Constant of thermal heat conduction and stabilization of the bus bar conductor for superconducting accelerators

PDF Version Also Available for Download.

Description

Using the one-dimensional, time-independent conduction state, a constant of thermal heating conduction is given that brings about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.

Physical Description

7 p.

Creation Information

Lopez, G. July 1, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using the one-dimensional, time-independent conduction state, a constant of thermal heating conduction is given that brings about the known stabilization theorem and a closed expression for the bus bar to be cryogenically stable in superconducting accelerators.

Physical Description

7 p.

Notes

INIS; OSTI as DE95011132

Source

  • International cryogenic materials conference (ICMC), Albuquerque, NM (United States), 12-16 Jul 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95011132
  • Report No.: SSCL-Preprint--455
  • Report No.: CONF-930703--46
  • Grant Number: AC35-89ER40486
  • Office of Scientific & Technical Information Report Number: 69199
  • Archival Resource Key: ark:/67531/metadc705861

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1993

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 29, 2016, 6:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lopez, G. Constant of thermal heat conduction and stabilization of the bus bar conductor for superconducting accelerators, article, July 1, 1993; Dallas, Texas. (digital.library.unt.edu/ark:/67531/metadc705861/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.