Precision measurements of atomic lifetimes in alkali like systems. Progress report, September 15, 1995--January 15, 1998

PDF Version Also Available for Download.

Description

Precision measurements of atomic lifetimes are important to the analysis of data from many areas of physics and provide fundamental atomic structure information. Scientists in the fields of astrophysics, geophysics, and plasma fusion all depend on oscillator strengths to determine the relative abundances of elements. Assessing the operation of discharge lamps and atomic resonance line filters also depends on knowing accurately atomic oscillator strengths. Often relative values of oscillator strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. In addition, the interpretation of parity nonconservation (PNC) experiments requires accurate knowledge of the atomic structure including ... continued below

Physical Description

11 p.

Creation Information

Tanner, C. E. January 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Precision measurements of atomic lifetimes are important to the analysis of data from many areas of physics and provide fundamental atomic structure information. Scientists in the fields of astrophysics, geophysics, and plasma fusion all depend on oscillator strengths to determine the relative abundances of elements. Assessing the operation of discharge lamps and atomic resonance line filters also depends on knowing accurately atomic oscillator strengths. Often relative values of oscillator strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. In addition, the interpretation of parity nonconservation (PNC) experiments requires accurate knowledge of the atomic structure including radial matrix elements. Many of these scientific needs are addressed theoretically with sophisticated many-electron atomic structure calculations. In this program they address these needs experimentally with a precision that surpasses current theoretical accuracy. The lifetime measurements also play the important roles of assessing the accuracy of many-electron atomic structure calculations and of guiding further theoretical development. Alkali like atoms, with a single electron outside of a closed shell, provide the simplest open shell systems for detailed comparisons between experiment and theory. To date, the research has focused on measurements of excited state lifetimes in neutral alkali systems along with the development of the necessary equipment and techniques for studying alkali-like ionic systems. The accomplishments of this program are summarized in Section 2 and are supported by the reprints and preprints that appear in the Appendix.

Physical Description

11 p.

Notes

INIS; OSTI as DE99000065

Medium: P; Size: 11 p.

Source

  • Other Information: PBD: Jan 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99000065
  • Report No.: DOE/ER/14579--5
  • Grant Number: FG02-95ER14579
  • DOI: 10.2172/666150 | External Link
  • Office of Scientific & Technical Information Report Number: 666150
  • Archival Resource Key: ark:/67531/metadc705753

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 23, 2018, 2:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 20

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tanner, C. E. Precision measurements of atomic lifetimes in alkali like systems. Progress report, September 15, 1995--January 15, 1998, report, January 1, 1998; Indiana. (digital.library.unt.edu/ark:/67531/metadc705753/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.