
BNL - 65854

Power Spectrum Calculation for the Cornell Wiggler
A SASE Experiment at BNL

Li Hua Yu

National Synchrotrori Light Source, Brookhaven National Laboratory
P.O. Box 5000, Upton, NY, USA 11973-5000

August 1998

National SynchrotronsLight Source

Brookhaven National Laboratory
Operated by

Brookhaven Science Associates

Upton, NY 11973

Under Contract with the United States Department of Energy
Contract Number DE-ACO2-98CH1O886



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
-n., rif +hcm;m.tmrnnln., an. mnw am., nf thin; m. nnn+m-mn+nwa c.. kmnn+r. nn+nwa nm. +hn:w mmnlnwm,am
-UJ U~ LUbL~ WMl~IUJ &&D, ALU. -UJ WA &lL&Xl bUU&L Clb&U~ -, DUUbULl&L U&&UA ~ UL &Ub.~ WSU~lUJ %-U,

makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or any third party>s use or the resuits of such use of any
information, apparatus, product or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial produc~
process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement recommendation, or favoring by the
United States Government or any agency thereof or its contractors or subcontractors. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
+k- 1l“;+-rl c+-+-. O.n.,mwwrnnm+nW-n.T -rrnm~xT+hnmm-if
uIb UUILU. U ubabbn uuv -n ufiaabub V. uu~ uswuw~ WU-. -w..



Power Spectrum Calculation for the Cornell Wiggler A SASE Experiment at

BNL “

Li Hua Yu

National Synchrotrons Light Source, Brookhaven National Laboratory, Upton, N.Y.11973

Abstract

Recently we showed [1] that the widely used simulation code TDA3D, even though a

single frequency code, can be used to determine the power spectrum in the SASE process

with excellent approximation in the exponential growth regime. In this paper, we apply this

method to the BNL Cornell Wiggler A SASE experiment as an example.

When the gain is not very high, there are many modes in the radiation, which seems to

make the analytical calculation very d.iflicult. However, we show that the increment of the

radiation due to SASE over the spontaneous radiation can be expanded in terms of guided

modes with rapid convergence. Thus when the spontaneous radiation is subtracted from the

SASE power during the calculation, there is a good agreement between the analytical theory

and the numerical simulation .

1. Introduction

Recently, we showed [I] that the TDA3D code, which has been mod.iiied to include har-

monic generation calculation, can be used to calculate the power spectrmn. One reason that

made this possible is that in the linear regime there is a very simple scaling relation between

the number of simulation particles and the output power: the output power is inversely pro-

portional to the number of simulation particles. Hence, the number of simulation particles

can be made much smaller than the actual number of electrons in the beam, making the

simulation practical.

This method uses an entirely different approach to reduce the number of simulation parti-

cles as compared with the simulation codes such as GINGER. We shall briefly compare these
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two approaches. The codes such as GINGER use an artificial initial distribution to simulate

the SASE start-up process. To suppress the incre~ed shot noise due to the limited number

of simulation particles, the codes are based on a distribution with equally spaced particles.

To introduce a controlled noise, they generate a random deviation from the equally spaced

distribution with a controlled rrns value of the displacements. The rrns displacement is chosen

to reproduce the same mean and vari~ce of the bunching parameter. While the mean and

variance of the bunching parameter simulate the initial status of the system, it is not evident

that the higher moments of this quantity would not aflect the high gain process, it is also not

evident that the mean and variance of the relevant quantity would remain to be the same as

the realistic distribution during the high gain process, even though the simulations did show

an agreement with the linear high gain theory.

As compared with these codes, our method uses a realistic distribution instead of an

artificial evenly spaced distribution. We do not attempt to suppress the noise due to the

limited number of simulation particles. Rather, use the scaling relation to go from the

simulation case with increased start-up noise (due to the reduced number of simulation

particles) to the realistic case. In this manner, we obtain the correct radiation power in the

linear regime.

Another reason

intrinsically broad

that we can

band SASE

simulation particles are limited

use a single frequency code such as TDA3D to calculate the

process is the following. In the original TDA code, all the

to within one optical wavelength, or, one cell. During a later

modification of the code for harmonic generation calculation, we extended the code such that

the simulation particles could be in an arbitrary number of wavelengths. It is easy to see that

if the number of cells is nl, then the code is describing a fictitious electron beam distribution

with longitudinal periodic structure of n{ optical wavelengths. That is, we artificially set a

periodic boundary condition on the electron beam with period equal to nl optical wavelengths.

h this case, the radiation spectrum h= a line structure with frequency spacing W./nl, where
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w~ is the optical frequency.

We denote the slippage distance by 1. = NWA~”, and the distribution period by 1 = nl~~,

then when 1>> lS , the line spacing ws/nz is much narrower than the spontaneous radiation

width WS/NW and the dense line structure gives a profile of the spontaneous spectrum. When

we choose the period to be equal to the slippage distance 1= 18, i.e., when nl = NW, the line

spacing is equal to the radiation spectrum width, and hence there is only one line. The slippage

NJ. is equal to the spacing between the periodic boundaries of the electron beam. Hence

there is no interaction between any two of the idealized periods of the electron distribution.

The calculated output energy within one idealized period of the electron distribution is the

same as it would be from a non-periodic structure in the electron beam, i.e., the same as for

()
the realistic case for SASE process. The output power is shown to be ~ apr .

w

Now from the ID analytic theory of SASE, we know that the full bandwid;h of the SASE

spectrum is [I] (1/NW) . {- ~ (1/NW) . ~=. This width is narrower than

2/NW as long as L. < 16LG. So when the wiggler length is much shorter than 16 power gain

lengths, i-fwe choose nl to be equal to the number of periods N., to good approximation there

is only one line within the bandwidth centered around the resonant frequency. Therefore,

when the wiggler length is much shorter than 16 power gain lengths TDA3D serves as a good

approximation to the output power even though it

this paper we assume the electron bunch is much

shape is sufficiently smooth.

handles only one single spectral line. In

longer than the slippage and the bunch

In section 2, we shall apply the new method to simulate the spontaneous radiation power

spectrum in the BNL Cornell Wiggler A experiment as an example and a check of the calcu-

lation. In section 3, we apply the method to the SASE calculation of the same experiznent,

and describe the analytical calculation.

2. The calculation of the spontaneous radiation spectrum
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We consider the parameters for the BNI, Cornell Wiggler A SASE experiment: the radia-

tion resonant wavelength is ~, = 5pm, the wiggler-period is ~W = 3.3cm, the wiggler length is

L. = 1.98m, the number of’ period is NW = 60, with wiggler parameter Km= = 1.44, and the

e-beam energy is ~ = 82. We take a small current 10 = 10 ampere to calculate spontaneous

radiation. Our analytical calculation based on the well-known spontaneous radiation theory

shows that the power spectrum, integrated over the full solid angle of the radiation, is as

shown by the solid curve in Figure 1. Because when the radiation angle is deviating; from the

forward direction, the wavelength is always shifted to longer, even though for a very small

solid angle the radiation spectrum is a simple sine function of width l/NW, the inteag-ated

spectrum over all angle is more like a step function with rising width 1/NWnear the resonant

wavelength As. We can show that the peak of the power spectrum, integrated over the full

solid angle, is given by:

(1)

where OW- ~- is defined as the opening angle of the spontaneous radiation within a

.mfEciently narrow bandwidth, and B. is the brightness in the forward direction and at the

resonant iiequency, given by:

(2)

with Z. = 377!0 the vacuum impedance, and [JJ] the Bessel factor. We can also show that

at the resonant wavelength As, the power spectrum is half of the peak height, and the peak

is positioned at a longer wavelength, away from & by a space of order but less than ~, /NW.

()
For our example, these formulas give Ow= 2.2mrad and ~ ap~” = o.043watt.

. peak

As explained before, to calculate the power spectrum, we choose the number of wavelength

cells in the TDA3D calculation to be NW = 60. The number of electrons in one wavelength is
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then N = lo&/ec = 1.1 x 106. Because the algorithm used by TDA3D [5], we must always

specify an input power to normalize the calculation, we choose the input power to be 10–10

watt, which is small enough that the output is entirely determined by the shot noise of the

simulation particle, and not affected by this number. When the number of simulation particles

is N’ = 1200, for the given parameters, we found that at A = 5.05prn, the radiation power

reaches the peak value of P’ =40 watt, after averaging over many runs. Thus, using the

scaling relation, we find that the real radiation power spectrum is

1-( )~pspcm. N’ 1200
&Nw ~

=~< P’>=
1.1 x 106

X 40 = 0.04 watt
peak

(3)

simulation, the figure 1 gives the results for several sets of .

as a fimction of the wavelength A and compare them with

To test the convergence of the

simulation of the power spectrum

the analytical theory. The figure also indicates the number of runs of TDA3D for each of the

average points. The figure shows that when the number of radial mesh points NPTR=360

and average over 20 runs, the simulation is converging to the analytical theory.

3. The simulation of SASE

To simulate SASE, we assume an idealized distribution used in [2]. The transverse distri-

bution is a step fimction profile with a constant current density within a radius of &Z, where

aZ = 170pnz is the rms radius, the current density is zero outside this radius. We assume

all the electron momentum is parallel to the wiggler axis. We assume both the horizontal

and vertical focusing is zero. Use the method described in section 2, we plot in figure 2 the

power spectrum at the resonant frequency w, as a function of current, varied from zero to 110

ampere, every point is an average over 10 run with different ifitial random n~ber seeds. ~

this calculation we used 5 azimuthal modes with m=O,+l, +2.

For this idealized model, the SASE power in the guided modes is explicitly solved [2,3].

The power spectrum in a mode n={j, m} ( j is the radial node n~ber, m is the ~tial node
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number) is:

()dP.. lL
-e ‘G”c,L(fi)d~ ‘9SASE (-) ]2Lcm dP ‘“

Lu dti sP~,

where LG. is the power gain length, and d is the scaled beam size defined by

with ks, kW the wavenumber for the radiation and the wiggler respectively.

parameter [4] given by

(2p)3 =
77.0Z0e2KfT~s[JJ]2

2rrq’k: c ‘

(4)

~ = !3kskWp~z,

p is the Pierce

(5)

where no is the peak current density, in our case it is just the current density within the

edge ra~m fi~Z, since it is a constant. K,ns is the rms wi~ler parameter. The gain

length is given by LGn = AW/81TpIm(An (ii)). Thus the power spectrum Eq. (4) is completely

determined by the scaled beam size ti through two functions: the coupling coefficient C. and

scaled growth rate &. The physical meaning, of Eq. (4) is clear now: the SAS E input noise is

the sfiontaneous radiation power spectrum within two power gain lengths [* (?:):;m.] ~

and this input noise is

give the output power

The two functions

AIL
coupled by the coupling Cn , and then amplified by a factor #e ‘Cn to

spectrum.

C. and & are calculated and given in detail by [1], and to a good

approximation when ti 2 0.25, the calculated result are fit with:

(6)

(7)

where for the mode {1,0}, we have cio = 0.397, al = –0.0067, PO = 1.093, pl = –002; while

for the mode {1,+1} we have a“ = 1.2625, al = –0.1494, P. = 5.082, ,81= –0.5707.

As an example, let us take 10 = 110 ampere. Using Eq. (5), we find that the Pierce

parameter p = 8 x 10-’ , and the scaled beam size ti = 0.95. Applying these to Eq. (6), and
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Eq. (7), we find the power gain lengths and coupling coefficients for the mode n={l,O} to be

LG = 0.26 m, C = 0.24, and for modem = {1,+1}, LG = 0.43 m, C = 0.021.

Using Eq.(4), we can calculate the power spectrum in each mode, and sum over modes.

However, empirically, we find it is convenient to calculate the increment of SASE power over

spontaneous radiation power ratio by sumrning over the corresponding ratio increments for

all the modes. Thus we have

()~dti SASE [1lM
– 1 = -jeo.zs – 1 x 0.24 x

2 X 0.26

(%):m.
1.98

[1
+2X ~e~–1 xO.021X

2 x 0.43

1.98
+ ...

= 13.6+ 0.2+ .. w 14. (8)

The 1 in each term in the square parentheses is the subtraction of the contribution from the

spontaneous radiation. The extra factor 2 in the second term is due to the two modes with
&

m=+ 1. For higher modes, the gain factor ~e ‘Gfi is rapidly reduced to nearly one or even

smaller than one, and the formula eq. (4) is not valid. However, the gain for these higher

modes are neghgible, this means that they only contribute to the spontaneous radiation, so

(~e%-’)
for these modes can simply be replaced by O as an approximation. The SASE

over spontaneous radiation ratio is then 14+1=15. The SASE power spectrum calculated this

way is plotted against the simulation results in Fig~e 2, showing a good agreement.

Naturally, one familiar with one dimensional high gain FEL theory would raise a question.

When the gain is not very high there are three longitudinal terms, i.e., in addition to the

growth term, there are other two terms comparable with the growth ternx one is exponentially

decaying, the other is oscillating, and the fommla Eq. (4) is not valid. W_hy we can still use

this formula even the total SASE over spontaneous radiation ratio is rather small, as shown

in figure 3?
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The answer is that, for the two modes we wrote down in Eq. (8), the gain factor is indeed

much larger than one. In three dimensional theory; the corresponding decaying mode and and

oscillating mode should be calculated as other transverse modes. They are neglected because

we are only calculating gain, and these modes only contribute to the spontaneous radiation,

which is subtracted from SASE calculation. If we do not subtract the spontaneous radiation

from the SASE, the series would converge very slowly. In addition, for the higher modes, the

growth term is not large enough to dominate over the other decaying and oscillating. terms,

so the calculation becomes very difFicult. In short, using guided modes to calculate sponta-

neous radiation is very difFicult and unnecessary. By subtracting the spontaneous radiation,

and only calculating the gain, we avoid this difficulty, and obtain an empirically excellent

approximation.

Up to now, we used an idealized step function beam profile to test the calculation. To

compare with experiment, we use a more realistic waterbag model. We choose the same rms

‘beam size oZ = 170pv~. This corresponds a normalized emittance En = hum — nwad for our

.,1case wlm a focusing betatron wavelength Ap = 3.h. Vv’e take the local energy spread to be

/&)
(~)
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Figure 1. Output power spectrum for spontaneous radiation as a function of wavelength

Figure 2. Output power vs current for the step function model

Figure 3. Output power vs current for the waterbag model

Figure 4. Radiation energy vs e-beam charge in the Cornell Wiggler A SASE e~cperiment

at BNL
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