Decay of surface nanostructures via long-time-scale dynamics

PDF Version Also Available for Download.

Description

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is ... continued below

Physical Description

27 p.

Creation Information

Voter, A.F. & Stanciu, N. November 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool.

Physical Description

27 p.

Notes

INIS; OSTI as DE99000819

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99000819
  • Report No.: LA-UR--98-2092
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/674862 | External Link
  • Office of Scientific & Technical Information Report Number: 674862
  • Archival Resource Key: ark:/67531/metadc704435

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 6:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Voter, A.F. & Stanciu, N. Decay of surface nanostructures via long-time-scale dynamics, report, November 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc704435/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.