Model for Staebler-Wronski degradation deduced from long-term, controlled light-soaking experiments

PDF Version Also Available for Download.

Description

Long-term light-soaking experiments of amorphous silicon photovoltaic modules have now established that stabilization of the degradation occurs at levels that depend significantly on the operating conditions, as well as on the operating history of the modules. The authors suggest that stabilization occurs because of the introduction of degradation mechanisms with different time constants and annealing activation energies, depending on the exposure conditions. Stabilization will occur once a sufficient accumulation of different degradation mechanisms occurs. They find that operating module temperature during light-soaking is the most important parameter for determining stabilized performance. Next in importance is the exposure history of the ... continued below

Physical Description

vp.

Creation Information

Von Roedern, B. & del Cueto, J. A. May 15, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Long-term light-soaking experiments of amorphous silicon photovoltaic modules have now established that stabilization of the degradation occurs at levels that depend significantly on the operating conditions, as well as on the operating history of the modules. The authors suggest that stabilization occurs because of the introduction of degradation mechanisms with different time constants and annealing activation energies, depending on the exposure conditions. Stabilization will occur once a sufficient accumulation of different degradation mechanisms occurs. They find that operating module temperature during light-soaking is the most important parameter for determining stabilized performance. Next in importance is the exposure history of the device. The precise value of the light intensity seems least important in determining the stabilized efficiency, as long as its level is a significant fraction of 1-sun.

Physical Description

vp.

Source

  • Materials Research Society's Spring Meeting, San Francisco, CA (US), 04/24/2000--04/28/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-520-28333
  • Grant Number: AC36-99GO10337
  • Office of Scientific & Technical Information Report Number: 756335
  • Archival Resource Key: ark:/67531/metadc705939

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 15, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 28, 2016, 8:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Von Roedern, B. & del Cueto, J. A. Model for Staebler-Wronski degradation deduced from long-term, controlled light-soaking experiments, article, May 15, 2000; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc705939/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.