
Massively Parallel Computing: A Sandia
Perspective

David E. Womble, Sudip S. Dosanjh, Bruce Hendrickson
Michael A. Heroux, Steve J. Plimpton, James L. Tomkins

Sandia National Laboratories, Albuquerque, NM 87185-1 11 0

David S. Greenberg2
IDA/CCS, 171 00 Science Drive, Bowie, MD 20715-4300

Abstract

The computing power available to scientists and engineers has increased dramati-
cally in the past decade, due in part to progress in making massively parallel com-
puting practical and available. The expectation for these machines has been great.
The reality is that progress has been slower than expected. Nevertheless, massively
parallel computing is beginning to realize its potential for enabling significant break-
throughs in science and engineering. This paper provides a perspective on the state
of the field, colored by the authors' experiences using large scale parallel machines at
Sandia National Laboratories. We address trends in hardware, system software and
algorithms, and we also offer our view of the forces shaping the parallel computing
industry.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under Contract DE-

Contributions to this paper represent work done at Sandia National Laboratories.
AC04-94AL85000.

Preprint submitted to Elsevier Preprint 23 April 1999

1 Introduction

Nobody seems to agree on when parallel computing started, but we can agree
that it has been around for a long time. Certainly, inany of the concepts go
back to the 19th century. However, from a practical standpoint, and for the
purposes of this paper, we consider the beginning of parallel computing to be
sometime around the middle 1980s. It was at this time that parallel computers
first began to be programmed as true parallel machines and to compete with
the established supercomputers, like the Cray vector machines.

There are several reasons why parallel computing became practical during the
mid-1980s. First and foremost, were the hardware advances. Miniaturization of
the electronics and the increasing power of the single-chip microprocessor al-
lowed processors with sufficient computational power to be packaged together.
Also, the ability to communicate between processors improved to match the
computational power of these one-chip processors.

Two competing hardware approaches battled for dominance in the late ’80s:
single instruction, multiple data (SIMD) and multiple instruction, multiple
data (MIMD). In SIMD machines, every processor executes the same instruc-
tion at each clock cycle but on different data. In M[MD machines, the pro-
cessors operate independently, and synchronization is left to the user. In the
evolutionary struggle between hardware paradigms, SIMD has fallen by the
wayside. Although SIMD machines can be cost effective for some applications,
they have proven to be less flexible and less general purpose than MIMD ma-
chines.

Hardware can also be classified as either shared memory or distributed mem-
ory. In a shared memory machine, any processor can access directly any part
of memory. In a distributed memory machine, memory is assigned to a pro-
cessor or node and data is shared through interprocessor communication. In
recent years, the concepts of shared memory and distributed memory have es-
sentially been merged. Individual computational nodes have shared memory,
while “massive” parallelism is usually achieved by replicating these nodes and
using distributed memory.

This classification of machines is also made somewhat difficult by the fact that
some vendors have tried to provide a single memory image on a distributed
memory machine. The goal is to remove the burden of message passing par-
allelism from the programmer by making the machine look more like a large
workstation. This has been successful for small numbers of processors but less
so as the number of processors increases. The failure has been due less to the
hardware than to the fact that compilers are unable to recognize and exploit
data locality. The Cray T3E, for example, has a very light-weight communi-

2

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

cation mode, but explicit message passing remains the most effective way to
use more than a few processors. Shared memory programming on distributed
memory machines may not be the holy grail, but it continues to provide a
quest for many researchers.

It may be worthwhile here to note that shared memory parallelism involves
implicit communication and explicit synchronization, while distributed mem-
ory parallelism involves explicit communication and implicit synchronization.
The right approach depends on the hardware available and the amount of
parallelism desired.

Table 1 shows a range of machines classified by instruction architecture and by
memory type. This table is, of course, incomplete; it is meant to be illustrative
of the types of machines in each category rather than exhaustive; however, we
think we have listed the machines that can be considered commercial successes.
The CRAY 1 and Cyber 205 shown in the table are vector machines, but this
is a form of fine-grained parallelism and illustrates the shared-memory, SIMD
approach. Also, the Origin 2000 implements the shared memory through a
non-uniform memory architecture (NUMA).

Table 1
This table shows a classification of several machines as either SIMD or MIMD and
as ei ited memory.

Distributed memory
ier shart

SIMD

MTMD

I memory or distril
Shared memory

Cray 1

CDC Cyber 205

Cray XMP, YMP

SGI Origin 2000

Connection Machine CM-2, CM-5

MasPar

Intel iPSC-2, iPSC-860, Paragon, Tflops

Cray T3D, T3E

IBM SP1, SP2
nCUBE 10, nCUBE 2

Hardware is only one member of a triad required for effective parallel com-
puting. The other members are system software and algorithms. Research
and development in these areas quickly followed the hardware improvement.
Even though some “f~ll-feature~’ operating systems were adapted for parallel
computing, many of the successful machines used a more custom approach.
“Stripped-down” operating systems that focused on speed, low memory re-
quirements and fast communications (especially message latency) provided
thk best results. Compilers and tools have followed somewhat more slowly.
Although automatically parallelizing compilers remain a very active area of
research, most parallel machines have compilers that are based on directives
or message passing library extensions. Similarly, most parallel debuggers have
little more capability than low-end, single-processor workstation debuggers.

3

The third member of the triad is algorithms. The history of parallel numerical
algorithms stretches back for many years and includes Jacobi iteration, von
Neumann’s weather forecasting, computing for the Manhattan project, asyn-
chronous iterations, and many more. These algorithins focus on the applica-
tions themselves. Recent algorithmic developments have generally exploited
the realization that the best serial algorithms are often the best parallel al-
gorithms. In other words, high parallel efficiency usually cannot compensate
for low algorithmic efficiency. A complementary effort has been devoted to
enabling algorithms, those that enable or support the use of a parallel ma-
chine. These include load balancing and scheduling methodologies as well as
collective communication algorithms.

Finally, it is worth mentioning data structures explicitly, although they are
inseparably linked with algorithms. Effective use of pairallel computers depends
on an effective data layout. That is, data must be stored so that it is as
“close” as possible to the processor that will be using it in computations.
Algorithm design and data layout are often done witlh the idea of minimizing
communications, although an alternate goal is to minimize transfers between
levels in the memory hierarchy that now includes local main memory and
distributed main memory. To date, the most effective parallelism has been
done by hand. Also, until now, memory layout and data structures have been
mostly static. However, this is changing, and the need for dynamic memory
use is increasing. This trend will increase the need for tools for algorithm
design, data layout, memory management and communication paradigms.

Most of the authors of this paper have spent a significant portion of their
careers at Sandia National Laboratories where the focus has been on the use
of distributed memory parallel computing for large-scale simulations in sci-
ence and engineering. Because of this research focus, this paper will focus on
the practical aspects of parallel computing and its use in applications. It will
avoid historical presentations except where necessary. Section 2 will present
an overview of hardware that has made an impact in practical, large-scale
simulations. Section 3 will discuss operating systems and tools. Section 4 will
discuss algorithms and enabling technologies. The focus in these three sec-
tions will be what is necessary for the practical use of parallel computers and
what will be required for continued progress. Sections 5 and 6 will present an
overview of industry and government impact on paratllel computing. Finally,
section 7 will summarize the paper with an eye toward the future.

4

2 The Development of MPP Hardware

Throughout the 1980’s) supercomputing was dominated by vector processors
such as those from Cray Research. By the end of that decade these machines
were modestly parallel with as many as eight processors; however, they were
mainly used in a mode in which applications ran on only a single processor.
It was during this period, though, that the development of large scale parallel
machines began. In the middle to late 1980’s) several companies developed
small scale parallel computer systems with a few tens of processors. Most of
these machines had a shared memory architecture; however, there were a cou-
ple of large scale parallel computer systems that were developed at this time
that would have a major impact on the progress of massively parallel pro-
cessing systems (MPPs). These were the Connection Machines from Thinking
Machines Corporation and the nCUBEs from nCUBE Corporation.

In 1987 Sandia National Laboratories began its transition from vector process-
ing to massively parallel computing with its acquisition of a 1024 processor
nCUBE 10 machine (see Table 1). The nCUBE 10 was a hypercube with a
distributed memory and Multiple Instruction Multiple Data (MIMD) archi-
tecture in which each processor had 512 KBytes of memory and a performance
equivalent to about that of a VAX-11/780. The full system was able to achieve
about 100 MFlops on a real application. With this machine Sandia researchers
John Gustafson, Gary Montry, and Bob Benner were able to demonstrate scal-
ing of greater than a factor of 200 on a fixed size real scientific application
and to win the Karp Challenge and the first Gordon Bell Award [lo]. In fact,
fixed-size speedups over 500 and scaled speedups over 1000 were achieved for
a number of applications. Sandia was able to port several of its scientific and
engineering application codes to this machine. On many of these application
codes the nCUBE 10 was faster than a Cray YMP processor.

The nCUBE 2 machine was introduced in 1990. This machine had a theoreti-
cal maximum of 8,192 processors, however, none of that size were ever built. In
1990, Sandia acquired an nCUBE 2 with 1024 processors as a replacement for
its nCUBE 10. This machine has 1024 processors each with 4 MBytes of mem-
ory and a peak performance of about 2.7 GFlops. Sandia ported a significant
fraction of its high-end computing workload to this machine. For most of San-
dia’s applications codes this machine proved to be more capable than all eight
processors of a Cray-YMP. The nCUBE 10 and the nCUBE 2 machines are
well balanced architectures, in that their interconnect performance (latency
and bandwidth) is sufficiently high that it does not limit the performance of
typical applications. Also, these machines proved to be very reliable. Sandia’s
original nCUBE 2 and a second one acquired later are still in use today, and
they have gone several years without a hardware failure.

5

The first computer system from Thinking Machines to have general scientific
applicability was the CM2. This machine had up to 65,536 one bit processors
in which 32 processors shared a Weitek floating point processor. In effect, a
fully configured CM2 had 2,048 parallel floating point processors. The CM2
had a single instruction multiple data (SIMD) architecture with a hypercube
interconnect. The CM2 used a front-end machine to provide an instruction
stream and to process any serial code in the applicat?ion. Each processor exe-
cuted the same instruction in lock step with all other processors assigned to a
particular job. The CM2 had a good balance between its interconnect and pro-
cessor performance and it became a successful and widely-used MPP system.
Sandia researchers found this machine to be a good match for a limited set
of applications; however, they found the flexibility of the MIMD architecture,
like that of the nCUBE machines led to wider applicability for scientific and
engineering applications.

Thinking Machines Corporation’s third generation computer system, the CM5,
replaced the CM2 in about 1992. The architecture of this machine was such

Table 2
Characteristics of Some Significant MPP Computer System

Computer Year of first Architecture

Inst allat ion and Balance

MIMD

nCUBE 2 1990 distributed memory, h y p (T 1

MIMD

CM2 1989 distributed memory, hypercube

SIMD

I CM5 1992 distributed memory, fat txee fair

SIMD/MIMD

Paragon 1993 distributed memory, 2D-mesh excellent

MIMD

Tflops 1997 distributed memory, 2D-mesh excellent

MIMD

T3D 1994 distributed memory, 3-D torus excellent

MIMD

T3E 1997 distributed memory, 3-D torus excellent

MIMD

6

I

that it could be used in either the SIMD mode or MIMD mode. This machine
used four vector processors together with a Sun Microsystems SPARC proces-
sor for each node. This machine was not as well balanced as the CM2, and it
was not nearly as successful in the marketplace.

During the late 1980’s and into the 199O’s, Intel Corporation became a ma-
jor player in MPP computing. Early Intel machines (TPSC l, IPSC 2, and
TPSC860) were built with a few tens to a hundred or so pro’cessors and had
hypercube interconnects with distributed memory MIMD architectures. HOW-
ever, with the Delta machine and then the Paragon, Intel moved into large
scale MPPs. The one-of-a-kind Delta and subsequent production Paragon sys-
tems are distributed memory MTMD architectures with 2D-mesh intercon-
nects. Paragons were built with either two processor or three processor nodes.

In 1993 Intel delivered to Sandia a Paragon computer system with almost 3800
processors. Sandia’s large Paragon had the two processor nodes. Sandia and
Intel researchers were able to achieve 143 GFlops on the MP-LINPACK bench-
mark with this machine. This machine became Sandia’s workhorse computer
system for high-end computing a year or so after its installation at Sandia.

As part of a wider shakeout in the industry, Intel announced in 1996 that
it had decided to get out of the supercomputing business. However, before
this announcement Intel had signed a contract with Sandia as part of the
Department of Energy (DOE) Accelerated Strategic Computing Initiative to
build the world’s first tera-scale computer system. As a result the Intel Tflops
computer system that Intel delivered to Sandia in stages during the first half
of 1997 is a one-of-a-kind machine.

The Tflops machine has more than 9,300 processors. The system is very well
balanced between processor speed and interconnect performance. It has a dis-
tributed memory MIMD architecture with a very fast two layer mesh inter-
connect. The machine has several unique features which have proven to be
very valuable. These include a completely separate communications network
for system monitoring and management. It also has a high level of redundancy
in the hardware. The machine is also unique in that it is split into three par-
titions with a classified end, an unclassified end, and a center section that can
be switched between ends in approximately twenty minutes. While the split
configuration is the usual configuration, the machine can easily be configured
as a single system for either classified or unclassified computing on a single
application.

The Tflops machine achieved a major milestone on December 4, 1996 when
it became the first general purpose computer to achieve a sustained trillion
floating point operations per second on the MP-LINPACK benchmark. (In
June of 1997 the full machine achieved 1.338 Tflops on the MP-LINPACK

7

i

benchmark.) Tflops has proven itself to be a phenomenal success. It exhibits
unprecedented reliability; availability exceeds 90%, and over 80% of its theo-
retically available cycles are used by real applications. Researchers have been
able to scale their application codes to the full machine capacity, and there is
a continuous backlog of large parallel applications waiting t o run on the ma-
chine. The Intel Tflops machine has recently been ulpgraded to a peak speed
exceeding 3 Tflops with memory of 1.2 Tbytes.

In the early 1990’s Cray Research moved into the M’PP market with its T3D
computer system. This machine used a three dimensional torus interconnect
with a distributed memory SPMD (single program, multiple data) architec-
ture. The machine is very well balanced between processor performance and
interconnect performance and has proven to be a very scalable architecture.
Gray’s second generation of this architecture, the T3E, has proven to be very
successful. With the exception of the Intel Tflops machine the Cray T3E is the
only current high-end computer architecture to demonstrate scaling to very
large numbers of processors on a wide variety of scientific and engineering
applications.

Architectures for high-end systems are continuing to evolve rapidly. Intel has
left the business as have Thinking Machines and nCUBE. Cray Research was
acquired by Silicon Graphics Incorporated and has decided that there will be
no follow-on to the T3E architecture. International Business Machines is, in its
new products, building a hybrid distributed memory system with symmetric
multiprocessor (SMP) nodes. Even though the distributed memory architec-
ture has proven to provide scalability to nearly 10,000 processors (Tflops) the
industry is moving towards an unproven architecture of a cluster of large SMPs
with weak interconnects. We find this trend to be warrisome and fear that it
will prove to be a major setback for high-end Computing. To date, success in
massively parallel computing has been achieved with computer architectures
that are well balanced between processor performance and interconnect per-
formance, so the slow connections between SMPs is likely to be problematic.
Also, clusters of SMPs require more complex programming models (e.g., both
threads and message passing) than pure distributed memory machines.

We are significantly more optimistic about another trend in high end archi-
tectures - the prevalence of build-your-own parallel imachines comprised en-
tirely of commodity components. Throughout the ’90s there has been a trend
towards building parallel machines out of commodity pieces, but each of the
major vendors retains some proprietary components. E3ut in the past few years
there has been a groundswell of interest in constructing machines entirely out
of off-the-shelf hardware and open source software. Several machines have been
constructed this way with multiple hundreds of processors which exhibit out-
standing price/performance. We are optimistic that the remaining challenges
can be addressed to allow these systems to scale to thousands of processors.

8

3 System software

System software includes operating systems (OS’s) , compilers, debuggers and
more. It is absolutely necessary) but in the case of high-performance com-
puting, it has not met the basic expectations of many of its users. It has
rarely provided a convenient user interface, portability, or highly efficient use
of the underlying hardware. Highest performance often required reorganizing
the structure of a code, adding system specific subroutine calls or directives,
and weeks of tuning. For example, the CM-5 vector units, the T3D’s block
transfer engine, and the second and third processors of Paragon-class ma-
chines can only be accessed via unportable, mostly undocumented techniques.

But, users need not despair. Recent trends in hardware architecture such as
the move toward increased (sometimes exclusive) use of commodity hardware
and peripherals, the shift from 32-bit to 64-bit addressing) and the increased
availability of multi-processor shared-memory systems each provide an oppor-
tunity for improved system software. It may be possible for high-performance
modifications to be leveraged on the explosive development of open OS’s such
as Linux or to be piggy-backed on the necessary OS re-implementations of
memory and file-system interfaces to take advantage of the larger address
spaces and SMP architectures.

1999 and 2000 will be key years for the development of the system software.
Ways must be found to add parallelism so that both shared-memory and
distributed memory performance is improved. The remainder of this section
reviews past system software approaches and recommends some new direc-
tions.

3.1 Part i t ioned system design

In order to take advantage of these architectural transitions it is desirable to
amplify a trend in system software toward partitioning of services.

Traditionally, system software for large-scale systems has been built under
one of two paradigms: full-custom or minor modifications to desktop systems.
Neither approach has been completely successful. Full-custom systems can
provide high performance and direct access to specialized new hardware fea-
tures. However, they are expensive to produce, maintain and administer. More
importantly, they are rarely portable to new systems. Conversely, desktop sys-
tems are designed to run on commodity processors and peripherals and inherit
the mass-market cost structure. Yet the desktop systems rarely allow efficient
access to new hardware features and often include overhead and restrictions
which are necessary in their native environment but detrimental in high-end

9

systems.

Both of these already flawed approaches are becorning even more difficult
to apply. The full-custom OS’S must support increasingly complex hardware
architectures - a system which only supports one type of disk, one type of tape,
and its own internal network cards is now considered unusable. On the other
hand the high-end system requirement to run without, rebooting for months at
a time while supporting hundreds of users will not be met by desktop system
software designed for single-user systems which are turned off at 5:OO pm
each day. Increasingly, desktop systems concentrate on the need to protect
inexperienced users and choose implementations which prevent experienced
users from efficiently exploiting the hardware.

The partitioned system approach attempts to marry the best of custom and
commodity systems. Partitioning makes the distributed nature of future ar-
chitectures a virtue rather than a challenge. System software can be naturally
partitioned along hardware boundaries; part of the machine can run a sim-
ple, custom kernel while another part can run a modified, full-functionality
workstation OS. The kernel provides only the most basic functionality needed
for highest performance applications while the workstation OS provides the
user interface and support for peripheral devices. The result is a system with
better maintainability, expandability, and robustness.

3.2 Puma and the ASCI/red machine

Sandia has successfully applied this partitioned approach to its large Intel
systems[9]. We have been able to routinely run jobs using thousands of nodes
and hundreds of GBs of memory over several days. On 32 MB Paragon nodes
we are able to allocate 32 million byte data arrays. Message passing overhead
is sufficiently low that parallel efficiencies exceeding 90% on thousands of
processors are not uncommon.

Both the Paragon and Tflop machines use a variant of OSFl/AD Unix as
their full-function OS. This OS runs on a service partition (about 15 nodes),
and an IO partition (about 50 nodes.) The service partition handles user
logins, parallel job launch, batch queues, debugger interfaces, and other user-
oriented services. The IO partition supports all disk drives and all high-speed,
off-machine networking. A custom kernel runs on the remaining nodes which
compose the compute partition.

The custom kernels (SUNMOS on the Paragon and Puma/Cougar on the
Tflop) run very close to the hardware - they attempt to provide as much access
and as little overhead as possible. The memory footprint is less than lMB, few
if any daemons compete for processor time, cache and TLB use is minimized,

10

and internode communication is an optimized (approximately lOms latency)
native feature. In comparison, standard OS’S have footprint well over 8MB,
depend on a wide variety of daemons to support normal operation, and provide
external communication through slow, general-purpose mechanisms like the
TCP/IP stack (over 100ms latency). The custom kernels succeed by being
very efficient on the tasks they do (virtual addressing, numeric exceptions, and
local processor scheduling (e.g. threads)) and by not providing many functions
common to standard OS’S (such as console support, http servers, etc.)

The functionality not provided by the custom kernel is spread across the ma-
chine in a natural way. Maintenance of physical peripherals such as disk and
ATM interfaces is provided locally in the IO partition. Interactions with users,
including windowing and job scheduling, are provided locally in the service
partition. Functions which connect two types of interaction, e.g. a debugger
must interact with the user and with the running application, are split between
partitions at their functional boundaries. Thus the debugger’s user interface
and access to the source code resides on the service partition while its abil-
ity to read and modify the memory of running code resides on the compute
part it ion.

Both the Paragon (until its processors became obsolete and it was decom-
missioned) and the Tflop machine run 24 hours/day, 7 days/week. Faulty
hardware is replaced through hot-swapping of boards and on-the-fly reconfig-
uration of the system hardware. The partitioned software allows for robust,
maintainable service which provides high efficiency to Sandia’s aggressive code
teams.

3.3 Partitioning to improve service

We further illustrate the use and advantages of partitioning in the next several
subsections.

3.3. I Memory Management

The use of virtual memory (VM) and demand paging is one of the hallmarks of
today’s computer systems. Unfortunately, although the VM/demand-paging
combination is highly successful for monolithic systems, the combination can
be deadly in the distributed realm. Sandia, and most of the early users of
the Paragon, found that when running a single integrated OSF partition the
Paragon yielded very poor performance. Since all nodes attempted to page
in the executable from the same file on a single disk, the use of additional
nodes often led to a slow-down rather than a speed-up. Synchronized appli-
cations tended to overwhelm the paging apparatus. Sandia’s remedy was to

11

install SUNMOS (at that time a research prototype) which allocated physical
memory on each node, and never demand paged.

This solution did limit the applications’ ability to ci-eate memory structures
larger than the physical memory size. This restriction was acceptable because
applications had access to huge amounts of physical memory (on the Tflop
there is over 512GB available). Problems which ran for days or weeks could
easily be fit within the physical memory.

The restriction on demand paging matched the Sandia philosophy of apply-
ing big machines to big problems which could not be solved otherwise. Even
so, without partitioning, the no-demand-paging solution might not have suc-
ceeded. Many user services were designed to work within a multi-user, dynam-
ically paged environment. It would have been difficult to get these programs to
abide by the memory restrictions. Fortunately these programs could be kept
in the service partition where the full-OS still used demand paging.

The partitioning allowed further memory management tuning. Significant im-
provements were obtained by modifying its custom kernel to use more efficient,
larger virtual pages. However, the use of such large pages would have been im-
passible if small tasks such as shell commands each had to be allocated a large
page. Since small interactive tasks were all segregated to the service and IO
partitions the large page approach was a success.

3.3.2 File systems and disks

A second pillar of OS design is the abstraction of disk (or other storage de-
vice) details into a file. Unfortunately, as with demand paging, the standard
file system model is not appropriate for large distributed systems. The use of a
file by the many components of a single, integrated, high-speed application is
radically different from the use of a file by many independent users. A common
high-performance operation is the coordinated reading or writing of a large
data set between many processors and many disjoint portions of file. Inter-
faces such as MPI-I0[14] and Sandia’s PXI/PDS/PIO have been designed t o
help applications programmers easily express the required coordination. Yet
these interfaces are forced to shoe-horn the resulting, naturally-parallel data
transfers into an explicitly-serial’ often high-overhead file system. Some paral-
lelism can be regained by having the interface program maintain thousands of
small files corresponding to each parallel data stream but this makes changes
in parallel shape difficult and requires users to commit to only accessing the
data through the particular interface used to create tlhe data.

Partitioning provides a possible alternative. Interfaces such as MPI-IO can
run on the compute partitions and be provided with a suitable virtual file
system (initial development seems likely to occur within Linux’ VFS but most

12

vendor OS’S also have some form of virtual file system). This local portion of
the parallel file system, LPFS, would be responsible for maintaining blocks
of files used by the local application component. Advanced techniques in TO
traffic analysis could be used to tune the prefetching, caching, etc. Mappings
from data blocks to disk locations would be the responsibility of the OS within
the IO partition. A range of file system types could be offered to the compute
partition.

A very fast file system might optimize the mapping from file and block number
to host IO node by using a simple function requiring only a list of the IO nodes.
Compute nodes could cache this function once during a collective open call and
then perform all subsequent operations directly with the proper IO node. An
MPI-IO implementation which queries the local file-system for parallel shape
could then coordinate its accesses to maintain as full parallelism as possible.

A well-defined interface between the LPFS and the IO partition OS would
allow the IO partition hardware and software to develop independently of
the compute partition. Thus, new compute engines would not be forced to
await the development of a suitable IO subsystem but would instead plug into
existing ones.

There is a great potential for improvement in this area. However, no approach,
including the one described above will be successful without the emergence of
and adherence to a set of common rules and conventions.

3.3.3 Debuggers and programming environments

System software is not limited to operating system maintenance of hardware.
It also includes the growing array of tools to which programmers and users
of applications have become accustomed. For a programmer the most basic of
these tools are the compiler/runtime/debug suite used to create the programs.
The debuggers for high-performance machines lag the furthest behind the tools
for serial machines.

Debugger development faces many difficulties, but we focus on just two: the
necessity of extending debuggers across a network and the challenges in rep-
resenting data from hundreds or thousands of threads-of-control.

Traditionally the debugger runs on the same machine as the code being de-
bugged. In fact, the debugger takes control of the process - all activity filters
through the debugger. The debugger also has direct access to program source.
This model is hard to apply to a distributed application. The debugger can be
given control of every process but it is no longer clear which debugger process
is in charge. In short the debugger must become a distributed program.

13

The partition model provides a simple strategy for the debugger. The control
portion of the debugger runs within the service partition using standard tech-
niques. (Using the workstation version the debugger in the service partition
also keeps it up-to-date and compatible with the latest compilers.) The portion
of the debugger which controls code (e.g. sets breakpoints, read memory loca-
tions, or writes to memory locations) is distributed throughout the compute
partition. These functions are typically highly OS and hardware dependent.
Yet they are also relatively simple and of short duration. Thus OS extensions
or modules may be unable to implement these functions and make them effi-
cient. The efficient implementation of debug functions on a parallel machine
is particularly important since many bugs involve the timing between various
nodes and slow debugging can alter the timing. In Fact, it is a challenge to
write a parallel debugger that does not introduce false timings, change race
conditions and create out-of-order execution dilemmas.

The above model of debugger design still suffers frorn information explosion.
The debugger must be able to filter responses to prloduce responses such as
“the common value is x but processor p has value y”. Graphical trace trees or
other multi-media representations may be necessary. However, no amount of
filtering and presentation will change the fact that debugging of 100-way and
higher parallel codes is extremely difficult.

We should not spend too much effort trying to make parallel debuggers look
just like serial debuggers only bigger. Instead fundamental research will have to
be done on ways to allow the computer t o assist in debugging. For example,
we may not be able to find a race condition on the update of a particular
variable by stepping through the code. Instead we may need utilities which
first apply strict protection semantics to all variables and then progressively
weaken the protection on subsets of variables. When a set which results in a
different result is found a search can be made to find out which variable is the
culprit.

Space does not allow a discussion of all the issues facing system software. Con-
tinued work will be required in the development of parallel job management
systems including batch queues. Heterogeneous systerris will present many new
problems not the least of which will be the maintenance of a reliable, robust,
and secure system. New interconnection network hardware will continue to
make fast, safe data movement a difficult research topic.

14

4 Algorithms and Applications: The Software Challenge

4.1 Parallel Programming

The principle objection to parallel computers is that they are difficult to pro-
gram. There is a significant component of truth in this claim, particularly for
large-scale parallel machines. However, it has been our experience that for
most scientific calculations, the complexity of this task has been overrated.

There are three reasons why parallel programming is more challenging than
serial programming. First, parallel programs must include the mechanics of ex-
changing data between processors or handling mutual exclusion regions. This
adds complexity to both the semantics and the syntax of a program. Second,
in an efficient parallel program the work must be evenly divided among pro-
cessors. This is an algorithmic challenge with no serial counterpart. Third, the
data structures must be divided among processors to preserve data locality.
This is obviously true for distributed memory machines in which data move-
ment is costly. It is also true for shared memory machines since locality reduces
the cost of maintaining cache coherence. This issue has a counterpart in serial
programming since data locality is also essential for good cache performance
on serial machines. However, the performance implication is much greater in
parallel. In general, the task of reducing parallel overhead, managing proces-
sor synchronization and balancing the work load makes it difficult to write
efficient and scalable parallel code.

To assist the programmer in meeting these challenges, several different parallel
programming methodologies have been seriously pursued; each has its short-
comings. The SIMD approach proved to be too inflexible and limiting, so it
is now only used in niche applications. HPF, with it’s SIMD-like design, has
foundered. Automatic parallelization of sequential code can be very useful for
relatively simple programs on small numbers of processors, but is currently of
little value on larger machines. Language extensions like Split-C [6] or Tita-
nium [18] have generated significant academic interest but minimal usage in
the wider community. A key reason for this is the chicken-and-egg problem
that programmers are understandably reluctant to use a language which lacks
vendor support, and likewise vendors will not support a new language no one
is using. By the metrics of vendor support and number of users, the two most
successful parallel programming methodologies are explicit message passing
as standardized by MPI, and shared memory emulation as instantiated in
OpenMP. Of these, only MPI can currently be described i ~ s an unqualified
success - OpenMP is sufficiently new that the jury is still out.

New architectures combining a large number of SMP nodes present a new set

15

of challenges. Message passing (e.g., MPI) emulation on the SMP node is often
absent or inefficient, so that threads-based programming is preferred within
a node. At the same time, threads-based programming techniques generally
do not scale to large numbers of nodes, so that message passing is preferred
between nodes. Mixing programming models can m,ake the already complex
task of algorithm design even more difficult.

Although explicit message passing can be tedious and error prone, it has a
key advantage over other approaches. It focuses the programmer’s attention
on the performance-critical issue of the parallel hardware - data locality. Mes-
sage passing requires a processor to own (or acquire) in its local memory all
the data it needs for its computations. An implementation that achieves sub-
stantial data locality is rewarded with high performance and scalability on
distributed or shared memory platforms. The price for this is in the complex-
ity of algorithmic design and implementation; as yet no compiler or automatic
tools can do this adequately.

Thus, the real challenge of programming large parallel machines is not in the
expression of the parallelism, but rather in designing and implementing seal-
able, data-local algorithms. This is particularly trule on large-scale parallel
machines, since as the number of processors increases, latent unscalability is
exposed. Scalability analysis is an important tool in devising parallel algo-
rithms, specifically the quantification of the communication requirements of
an algorithm. Unfortunately, many real applications are too complex to be
easily modeled in this way. Calculations that involve multiple phases, multi-
ple synchronization points or adaptivity are not easily amenable to analysis.
In the end, parallel algorithm development for complicated problems often in-
volves as much practical engineering as it does theoretical science. It is worth
noting that the most studied academic model of parallelism, the PRAM, does
not even account for communication cost. And even the more realistic models
like LogP, BSP, and their many descendants are not widely used by practi-
tioners. Having said that, it is worth noting that, although we do not use
any of the formal models explicitly, the parallel programming style which we
have found most effective is broadly consistent with the BSP methodology 3 .

Specifically, we like the programming discipline imposed by BSP’s superstep
concept in which phases of local computation are interleaved which phases of
data exchange.

Sandia has acquired a series of large-scale parallel machines over the past
decade that have been conveniently homogeneous in architecture. They have
all been true distributed memory machines with a thousand or more relatively
low-end processors and fast proprietary communication networks: an nCUBE
1 (1,024 custom procs), nCUBE 2 (1 ,O 4 custom procs), Intel Paragon (3,800

More information about BSP can be found at http://www.bsp-worldwide.org/.

16

http://www.bsp-worldwide.org

i860 procs), and currently the Intel Teraflop machine (9,300 Pentium procs).
These machines have required us (a luxury or burden, depending on your out-
look) to (1) code all our algorithms and applications in the lowest-common
denominator style of message-passing and to (2) pay careful attention to scala-
bility in order to run efficiently on thousands of processors. These requirements
have taught us several useful rules-of-thumb about parallel algorithm design.

The parallelism is in the problem, not in the code. Thus it is important
that the programmer understand the problem being solved.
To paraphrase the real estate mantra, there are 3 important issues in
good parallel algorithm design: locality, locality, locality. This means cre-
ating distributed data structures and choosing decompositions (assign-
ments of data to processors) that minimize inter-processor communica-
tion. Though these choices can be viewed as a programming burden,
they are a t the heart of designing an efficient parallel algorithm. The real
challenge is devising algorithms and decompositions in which locality is
enforced and, simultaneously, the work load is balanced.

Distributed memory machines or programming models like OpenMP
which provide the illusion of shared memory (i.e. through a global ad-
dress space) are convenient for the programmer and can simplify the code
development process. This ease of expression can lull the developer into
the illusion that data locality is not important, but on large numbers
of processors it always is. Even on machines that provide global address
spaces, a programmer must eventually confront the same set of algorith-
mic challenges posed by explicit message passing.
For scientific computing problems, it is generally the case that the fastest
parallel algorithm is an implementation of the best serial algorithm. This
may change in the future as even more complex applications are tackled,
but it has been the case to date. In the early and mid 80s, it was widely as-
sumed that the arrival of parallel computers would lead to a rash of new
algorithms motivated by parallelism. Within scientific computing, this
has generally not happened. For example, the initial excitement about
asynchronous iterative solvers which looked well suited to parallel archi-
tectures has largely abated. Instead, the past decade has seen a focus
on the efficient parallelization of existing serial algorithms, such as pre-
conditioned conjugate gradient and multilevel algorithms. One reason for
this is that large parallel machines allow for the solution of large problem
instances. Inefficient serial algorithms become prohibitively expensive,
even if they parallelize well. To put it another way, parallel scalability is
generally less important than algorithmic scalability.

Fundamentally new algorithms have been required principally where
parallelism generates new issues which lack serial counterparts. Specifi-
cally, novel algorithms have been required for problem decompositions,
load balancing and collective communication operations.
Attention should be paid to load-balance at the very beginning of the

17

design process. A load-imbalance of a few percent on a few processors
will typically amplify to kill scalability on hundreds or thousands of pro-
cessors.

(5) At a particular stage of a complex application, there is often a decision
to be made about which processor will perform what work (choosing a
decomposition). Typically this decision involves a trade-off between load-
balance and communication cost. That is, to load-balance the work, more
communication must be done to get data on the right processor, or vice
versa. In accordance with the previous point, we have found load-balance
is usually the more important factor in this trade-off. Current machines
typically have fast enough com nication networks to justify the extra
data movement, though this may be less true on the increasingly popular
build-your-own Beowulf-class clusters.

In aggregate, these issues pose an initial barrier to developing a new algorithm
or porting an existing application to a parallel machine. However, our experi-
ence has been that once a good algorithm is devised, its implementation is not
much more difficult than serial programming. The reward is high performance
and scalability in the final product.

4.2 Parallel Tools and Applications

In the past decade the study of parallel algorithms for scientific computing
problems has matured significantly. Ten years ago the best parallelization
strategies for most scientific problems were still uncertain. Today, in many
domains the parallel algorithms are well understood and the principal efforts
are devoted to the development of good tools and libraries to encapsulate the
results of the algorithmic research.

This maturation has proceeded at e far different applications.
Dense linear algebra calculations and finite difference codes were
among the first to mature. More com ns followed later like parti-
cle simulations, unstructured grid fin hods and iterative solvers.
A number of highly challenging computations are dil l in the algorithmic-
research stage. Among these are sparse direct methods, radiation transport ,
good paralIel preconditioners and adaptive calculatioiis.

The maturation of the field has taken longer than many predicted for several
reasons. One is that most observers underestimated the difficulty of devising
good parallel algorithms for even comparatively simple calculations. As an
example, the early dense linear algebra codes all used one-dimensional de-
compositions and it wasn’t until the early 90s that the superiority of two
dimensional decompositions was widely accepted. A second reason is that,

18

as discussed above, parallel software is inherently more complex than serial
software. The Fortran 77 coding style that predominated in the 80s was an
impediment to rapid progress. In recent years, the scientific computing com-
munity has eagerly adopted more modern software development techniques,
particularly object orientation. In the short run this change consumed time as
the community learned new languages and paradigms. But it will undoubtedly
lead to better tools and libraries in the long run.

While research issues remain in all areas of parallel computing, mature li-
braries and tools have emerged for many kernel computations. For developers
working on new application codes, these tools significantly simplify the writ-
ing of parallel software. They also allow developers to work at a higher level
of abstraction and avoid low-level coding. For example, SCALAPACK [4] is
now a standardized dense linear algebra library for parallel machines, similar
to LAPACK in spirit. Parallel sparse matrix libraries such as PETSc [3] and
AZTEC [12] provide a rich set of iterative solver and preconditioner options
to the user. Partitioning tools such as Chaco [ll] and METIS [13] are widely
used to create near-optimal decompositions of grids or other computational
loads across processors.

In many areas where libraries are difficult to develop, the basic algorithmic is-
sues are well understood. This understanding has led to the emergence of pow-
erful frameworks for applications development like PETSc [3] and POOMA [l].
As with standard libraries, these tools simplify software development and raise
the level of abstraction.

Another important metric for measuring the maturity of scientific parallel
software is by the complexity of applications that have moved to parallel plat-
forms. In the early days of parallel computing, the majority of successful appli-
cations were user-written research-level codes designed to model a particular
narrow problem in science or engineering. The early application conferences
in this field were rich with papers where individual researchers, many of them
students, had written their own new parallel code from scratch to simulate a
particular phenomenon. Such codes were often small - a few thousand lines.
If the physical phenomena were innately parallel, such codes often performed
very scalably on hundreds or even thousands of processors on early machines,
though it was only on very large parallel machines that they could compete in
terms of raw performance with the multi-head vector supercomputers of the
day (e.g. the Cray Y-MP).

In the last few years, we have begun to see full-scale engineering and science
applications run scalably on parallel machines. Often these packages encom-
pass a rich feature set, tens to hundreds of thousands of lines of code, and a
large user base. We cite a few examples:

19

0 finite element fluid flow: SALSA [7]
0 molecular modeling: NWCHEM suite[l5], QUEST [16], CHARMM [5]
0 transient dynamics: PRONTO [2]
0 particle in cell electrodynamics: SDPIC [8]

These codes are all scalable and achieve very high performance, as evidenced
by the recent entry of many of them in the Gordon Bell competition. This
IEEE-sponsored contest gives awards each year to applications which perform
at the very high end of parallel computing. The first finalists ten years ago were
small research and proof-of-concept codes that ran at less than 1 Gigaflop/sec.
Ten years later, large production-scale codes dominate the competition and
the performance of the 1998 winner reached the 1 Teraflop/sec (sustained)
performance milestone [17]. This is a remarkable tliousand-fold increase in
only ten years! Much of the increase is due to faster hardware and larger
machines, but it is also impressive that code complexity has kept pace as
application developers have become more accustomed to thinking in parallel
and more sophisticated. in their algorithm development.

A key feature all of these applications and libraries have in common is that they
were written essentially from scratch with parallelism in mind. In some cases
this meant starting with an empty file. In others, legacy code was kept, but a
fundamental redesign of data structures, code structure, and solution methods
was necessary for a distributed memory implementation. This is clearly costly
in terms of development time. But once it is finished, the new version replaces
the old one, and it runs portably on either serial machines or any kind of
parallel platform.

By contrast, several of these applications have competitors that have not yet
made the transition to massively parallel, at least in the commercial or most
widely supported versions. For example, the DYNA package for transient dy-
namics and GAUSSIAN code for molecular modeling have resisted fully scal-
able parallel implementation. This is primarily due to the sheer volume of
legacy serial code and man-years of development invested in these very pop-
ular applications. The inability to create parallel versions of such codes for
their broad user communities has been the Achilles heel of parallel scientific
computing. It is an open question whether such popular legacy codes will
ever be implemented in parallel, or will be supplanted' by their competitors,
or whether their lack of existence will prove to be the eventual downfall of
high-end parallel computing .

20

5 Parallel Computing in Industry

Private industry plays the role of both producer and consumer of parallel
computing. On the producer side, computer hardware and software compa-
nies build the components that are in turn used to build large-scale parallel
computers. In fact , large-scale parallel computers are economically feasible
to build only because the cost of component development is spread across a
variety of other end-products. On the consumer side, there are many indus-
trial applications that are voracious consumers of parallel computing, many of
these applications, e.g., parallel web servers, being far afield from the original
parallel computing application base.

One of the most dramatic influences on parallel computing over the last decade
has the been the tremendous growth in the use of computers and networks
in businesses and industries outside of traditional computational science and
engineering. As a result of this growth, and the relatively slower growth in
the demand for computers for science and engineering applications, we find
that large-scale parallel computing customers have minimal influence today
on the design of new computer components. At the same time, because of
the increased demand for more powerful computers and networks in other
fields, large-scale parallel computing has benefited greatly from having much
lower cost components, even if the components are not optimally designed
for science and engineering applications. Two specific results of the growth in
computing outside of science and engineering applications are the decline of
massively parallel processing (MPP) computers and the corresponding rise in
shared memory parallel (SMP) systems and commodity-off-the-shelf (COTS)
systems. We discuss these in more detail below.

The Decline of MPP Systems

In the mid 1980s, massively parallel processing (MPP) computer systems were
predicted to be the next big advance in high performance computing. Many
new companies, e.g., nCUBE, Thinking Machines, Kendall Square Research,
etc. were formed to build MPP systems. Tn addition, several existing companies
such as Intel, IBM and Cray Research also decided to design and build these
systems.

In those early days, a few universities, national laboratories, petroleum compa-
nies and large weather forecasting facilities were among some of the organiza-
tions that embraced MPP systems and made them work. These organizations
had compelling need for the performance MPP systems promised and also
had the resources to build an infrastructure to support the vastly different
computing model that MPP systems required.

21

Ultimately however the industrial marketplace, as a whole, has not adopted
MPP systems. There are many opinions as to why MPP systems has not
succeeded in industry, but we believe it is primarily because many of the
key applications have not been successfully ported and integrated into the
existing computing environment. There have been many notable efforts to get
industrial applications working well on MPP systems and some succeeded,
but many did not. Even those efforts that have been ultimately successful
came too late to save the industrial MPP marketplace. A second contributing
factor to the decline of MPP systems in industry is the steady increase in
capabilities of workstations and PCs. These low cost have systems provided
a doubling of single processor performance every 18-24 months with little or
no change required in applications, and furthermore have started coming in
multiple processor configurations. These developments have had an impact on
the entire high-end computer system market, and have made it especially hard
to justify large-scale efforts to get MPP systems working.

Without a large industrial customer base, MPP computer companies could
not stay in business. As a result, most computer systems that were designed
to be commercially available MPP systems are either gone or on their last
generation. The exceptions are Co paq, which will introduce a SMP-node
MPP, and IBM, which shows no signs of quitting their MPP development.
Most major MPP systems development efforts today are focused at national
laboratories or are being developed to address other very specific customer
needs. However, even though commercially available MPP systems have de-
clined, large-scale parallel computing i industry has gained new momentum,
and the efforts in parallel application evelopment hiave found new types of
computer systems that can deliver impressive performance improvements.

The Rise of SMP and COTS Systems

The decline of MPP systems in industry did not mean the decline of parallel
computing in industry. In fact, the growing availability of shared memory
parallel (SMP) computer systems and, even more interestingly, the growth of
commodity-off-t he-shelf (COTS) systems have given parallel computing new
momentum in the industrial marketplace.

SMP systems SMP systems are available from marly computer system ven-
dors. The most important reason for the success of SMPs is that they provide
a flexible platform for a variety of uses. They can siinultaneously be viewed
as (i) a better throughput engine for many independent computer jobs, (ii) a
shared memory parallel system to provide incremental1 performance improve-
ments for a few compute-intensive se ents of an existing serial application
and (iii) a distributed memory system with fast message passing.

22

Item (i) above is by far the most important reason for the success of SMP sys-
tems. It provides a cost-effective means of increasing the computing capacity
for many different types of computer users. This type of parallel computing
is at the job level and generally not of interest to the parallel computing
community. However, it is important because it has made SMP systems a
commercially successful product.

Item (ii) is increasingly becoming a reason for growth in SMP systems sales.
This is driven primarily by the soon-to-be ubiquitous presence of SMP PCs
along with OpenMP, an emerging standard for SMP programming. However,
the effectiveness of this type of parallelism is usually limited to a few processors
because only small sections of the code are rewritten and the rest runs in serial
mode. In fact, successful parallelism, even for a small number of processing
elements, is seldom achieved automatically. Significant code modifications,
directives or other programmer interventions are often required for efficient
parallelism.

Item (iii) is of most interest to us. It would seem that running an SMP sys-
tem and pretending it has distributed memory would be a waste of the SMP
hardware, but it is in fact often the best way to use an SMP system that has a
lot of processors. This is because almost all SMP systems have a non-uniform
memory access (NUMA) architecture, primarily in the form of a large sec-
ondary cache. Treating memory as distributed increases the locality of mem-
ory reference. It also reduces falsesharing cache conflicts, memory-bank con-
flicts and other problems that make UMA SMPs non-scalable. Furthermore,
if the message passing library is customized for the SMP hardware, it can be
implemented with memory copies and achieve efficient and scalable parallel
performance.

COTS Systems In addition to SMP systems, COTS systems are becoming
a very important parallel computing platform. Low cost, high performance
PCs, workstations and networking systems, along with increasing interest in
Linux, gives us the ability to create inexpensive and powerful parallel dis-
tributed memory computers from components that are available at your local
shopping mall, or from your favorite online dealer. As with SMP systems,
COTS systems are made possible because the components that go into build-
ing one are useful to the general computing community. The growing avail-
ability of COTS systems also increases the attractiveness of distributed mem-
ory applications. No longer do you need a high priced computer to benefit
from parallelism. Unlike SMP systems, which become very expensive beyond
a small number of processors. COTS systems can currently inexpensively de-
liver scalable parallel performance on tens of processors for the right types of
applications. Certainly large-scale COTS systems require some modification
of system hardware and software to get good performance on a broad set of

23

applications, as is exemplified by the CPlant project at Sandia, but the in-
vestment is far less than that required to develop a custom designed computer
system.

Shortcomings SMP and COTS systems certainly have shortcomings that
can make them less attractive to parallel computing users than MPP sys-
tems. In particular, SMP systems are typically not set up to dedicate a set of
processors to an entire application. stead, SMP systems are usually set up
to share resources dynamically, me ng processors will come and go from a
particular job during the life of that job. Although tlhis appears to be a triv-
ial issue, it is in fact something that is only slowly being addressed by SMP
systems vendors. A further complication of SMP systems comes from cache
coherency. Distributed memory applications do not need, and do not want
cache coherency across processors. Unfortunately, this feature is part of the
hardware support and cannot be shut off. As a result, false cache line sharing
can seriously degrade performance

COTS systems are currently not w used in man:y industries because the
COTS system is not really a single system but a collection of systems and
there is a build-it-yourself requirement. Currently there are a few universi-
ties, research laboratories and small companies that are addressing this issue
and having good success. They are taking these individual components and
integrating them both physically in terms of packaging and also logically in
terms of a layer of administrative software to make the cluster look as much
like a single system as possible. We see this trend continuing, and think that
eventually larger companies will also be providing these types of systems and
support.

The Status of Parallel Computing in Industry

Parallel computing in industry must objectively be considered a secondary
issue, except in enterprises who care a great deal about large scale scientific
and engineering applications, e.g., oil exploration and automotive companies.
Other factors like cost (especially cost of ownership), accuracy and relevance
of results, and integration of computers into daily business practices are much
more important to most industrial computer users. At the same time, the
emergence of SMP systems, especially multiprocessor PCs, and the growing
ease of setting up inexpensive COTS systems promise to make access t o par-
allel computing easier and more cost effective than ever before.

Parallel computing has an established foothold in many industrial markets.
Most notably, some parts of the aerospace industry ham used parallel cluster

24

computing for more than a decade to do large computational fluid dynamics
(CFD) calculations. High-end workstations, used during the day by CAD engi-
neers, are transformed into parallel computers for external airflow calculations
during the off hours. Fault tolerance, batch processing and load balancing are
built into the application since there is minimal OS support. By taking this
approach, the aerospace industry has been able to utilize a latent computing
resource.

A relatively small number of industries have driven the demand for large-scale
parallel machines. These include the oil and gas industry and the automotive
industry. The increased availability of parallel commercial codes has increased
the use of parallel machines. For example, parallel CFD codes are becoming
commonplace in a variety of engineering markets as a result of the successful
introduction of parallel version of many of the most important general purpose
CFD packages, e.g., FLUENT, STAR-CD, CFX, etc. Similarly, parallel ver-
sions of industry-standard applications are being slowly introduced in many
other markets, including automotive, chemical/pharmaceutical, oil and gas,
environmental and electronics. However, with few exceptions the process of
introducing parallel computing into the production-computing environment is
clearly in the early stages of development.

Interestingly, it is the growing availability of SMP and COTS systems, systems
that were not custom-designed for parallel applications, that is finally spurring
the growth in industrial parallel computing. The wide availability of these
systems is what has broadly attracted the attention of application software
vendors to parallel computing, something that custom-designed MPP systems
could not accomplish. The tremendous growth of computing in industry over
the past decade, and corresponding decrease in costs, is transforming parallel
computing from being something highly specialized and available to only a few
specialists into something that is accessible to anyone with a few PCs, network
cards and a hub. This is a welcome change because it increases the base of
parallel computing platforms, the number of parallel computing users and the
number of parallel application developers. However, we hold no illusions that
the increase in number of low-end parallel systems makes high-end systems
easy to build or use. A great deal of effort is still required to utilize effectively
hundreds or thousands of processors within a single application.

25

6 Government involvement in MPP Computing

The government and its national laboratories have had a major impact on
high performance computing from its inception, both through funding and
technology development. In the 60’s and early ~ O ’ S , CDC’s successes with the
CDC 1604, CDC 6400, CDC 6600 and CDC 7600 computers were driven by the
needs of government laboratories and government-funded universities. From
the mid-seventies Cray Research depended on government laboratories as the
first adopters of its Cray-lS, Cray X-MP, Cray Y-MP and C-90 parallel vector
processors. These two families dominated high performance computing until
the advent of Massively Parallel Processing (MPP).

In the 80s and early 9Os, DARPA funded computer architecture research at
Thinking Machines Corporation and Intel Corporation. This funding directly
impacted the development of the Connection Machine and the Paragon. A
third major vendor at the time, nCUBE, entered into a partnership with
Sandia National Laboratories. Although none of these three vendors currently
build supercomputers, they played a key role, along with Cray Research, in
developing and demonstrating massively parallel computing technology.

A number of federal laboratories have developed imptortant high performance
technologies. Sandia was a leader in demonstrating the practicality of solving
real engineering and science problems on massively parallel computers - its
load balancing software (Chaco) and arallel iterative solver library (Aztec)
have been licensed to hundreds of users. Oak Ridge National Laboratory de-
veloped the widely used PVM software that enables applications t o execute
across distributed computers. Los Alamos National Laboratory successfully
implemented a widely used ocean circulation model on the CM-5. Argonne
National Laboratory and Sandia have pioneered the development of immersive
visualization technology so that users could more easily interpret and interact
with the huge data sets that are generated on massively parallel computers.

Universities have also made key contributions to M P P technology. Much of
this work has been funded by DARPA, NSF and DOE. Caltech helped de-
velop much of the early scalable parallel hardware technology. The Pittsburgh
Supercomputer Center made MPP computing widely available to university
researchers with its T3D and T3E systems.

More recently, the U S . Department of Energy’s Accelerated Strategic Com-
puting Initiative (ASCI) has funded the development of high-end supercom-
puting technology. ASCI has supported research partnierships between Sandia
and Intel, Lawrence Livermore National Laboratory and IBM, and Los Alamos
National Laboratory and SGI/Cray. All three of these partnerships are aimed
at Tera scale computing.

26

t

7 Summary

In this paper, we have discussed the major aspects of massively parallel com-
puting, including hardware, system software and algorithms. Progress in par-
allel computing has been slower than expected, but both hardware and soft-
ware have continued to advance. The current generation of massively parallel
computers achieves peak computational rates in excess of two teraflops, far
exceeding the performance of the best single processor computers. And mas-
sively parallel computing is now widely used in production in government
and some industrial applications, e.g., oil and gas applications. The speed of
MPP computers has depended on advances in both microprocessors and in-
terprocessor communication networks. We expect further significant increases
in hardware capabilities, and we expect that the trend towards the use of
commodity components will continue.

System software and development environments have considerably lagged hard-
ware and algorithm development, and have often been adaptations of worksta-
tion software. Yet, despite this and the fundamental challenges of fast changing
hardware, commoditization, 64bi t addressing, and shared memories, system
software is likely to improve. The use of partitioning within a machine to re-
duce the concurrent requirements on the software allows for simpler solutions.
The advent of open operating systems (such as OpenBSD, Linux, and So-
laris) allows the creation of prototypes and the performance of fundamental
research. If the high-performance community makes a commitment to provide
access to hardware for system software research and development, there should
be a significant payoff.

Finally, we are optimistic about the future of high-end parallel scientific com-
puting algorithms and software. The reasons for this optimism include

(1) the emerging availability of parallel libraries and frameworks,
(2) the maturation of parallel algorithms for common application areas such

as finite element codes,
(3) the growing cadre of programmers who are comfortable with the effort

involved in writing message-passing codes, and
(4) the ubiquitous low-end hardware that is making moderate and even large-

scale parallel computers available to the masses, which will increase the
supply of and demand for parallel codes.

During the past decade, parallel computing has provided a rapid increase in
modeling and simulation capabilities for science and engineering, a capability
of which we are only beginning to take advantage.

27

.

References

[l] S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinlcer, M. Srikant, J. V. W.
Reynders, and M. Tholburn. POOMA: A high performance distributed
simulation environment for scientific applications. In Proc. Supercomputing
’95, San Diego, CA, December 1995. ACM and IEEIE.

[2] S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton,
and C. Vaughan. Transient solid dynamics simulations on the Sandia/Intel
Teraflop computer. In Proc. SG’97. ACM and IEEE, November 1997.

[3] Satish Balay, William D. Gropp, Lois Curfman McIiines, and Barry F. Smith.
PETSc 2.0 users manual. Technical Report ANL-95/11 - Revision 2.0.22,
Argonne National Lab0

[4] L. S. Blackford, J. Ch
J. Dongarra, S. Hamm
R. C. Whaley. ScaLA

y, E. D’Azevedo, J. Demmel, I. Dhillon,
y, A. Petitet, E:. Stanley, D. Walker, and

ide. STAM, Philadelphia, PA, 1997.

[5] B. R. Brooks and allelization of CHARMM for MIMD
machines. Chemi News, 7:16-22, 1992.

[6] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von
Eicken, , and K. Yelick. Parallel programming in Split-C. In Proc.
Supercomputing ’93, Portland, OR, November 1993. ACM and IEEE.

[7] K. D. Devine, G. L. Hennigan, S. A. Hutchinson, A. G. Salinger, J. N.
Shadid, and R. S.Tuminaro. High performance MP unstructured finite element
simulation of chemically reacting flows. In Proc. SC’97. ACM and IEEE,
November 1997.

[SI J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney. Body-fitted
electromagnetic PIC software for use on parallel computers. Comp Phys Comm,
87~455-178, 1995.

[9] David S. Greenberg, Ron Brightwell, Lee Ann Fisk, Arthur Maccabe, and Rolf
Riesen. A system software architecture for high-end computing. In Proceedings
of SC ’9 7, 1997. Available at http: / /www .supercomp .org/sc97/pro ceedings.

[lo] J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of parallel
methods for a 1024-processor hypercube. SIAM J. Sci. Stat. Comput., 9:609-
638, 1988.

[ll] B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0.
a1 Labboratories, Albuquerque, Technical Report SAND

NM, October 1994.

[12] S. A. Hutchinson, L. V. Prevost, J. N. Shadid, C. Tong, and R. S. Tuminaro.
Aztec user’s guide: Version 2.0. Technical Report AN1;-95/11 - Revision 2.0.22,
Sandia National Laboratories, 1998.

28

t ”

[13] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report CORR 95-035, University of
Minnesota, Dept. Computer Science, Minneapolis, MN, June 1995.

[14] MPI-IO: a parallel file 1/0 interface for MPI. The MPI-IO Committee, April
Version 0.5. See WWW http://lovelace.nas.nasa.gov/MPI-IO/mpi-io- 1996.

report.0.5.p~.

[15] http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html. Technical report, ’

1996.

[16] M. P. Sears, K. Stanley, and G. Henry. QUEST: Gflop performer. In Proc.
SC’97. ACM and IEEE, November 1997.

[17] B. Ujfalussy, X. Wang, X. Zhang, D. M. C. Nicholson, W. A. Shelton, G. M.
Stocks, A. Canning, Yang Wang, and B. L. Gyorffy. High performance first
principles method for non-equilibrium states in magnets. In Proc. SC’98. ACM
and IEEE, November 1998.

[l8] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-
performance Java dialect. In Proc. Workshop om Java for Hkgh-Performance
Network Computing, Stanford, CA, February 1998. ACM.

29

http://lovelace.nas.nasa.gov/MPI-IO/mpi-io
http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html

