Electronic effects at interfaces in Cu-Cr, Mo, W, Ta, Re multilayers

PDF Version Also Available for Download.

Description

Interfacial electronic effects between Cu and the transition metals Cr, Mo, W, Ta, Re, are investigated by determining the strength of the white line absorption resonances on the L,,, edges of Cu in Cu{sub 5}/TM{sub 5} multilayers. X-ray absorption (XAS) was performed to study the white lines, which are directly related to the unoccupied states of Cu in the multilayers. The metallic multilayers are 2 mn in period and 200 mn in total thickness. Each period contains 5 monolayers of Cu and 5 monolayers of the transition metal: 40% of the atoms are at interfaces. These material pairs form ideal ... continued below

Physical Description

10 p.

Creation Information

Bello, A.F.; Van Buuren, T.; Kepesis, J.E. & Barbee, T.W., Jr. April 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Interfacial electronic effects between Cu and the transition metals Cr, Mo, W, Ta, Re, are investigated by determining the strength of the white line absorption resonances on the L,,, edges of Cu in Cu{sub 5}/TM{sub 5} multilayers. X-ray absorption (XAS) was performed to study the white lines, which are directly related to the unoccupied states of Cu in the multilayers. The metallic multilayers are 2 mn in period and 200 mn in total thickness. Each period contains 5 monolayers of Cu and 5 monolayers of the transition metal: 40% of the atoms are at interfaces. These material pairs form ideal structures for the investigation of interfacial electronic effects as they form no compounds and exhibit terminal solid solubility. Only weak white lines are observed on the L3,2 edges of Cu since all the d-orbitals are filled. In the Cu/TM multilayers, however, we observed enhancement of the Cu white lines. We attribute this to the charge transfer from the `interfacial Cu atoms` d-orbital to the transition metal layers. Analysis of the white line enhancement enables calculation of the charge transfer from the Cu to the transition metal. Cu shows a charge transfer of about 0.03 electrons/interfacial Cu atom in Cu/Cr, 0.064 in Cu/Mo, 2048 0.35 in Cu/Ta, 0.17 in Cu/W , and 0.23 in Cu/Re. This charge transfer is consistent with the enhanced absorption energy of Cu on these materials as observed in thermal desorption experiments.

Physical Description

10 p.

Notes

OSTI as DE98057689

Other: FDE: PDF; PL:

Source

  • Spring meeting of the Materials Research Society, San Francisco, CA (United States), 13-17 Apr 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98057689
  • Report No.: UCRL-JC--130781
  • Report No.: CONF-980405--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 665627
  • Archival Resource Key: ark:/67531/metadc705951

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 6, 2017, 6:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bello, A.F.; Van Buuren, T.; Kepesis, J.E. & Barbee, T.W., Jr. Electronic effects at interfaces in Cu-Cr, Mo, W, Ta, Re multilayers, article, April 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc705951/: accessed May 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.