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ABSTRACT

Algorithms developed to enable the use of atomistic molecular simulation methods with parallel
computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged)
interactions are included. While strategies for obtaining parallel molecular simulations have been
developed for the full variety of atomistic simulation methods, molecular dynamics and Monte
Carlo have received the most attention. Three main types of parallel molecular dynamics simula-
tions have been developed, the replicated data decomposition, the spatial decomposition, and the
force decomposition. For Monte Carlo simulations, parallel algorithms have been developed
which can be divided into two categories, those which require a modified Markov chain and those
which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble
Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein struc-
ture determination are also reviewed and issues such as how to measure parallel efficiency, espe-
cially in the case of parallel Monte Carlo algorithms with modified Markov chains are discu$sed.




I. INTRODUCTION

Classical simulations of materials and fluids have long consumed enormous CPU-hours of avail-
able computing resources. Historically, simple interaction potentials such as hard-spheres and
Lennard-Jones were employed to model small atomic systems. As computers became increas-
ingly powerful, more realistic interaction potentials were employed to model ever-increasing sys-
tems sizes, including molecular systems. While massively parallel (MP) computing hardware
arrived over 10 years ago, widespread acceptance was delayed due to ensuing debate over
whether such architectures could yield speedups anywhere near the number of processors
employed. Furthermore, widespread use of MP hardware required the development of new com-
panion parallel algorithms for simulation methods, the difficulty of which is largely dependent on
the method. This work contains a review of the effort to meet that need for atomistic simulations,
including molecular dynamics (MD), Monte Carlo (MC), and related methods. In the interest of
focus, some related topics have been omitted (e.g. simulation methods involving a hybridization
between an atomistic method and a non-atomistic method, such as quantum MD). For similar rea-
sons, some of the parallel algorithms designed or optimized for certain computer architectures
(e.g. special purpose computer hardware) have also been omitted.

For uniformity, algorithms have generally been characterized by their speedup or efficiency, both
indications how well they utilize the available number of processors. In general, speedup and effi-
ciency are defined as
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where Cp is the CPU time on a smaller number of processors (usually 1), p, and Cp is the CPU

time on a larger number of processors, P. Thus if an algorithm requires 28 seconds on 4 proces-
sors and 4 seconds on 32 processors, the speedup and efficiency are 7 and 87.5%, respectively.
The reader should be aware that such measures of parallel efficiency are not only algorithm
dependent but also machine dependent, often due to the relative speeds of the machines communi-
cation and computation capabilities. While such metrics are best for characterizing parallel algo-
rithms they are less useful for predicting which approach to a simulation problem will actually
produce faster results in wall clock time. However, given that such questions are highly machine
dependent and that much of the data reported in the literature is for hardware no longer in exist-
ence, wall clock comparisons on different hardware are avoided.

II. PARALLEL SIMULATION METHODS

Parallel algorithms developed for atomistic simulation methods fall into two categories, those
which simply involve distributing the computational workload of the existing serial algorithm
over more than one processor, and those which involve modifying the simulation method itself so
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as to make it parallelizable. While molecular dynamics falls into the first category, Monte Carlo
and other methods can be in either category.

A. Parallel Algoi‘ithms for Molecular Dynamics Simulations

Molecular dynamics is a widely used simulation tool for investigating dynamic molecular-scale
phenomena such as diffusion as well as obtaining equilibrium thermodynamic data useful for ver-
ifying statistical mechanical theories [1].

While the computational requirements of molecular dynamics have been carefully analyzed [2,
3], it is agreed that the most time-consuming step of a molecular dynamics simulation is the calcu-
lation of the forces. Because this calculation is inherently parallel, parallel MD algorithms were
among the first parallel algorithms to be developed. Several parallel MD algorithms have
emerged over the years which have become sufficiently sophisticated to enable the simulation of
increasingly complicated systems (e.g. charged molecular systems) on massively parallel super-
computers. As Smith [4] pointed out in an early discussion (1990) of parallel algorithms for
molecular dynamics, three algorithms with good load balancing are replicated data, systolic loop,
and parallelized link-cells (which will henceforth be referred to spatial decomposition). Repli-
cated data and spatial decomposition (and variations) survive today as competitive parallel MD
algorithms and are discussed along with other, newer, methods below.

Because applying molecular dynamics to biomolecules, which are generally charged and solvated
in water, is of great interest to the simulation community, several methods have been developed to
calculate the Coulombic contribution to the potential energy and forces in a molecular dynamics
simulation [1, 5]. In the text which follows, the parallel implementations of such methods are
briefly discussed according to their parallel decomposition strategy.

Replicated Data Parallel Molecular Dynamics Algorithm

Replicated data (also known as the atom decomposition) is intuitive: the N atoms in a molecular
dynamics simulation are split evenly across P processors. In its simplest form, atomic fluids or
solids with short-ranged two-body interaction potentials (such as Lennard-Jones), the method is
quite simple to implement, especially for atomic systems [4, 6-12].

Briefly, each processor owns N/P atoms for the duration of the simulation. At the beginning of
each time-step, a processor computes the forces between its atoms and the rest of the system’s
atoms, updates the positions and velocities of its atoms, and then participates in an all-to-all com-
munication in which every processor obtains the new positions of all atoms in the system in prep-
aration for the next time-step. This communication in which each processor sends its N/P updated
atom coordinates to all other processors is the key limitation of the method because it scales as N,
independent of 7, even while the computational cost is an optimal O(N/P). Thus the communica-
tion cost of the algorithm sabotages performance on large numbers of processors. Plimpton [13]
and others [14] provide a thorough discussion of the method for simple Lennard-Jones benchmark
fluids and discusses the merits of the replicated data algorithm relative to two other parallel
decompositions for such systems and so we turn our attention next to replicated data implementa-
tions for multi-atom species.




The replicated data algorithm has been widely used for molecular systems because the calculation
of the intra-molecular forces, bond, angle, and torsional, is easily load-balanced across proces-
sors. In early work on polymers Drake et al. [15] achieved efficiencies approaching 100% on up
to 64 processors of an Intel iPSC hypercube. Using replicated data with the PVM (Parallel Virtual
Machine, available from Oak Ridge National Laboratory) message passing library. Miiller-Plathe
et al. [16] tested four benchmark systems, obtaining speedups of up to 38 on 65 processors of an
Intel Paragon with a code named PARALLACS. The GROMOS (GROningen MOlecular Simu-
lation Software) code was parallelized with the replicated data algorithm [17, 18] yielding a
speedup of about 67 on 128 processors. Follow-on work with GROMOS consisted of implement-
ing the neighbor list/linked cell force calculation algorithm [1] in parallel and a discussion of par-
allel strategies [19] for the SHAKE algorithm [20]. In similar work, the CHARMM (Chemistry
at HARvard Macromolecular Mechanics) code, including constraint dynamics with the SHAKE
algorithm, was also parallelized with replicated data, yielding a speedups of 80 on 128 processors
in one effort [21] and 4 on 32 processors in another [22]. CHARMM has also been parallelized
for clustered workstations communicating with PVM library and for a Cray YMP [23]. Even with
PVM'’s limited communications capability, a speedup of 6 on 8 processors was obtained [24].
Other work on coupled workstations includes an implementation of replicated data molecular
dynamics in a code named WESDYN. Using FORTRAN and Linda, a speedup of 3 on 4 proces-
sors was obtained [25]. The AMBER molecular dynamics code has also been parallelized with
the replicated data algorithm, not only for the Cray YMP [23] but for MIMD parallel machines as
well. Timings on an nCUBE [26] demonstrated a speedup of 50 on 64 processors for one bench-
mark problem with long-ranged forces (30A) while a 4343 atom lipid bilayer test case yielded a
speedup of 23 on 32 processors of a Cray T3D [27].

Replicated data methods have also been used with systolic loop methods [28] for communication
to parallelize bonded molecular dynamics simulations [29, 30] and with non-equilibrium molecu-
lar dynamics (NEMD). In the case of NEMD, the implementation of the “sliding boundary” con-
ditions necessary for planar Couette flow is fairly straightforward yielding parallel simulations for
investigating the viscosity for molecular liquids [31, 32]. As with atomic fluids, Plimpton and co-
workers have provided a detailed discussion of the replicated data algorithm for uncharged
bonded systems and a careful comparison to two other parallel molecular dynamics algorithms
[33] on systems of up to a million atoms and 1024 processors.

Various treatments of long range forces have been used with the replicated data parallel molecular
dynamics algorithm including direct calculation [29] and the use of cut-off’s [16], bqth of which
are intuitively easy to implement with the replicated data algorithm. Another approach which has

been employed is the Ewald summation [34] which scales as N*2. In this method, the total force
is split into three parts, 1) a sum in real space with quadratic dependence on N, the number of ions
in the system, 2) a sum in reciprocal space, with linear dependence on &, and 3) a self-interaction
part which can be calculated at the beginning of the simulation and remains constant throughout.
Normally the real space summation is truncated with the same cut-off as the usual van der Waals
forces meaning that this part of the method can be handled with established molecular dynamics
(including parallel) algorithms and becomes near linear in N rather than quadratic. Smith [35] pre-
sents two strategies for employing replicated data with the Ewald sum, the “reduced ion list”
(RIL) in which each processor owns a subset of the ions in the system, and the “reduced k vector
list” (RKL) in which each processor owns a unique subset of the k vectors in the Ewald sum. A
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speedup of 23 was obtained on 32 processors of an Intel iPSC/860 for a system of 4096 ions of an
alkali halide system with the RIL algorithm. In follow-on work, Smith et al. [36] discuss a parallel
replicated data code name DL_POLY_2.0 which can treat Coulombic interactions with the Ewald
sum method, cut-offs, or the reaction field method, although details are not given. Others have
employed the Ewald sum with replicated data in the NPT ensemble on a shared memory machine
and workstation clusters [37].

Another form of Ewald summation, particle-mesh methods [38] which scale as NlogN for fixed
cut-offs, have also been implemented in parallel molecular dynamics codes employing the repli-
cated data molecular dynamics. As with regular Ewald summation, the total force is split into
real-space, reciprocal space, and self-interaction parts with the real-space part handled similarly
to the van der Waals forces, decomposed by atom over the available processors. The reciprocal

" part, however, is handled differently with the atomic charges and positions replaced by charges on
a regular 3-dimensional grid which is then solved via FFI’s, making the reciprocal space sum
more computationally tractable. This calculation is parallelized by distributing the charge grid
over the processors, taking care to optimize the FFT calculation and minimize interprocessor com-
munication [39]. A recent comparison of the particle-mesh method indicates that it is faster than
the fast multipole method (discussed below) and easier to implement [40], however, as Brown et
al. [41] point out, given the history of comparisons between the two methods, it still unclear as to
which is the best method. In any case, Crowley et al. achieved speed-ups in the reciprocal sum
calculation of about 40 on 150 processors and 125 on 200 processors for the particle-mesh Ewald
calculation itself with this approach [39].

Spatial Parallel Molecular Dynamics Algorithm

A second class of methods for parallelizing molecular dynamics simulation is known as spatial-
or geometric-decomposition [7]. In this method, the simulation box is subdivided into cubic
domains, one per processor. Each processor is responsible for computing the forces and new posi-
tions for the atoms inside its box. Interprocessor communication is required as each processor cal-
culates the short-range force on its atoms but sizing the dimension of the domains equal to or
larger than the cut-off of the interaction potential enables this communication to be limited, e.g.
each processor needs only to know the coordinates of the atoms in surrounding domains. (Thus
one limitation of the spatial decomposition is that this is not always possible, depending on N, P,
and r,,, the number of atoms in the system, the number of processors, and the cutoff, respectively.)
Additional interprocessor communication is required if an atom migrates from one domain (and
processor) to another; possession of this atom is “handed-off” in a similar communication. ~

While the computation in spatial parallel molecular dynamics scales as N/P, the communication

cost scales as (N/P)*> due to the fact the interprocessor communication for this scheme is nor-
mally carried out through a three-step process through the 2d surfaces of a 3d volume (Figure 1),
although systolic loop [42, 43] and other methods have also been used [30, 44]. While this is the
method of choice for very large systems (tens of thousands of atoms), its chief limitation is load
balancing difficulties experienced for systems with heterogeneous density. The spatial decompo-
sition is also more difficult to implement than replicated data, particularly for molecular systems
where molecules may straddle domains meaning that arrays describing each atom must also con-
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tain the topological information about the molecule to enable the computation of the intra-molec-
ular forces.

In early work, Rappaport and Clementi [45, 46] coupled 4 FPS 264 array processors to simulate
2d flow around a sphere with molecular dynamics by assigning domains sized larger than cutoff
of the interaction potential to each processor. For a system of 170,000 atoms, roughly 40,000 per
processor, approximately 1000 atoms were close enough to the domain borders to be included in
the interprocessor communication, which was carried out through shared memory and accounted
for 3% of the overall time. The spatial decomposition method was also used to investigate 2-
dimensional spinodal decomposition for a 7688 atom Lennard-Jones system, achieving an effi-
ciency of 52% on 26 transputers [47]. Pinches et al. [48] carried out an investigation of the effi-
ciencies of this algorithm achieving speedups of approximately 42 on 64 processors of an Intel
iPSC/2 for a 35,152 atom three-dimensional short-ranged Lennard-Jones system. Other reports on
algorithmic investigations for various implementations and simple systems, including the embed-
ded atom method (EAM) for metals, followed this work [13, 14, 49-53] including the significant
improvement of using large domains on each processor with linked-cells and/or using linked cells
to construct neighbor-lists to enable simulations of simple systems with hundreds of millions of
atoms [13, 54-58] to be achieved, generally with greater than 600 atoms per processor [57]. How-
ever, recent improvements to the spatial decomposition have enabled good scaling behavior down
to a few hundred atoms per processor as well as about 10% improvement in performance for the
spatial decomposition for some systems [59]. Another group of researchers implemented a ver-
sion of the decomposition which employs a multiple time-step method [60] and three-body inter-
actions [14, 61, 62] and then applied to several problems in porous silica [63, 64].

Plimpton’s most recent results demonstrate that not only is the parallel spatial molecular dynam-
ics algorithm well-suited for traditional large-scale massively parallel platforms (e.g. the Intel
Teraflops machine at Sandia National Laboratories) but it also scales well on clusters of commod-
ity computing and networking components (e.g. the Cplant machine [65] at Sandia National Lab-
oratories which consists of hundreds of DEC alpha processors connected by a Myrinet
communications network). A comparison of the CPU time per time-step for the spatial decompo-
sition on the Intel Teraflops and Cplant for a fixed system size (N = 32,000 atoms) in increasing
numbers of processors and for scaled system sizes which increase with numbers of processors
(32,000 atoms per processor) can be found in Figure 2 and Figure 3, respectively [66].

Implementations of the spatial parallel molecular dynamics algorithm have also been developed
for uncharged bonded systems, despite the added difficulties that such systems present, largely
due to the fact that molecules may straddle processor domains and for some systems load imbal-
ance may occur due to density nonhomogeneity. Such systems imply additional interprocessor
communication due to the fact that information about the intramolecular connectivity of atoms in
a molecule lying in different processor domains will have to be exchanged between processors.
Furthermore, additional communication will be required to achieve bond-length constraints with
algorithms such as SHAKE [20].

Esselink and Hilbers demonstrated a spatial decomposition for such systems which required no
extra interprocessor communication as long as the range of the bonded potentials is no greater
than that of the non-bonded potentials but did not incorporate bond constraints [67]. Brown et al.
[68] presented an implementation of the spatial decomposition which accommodates bond con-




straints through the use of the SHAKE algorithm. They tested their method on a system of 64,000
atoms consisting of 640 chain molecules with 100 CH, units per chain. Their algorithm runs 5.7

times faster on 1000 processors than on 64 processors of an Fujitsu AP1000 machine, for an effi-
ciency of 36%. Their algorithm has also been generalized to molecules of arbitrary connectivity
[41]. Eisenhauer and Schwan [69] tested a similar algorithm on a system of 300 n-hexadecane
molecules (16 atoms each) on a substrate of 1350 gold atoms achieving efficiencies of 25% on 60
processors of a KSR computer.

A version of GROMOS called EULERGROMOS which uses the spatial decomposition method
has also been developed [70]. Three systems were tested, a dipeptide with 337 solute and solvent
atoms, a 10,914 atom myoglobin molecule, and a 10,406 atom acetylcholinesterase dimer (AChE)
in 121,257 solvent atoms. On 128 processors, efficiencies of about 50% for the medium-sized
myoglobin system and 15% for the small dipeptide system were obtained while on 512 processors
of the Intel Touchstone Delta system at CalTech, efficiencies of about 25% for the large AChE
system and 15% for the medium myoglobin system were obtained. These performance drops with
decreasing system sizes are due to relative magnitude of the communication and computation
requirements; economies of scale are obtained in communication with larger computation require-
ments for the spatial decomposition. Clark et al. [70] also compare EULERGROMOS to
UHGROMOS, the replicated data implementation of GROMOS [18] on the medium-sized myo-
globin system. The spatial decomposition EULERGROMOS was found to outperform the repli-
cated data UHGROMOS on more than 100 processors.

As with the replicated data algorithm, the spatial decomposition has also been employed to paral-
lelize NEMD although the implementation of “sliding boundary” conditions necessary for planar
Couette flow, requires a bit more effort than before [71-73, 32]. Hansen et al. [71] have enabled
parallel spatial NEMD simulations with moving boundary conditions by allowing the system
itself to deform with shear rather than having the periodic images of the system move relative to
the system itself (which would require complicated time-dependent interprocessor communica-
tion patterns). As Allen and Tildesley [1] point out, such a method will eventually mean that
angles of the simulation system will become extremely acute. Hansen et al. remedy this problem

by resetting the shape of the system when it reaches 45°. In this deforming cell method, the sys-
tem boundaries deform with the shear flow such that the shearing boundaries always align with
the image cells.

Implementations of the spatial decomposition method for use with charged system are much more
numerous then those for replicated data. Brown et al. [41] employed the Ewald summation
method with spatial decomposition by having each processor compute the sum over reciprocal
space for each atom in its domain. The real space portion was simply incorporated into the non-
bonded force calculation normally employed in the spatial decomposition. This method achieved
a near linear speedup of 7.7 on 8 processors for a benchmark system of one molecule of echista-
tin, a small peptide with 713 atoms, one chloride ion and 6903 water molecules [41]. Two other
similar algorithms appear in the literature, both for single instruction multiple data (SIMD) archi-
tectures, one for the Connection Machine CM-200 [74] and another for a MasPar MP-2 [75]
although few details are provided in either case.




Other work on the spatial decomposition with Ewald sums includes the use of the two dimen-
sional Ewald approximation developed by Hautman and Klein [76] in what is called “a hybrid
spatial decomposition and systolic loop algorithm” [77]. This scheme was designed to enable the
SHAKE algorithm to be performed locally thus restricting the assignment of whole molecules to
single processors. Although only an broad outline of the method is presented, each processor car-
ries out the calculation of the intra-molecular forces for its molecules and then participates in a
global communications step to obtain the positions of all other charges in the system. The modi-
fied Ewald summation is then carried out in parallel with each processor calculating the real-
space contribution due to the charged sites in its molecules and a share of the reciprocal space cal-
culation decomposed over the k-vectors. Finally, the intermolecular interactions are “distributed
by distributing the neighbor-cells amongst the processors” on “an arbitrary basis, rather than on a
positional basis as would be the case for the spatial decomposition.” Parallel efficiencies of 40%
were obtained for a 128 molecule bilayer system and a total of 5,120 atoms [77].

Particle-mesh Ewald methods, discussed above in the context of the replicated data algorithm

have also been implemented for the spatial decomposition. The real-space part is decomposed by
domain, thus each processor calculates not only the van der Waals interactions for the atoms in its
domain but also the real-space part of the Ewald sum. The reciprocal space portion is calculated in
parallel by moving grid data from the spatial decomposition to an FFT decomposition where each
processor owns part of a 3-dimensional mesh. Efficiencies of 46% were obtained for 512 proces-
sors as compared with 32 processors of an Intel Paragon on a 7,134 atom membrane system [78].

Another class of methods for treating long-ranged forces is multipole methods [79]. The basic
idea behind these methods is that an atom interacts with a distant group of atoms as if it were
interacting with a single particle at the center of mass of the group. Thus, in the multipole method,
a hierarchy of grids is superposed on the simulation domain and atoms are grouped into cells at
the finest grid level with multipole coefficients calculated for each cell. By collecting and com-
bining these coefficients at coarser grid levels, the interaction between an individual atom and a
group of atoms at a distance (in a cell at the finest grid level) can be approximated. The method
can be implemented in parallel [80-89] in a spatial decomposition framework by distributing the
various grids across the processors. Communication is required between processors owning adja-
cent grid cells and as the algorithm sequences up and down through the grid hierarchy. Using a
multilevel preconditioned conjugate gradient method for the fast multipole algorithm in the con-
text of spatial decomposition, Nakano obtained a scaled efficiency with 414,720 atoms per pro-
cessor of over 90% on 64 processors [87]. Kalé et al. [82] employed a combination of the spatial
and force decompositions in a sophisticated object oriented code called NAMD2 which can treat
electrostatics with cut-off’s, fast multipole, or particle mesh Ewald, achieving a speedup of 143
on 192 processors of the ASCI Red Intel Teraflop machine at Sandia National Laboratories for a
system with 124 cutoffs. Finally, Lim et al. [88] demonstrated a spatial decomposition implemen-
tation of the cell multipole method [90] in a code called MPSIM. Linear scaling with system size
and near linear scaling with number of processors was obtained for up to 10 million atoms and
500 processors.

Load-balancing a spatial decomposition molecular dynamics code is an issue for systems with
inhomogeneous densities and thus several schemes have been developed to address this problem.
This can be done locally [91-93] with neighboring processors redistributing the work to achieve




balance or globally [70, 94], with a master processor periodically re-decomposing the problem
across the available processors. On simulations of a system of highly irregular a-quartz nanoclus-
ters, Nakano et al. [93] employed adaptive curvilinear coordinates and simulated annealing to
determine the optimal coordinate system with minimal load imbalance and communication costs.
On 32 processors the execution time was reduced by a factor of 4.2 at a cost of 3.7% extra elapsed
time due to the load balancer. As Srinivasan et al. [94] point out in a summary of load balancing
strategies, re-distributing the workload at each time-step is expensive, schemes designed for spe-
cific processor topologies limit portability, restricting the domain size to the cut-off distance of
the interaction potential limits the number of processors which can be used, and iterative methods
may be limited by corivergence difficulties if the needed load balancing changes faster than the
rate of the convergence method. Thus developing an appropriate load balancing strategy for spa-
tial molecular dynamics is highly dependent on the systems to be simulated and the available
computer hardware.

Other Parallel Molecular Dynamics Algorithms

Several other parallel molecular dynamics algorithms have also been developed. The “embarrass-
ingly parallel” method in which P simulations are carried out on P processors to achieve better
statistics is normally reserved for Monte Carlo simulations but has been applied to molecular
dynamics as well [95] and was found to produce better precision per processor than the spatial
decomposition method [68]. Systolic loop methods [28] for decomposing the force matrix over
multiple processors and cycling atom data around a ring of processors fall into a general category
of “force decompositions.” However, systolic loop methods are designed for multi-processor
machines with limited inter connectivity and have faded from the scene for use with molecular
dynamics [96-101, 4] as massively parallel computer hardware has evolved to very high degrees
of interprocessor connectivity. The reader interested in Coulombic interactions should note that
several of these efforts included a direct calculation of these long-ranged forces [98, 100, 102]
while another approach [103] includes only the Coulombic contribution due to nearby atoms in
every time-step while calculating the Coulombic contribution from distant atoms less frequently
[101]. Work has progressed on related topics, however. For example, Trobec et al. employed a
ring topology on a MIMD computer to investigate improved integrating algorithms for solving
Newton’s equations of motion [102, 104, 105].

The force matrix containing the ij interactions of the pair potential has also been decomposed over
parallel processors. A key feature of such decompositions of the force matrix is that double count-
ing the forces to minimize interprocessor communication is unnecessary because processors are
not responsible for specific atoms. Thus, the fact that the forces between two atoms (and due to
each other) are equal and opposite (Newton’s 3rd law) can be used as with serial MD codes.

Such “force decompositions” have been carried out by sub-blocks [106] and element by element
[107-109]. These approaches are not general in that they were designed for long-range force sys-
tems and therefore require the calculation of the forces for all pairs of atoms meaning that neigh-
bor lists cannot be used. Boyer and Pawley [106] employed a direct calculation of the Coulombic
interactions while Nguyen et al. [107] employed the Ewald sum method, calculating the real-
space terms with the van der Waals interactions and distributing the reciprocal-space terms over
the available processors. Other more general decompositions of the force matrix have been devel-
oped. Schreiber et al. [110] employ a master-slave approach for a solvated peptide system. In their
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approach, the master processor constructs the neighbor list, enabled by using cut-offs for the Cou-
lombic contributions, and computes the interactions within the peptide while the slaves compute
the interactions between peptide and the solvent and between solvent molecules. The full neigh-
bor list is then gathered onto the master which can then distribute the work over the slave proces-
sors with a staircase decomposition. This approach yielded overall efficiencies of 82% on 19

Processors.

For short-ranged forces, Plimpton et al. [13, 33, 111-113] employ a block decomposition of the

force matrix over P processors yielding O(N/ JI—’) scaling communication cost, an improvement

over the O(N) scaling of replicated data algorithm which is essentially a row-wise decomposition
of the force matrix. Plimpton concludes that while the strength of the force decomposition is that
it works well for varying molecular topographies, it requires some preprocessing to ensure load
balance and is not as efficient as the spatial decomposition for atomic systems larger than 10,000
atoms and load balanced macromolecular systems larger than tens of thousands of atoms [13].
Efficiencies of almost 90% were obtained with this force decomposition algorithm on up to 1024
processors for a 6,750 atom liquid crystal system in a regular 3-dimensional box [113] and 61%
on 1024 processors for a 14,026 solvated myoglobin molecule in a spherical geometry [33]. The
communication requirements to achieve good performance with Plimpton’s force decomposition

for N=50, 000 systems have been comprehensively analyzed by Taylor et al. [114].

In related work, Skeel implemented GROMOS on an Alliant FX/8 by decomposing the force cal-
culation over the available processors and treating Coulombic interactions with cut-off’s [115]
while Murty and Okunbor [116] developed two force decomposition algorithms which do not
double compute the ij interactions. Their algorithms, called force-row interleaving (FRI) and
force-stripped row (FSR) have been tested on 32,000 atom systems with up to 16 processors of an
Intel iPSC/860. Briefly, the FRI algorithm treats one row the force matrix at a time, multiple rows
per processor which alternate to achieve load balancing while the FSR determines a priori the
block of rows that balances the workload across the available processors.

Finally, we note that it is the femtosecond time-step which limits the time-scales achievable with
molecular dynamics thus other approaches to speeding up a MD simulation have recently been
investigated. For example, multiscale methods such as rRESPA [117] which extend the time-step
by factors of 2-5 have been parallelized [78]. Other approaches include the recently developed
hyper-MD [118] and parallel replica method [119] which extend the time-scale that can be simu-
lated for single event transitions in small systems. Hyper-MD uses a bias potential to raise the
energy away from transition states bias while the parallel replica method involves carrying out
parallel MD simulations on each processor until the first transition occurs then providing this con-
figuration to all processors and proceeding as before.

B. Parallel Algorithms for Classical Monte Carlo Simulations

Molecular dynamics provides both equilibrium and dynamic thermodynamic data (e.g. diffusivi-
ties). Monte Carlo methods [1], on the other hand, are not well-suited to simulating dynamic phe-
nomena, but they are often faster than molecular dynamics or the only way available to obtain
equilibrium data for some systems. Parallel Monte Carlo (MC) simulations have been difficult to
implement due to the fact that atoms in a normal MC simulation are moved one at a time. While
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the bulk of the computational work in a MC simulation, the energy calculation of a proposed
move, can be shared across processors, given that many MC simulations employ short-ranged
potentials, this approach is inefficient because only a small subset of the system’s atoms interact
with the proposed move at any given point in the simulation. Therefore, any efficient massively
parallel Monte Carlo algorithm for systems with short-ranged interactions must involve simulta-
neous moves on different processors. This can be accomplished by two approaches, depending on
whether or not the parallel algorithm relies on modifying the simulation’s Markov chain so as to
make it parallelizable. In the text which follows, examples of both approaches are briefly dis-
cussed. (Note: While lattice systems are usually included in any general discussion of Monte
Carlo methods in statistical physics and several parallel algorithms for such systems have been
developed [120-123], these methods are not discussed below).

Parallel Monte Carlo Algorithms With Unmodified Markov Chains: In the “embarrassingly paral-
lel” approach [124], the most obvious way to parallelize Monte Carlo methods, simultaneous,

independent, simulations are carried out on parallel processors. Ensemble data from parallel MC
simulations, identical in every respect except for the initial value of the random number generator
seed, are averaged over all processors yielding better statistics than a single simulation of the
same duration. This decomposition is easiest to program, but if the non-equilibrium “warm-up”
phase is not short relative to the “production phase” (where the desired equilibrium data is accu-
mulated), this decomposition cannot compete with a standard Monte Carlo program running for
an extended time on a serial supercomputer. A second limitation of this approach is that the mem-
ory available on a single processor must be large enough to accommodate the entire system. The
embarrassingly parallel approach has been carefully analyzed and found to be superior to a spatial
parallel decomposition (discussed below) for short-ranged fluids for systems not hindered by the
restrictions discussed above [125]. Interestingly, it has also been applied to molecular dynamics
[95] as well.

A second approach to parallelizing Monte Carlo simulations which also does not employ a modi-
fied Markov chain is systolic loop methods [28, 126], an approach efficient only for systems with
complex interaction potentials (so that the calculation time greatly exceeds the communication
time) and for machines with small numbers of processors and limited memory per processor.
Another approach, the “farm” algorithm [127], involves distributing the calculation of the energy
of proposed moves over P available processors, where each processor is responsible for calculat-
ing the contribution to the energy of the proposed move due to some subset of the system’s mem-
bers. Jones and Goodfellow [128] demonstrated that the efficiency of the farm algorithm falls off
dramatically with increasing numbers of processors P for atomic MC simulations, dropping -
below 40% for more than 10 processors. However, Ulberg and Gubbins [129] employed this
method on a Connection Machine-2 for Monte Carlo simulations of TIP4P water in graphite
pores. They achieve speed-ups of approximately 3-5 over a Cray Y/MP for 512 water molecules
but provide only a limited discussion of their parallel algorithm and its performance. Systolic loop
methods have also been employed to parallelize the calculation of the potential energy of a pro-
tein, including a direct calculation of the long-ranged Coulombic forces [130].

Parallel Monte Carlo Algorithms With Modified Markov Chains: Modifying the Monte Carlo
simulation algorithm itself so as to make it parallelizable has been accomplished in several ways.

However, because modifying the Markov chain of a Monte Carlo simulation changes the amount
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of work needed to achieve a desired accuracy of a statistical result, the comparison of the effi-
ciency of MC algorithms employing different Markov chains, whether parallel or not, requires
careful analysis. For the parallel Monte Carlo algorithms discussed below, differing methods of
assessing their efficiency were often employed and therefore are discussed in addition to the

methods themselves.

“Multiparticle Monte Carlo [131]” simply involves proposing new positions for some subset X of
the system’s N atoms, calculating the total energy change due to this composite move in parallel,
and accepting/rejecting the composite move. The efficiency of the method was obtained by calcu-
lating the correlation length, [, of the energy for a systems of 32 and 256 Lennard-Jones atoms as
a function of K, the number of atoms in a composite move. As K increases, the maximum dis-
placement which can be used while achieving a reasonable acceptance rate (37%) decreases. Thus
this algorithm is doing more work, albeit faster due to multiple processors, while sampling phase
space more slowly. For the 256 atom case, the correlation length with K equal to 256 was 83 times
greater than that with K equal to 1.

“Hybrid Monte Carlo” is a method similar to multiparticle Monte Carlo. In this method [132],
composite Monte Carlo moves are postulated by proposing new positions for all atoms in the sys-
tems by drawing velocities for each atom from a Gaussian distribution rather than randomly. This
algorithm can be parallelized with any of the parallel molecular dynamics algorithms discussed
previously. However, like multiparticle Monte Carlo, the performance of parallel hybrid Monte
Carlo depends more on the statistical efficiency of the Monte Carlo algorithm itself (e.g. how far
one can displace the system’s molecules in the composite move and still obtain a reasonable
acceptance rate) rather than just the parallel efficiency of the energy calculation itself. Loyens et
al. [133] employed the spatial decomposition algorithm with hybrid Monte Carlo as part of a par-
allel implementation of Gibbs ensemble Monte Carlo (discussed further below). These authors
found that in a gas phase, a time step much larger than that of molecular dynamics can be
achieved with hybrid Monte Carlo. Conversely, in a liquid phase, the achievable time step of
hybrid Monte Carlo is approximately equal to that of molecular dynamics. However, Brodz and
de Pablo [134] found that a hybrid Monte Carlo time step for a silica system could be twice as
large as that for molecular dynamics. Thus one must conclude that the statistical efficiency of
hybrid Monte Carlo, and thus its parallel efficiency as well, is system dependent.

Another approach to developing a parallelizable Monte Carlo algorithm, the spatial decomposi-
tion method [125, 135, 136], relies on the fact that in simulations of short-ranged potentials,
atoms separated by a distance greater than the range of the potential are energetically independent
and can therefore be moved simultaneously without violating the constraint of detailed balance.
This was accomplished by Heffelfinger and Lewitt [125], by taking advantage of the fact that for
short-ranged interaction potentials, processors can work simultaneously so long as the geometric
regions in which they operate are separated by a distance further than the cutoff length of the
potential (Figure 4). The efficiency of this spatial decomposition method can be determined by
defining a speedup, S, as,

CSE
S = IP =8 (3)

Csel,
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where Cgg is CPU time to reach a given value of the standard error for the system potential

energy on 8 processors (numerator) and P processors (denominator). Eight processors were cho-
sen due to the fact that was the minimum number of processors the algorithm could employ.
While the speedup obtained for one state point simulation carried out on 1024 processors was
about 128, (near perfect speedup from 8 to 1024 processors), the embarrassingly parallel
approach (EP) was found to be generally twice as efficient [125]. Thus, while the spatial parallel
MC algorithm is well-suited for very large systems which would not fit within the memory of a
single processor, (thus restricting the use of the embarrassingly parallel algorithm as discussed
above,) it is otherwise not as efficient as the embarrassingly parallel approach. This is especially

true for denser liquids. In the case of a Lennard-Jones system with a liquid density of po> = 0.73,
the spatial decomposition did not reach the standard error achieved by the embarrassingly parallel
approach in a reasonable number of CPU hours (Figure 5).

Another Monte Carlo algorithm, developed specifically for the grand canonical ensemble (con-
stant chemical potential, i, volume, V, and temperature, T), which is inherently parallelizable
involves utilizing multiple canonical ensemble simulations (constant number of atoms, &, V, and
T), each with a different N, which are sampled as they progress [137]. A parallelization strategy
would involve running the independent NVT simulations on individual processors and using a
host program to “hop” between the parallel MC simulations, accumulating statistics. This
approach would have the same limitations as the embarrassingly parallel approach: each indepen-
dent MC simulation would need to be warmed-up individually and small enough to fit within the
memory limitations of the individual processors.

Chen and Hirtzel [138] also developed a parallel algorithm for grand canonical Monte Carlo sim-
ulations (GCMC) of a rather specific zeolite gas adsorption problem. Their algorithm, imple-
mented for a Connection Machine CM2, involves using groups of processors to carry out
simultaneous “microstate” GCMC simulations for varying numbers of gas molecules, up to the
limited number able to be accommodated in a zeolite molecular sieve. Defining a “macro state™ as
a set of microstates with the same number of adsorbed gas molecules and determining the transi-
tion rates between these macro states yields a “macro state Markov Chain Model” (hence the
name MSMCM [139-141]). They reduced the simulation time for a single phase diagram data
point from tens of hours on a DEC Micro VAX II to a few minutes on some 16,000 processors of
the CM-2, a respectable achievement although with an algorithm constructed for a very specific
problem.

The issue of inserting and deleting molecules in a Monte Carlo simulation is not limited to
GCMC. Rather, one may think of a Monte Carlo move of a single molecule from one position to
another as an insertion followed by a deletior. While this generally presents little problem for
atomic systems, such Monte Carlo moves can suffer from low acceptance rates for molecular sys-
tems, especially at liquid densities. This problem has been solved by carrying out molecular inser-
tions by “growing” a molecule (inserting a molecule one atom at a time) at a new site and
accounting for the bias the method introduces. Such “configurational bias Monte Carlo” or
CMBC methods [142, 143] thus enable Monte Carlo simulations with insertion of macromole-
cules. Esselink et al. [144] have used a similar idea to construct a parallelizable Monte Carlo algo-
rithm. Briefly, several trial positions are generated simultaneously (and if implemented on a
parallel computer, on different processors). The trial position with the highest probability of being
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accepted is selected and the bias introduced is removed by adjusting the acceptance rules. When
this Monte Carlo algorithm was implemented on a serial machine, gains of up to 40% were
achieved [144]. This is because in the original CBMC, not only is the optimal configuration tested
for acceptance but also configurations which have a low probability of acceptance. The strength
of the Esselink et al. algorithm is that it eliminates expensive calculations for the configurations
which have a very low probability of acceptance. To our knowledge, this algorithm has not been
implemented on a parallel machine, however Esselink et al. do provide an estimate of parallel per-
formance, speedups of about 5 on 20 processors for pentane and 13 on 20 processors for dode-
cane. The method was also employed to develop a parallel algorithm for Gibbs ensemble Monte
Carlo, as discussed below.

Parallel Algorithms for Other Monte Carlo Methods

Parallel algorithms for other macromolecular Monte Carlo simulations have also been developed.
Such MC atomistic simulations are generally aimed at elucidating the minimum energy configu-
ration of a macromolecular system. In particular, the electrostatically driven Monte Carlo
(EDMC) method [145-147] has been parallelized. Briefly, the goal of the EDMC method is to
find the global minima, or lowest energy configuration, by carrying out an iterative search of the
conformational hyperspace of small polypeptide molecules. Test conformations, generated with
electrostatic predictions or with random sampling, are subjected to further energy minimization
and then compared to the current configuration. Acceptance or rejection of the test configuration
is then conducted via the standard Metropolis Monte Carlo criterion. The parallel algorithm
developed for EDMC employs a master processor to carry out the conformational search and gen-
erate new conformations [145, 148]. The energy of a local minimum for the proposed conforma-
tions is computed by multiple slave processors, with one conformation per processor. The master
processor periodically accepts a new conformation (which has been energy minimized by a slave
processor) and then halts the program, loading the slave processors with new starting conforma-
tions. This adds a synchronization cost, but ensures that all processors are working with the best
starting point for the global minimization.

After discussing the difficulty of accessing the efficiency of parallel algorithms for Monte Carlo
calculations which employ different Markov chains, Ripoll and Thomas [148] settle on an “appar-
ent speedup,” S(k,p),

_ Cle1) Ty

= Chp) R ®

S(k, p)

where C(k, 1) is the time for £ iterations on a single processor, C( k,p) the time for £ iterations on p
processors, f,, the number of required energy calculations required for the parallel program run-
ning on p processors, and f; the number of required energy calculations required for the program
Tunning on a single processor. The apparent speedup value obtained for the algorithm running on
an Intel iPSC/2-SX is approximately 14 on 16 processors. However, as the authors point out, the
method is best for small numbers of processors (less than 5) because of the EDMC method’s
underlying conformation acceptance rate which limits the attainable parallelism.
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A second effort to develop a parallel EDMC algorithm was carried out for a Kendall Square
Research KSR1 shared memory computer [147]. In this effort, a coarse-grained approach was
used to distribute a set of conformations across a set of processors. These “coarse-grained, or CG”
processors then distributed the task of computing the interaction potentials between the atoms
among a set of “fine-grained, or FG” processors. The primary criteria for good performance for
this algorithm was found to be an appropriate number of fine-grained processors: two for mole-
cules up to 100 atoms, three for 400 atom molecules and four to five for 1000 atom molecules and
nearly linear scaling behavior with number of coarse grained processors. In one example, for a
BPTI molecule (886 atoms and 325 dihedral angles), speed-ups of about 6 to 20 were obtained
with 10 coarse-grained processors, depending on the number of fine-grained processors.

Finally, parallel algorithms have also been developed for Monte Carlo simulations used to model
- polymer growth [149-152]. In these methods, the possible conformational angles of a new mono-
mer, added to the end of a polymer chain are sampled with a Monte Carlo method. One effort to
parallelize such a technique, briefly discussed in [151], claims nearly 100% efficiency.

C. Parallel Algorithms for Related Classical Simulation Methods

Molecular simulations of open systems (in the grand canonical ensemble) have until recently been
confined to Monte Carlo methods as discussed above, which yield only equilibrium properties.
Recent efforts, however, have yielded grand canonical molecular dynamics (GCMD) methods
(see [153] for a recent discussion of such methods). To date, however, only one GCMD simula-
tion algorithm has been completely parallelized [154, 155]. In this work, a parallel algorithm was
developed for dual control grand canonical molecular dynamics or DCV-GCMD. DCV-GCMD
method was developed [156, 157] to provide dynamical simulations of systems with chemical
potential gradients and basically consists of two grand canonical Monte Carlo “control volumes™
inserted in a molecular dynamics simulation. GCMC insertions and deletions are carried out
within these two control volumes enabling local chemical potential control while molecular
dynamics moves are carried out across the entire simulation domain. Because this approach is
essentially a hybridization of Monte Carlo and molecular dynamics simulation methods, the par-
allel algorithm developed for the method combined spatial decomposition molecular dynamics
and spatial decomposition Monte Carlo [154]. A schematic of a parallel DCV-GCMD simulation
volume is shown in Figure 6. The method and its parallel algorithm have been extended to bonded
molecular systems as well [155].

The Gibbs ensemble Monte Carlo simulation method [158], designed to efficiently determine the
phase diagram of a model fluid, has also been parallelized. In this atomistic Monte Carlo simula-
tion, two simulation volumes are employed, one for each phase of a two phase (e.g. gas-liquid or
liquid-liquid) system. Three types of moves are employed: molecule displacement (within a simu-
lation volume), volume changes of a simulation volume, and exchanges between the two simula-
tion volumes. In their parallel implementation of the Gibbs ensemble method, Loyens et al. [133],
developed parallel algorithms for each of the Gibbs ensemble Monte Carlo moves and tested their
algorithm on 1 to 10 processors for systems of 1024 and 14,364 Lennard-Jones atoms. Because
hybrid Monte Carlo [132] uses velocities drawn from a Gaussian distribution to project new trial
positions for a composite move of the system’s molecules, the energy calculation of the proposed
new configuration can be carried out as in a of molecular dynamics simulation (and multiparticle
Monte Carlo [131], discussed above). Loyens et al. [133] performed a parallel displacement move
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by combining spatial decomposition MD techniques with the hybrid Monte Carlo approach. The
spatial MD algorithm can also be used to determine the energies due to the Monte Carlo volume
change, with each processor calculating its contribution to the total system energy change due to
the molecules in its simulation domain and then appropriately scaling their positions when a vol-
ume change has been accepted. Parallelizing the third Gibbs ensemble Monte Carlo move,
exchange between the two simulation volumes, raises the same issues as parallelizing GCMC
simulations due to the fact that molecules must be inserted and deleted. Here, Loyens et al. used
the idea of Esselink et al. [144], attempting one molecule exchange (insertion in one simulation
volume and deletion from another) at a time and using multiple processors to increase the accep-
tance ratio of the exchange. We can define a speed-up, S, for this operation as

C,/A,

= /A, )
p/ap

where C| is the wall clock time for the simulation on a single processor, Cp the wall clock time on

P processors, A; the number of accepted exchange moves on a single processor, and Ap the num-

ber of accepted exchange moves on P processors. Using this definition, the parallel algorithm for
the exchange move in the Loyens et al. parallel Gibbs ensemble method achieved speedups of 3 to
7 on 10 processors.

IV. CONCLUSIONS

Over the last 10 years or so, an enormous amount of effort has gone into developing parallel algo-
rithms for atomistic simulation methods, a tribute not only to their computational demands but
also to their usefulness. While many of these efforts focused on computers which are no longer
marketed, an ever increasing body of knowledge about parallel atomistic siinulations has
emerged. With the advent of commodity-based cluster computing, which will provide economic
computing resources at the terascale in the coming years, the methods reviewed in this paper will
be essential to employ these resources to solve important and exciting problems governed by

. molecular-scale phenomena. :
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Figure Captions

Figure 1. The three communication steps of the parallel spatial molecular dynamics algorithm. In
the first step, each processor exchanges the coordinates-of the atoms in its domain with the
processors in the -+x and -x directions. In step 2, each processor exchanges the 3 sets of coor-
dinates it now possesses (it’s own, those from the +x processor, and those from the -x proces-
sor) with the processors in the +y and -y directions. Each processor now possesses 9 sets of
coordinates and can carry out step 3, exchanging the 9 sets of coordinates with the processes
in the +z and -z directions.

Figure 2. Plimpton’s [66] data for a spatial parallel molecular dynamics algorithm [13] for a
32,000 atom Lennard-Jones system (p*=0.844, r,=2.5G) on a traditional massively parallel

platform, the Intel Teraflops, and Cplant, a computing system of commodity computing and
networking components [65].

Figure 3. Plimpton’s [66] data for the spatial parallel molecular dynamics algorithm [13] for Len-

nard-Jones systems of 32,000 atoms (1 processor) to 16,384,000 atoms (512 processors) ona ..

traditional massively parallel platform, the Intel Teraflops, and Cplant, a computing system of
commodity computing and networking components [65].

Figure 4. An eight domain (denoted by the large numbers, 0-7) decomposition of a GCMC simu-
lation domain using the spatial parallel algorithm [125]. In this algorithm, each processor
“owns” a domain and carries out simultaneous GCMC moves in its 8 “subdomains” (the
regions denoted by the smaller numbers). Each processor works in the same subdomain (sized
larger than the interaction potentials cut-off distance) at the same time, enabling simultaneous
insertions, deletions, and displacements in different domains (and on different processors).

Figure 5. The standard error as a function of CPU hours for varying number of processors, P, of an
Intel Paragon for both the spatial parallel GCMC algorithm (solid lines) and the embarrass-
ingly parallel GCMC algorithm (dashed lines) [125].

Figure 6. A schematic of the paralle] algorithm for dual control volume grand canonical molecular
dynamics (DCV-GCMD) [154, 155] for 32 domains (and to be carried out on 32 processors).
The control volumes (unshaded regions) are subdivided into 8 subdomains to enable the use
of the spatial parallel Monte Carlo algorithm [125] during the “GCMC phase” (when inser-
tions and deletions are carried out in the control volumes to establish the desired chemical
potential in the control volumes). The spatial parallel molecular dynamics algorithm [13] is
used throughout the system volume to calculate the forces and new positions during the MD
phase (when all of the system’s molecules are moved in a molecular dynamics time-step).
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Molecular Dynamics Benchmark
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