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Abstract- Constructive bounds on the needed 
number-of-bits (entropy) for solving a dichotomy prob- 
lem can be represented by a quotient of two volumes 
of multidimensional solids. Exact methods for the cal- 
culation of these volumes are presented. They lead to 
a tighter lower bound on the needed number-of-bits 
than the ones previously known. 

I. Introduct ion 

The problem of finding the smallest size neural net- 
work which can realise an arbitrary function given by 
a set of m vectors (i.e. examples or points) in n dimen- 
sions is not new. SIany results have been obtained for 
neural networks having a threshold activation func- 
tion [3]. Probably the first lower bound on the size 
of a threshold gate circuit for "almost all" Boolean 
functions was given by Neciporuk: size 2 2(2" n ) l l 2  
[12]. Later [ll], for depth = 4, Lupanov has proven 
a very tight upper bound: size 2(2" n)1/2 x { 1 + 
R[(2" n)''?]}. For classification problems, one of the 
first results was that a neural network with only one 
hidden layer having m - 1 nodes could compute an ar- 
bitrary dichotomy, showing that for binary inputs the 
size grows exponentially as m 5 2". A different a p  
proach for classification problems has been presented 
in [l,  4, 81, and is based on computing the entropy 
(i.e. number-of-bits) of the given data-set. Establish- 
ing bounds on the needed number-of-bits for solving a 
dichotomy is important for engineering applications. 
Knowledge of the bounds can improve certain con- 
structive neural learning algorithms [2]. Moreover it 
can result in reducing the area of future VLSI imple- 
mentations of neural networks [3, 61. 

The paper will present an effective method for the 
exact calculation of the volume of any n-dimensional 
complex. The method uses a divide-and-conquer ap- 
proach consisting of (i) partitioning a complex into 
simplices; and (ii) computing the volumes of these sim- 
plices. It will be shown that this optimal choice is 

related to the symmetries of the complex, and can sig- 
nificantly reduce the computations involved. 1l.e shall 
use these results in conjunction with previous ones per- 
taining to lower entropy bounds for classification prob- 
lems [l, 4, 5 ,  81. They lead to an improvement over 
the best known lower entropy bound [ 5 ]  for the case of 
neural networks with integer weights and thresholds in 
the range [ - p , p ]  (i.e. limited weights and thresholds). 

11. Volume of n D  Complexes 
A. Complexes, Simplices and their  Volumes 
Any n-dimensional body bounded by ( n  - 1)- rlinieii- 
sional hyperplanes is a complex. An n-dimensional 
complex with minimal possible number of vertices. i.e. 
( n  + 1) vertices, is called a simplex. The general for- 
mula for the calculation of the volume of a siniplex is 

where h, is the height of an i-dimensional simplex with 
its spot on i - 1 dimensional simplex with volume x-1 

(its basis). Any complex can be divided into a sum of 
simplices [ 71. 

Fig. I .  3 0  complex with a distinguished simplex. 
The partition is not unique. This non-uniqueness 

gives us the freedom to choose that specific partition- 



ing which is convenient for a particular case. The two 
possible approaches to this problem are as follows: 

General algorithm which works in all cases, but 
is a rather long, tedious method - symbolic com- 
puter calculations are recommended. 

0 Simplification of the problem by taking advan- 
tage of the symmetries of the particular complex 
- this method can be applied only in case of a 
highly symmetric complex. 

B. General  a lgori thm of the part i t ion a 

A general algorithm for finding the volume of any R- 
dimensional complex possessing k vertices ( k  > n) is 
based on partitioning the complex into a sum of sim- 
plices, and works as follows: 

complex into simplices 

If k = R + 1 it is already a simplex. 

If k > n + 1 choose one vertex, 211. 

Consider the set consisting of all remaining ver- 
tices (i.e. k - 1 elements.) 

Take all the possible subsets of this set, contain- 
ing R - 1 elements each. The vertex 211 and any 
such subset define uniquely an n - 1 dimensional 
hyperplane. 

Take all the hyperplanes obtained above. They 
define the faces of the simplices onto which the 
complex is partitioned. 

Calculate and add the volumes of the simplices. 

The algorithm allows for the automation of the whole 
procedure, including the calculation of the volumes of 
the simplices. Hence, the exact calculation of the vol- 
ume of any complex becomes possible. The partition- 
ing into simplices obtained by using a direct computer 
program might not always be the optimal one in terms 
of ease of calculations, but it always leads to an exact 
solution. 

C. Application of the symmetr ies  of the 

In particular cases the symmetries of the complex may 
significantly simplify calculations. Fortunately, the n- 
dimensional complexes of practical application for en- 
tropy calculations usually are highly symmetric. Let 
us consider, as an example, a complex used by Beiu & 
Draghici [ 5 ] ,  for bounding the number-of-bits. The R- 
dimensional complex considered there consists of two 

complex 

hyperprisms, which have as common basis an n - 1- 
dimensional complex. 

Fig. 2. The highly symmetric complex from 151 in 
3 0  with 2 0  basis. The highs h in all three dimensions 
are dashed. 

The sum of the heights of these hyperprisms is the 
same in every dimension and equal to h: 

(2) h = hi  + h2 = l / p  = d 

were d is the smallest Euclidean distance between ex- 
amples from opposite classes. 

This means that every simplex with a height hl = &, has its counterpart, a simplex with the same basis 
b and height h-hl = A. The sum of their volumes 
is equal to a volume of a simplex with height h. The 
sum of the volumes of these bases for all such pairs is 
also known: this is the ( R  - 1)-dimensional complex 
described above. To find the volume of this complex 
one has to continue to repeat the same procedure in 
(n - 1)-dimension, (n - 2) ..., down to 1-dimension. In 
this particular case it leads us to a simple formula: 

V(h,n)  = h"/n!  . (3) 

Taking into account that h = d ,  V ( d , n )  = & and 
gives us the following lover entropy bound: 

# bits ezarnple (4) 

[l+loga(n - l>hz log&loga(n)fn logptlog n!1 

= rlog {VP, ww, 
= [log ( 2 4 n  - 1) D" u(n) p" ~ ! ) l  
= 

where V(D,n )  is volume of the intersection of two 
spheres in n-dimensions, having the same radius D 



and placed such that the center of each one is on the 
boundary of the other one. D is the largest Euclidean 
distance between examples from opposite classes. 

Becouse d = l / p ,  and knowing that loga(n) 2 
-1.1667n+O.OGGS (see [ 5 ] ) ,  and using Stirling formula 
we obtain: 

log n 
2 

# bits = rn log (D/d)-1.6880n+-+1.5667 

which slightly improves over the best previous known 
lower entropy boun from [ 5 ] :  

(5) 

# bits = [n log ( D / d )  -0A667nflog n+0.0665] 
(6) 

111. Volume of Solids Bounded by Curved 
Hypersurfaces 

Computing the volumes of multidimensional bodies 
bounded by curved hypersurfaces is in general a com- 
plicated task. Fortunately, the solids under consider- 
ation in the calculation of the entropy bounds from 
[5 ,  81 are highly symmetric. These symmetries make 
it possible to  exactly compute these volumes. 

The preliminary step for computing the volume of 
a solid bounded by curved hypersurfaces is to look for 
symmetries of these surfaces. In case when the sur- 
faces are parts of spheres, paraboloids, hyperboloids, 
cylinders, cones, the problem can be significantly sim- 
plified by a proper choice of a curvilinear orthogonal 
coordinate system. The choice is not always obvious 
- even in low dimensions - but finding such a co- 
ordinate system is highly rewarding: it tremendously 
simplifies calculations. Examples of such coordinate 
systems are: multidimensional spherical system for or 
cylindrical systems, system of orthogonal curvilinear 
coordinates built of families of ellipsoids and one sheet 
hyperboloids two sheets hyperboloids. These families 
are orthogonal to each other. 

Unfortunately, not every curved hypersurface is a 
surface of a fixed coordinate in a reasonably simple 
orthogonal coordinate system. 

IV. Slicing: The Universal Method 

For n-dimensional solids bounded by curved hypenur- 
faces the essence of an effective method for the calcu- 
lation of the volume is also based on recursive slicing 
the n-dimensional solid into (n - 1)-dimensional solids. 
After k steps we obtain (n - k)-dimensional solids of 
known volumes. In order to obtain the volume of the 
n-dimensional solid one needs to integrate backward 
Ic-times. There is no guarantee that these integrations 
can always be done exactly. Even if the analytical in- 
tegration is not possible, numerical results can always 
be obtain. 

As an example let us consider volume of a part of 
an ( n  + 1)-dimensional sphere. 

1 

Fig. 3. Volume of a part of 3-dimensional sphere. 
To find the volume we have to integrate over the 

angle 4 in the range (0, in the (n+l)- th  dimension. 
This is an integral of the function which describes the 
volume of n-dimensional spheres constituting the ( n  + 
1)-dimensional one. 

The first step is to find the volumes of the slices. 
We follow Maurin [lo] for this calculation. The n- 
dimensional sphere can be sliced by the planes .I, = 
const. The slices are (n- 1)-dimensional spheres which 
are reduced 4 3  times with respect to the n- 
dimensional unit one. Therefore, we have the following 
expression for volume of the n-dimensional sphere: 

lKnl = /' -r (/-)"-l~Kn-lldr, (7) 

where lKn-l1 is the volume of (n - 1)-dimensional 
sphere in our slicing, and T is the radius of the n- 
dimensional sphere. We substitute z,, = r sin t,  then 
JG = cos t ,  and: 

= 2 " P  fi / d 3  r cosi t d t  
a=1 

There are only two possible cases. 
For n = 2k the product of the integrals gives: 

(9) 

while for n = 2k + 1 it gives: 



The final integral in (n+ l)-dimension gives the volume 
we are looking for: 

[3] Beiu, V. (1998) VLSI Cornplenty of Dzscrete 
Neural Networks. Yewark, YJ: Gordon & Breach. 

[1] Beiu, V., & De Pauw, T. (1997) Tight Bounds 
on the Size of Neural Setworks for Classifica- 
tion Problems. In J. Mira, R. lloreno-Diaz and J. 
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A bound on Vn+l was detailed in [4]. 

V. Conclusions 
The geometrical results for computing volumes of mul- 
tidimensional solids can be used to improve on the best 
known lower bound on the number-of-bits [5 ] .  

0 The exact calculation of the volume of n- 
dimensional complexes is always possible. 

0 The exact calculation of the volume of n- 
dimensional solids bounded by curvilinear, but 
highly symmetric hypersurfaces (segments of 
spheres, tori, cones, cylinders, ellipsoids, hyper- 
boloids, etc.), is usually possible, especially when 
one is able to introduce a proper system of curvi- 
linear orthogonal coordinates. 

0 The calculation of the volume of an n < D di- 
mensional solid bounded by hypersurfaces with- 
out high symmetries is in general also possible 
by applying the slicing method, but usually one 
can get only numerical results. 

0 Using the methods presented in this paper, the 
exact calculation of a quotient of two volumes 
of multidimensional solids becomes feasible. It 
leads to a tighter lower bound on the number-of- 
bits (entropy) for solving a dichotomy problem. 
It has applications to constructive neural learn- 
ing and VLSI efficient implementations of neural 
net works. 

References 
Beiu, V. (1996) Entropy Bounds for Classification 
Algorithms. Neural Network World, 6(4), 497- 
505. 

Beiu, V. (1997/8) Entropy, Constructive Neural 
Learning, and VLSI Efficiency. Invited chapter 
in R. Andonie & G. Toacse (eds.): Neural Re- 
search Priorities in  Data Transmission and EDA, 
Brasov, Romania: TEMPUS SJEP 8180. 

- 
Neural Networks: Very 'Tight Entropy Based 
Bonds. In D.W. Pearson (ed.): Proc. of the Intl. 
ICSC Symp. on Soft Computing, Fuzzy Logic. 
Artificial Neural Networks, Generic Algorithms 
SOC0'97 (Nimes, France), ICSC Academic Press, 
Canada, 111-118 

[6] Beiu, V., & Taylor, J.G. (1996) On the Circuit 
Complexity of Sigmoid Feedforward Neural Net- 
works. Neural Networks, 9(7) ,  1155-1171. 

[7] Borsuk, K. (1969) Multidimensional Analytic Ge- 
ometry. Warsaw, Poland: PWN. 

Draghici, S., & Sethi, I.K. (1997) On the Possibil- 
ities of the Limited Precision Weights Neural Net- 
works in Classification Problems. In J .  llira, R. 
Moreno-Dim and J. Cabestany (eds.): Biologacal 
and Artificial Computation: From Neuroscience 
to Technology, Lecture Notes in Computer Sci- 
ence, 1240, Berlin, Germany: Springer Verlag, 
753-762. 

Makaruk, H.E. (1998) Computations of Entropy 
Bounds: Multidimensional Geometric Methods. 
Tech. Rep. LA-UR-97-1917, Los Alamos National 
Laboratory, USA; to appear in the Proc. of the 
Intl. ICSC Symp. on Engineering of Intelligent 
Systems EIS'98 (Tenerife, Spain, 9-13 February 
1998). 

Maurin, K. (1980) Analysis II: Integration, Dzs- 
tributions, Holomorphic Functions, Tensor and 
Harmonic Analysis. Warsaw, Poland: PWN, and 
Dordrecht, The Netherlands: D. Reidel Pub. Co. 

Lupanov, O.B. (1973) The Synthesis of Circuits 
from Threshold Elemnts. Problemy Kibenetiki, 
20, 109-140. 

Neciporuk, E.1, (1964) The Synthesis of Networks 
from Threshold Elements. Soviet Mathematics - 
Dokludy, 5(1), 163-166. English translation in Au- 
tomation Ezpress, 7(1), 35-39 and 7(2), 27-32. 



M98002660 
111111111 111111111111111111111118111111111111 Ill1 

Seport Number (14) cAcej3--(774a1 

DOE 


