Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing

PDF Version Also Available for Download.

Description

A novel simulation technique for predicting the microstructure and texture evolution during thermomechanical processing is presented. The technique involves coupling a finite element microstructural deformation model based on crystal plasticity with a Monte Carlo simulation of recovery and recrystallization. The finite element model captures the stored energy and the crystallographic orientation distributions in the deformed microstructure. The Monte Carlo simulation captures the microstructural evolution associated with recovery and recrystallization. A unique feature of the Monte Carlo simulation is that it treats recrystallization as a heterogeneous subgrain growth process, thus providing the natural link between nucleation and growth phenomena, and quantifying ... continued below

Physical Description

12 p.

Creation Information

Radhakrishnan, B.; Sarma, G. & Zacharia, T. November 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A novel simulation technique for predicting the microstructure and texture evolution during thermomechanical processing is presented. The technique involves coupling a finite element microstructural deformation model based on crystal plasticity with a Monte Carlo simulation of recovery and recrystallization. The finite element model captures the stored energy and the crystallographic orientation distributions in the deformed microstructure. The Monte Carlo simulation captures the microstructural evolution associated with recovery and recrystallization. A unique feature of the Monte Carlo simulation is that it treats recrystallization as a heterogeneous subgrain growth process, thus providing the natural link between nucleation and growth phenomena, and quantifying the role of recovery in these phenomena. Different nucleation mechanisms based on heterogeneous subgrain growth as well as strain induced boundary migration are automatically included in the recrystallization simulation. The simulations are shown to account for the extent of prior deformation on the microstructure and kinetics of recrystallization during subsequent annealing. The simulations also capture the influence of the presence of cube orientations in the initial microstructure, and the operation of non-octahedral slip during deformation of fcc polycrystals, on the recrystallization texture.

Physical Description

12 p.

Notes

OSTI as DE99000358

Source

  • 1998 Minerals, Metals and Materials Society (TMS) fall meeting, Rosemont, IL (United States), 11-15 Oct 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99000358
  • Report No.: ORNL/CP--98458
  • Report No.: CONF-981054--
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/676877 | External Link
  • Office of Scientific & Technical Information Report Number: 676877
  • Archival Resource Key: ark:/67531/metadc705742

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Aug. 3, 2016, 8:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Radhakrishnan, B.; Sarma, G. & Zacharia, T. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing, report, November 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc705742/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.