Lead-free solder technology transfer from ASE Americas

PDF Version Also Available for Download.

Description

To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics ... continued below

Physical Description

57 pages

Creation Information

FTHENAKIS,V. October 19, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a Pb-free solder exclusively in their modules since 1993. Finding a safe, reliable and cost-effective substitute for lead-containing solders is not easy. Tin/lead solder has been the standard solder technology for several decades and extensive knowledge has been gained on the practical and theoretical aspects of its use. The printed circuit and the electronics industries recently embarked on a multi-million-dollar R and D effort to develop such alternatives, focusing on material properties, manufacturing processes, cost of alloys and long-term availability and reliability. Fthenakis outlined such efforts and listed alternatives examined by the electronics industries. One of the most promising alternatives (for electronics) is the 96.5%Sn/3.5%Ag solder that ASE Americas developed and use. ASE Americas' research and independent field testing showed it is at least as reliable as the standard one. This solder is slightly more expensive than the regular Sn/Pb solder. However, to the audience gratification, Steel Heddle, a solder manufacturer, announced that they will absorb the incremental cost and will supply 96.5%Sn/3.5%Ag at the same price as the conventional Sn/Pb solder ribbon. Another issue is the low TTLC for Ag in California (i.e., 0.5 g / kg of module), but Fthenakis showed that the Sn/Ag solder will add less than 10% of this quantity (i.e., 0.05 g of Ag / kg of module). The major point made by Fthenakis was that alternatives exist that are both environmentally benign and cost-effective, and that the PV industry can only benefit by being proactive in switching to Pb-free materials, thereby exceeding the expectations of its supporters and averting potential future legislation.

Physical Description

57 pages

Source

  • PHOTOVOLTAICS PERFORMANCE, RELIABILITY AND STANDARD WORKSHOP, Vail, CO (US), 10/19/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--67536
  • Report No.: EB2201000
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 759050
  • Archival Resource Key: ark:/67531/metadc704487

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 19, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 9, 2015, 12:56 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

FTHENAKIS,V. Lead-free solder technology transfer from ASE Americas, article, October 19, 1999; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc704487/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.