj = O in the common ion velocity reference frame. The effective electrical

conductivity of the solution is given by:

.=(.)JH5i
RT

[

c1 c, C3
+

D,2D,3 + Dj23 D,3D231“

(4.53)

The Stefhn-Maxwell diffusion coefficients D],, DIJ, and D,~ are determined (Larson,

1998) frc)m Equations (4.51)-(4.53) from the measured values of D , tj,and K Pollard

and Newman (1979) give the fluxes, transference numbers, and diffusion coefficients

in several other reference frames including that of the mass average velocity. Although

the Stefan-Maxwell diffusion coefficients Dti are independent of the reference frame,

the particular expression to use (i.e., Equations (4.5 1)-(4.53) or similar expressions

given in Pollard and Newman (1979)) in determining the Dti’s depends on the reference

frame in which the data (e.g., transference numbers, salt diffusion coefficients, and ef-

fective electrical conductivity of the solution) is obtained. We note that the measured

diffusion coefficient may be based on concentration gradients (i.e., D) rather than D,

which is based on gradients in electrochemical potential; the two are related by:

4.3.5 Multicomponent Molten Salt Mixtures

(4.54)

In a multicomponent mixture of n species (e-g., (n-l) charged species and one solvent

species), there are n(n- 1)/2 Stefan-Maxwell diffusion coefficients Dti corresponding to
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one solution electrical conductivity K, (n-2) independent transference numbers t;, and

(rz-l)(n-2)\2 salt diffusion coefficients D,. A formal procedure for inverting the Stefan-

Maxwell equations and relating the Stefan-Maxwell diffusion coefficients Dj to K, t:,

and Di k described in Newman (1991, Ch. 12, pp. 275-278). The procedure can be im-

plemented in a computer program to determine the Stefan-Maxwell diffusion coeffi-

cients Dti, given values of K, tf, and Di . If this data is not available it may be possi-

ble to calculate the Stefan-Maxwell coefficients directly from molecular dynamics

simulations.

4.4 Appendix. Example of calculation of Stefan-Maxwell diffusion coefficients, Dj,

using the free volume theory as presented in Wesselingh and Bollen (1997).

Consider the ternary system toluene (species 1), chlorobenzene (species 2), and bro-

mobenzene (species 3). The properties are (see Wesselingh and Bollen, 1997, p. 599):

q VF. d, M,

(cm’/mole) (cm’/mole) (cm* 108) (g/mole)

toluene

(species 1) 81.32 24.79 5.131 92

chlorobenzene

(species 2) 76.17 21.41 5.02 113

bromobenzene

(species 3) 83.51 21.86 5.177 157

Assume xl = Xz =0.5; X3= O. From equation’ (4.22)

V~ = 0.5(24.79)+0.5(21.41)= 23.1 cm3 /mole.

From equation (4.24)

o] = 0.5(81 .32)2’3/~0.5(8 1.32)2’3 +0.5(76.17)2’3I=0.511; similarly 02 = 0.489.
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From equation (4.23)

v’,,-0”5’1- — (23.1) =23.6 cm’ /mole; similarly V,,= 22.6 cm’/ mole, and
0.5

V~,~= 24.02 cm’/ mole.

From equation (4.21)

‘=0’[a+05[+H=131g’cm
From equation (4.20)

FDo _ ~ 3kT
— = 2.268 x10-4cm2 /s; similarly D~~,2= 2.293x10 -4cm2 /s, and1#,1 – 6 ~d,

Do~#,~= 2.258x10 _’’cm2/s.

From equation (4. 19)

D,
[ ‘1

l#,eff= %# 1 exP – 0“’7+ =2.033 x10-5 cm2 /s; similarly
F,l

D~#,~ff= 2.166 x10-5cm2 /s, and Dw,,fi = 1.981x10 -5cm2/s.

The Stefan-Maxwell diffusion coefficients are now evaluated from equation (4.25)

l#,eff D
D12 = –

2#,eff

–1
= 2.1x10-5cm2 /s; similarly Dl~ = 1.92x10 -5cm2 /s, and

[~ 1

X?.—

l#,eff ‘~

Dz~= 2.05x10 -5cmz /s.

These values can be compared with those given in Wesselingh and Bollen (1997) in

Figure 12, p. 599.

For the composition xl =X3 = O.15; X2=0.7, the Wesselingh and Bollen procedure

yields ~ z = 1.75x10 -5cmz /s, DIJ =1.598x10-5cm2 /s, and D23=1.706xlo-5cmz/s” .

These values can be compared with Stefan-Maxwell coefficients

Dlz = 1.91x10 -5cmz/s, DIJ =1.77x10-5cm2 /s, and Dz~=1.81x10-5cm2 /s obtained by

Rutten ( 1992), p. 70, Table 4.3, from measured Fick diffusion coefficients.
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4.5 Nomenclature

.

D

D

912

Dl,

DJ

Di

D,,,

F

q.

Ji

M,

N,

R

~

T

~

y

Ci

c

diffusion coefficient of salt based on a concentration gradient, see Equation

(4.32), cm’/s.

diffusion coefficient of electrolyte based on a thermodynamic driving force,

see Equations (4.29)-(4.33), (4.47)-(4.48), (4.5 1), cm2/s.

binary diffusion coefficient of species 1-2 pair, defined by Fick’s first law,

Equation (4. 1) or (4.2), cm2/s.

diffusion coefficient of infinitely dilute solute (species 1) in solvent (species

2); see Stokes-Einstein and related equations, Equations (4.9)-(4. 13), cm2/s.

Stefan-Maxwell diffision (interaction) coefficient of species i-j pair, see

Equation (4.8), cm2/s.

multicomponent diffusion coefficient of species i-j pair, see Equation (4.6),

cm2/s.

self diffusion coefficient of species i, see Equation (4.18), cmz/s.

Faraday’s constant, 96487 C/mole.

partial molal Gibbs free energy of species i, ergs/mole.

molar diffusion flux of species i relative to the mass average velocity,

moles i/cm2-s.

molar mass of speeies i, g /mole.

molar flux of species i, g/cm2-s.

gas constant, 8.3 14x 107 ergs/mole-K (also 8.314 J/mole-K, used in conjunc-

tion with variables given in terms of amps (A) and volts (V), as in Equations

(4.38) and (4.39)).

radius of particle (solute) or solvent species in Equations (4.10)-(4.12), cm.

temperature, K.

molar volume of species i, cm3 i/mole i.

mass fraction of species i.

molar concentration of species i, moles i/cm3.

molar concentration, moles/cm3.
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d,

&

i

ji

k

m

P

tic

Ui

vi

v

xi

Zi

%

Y+

c,

~i

K

&

/4

y

Pi

Ti

P

0;

molecular diameter of species i, cm.

force required to give species 1 a unit velocity in liquid 2, dynes-s/cm.

current density, A/cmz.

mass diffusion flux of species i relative to the mass average velocity,

g ilcm’-s.

Boltzmann’s constant, 1.38x10-” ergs/molecule-K.

molality of solution, moles of electrolyte per kg of solvent.

pressure, dynes/cm’.

transference number of ionic species i with respect to the common ion ve-

locity, see e.g., Equation (4.52).

mobility of ionic species i, cm2-mole/erg-s

average velocity of species i, cm/s.

mass average velocity, crrds.

mole fraction of species i.

signed charge number (valence) of ionic species i.

activity coefficient of species i.

mean molal ionic activity coefficient of electrolyte (salt).

Stefan-Maxwell friction coefficients, see Equation (4.28), g/mole-s.

viscosity of species i, g/cm-s.

electrical conductivity of ionic solution, see e.g., Equations (4.33) and

(4.53), C’/erg-cm-s.

ionic equivalent conductance of species i, see Equation (4.36),

(A/cm2)/(V/cm)(C/cm3) or cm~/ohm-mole.

electrochemical (or chemical) potential of species i, ergs/mole.

stoichiometric coefficient of species i.

mass density of species i, g i/cm3.

mass density of pure species i, g i/cm3 i.

mass density, g/cm3.

surface fraction of species i, see Equation (4.24).

80



#i mobility of ionic species i as used in Equations (4.41)-(4.43), cm2-

molecule/erg-s

Subscripts

0
refers to the solvent species.

s refers to the electrolyte species (or salt).

T refers to total quantity, e.g., total concentration in Equations (4.44) and

(4.45).

F refers to free volume, see Equation (4.18).

eff refers to effective dif@sion coefficient, see Equation (4.27).

+ refers to the cation.

refers to the anion.

Superscripts

0 refers to the solvent species or an infinitely dilute condition as used in Equa-

tions (4.39) and (4.40).

c refers to the common ion.

(c) refers to a flux due to concentration gradients.

Overbars

average quantity or property of mixture or solution or partial molar (or mo-

lal) quantity.

property of pure substance.
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5. MICROSCALE MODELING OF DIFFUSION-CONTROLLED
TRANSPORT IN A THERMAL-BATTERY USING THE LATTICE
BOLTZJMANNMETHOD

5.1 Introduction

The reliability and performance of therrnaI batteries depends on the coupled chemistry and transport occurring

within the electrodes. These electrodes are porous and have a complex, evolving morpholo~. Consequently,

therrmi batteries may be investigated at multiple length scales. This is illustrated in Fig. 5.1. In

macrohomogeneous models, developed by Newman and Tobias (1962) and developed extensively in this LDRD
work. the details of the electrode pores are not considered. Instead effort is focussed on accurate implementations of

the chemistry ancl concentrated species transport. As shown in the center of the figure. it maybe possible to develop

mesoscale models in which the electrodes are considered to be inhomogeneous, but the pore scale transport is not

addressed. The approach taken in this section is to simulate the transport of ionic species in complex morphologies

on the microscak:. In order to probe this geometrically complex problem, the chemistry and transport are simplified.
The transport is assumed to be diffusion limited. and Fick’s law of diffusion is used for the species transport. llese

simplifications allow the problem to simulated at the microscale. giving insight imo two phenomena that occur
within the pores of the electrodes. It is lmown that concentration gradients occur within the pores. especially for

early times. In this pulsed or burst power mode, these .gadients may effect the performance of the battery. Another

concern involves fouling. Under certain conditions. potassium chloride may precipitate within the pores of the

cathode. If this ]precipitate forms a coa[ing over the electrode surface, the power producing reaction is effectively

blcded. shortening the lifetime of the battery. Pore scale modeIin: is needed to investigate these heterogeneous.
microscale phenc,mena which are extremely difficult to probe experimental] y.
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eleet~olyteMatrix
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7
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electrode electrode electrode electrode
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Figure 5.1.Finding the Correct Scale for Thermal Battery Simulations

The lattice Bohzmann (LB) method (McNamara and Zmetti, 19SS; Hi:uera and Jim&ez. 1989; Chen and Doolen,

1997) is a relatively new numerical technique for solving transport problems. The method is based on concepts
from kinetic theory, but unlike particle-based methods such as Molecular Dynamics (MD) or Direct Simulation
Nlonte CX1O (DSMC), LB does not simulate individual particle motion. Although detailed particle simulations
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recover Navier-Stokes behavior in the continuum limit, they are too expensive to use for simulating continuum-scale
hydrodynamics. The LB method also recovers Navier-Stokesbehavior (Chen et al., 1992) but incorporates a

simpler, probabilistic model of pmicle motion that is far less expensive to compute. Rather than resolving the

detailed molecular scale transport, the method provides a kinetic theory-motivated solution technique for

macroscopic transpofl equations.

LB models have been developed for a number of complex transpofl problems including mixing of miscible fluids

(Flekkoy, 1993), multiphase flows (Gunstensen et al., 199 1; Grunau et al.. 1993) and chemically reacting flows

(Dawson et al., 1993). Noble et al. (1997) developed a LB model for simulating inert solute transport in randomly

packed beds using a LB model for the advection-diffusion equation. By analogy, these results directly apply to heat

transfer as well. Using the Chapman-Enskog expansion technique from kinetic theory, this work showed that the

scalar transport equation can be accurately simulated using a four-speed LB model as compared to the nine-speed
model used previously (Shari, 1997). More importantly, an expression for the LB pmicle distribution is derived in
terms of the solute concentration and its gradients. This ailows the prescription of accurate boundary and initial

conditions for the particle distribution function in terms of known macroscopic quantities. such as the concentration

and its gradients. This model is applied here to ion species transport in a microscopic model of a thermal battery.

=j~ La~ce Bol~n ~f.o~

Using the LB method. the Navier-Stokes and advec[ion-diffusion equations are not solved direcdy. Ins~e~d. a

discretization of the underlying Bokzmann equation is formulated such that the hydrodynamics and scalar fields (i.e.
temperature or concentration) satisfy the correct transport equations to wilhin the discretization error of the method.

Although the fluid was assumed to remain stationary for these simulations, the hydrodynamic and scalar transport
LB models are both described here for completeness. In LB. the problem is solved in terms of particle distribution
functions. ~i and gj. The quantity Ji relates to the probability of finding a particle in the vicinity of x at time r
that is moving with velocity e, . For mass transfer, gi relates to the probability of finding a solute particle in the

vicinity of x at time r that is moving with velocity ej. Unlike the continuous particle distribution function in
kinetic theory, f, and gi are defined only for a fixed set of velocities denoted by the subscripl i. This discretization

of the microscopic velocity space is similar to the discrete ordinate method used for radiative transport. The LB
model in this work uses an underlying orthogonal, square lattice superimposed on the non-uniform computational
-@d. The hydrodynamics are soived on a lattice in which communication occurs over both the Cartesian directions

and the diagonal directions. For two-dimensional problems the velocity space is, therefore. discretized into the four

Cartesian directions,

Ar

[

m(i–I),sinz(i– 1)
ej =— COS— —

At ~
)

i = 1,2,3,4
2

and the four diagonal directions,

(e,. fi$ cos_z(2i -9) ,sin 7r(2i-9)

4 )
— i = 5.6,7,8

4

(5.1)

where AI is the time step, and At is the ~g-idspacing of the underlying LB -@d. AISO included is the probability

that particles are at rest (e(}= 0). This is caIled a nine-speed model since the microscopic velocity field is discretized

into nine different velocity states. For the species transfer, a four-speed model is sufficient for reco~enn: the linear

advection-diffusion equation with gi being defined for the four Cartesian directions given in Eq. (5. 1) (Noble.

Georgiadis and Buckius, 1997). The primary variables are calculated from moments of the particIe distribution. in

direct amdogy with the integral moments from kinetic theory. For the incompressible LB model (Zou et al., 1995)

the hydrodynamics quantities, velocity and pressure, are found according to
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P=~fi , pou=~k
Al ;=0

where pO is a reference pressure. The concentration is found from the first moment of g, given by

(5.3)

a
o=~g; (5.4)

;=1

The particle distributions fj and g, are governed by the discrete velocity Boltzmann equation expressed as

af.
J+&?, Vf, =Q,V;(X.l)I+F,at (5.51

and

(5.6)

\vhere Q, is a collision operator that accounts for the increase or decrease of particles moving with velocity e, due

to interparticle collisions. The quantity Fi is a forcing term that can be used to implement a body force. such as

-gravity.

Using the Iinemized. single time rela..ation model (Bhatnagar et al.. 1954) from kinetic theory applied to Iauice

Bohzmann (Qian. 1990; Chen et al.. 1991), the collision term is written as

‘ihl=-L(fi -fJ”’)r,

where fi‘“’is m equilibrium distribution, and z~ is the relaxation time, which characterizes

toward equilibrium. The collision term in the scalar transport equation is handled identically.

(5.7)

the rate of decay
Analogous to the

Nfaxwellian disu-ibution, the equilibrium distribution is the distribution to which the system will evolve in the

absence of forcing ~madients.

Using a first-order Lagrangian discretization of the discrete velocity Boltzmann equation. the LB equations for
hydrodynamics and scalar transport are expressed as .

~(x+e,Af,f +Al)=fi(x.f)-~~, (x.f)-fi(”)(x.l)l~

gi(x+f+,f+Af)=gi(w)+[gi(w)-gj”’(w)]
s

F;& (5.8)

(5.9)

Examination of these equations reveals that the solution of the transport problem is reduced to two major steps.
First, in a collision and forcing step, the right hand sides of Eqs. (5.8-5.9) are computed, modifying the distributions

at location x. Then. a streaming step occurs in which the particle distributions stream to their nearest neighbors. In

the case of a uniform spatial g-id. this produces the particle distribution at each location for the new time step. It is

noted that the cc]llision and forcing step is entirely local since all quantities are evaluated at Iocation x. The non-

local communication occurs during the streaming step and involves only the nearest neighbors.



The selection of the equilibrium distribution determines the macroscopic partial differential equation solved by

LB method. For the twodimensional, square grid, the equilibrium distribution for the incompressible

hydrodynamics (Zou et al., 1995) is given by

{[
jy’ = W, p+- p, $(e,.U)+

1}
J(e, -u)’ -J&u)
2C’

where c = AT/Ar . and IVi is given by

[

~
Y

i=()

Wi=l
9

i = ],~,3,4
T

x i= 5,4.7,8

For the coupled scalar transpofl, tie equilibrium distribution is given by

-—-(!3, -“)g:o) =: . :2

(5.10)

(5.11)

(5.12)

the

LB

These equilibrium distributions are selected such that the incompressible Navier-Stokes equations and advection-

diffusion equations are recovered to within the second-order accuracy of the method. The derivations of these
distributions are more thoroughly described elsewhere (Appendix of Hou et al.. 1995; Noble, 1997), but a short

synopsis is given here. In order to determine the equilibrium distributions, a form of the distribution must be

assumed. Typically, a power series in velocity is assumed (which approximates the exponential found in the
Maxwell-Boltzmann distribution). The coefficients of the series are determined by comparing the desired transport
equation to the near equilibrium behavior of the LB equation. This is accomplished by performing a Taylor series

expansion of the particle distribution about the location x and time r . This is followed by a near equilibrium
expansion. called the Chaprnan-Enskog expansion, in which the particle distribution is assumed to be equal to the
equilibrium distribution plus higher order terms. The expansion is in terms of a Knudsen number tha[ compares the

mean free collision time to the time scale of the flow. Substituting the assumed form of the equilibrium distribution
(which is defined in terms of macroscopic quantities) into the expanded LB equation gives the macroscopic

equations. Comparison to the desired transport equations yields the coefficients for the equilibrium distribution

along ‘with the definition of the transport coefficients.
The transport coefficients, kinematic viscosity and thermal diffusivity, are controlled by the relaxation times.

The Taylor series and Chapman-Enskog analysis of the LB models given above yield

~(,f/+1 (A~)2
v=

6 Ar
(5.13)

and

2(+)-J (*+
a=

-1 ii!
(5.14)

for the kinematic viscosity and thermal diffusivity respectively. In terms of molar quantities, the advection-diffusion

equation can be written as,

~+t, ~c,_D,vlc ●R

at”’-’” (5.15)
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where c, is the molar concentration of species i, Di is the effective diffusivity, and R, is a reaction term accounting

for the net production due to reactions.

Figure 5.2. Computational Domain for Thermal Battery Simulations
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Fi~ul!e 5.3. LB Simulations of Microscale Transport in Thermal Batteries

5.3 lklicroscale Simulations of Diffusion-Controlled Transport in Thermal Batteries

This lattice Boltzmann method is used to simulate pore scale transport in a microscopic model of a thermal battery.

The computation domain considered consists of a separator region and a cathode region as shown by the shaded

S6



region of Fig. 5.2. The region is initially filled with a relatively high concentration of lithium ions. produced at the

anode. These ions diffuse toward the cathode, where they are assumed to be fully consumed instmaneously. Thus

the process is assumed to be diffusion-limited for this analysis. Simultaneously, potassium and chloride ions are

transported. An additional advection-diffusion LB model is used to simulate the potassium transport. The system is
further constrained by the consistency condition that the sum of the mole fractions for the 3 species is unity, and the

eiectroneutraIity constraint is also imposed in the electrolyte.

5.4 Results

F@re 5.3 shows the results of a LB simulation, showing the time evolution for the lithium ion concentration within

the cathode and separator regions. The right half of the figure shows 4 snapshots as the reaction proceeds. Tle

color indicates the mole ffaction of lithium ions. The very light gray regions indicate the growth of potassium

chloride precipitate. The left half of the figure shows the volume averaged mole fraction as a function of position in

the battery at each of the four times shown on the right, as indicated by the arrows. The noisy structure of this plot

indicates the level of inhomogeneity present in the battery. This plot illustrates how ‘hot spots” may occur within

an elecrode. In manufactured thermal batteries. the large number of pores within the electrodes confines this effect

to early times within Small regions, however.

The potassium chloride precipitate structure is an important result of this analysis. These simulations suggest that
the precipitate forms in clusters, leaving most of the reaction surface available for the power producing reaction. If
instead. a thin coating were to form on the solid surfaces, the resction could be prematurely ended. Howe~er. it

appears that the solid fraction of precipitate does appear to occur close to the separator-cathode boundruy. In certain

configurations, sufficient precipitate formation could wall off the cathode. If so, thermal battery designs that take
this into account might result in longer lifetimes and higher efficiency.
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Figure 5.4a. Typical GOMA Simulation Result for Lithium Ion Concentration

87



Figures 5.4a-5.4b show a qualitative comparison between macrohomogeneous GOM.A predictions and these LB

results. Figure 5.4a shows a sample result horn a GOMA simulation that employs high inte=tity chemistry and

transport. The shaded region corresponds to the domain for the LB simulations, including haf f the separator and the

cathode region. Figure 5.4b shows the LB result. In comparison, the GOMA prediction shows the effect of the
reaction kinetics. which effectively slow down the reaction as compared to the diffusion-limited LB result. When

the reaction proceeds at a slower rate, the Lithium ions have ample time to diffuse toward the cathode, resulting in

the nearly linear profile in the separator exhibited by the GOMA result. When the problem is diffusion limited, the

Lithium ions are consumed as fast as they arrive, causing a nonlinear profile in the separator. Improved models for

the reactions are needed in the LB simulations to correctly model this effec[.

0.25

0.2

0.15

0.1

0.05

r
r

~ b\...................... .........
. .. ... . . . .. ..

:

. . .. . .

~ y“’!’”~ Time increasing,

or
o 0.2 0.4 0.6 0.8 1

Position

Figure5.4b- LB simulationResultfor Li~ium Ionconcen~ation

5.5 Conclusions

LatticeBoltzmam (LB) has been applied to the multicomponent transpon of ionic species in the electrolyte of a
thermal battery. In order to make it feasible to probe the heterogeneous behavior in the cathode. the transport and

chemistry is significantly simplified. FIck’s law is assumed, but could be extended using the methods described

elsewhere in this report. The reactions at the cathode surface are assumed to consume all of the available lithium

and occur instamaneously. This also could be dramatically improved using the techniques described elsewhere in

this report. The ],auice Boltzmann simulations are profitable for investigating the degree of heterogeneity within the
cathode and for investigating the morphology of precipitate that forms within the cathode. This initial study

suggests that significant heterogeneity may occur within the cathode. especially for early times. This may have
si:nifi~~n[ effect:j on the pulsed powerbehaviorof thermal batteries and needs to be investigated further. Regarding

precipitate formation, these LB simulations suggest that the precipitate forms in small dendritic-type formations on
the cathode surface. Such morphology is beneficial since it does not coat the cathode surface. This allows the



reaction to continue without causing premature battery failure. However, the precipitate production appears to occur

more in the vicinity of the separator-cathode boundary. If unchecked, this could result in sealing the cathode off

from the electrolyte. These microscopic effects may have critical effects on thermal battery performance.
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7. SUIWMAl%Y AND CONCLUDING REMARKS

Inthe LDRD project documented in this report, aphenomenological model was developed for
muhicomponent transport of charged species with simultaneous electrochemical reactions in con-
centrated solutions, and this was applied to model processes in a thermal battery cell. A new gen-
eral framework was formulated and implemented in GOMA for modeling multidimensional,
multicomponent transport of neutral and charged species in concentrated solutions. The new
framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of in-
teracting species using composition-insensitive binary diffusion coefficients. The new GOMA ca-
pability for modeling multicomponent transport of neutral species was verified and validated
using the moclel problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based
thermal-battery computer model was verified using an idealized battery cell in which concentra-
tion gradients are absent; and the full model was verified by comparing with that of Bemardi and
Newman (1987) and validated using limited thermal-battery discharge-performance data from the
open literature (Dunning 198 1) and from Sandia (Guidotti 1996). Moreover, a new Liquid
Chemkin software package was developed, which allows the user to handle many aspects of liq-
uid-phase kinetics, thermodynamics, and transport (particularly in terms of computing proper-
ties). Also, a systematic study was conducted for the estimation of Stefan-Maxwell diffusion
coefficients used in liquid-phase transport processes. Lastly, a Lattice-Boltzmann-based capabili-
ty was developed for modeling micro-scale phenomena involving convection, diffusion, and sim-
plified chemistry; this capability was demonstrated by modeling phenomena in the cathode region
of a thermal-battery cell.

The impact of this LDRD project on Defense Programs at Sandia is obvious and direct because
thermal batteries are employed as the primary power sources in nuclear weapons. The GOMA-
based thermal-battery computer model reported here can be employed as a tool to provide guid-
ance in process design and optimization of thermal batteries.

In summary, ii basic or generic GOMA-based capability has been developed to predict the volt-
age-vs.-time performance behavior of thermal battery cells during discharge. To be useful in pro-
cess design and optimization of thermal batteries, however, the present work needs to be extended
both at the cell level and at the system level. At the cell level, several areas of further model de-
velopment are needed:

1) incorporation of a simultaneous reaction mechanism in which two or more electrochemical re-
actions are allowed to take place at any given discharge time.

2) allowance for precipitation of KC1 and LiCl salts during discharge, which can result in pore
plugging and thus shut off the battery discharge process (cf. Pollard and Newman 1981).

3) a better understanding of thermodynamic open-circuit potentials for particular thermal battery
systems (e.g., Li(Si)/LiCl-KCl/FeS2) within the temperature range of interest; it was found from
the present work that the thermodynamic open-circuit potential has a dominant effect on the bat-
tery-cell discharge behavior.
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4) investigation of the effect of electrode-thickness nonuniformity, which can cause multi-dimen-
sional transport and localized depletion of electrode materials.

5) GOMA and Liquid Chemkin coupling, which will enable us to efficiently examine complex
electrochemistry mechanisms in the anode and cathode.

6) GOMA and Lattice-Boltzmann microscopic model coupling; Chapter 5 only scratches the sur-
face of modeling microscopic phenomena in a thermal battery cell, but the ability to capture phe-
nomena at the microscopic level will significantly increase the fidelity of our thermal battery cell
model.

7) determination of Stefan-Maxwell diffusion coefficients using molecular dynamic simulation.

8) determination of other model parameters such as activity coefficients using fundamental ther-
modynamic data, and estimation of model parameters (e.g., anodic and cathodic transfer coeffi-
cients, exchange current density at zero utilization) that cannot be determined from fundamental
data.

Lastly, it is also essential to develop system-level models in order to describe more realistically
the dynamic discharge behavior of thermal battery systems.
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