Development of an electrical impedance computed tomographic two-phase flows analyzer. Final report

PDF Version Also Available for Download.

Description

This report summarizes the work on the research project on this cooperative program between DOE and Hitachi, Ltd. Major advances were made in the computational reconstruction of images from electrical excitation and response data with respect to existing capabilities reported in the literature. A demonstration is provided of the imaging of one or more circular objects within the measurement plane with demonstrated linear resolution of six parts in two hundred. At this point it can be said that accurate excitation and measurement of boundary voltages and currents appears adequate to obtain reasonable images of the real conductivity distribution within a ... continued below

Physical Description

Medium: P; Size: 514 p.

Creation Information

Ovacik, L. & Jones, O.C. August 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report summarizes the work on the research project on this cooperative program between DOE and Hitachi, Ltd. Major advances were made in the computational reconstruction of images from electrical excitation and response data with respect to existing capabilities reported in the literature. A demonstration is provided of the imaging of one or more circular objects within the measurement plane with demonstrated linear resolution of six parts in two hundred. At this point it can be said that accurate excitation and measurement of boundary voltages and currents appears adequate to obtain reasonable images of the real conductivity distribution within a body and the outlines of insulating targets suspended within a homogeneous conducting medium. The quality of images is heavily dependent on the theoretical and numerical implementation of imaging algorithms. The overall imaging system described has the potential of being both fast and cost effective in comparison with alternative methods. The methods developed use multiple plate-electrode excitation in conjunction with finite element block decomposition, preconditioned voltage conversion, layer approximation of the third dimension and post processing of boundary measurements to obtain optimal boundary excitations. Reasonably accurate imaging of single and multiple targets of differing size, location and separation is demonstrated and the resulting images are better than any others found in the literature. Recommendations for future effort include the improvement in computational algorithms with emphasis on internal conductivity shape functions and the use of adaptive development of quadrilateral (2-D) or tetrahedral or hexahedral (3-D) elements to coincide with large discrete zone boundaries in the fields, development of a truly binary model and completion of a fast imaging system. Further, the rudimentary methods shown herein for three-dimensional imaging need improving.

Physical Description

Medium: P; Size: 514 p.

Notes

OSTI as DE99001023

Source

  • Other Information: PBD: Aug 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99001023
  • Report No.: DOE/ER/13032--T3
  • Grant Number: FG02-90ER13032
  • DOI: 10.2172/677190 | External Link
  • Office of Scientific & Technical Information Report Number: 677190
  • Archival Resource Key: ark:/67531/metadc705614

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 4, 2015, 4:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ovacik, L. & Jones, O.C. Development of an electrical impedance computed tomographic two-phase flows analyzer. Final report, report, August 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc705614/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.