Final Report to the
United States Department of Energy
for
Research in Heavy Ion Nuclear Reactions
for the period
June 1, 1996 through May 31, 1997

G. A. Petitt, W. H. Nelson, Xiaochun He, and William Lee
Georgia State University
Contents

1 Introduction 4

2 Preliminary results of the E866 experiment 4

3 The E866 level-3 system 6
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
List of Figures

1. The MEast Spectrometer ... 6
2. E866 dimuon mass spectra .. 7
3. $\sigma^{pd}/2\sigma^{pp}$ vs. x_2 (high mass setting only) 8
4. $\sigma^{pd}/2\sigma^{pp}$ vs. x_2 (high mass setting only) 9
5. The E866 DAQ data pipeline with level-3 10
6. The E866 DAQ hardware architecture 11
7. The E866 level-3 architecture 12
8. Level-3 development system at GSU 13
1 Introduction

This is the final progress report for the experimental nuclear physics program at Georgia State University under the leadership of Gus Petitt. In June, 1996, Professor Petitt retired for health reasons and the DOE contract was extended for another year to enable the group to continue its work.

This year has been a productive one. The group has been heavily involved in the E866 experiment at Fermilab where we have taken on the responsibility of developing a new level-3 trigger for the experiment. Bill Lee, the graduate student in our group expects to obtain his thesis data from the run extension currently in progress, which focuses on the A dependence of J/ψ's and Υ's from beryllium, tungsten, and iron targets.

In the past year and a half the GSU group has led the development of a new level-3 software trigger system for E866. Our work on this project is described in the following sections.

As the year has gone by, Professor He has essentially taken over leadership of the group, developing and coordinating E866 Level-3 project. He is also in the process of initiating an entirely new project working with the Nevis group on PHENIX. He will develop LVL2.5 trigger processing for the PHENIX APT’s (Assembly and Trigger Processors). He will be submitting a new proposal to DOE to support this work.

2 Preliminary results of the E866 experiment

During the past year our group has devoted most of its effort to participation in the E866 experiment at FNAL. We have been responsible for development of a level-3 or slow-trigger system which is described below. In addition, the members of our group have actively participated in the day-to-day operation of the experiment. During the past twelve months William Lee has spent an average of about 10 days each month at Fermilab; Xiaochun He has spent about a week per month there and
Gus Petitt a total of about two weeks. This time has been spent both in routine shift work on the experiment and in testing the level-3 trigger system. For example, in addition to writing a large portion of the level 3 trigger code, Bill Lee has also spent about 10 days per month at Fermilab assisting with the E866 experiment. While there, Bill has taken shifts running the experiment. He has also assisted in the repair of the data acquisition system, and other equipment as needed. Bill has run a large number of Monte Carlo programs, which has allowed him to calculate the expected yield for the various configurations of the spectrometer, as well as design the optimum trigger matrix for the fast trigger system. Bill has also assisted in the completion of the first pass analysis on the Fermilab farms.

Most of our time, however, has been spent in the lab at GSU working on development of the level-3 system which is described below.

The E866 experiment, designed to measure \bar{u}/\bar{d}, is being performed using the MEast spectrometer shown in Figure 1. This spectrometer detects particles through the use of it's four tracking stations. A thick hadron absorbing wall located in the aperture of the SM12 analysing magnet is used for particle discrimination. The kinematics of the muon pairs are reconstructed from the trajectories of the surviving particles through the magnetic fields.

During the main data taking period, the MEast spectrometer was used to measure Drell-Yan yields from liquid H$_2$ and D$_2$ targets from which it is possible to extract \bar{u}/\bar{d} with three different magnets settings: low, intermediate and high. The full data set for the run ending on March 24, 1997, contains over 3.5×10^5 Drell-Yan events, over 1×10^6 J/ψ events, and over 20,000 T events.

- Figure 2 shows the mass spectra of dimuons measured by E866.
- Figure 3 shows the ratio of $\sigma^{pd}/2\sigma^{pp}$, which is related to \bar{u}/\bar{d}, from the initial analysis of the high mass data set.
The preliminary results from E866 (NUSEA) strongly confirm both the NMC evidence of $\bar{u}_p \neq \bar{d}_p$, as well as the NA51 result for \bar{u}_p/\bar{d}_p. Also, our data for $x > 0.2$ do not agree with the present CTEQ4M parameterization of the proton. These preliminary results have been presented by the E866 collaboration at several conferences and also at the DOE review at FNAL in April of 1997. In addition, an article for Physical Review Letters is in preparation.

The goal of E866 should be achieved after a full analysis of the data.

3 The E866 level-3 system

The E866 data acquisition (DAQ) system is a pipelined data driven system for maximizing system throughput. The E866 level-3 (also called a slow-trigger) is implemented as a data tagging and/or filtering process in the existing data pipeline. Fig-
Figure 2: E866 dimuon mass spectra
Figure 3: $\sigma^{pd}/2\sigma^{pp}$ vs. x_2 (high mass setting only)
Figure 4: $\sigma^{pd}/2\sigma^{pp}$ vs. x_2 (high mass setting only)
Figure 5 shows the data pipeline of the E866 DAQ system with the level-3 processing inserted between the Packet Formatter and the Packet Distributor tasks.

The advantages of this architecture are the following: (1) it eases system integration, configuration and synchronization; (2) it provides scalability of the level-3 processing power. The "LVL3 Tagging Filtering" task in Figure 5 can be regarded as a one unit of a data processor farm which can be expanded if more processing power is needed.

Figure 6 shows the major hardware components of the E866 DAQ system. The only hardware required for the E866 level-3 processing is a single-width VME 6U board made by Image & Signal Processing, Inc.[5]. ISP calls this unit a "Blazer board". As many as six Texas Instruments TMS320C40[4] digital signal processors (DSP) can be installed on a Blazer. We have three DSP’s currently installed on our Blazer. The software running on the VME host processor is VxWorks[6], a real-time operating system created by Wind River Systems, and for the DSP’s we use SPOX[7], a real-time OS for DSP’s by SPECTRON Microsystems, Inc. Each DSP on the Blazer can run independently with respect to the other DSP’s and can communicate with the
VME host processor. This basically allows us to run level-3 processing algorithms parallel on each DSP to increase processing throughput. Each DSP on the Blazer can also communicate with other DSP’s through hardwired internal comport connections.

![Diagram of the E866 DAQ hardware architecture](image)

Figure 6: The E866 DAQ hardware architecture

Figure 7 shows the major software tasks running on different processors and the associated task controls and data flow. The dotted arrows represent control message passings between the related tasks, and the solid arrows represent the data flow in the system. Detailed technical notes for each task in Figure 7 can be found at the web location: http://petitt.phy-astr.gsu.edu/L3.html.

All tasks inside the dotted box are running on DSP’s, and the associated data pools are located in the Blazer DRAM which is shared by all DSP’s on the Blazer.
The tasks inside the dashed box are the interfacing tasks running on the VME host processor to synchronize the level-3 processing on DSP’s.

We have put together at GSU a development system for the level-3 trigger with the components shown in the block diagram in Fig. 8.

There are three distinct processor platforms, each with it’s own distinct operating system, that we have had to deal with: the Sun workstation for code development, the VME host processor and the DSP’s on a VME board (Blazer). In order to synchronize
the Level-3 processing tasks running on different DSP's with the VME host tasks, we have developed several sets of drivers for communications between tasks running on these processors. Over the past year, we have written over 35k lines of code for this project and tested it using this standalone test system.

With this system either the Silicon Graphics or Sun workstations can be used as the host system for loading and controlling the single board computer (SBC) and Blazer board in the VME crate. We have written all the code for the DSP's in ANSI-C using the Texas Instruments C-compiler and code development software package which runs only on the Sun workstation. The code is compiled on the Sun, then downloaded over the ethernet link to the VME host processor which, in turn, loads the executable files in the DSP memory.

As a result of Blazer hardware and SPOX software problems, this project has not yet been fully installed into the E866 main DAQ system for its major data taking period. The final integration is expected to be done before mid July 1997.
References

FNAL Proposal P# 866, "Measurement of $\bar{d}(x)/\bar{u}(x)$ in the Proton".

