Simulation of H behavior in p-GaN(Mg) at elevated temperatures

PDF Version Also Available for Download.

Description

The behavior of H in p-GaN(Mg) at temperatures >400 C is modeled by using energies and vibrational frequencies from density-functional theory to parameterize transport and reaction equations. Predictions agree semiquantitatively with experiment for the solubility, uptake, and release of the H when account is taken of a surface barrier. Hydrogen is introduced into GaN during growth by metal-organic chemical vapor deposition (MOCVD) and subsequent device processing. This impurity affects electrical properties substantially, notably in p-type GaN doped with Mg where it reduces the effective acceptor concentration. Application of density-functional theory to the zincblende and wurtzite forms of GaN has indicated ... continued below

Physical Description

8 p.

Creation Information

Myers, S.M. Jr.; Wright, A.F.; Petersen, G.A.; Seager, C.H.; Crawford, M.H.; Wampler, W.R. et al. December 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times , with 7 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The behavior of H in p-GaN(Mg) at temperatures >400 C is modeled by using energies and vibrational frequencies from density-functional theory to parameterize transport and reaction equations. Predictions agree semiquantitatively with experiment for the solubility, uptake, and release of the H when account is taken of a surface barrier. Hydrogen is introduced into GaN during growth by metal-organic chemical vapor deposition (MOCVD) and subsequent device processing. This impurity affects electrical properties substantially, notably in p-type GaN doped with Mg where it reduces the effective acceptor concentration. Application of density-functional theory to the zincblende and wurtzite forms of GaN has indicated that dissociated H in interstitial solution assumes positive, neutral, and negative charge states. The neutral species is found to be less stable than one or the other of the charged states for all Fermi energies. Hydrogen is predicted to form a bound neutral complex with Mg, and a local vibrational mode ascribed to this complex has been observed. The authors are developing a unified mathematical description of the diffusion, reactions, uptake, and release of H in GaN at the elevated temperatures of growth and processing. Their treatment is based on zero-temperature energies from density functional theory. One objective is to assess the consistency of theory with experiment at a more quantitative level than previously. A further goal is prediction of H behavior pertinent to device processing. Herein is discussed aspects relating to p-type GaN(Mg).

Physical Description

8 p.

Notes

OSTI as DE00750210

Medium: P; Size: 8 pages

Source

  • MRS 1999 Fall Meeting, Boston, MA (US), 11/29/1999--12/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-3106C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 750210
  • Archival Resource Key: ark:/67531/metadc704753

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 7, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 7:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 7
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Myers, S.M. Jr.; Wright, A.F.; Petersen, G.A.; Seager, C.H.; Crawford, M.H.; Wampler, W.R. et al. Simulation of H behavior in p-GaN(Mg) at elevated temperatures, article, December 7, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc704753/: accessed December 11, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.