Computational radiology and imaging with the MCNP Monte Carlo code

PDF Version Also Available for Download.

Description

MCNP, a 3D coupled neutron/photon/electron Monte Carlo radiation transport code, is currently used in medical applications such as cancer radiation treatment planning, interpretation of diagnostic radiation images, and treatment beam optimization. This paper will discuss MCNP`s current uses and capabilities, as well as envisioned improvements that would further enhance MCNP role in computational medicine. It will be demonstrated that the methodology exists to simulate medical images (e.g. SPECT). Techniques will be discussed that would enable the construction of 3D computational geometry models of individual patients for use in patient-specific studies that would improve the quality of care for patients.

Physical Description

14 p.

Creation Information

Estes, G.P. & Taylor, W.M. May 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 20 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

MCNP, a 3D coupled neutron/photon/electron Monte Carlo radiation transport code, is currently used in medical applications such as cancer radiation treatment planning, interpretation of diagnostic radiation images, and treatment beam optimization. This paper will discuss MCNP`s current uses and capabilities, as well as envisioned improvements that would further enhance MCNP role in computational medicine. It will be demonstrated that the methodology exists to simulate medical images (e.g. SPECT). Techniques will be discussed that would enable the construction of 3D computational geometry models of individual patients for use in patient-specific studies that would improve the quality of care for patients.

Physical Description

14 p.

Notes

OSTI as DE95011995

Source

  • 1. world congress on computational medicine, public health and biotechnology, Austin, TX (United States), 24-28 Apr 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95011995
  • Report No.: LA-UR--95-1478
  • Report No.: CONF-9404262--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 70793
  • Archival Resource Key: ark:/67531/metadc704841

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 25, 2016, 2:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 20

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Estes, G.P. & Taylor, W.M. Computational radiology and imaging with the MCNP Monte Carlo code, article, May 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc704841/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.