Fast Grid Search Algorithm for Seismic Source Location

PDF Version Also Available for Download.

Description

The spatial and temporal origin of a seismic energy source are estimated with a first grid search technique. This approach has greater likelihood of finding the global rninirnum of the arrival time misiit function compared with conventional linearized iterative methods. Assumption of a homogeneous and isotropic seismic velocity model allows for extremely rapid computation of predicted arrival times, but probably limits application of the method to certain geologic environments and/or recording geometries. Contour plots of the arrival time misfit function in the vicinity of the global minimum are extremely useful for (i) quantizing the uncertainty of an estimated hypocenter solution ... continued below

Physical Description

27 p.

Creation Information

ALDRIDGE,DAVID F. July 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The spatial and temporal origin of a seismic energy source are estimated with a first grid search technique. This approach has greater likelihood of finding the global rninirnum of the arrival time misiit function compared with conventional linearized iterative methods. Assumption of a homogeneous and isotropic seismic velocity model allows for extremely rapid computation of predicted arrival times, but probably limits application of the method to certain geologic environments and/or recording geometries. Contour plots of the arrival time misfit function in the vicinity of the global minimum are extremely useful for (i) quantizing the uncertainty of an estimated hypocenter solution and (ii) analyzing the resolving power of a given recording configuration. In particular, simultaneous inversion of both P-wave and S-wave arrival times appears to yield a superior solution in the sense of being more precisely localized in space and time. Future research with this algorithm may involve (i) investigating the utility of nonuniform residual weighting schemes, (ii) incorporating linear and/or layered velocity models into the calculation of predicted arrival times, and (iii) applying it toward rational design of microseismic monitoring networks.

Physical Description

27 p.

Notes

OSTI as DE00759476

Medium: P; Size: 27 pages

Source

  • Other Information: PBD: 1 Jul 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2000-1765
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/759476 | External Link
  • Office of Scientific & Technical Information Report Number: 759476
  • Archival Resource Key: ark:/67531/metadc704803

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 6:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ALDRIDGE,DAVID F. Fast Grid Search Algorithm for Seismic Source Location, report, July 1, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc704803/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.