Tribological properties of nanocrystalline diamond films

PDF Version Also Available for Download.

Description

In this paper, the authors present the friction and wear properties of nanocrystalline diamond (NCD) films grown in A-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, they address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10--30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical-vapor-deposition (CVD) process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these ... continued below

Physical Description

28 p.

Creation Information

Erdemir, A.; Fenske, G. R.; Kraus, A. R.; Gruen, D. M.; McCauley, T. & Csencsits, R. T. January 26, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, the authors present the friction and wear properties of nanocrystalline diamond (NCD) films grown in A-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, they address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10--30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical-vapor-deposition (CVD) process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond (MCD) films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e., in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable to those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy (EELS), they describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, they suggest a few potential applications in which NCD films can improve performance and service lives.

Physical Description

28 p.

Notes

OSTI as DE00751831

Medium: P; Size: 28 pages

Source

  • International Conference on Metallurgical Coatings and Thin Films, San Diego, CA (US), 04/12/1999--04/16/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-97443
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 751831
  • Archival Resource Key: ark:/67531/metadc704835

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 26, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 6:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Erdemir, A.; Fenske, G. R.; Kraus, A. R.; Gruen, D. M.; McCauley, T. & Csencsits, R. T. Tribological properties of nanocrystalline diamond films, article, January 26, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc704835/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.