
ARIES
AUTONOMOUS ROBOTIC INSPECTION EXPERIMENTAL

SYSTEM

TECHNICAL APPENDICES

Period of Performance: 30 September 1992 through 31 July 1998

by

Robert O. Pettus, Project Manager & Principal Investigator
Jerry L. Hudgins, Senior Investigator

David N. Rocheleau, Senior Investigator
Robert J. Schalkoff, Senior Investigator

Paul McCarty, Graduate Research Assistant
Edward A. Hamilton, Associate Director, SCUREF

August 1998

Work performed under Contract
FETC DE-AC21-92MC29115 -99

Submitted by

SOUTH CAROLINA UNIVERSITIES
RESEARCH AND EDUCATION FOUNDATION

Strom Thurmond Institute
Clemson, South Carolina 29634-5701



TABLE OF CONTENTS

COMPUTERS AND CONTROLS APPENDIX A

COMPUTER VISION SYSTEM APPENDIX B

ELECTRICAL SYSTEMS APPENDIX C

MECHANICAL SYSTEMS APPENDIX D

ROBOTIC VEHICLE SYSTEMS APPENDIX E

FIELD TRIALS APPENDIX F



Appendix A
ARIES:  An Intelligent Inspection and Survey Robot

COMPUTERS ANDCOMPUTERS AND
CONTROLSCONTROLS

Department of Electrical & Computer Engineering
University of South Carolina



i

Table Of Contents

A.1.   INTRODUCTION                                                                                                                         1

A.1.1 ARIES OFF-BOARD SOFTWARE INSTALLATION 1
A.1.1.1 INSTALLATION 1
A.1.1.2 ENVIRONMENT 1
A.1.1.3 RECOMPILING THE SOFTWARE 2
A.1.2 RUNNING THE SITE MANAGER 2

A.2.   MAIN INTERFACE                                                                                                                     3

A.2.1 INTERFACE LAYOUT 3
A.2.2 MAP NAVIGATION 3
A.2.2.1 PANNING 3
A.2.2.2 ZOOMING 3
A.2.3 VIEWING OPTIONS 4

A.3.   SITE CREATION                                                                                                                         5

A.3.1 CREATING A NEW SITE 5
A.3.2 NAMING THE BUILDING AND THE SITE 5
A.3.3 SPECIFYING BUILDING MODELS 6
A.3.4 CREATING ROBOTS 6
A.3.4.1 ADDING ROBOTS 6
A.3.4.2 SETTING THE CURRENT ROBOT 6
A.3.4.3 CHANGING A ROBOT’S COLOR 7
A.3.4.4 DELETING ROBOTS 7
A.3.5 PATH CREATION 7
A.3.5.1 TERMINOLOGY 8
A.3.5.2 MAP SECTION 8
A.3.5.3 DOCK MODIFICATION 9
A.3.5.4 LIST SECTION 10
A.3.5.5 THE CREATION PROCESS 10
A.3.6 PATH MODIFICATION 10
A.3.6.1 CLASSIFICATION 11
A.3.6.2 DIRECTION 11
A.3.6.3 INSPECTION TYPE 12
A.3.6.4 TARGET ASSIGNMENT 13
A.3.7 COMPLETING THE SITE 13

A.4.   MISSION ASSIGNMENT                                                                                                          14

A.4.1 PATH ASSIGNMENT 14
A.4.2 MISSION GENERATION 15



ii

A.5.   REAL-TIME MISSION DATA                                                                                                  16

A.5.1 ROBOT DISPLAY 16
A.5.2 NAVIGATION INFORMATION 16
A.5.3 MONITOR 17
A.5.3.1 INVOCATION 17
A.5.3.2 INTERFACE LAYOUT 18
A.5.3.2.1 Main Interface 18
A.5.3.2.1.1 Pulldown Menu 18
A.5.3.2.1.2 Active Indicators List 18
A.5.3.2.1.3 Action Buttons 19
A.5.3.2.2 Indicator Dialog 20
A.5.3.2.2.1 Database Browser 20
A.5.3.2.2.2 Defining Variables Outside the Database 20
A.5.3.2.2.3 Indicator Types 21
A.5.3.2.2.4 Action Buttons 21
A.5.3.2.3 Monitoring Variables 21
A.5.3.2.3.1 ARIES High Level Status 22
A.5.3.2.3.2 Indicator Display 22

A.6.   MISSION REPORTS                                                                                                                  24

A.6.1 MISSION INFORMATION 24
A.6.2 AISLE INFORMATION 25
A.6.3 STATUS FILTER 25
A.6.4 SUCCESS GRAPH 25
A.6.5 VIEW HISTORY 25

A.7.   3D SITE INSPECTION                                                                                                              27

A.7.1 VIEWING OPTIONS 27
A.7.1.1 RENDERING 28
A.7.1.2 PERSPECTIVE 29
A.7.1.3 VIEW 29
A.7.1.4 OPTIONS 30
A.7.2 DRUM CULLING AND RENDERING 30
A.7.2.1 DETAIL 30
A.7.2.2 PROXIMITY 31
A.7.2.3 LEVEL 31
A.7.2.4 COLOR CODING 32
A.7.3 DRUM SELECTION 32

A.8.   DATABASE MANAGEMENT                                                                                                   33

A.8.1 INVOCATION 33
A.8.1.1 FROM SITE MANAGER 33



iii

A.8.1.2 FROM IRIX COMMAND PROMPT 33
A.8.2 BROWSER INTERFACE LAYOUT 34
A.8.2.1 MAIN INTERFACE 34
A.8.2.1.1 Pulldown Menu 34
A.8.2.1.2 Entries List 34
A.8.2.2 SEARCH/SORT DIALOG 35
A.8.2.2.1 Searching 35
A.8.2.2.2 Sorting 36
A.8.2.3 DATA SET MANIPULATION 36
A.8.3 RECORD EDITOR 36
A.8.3.1 FIELD TYPES 36
A.8.3.2 IMAGES 36
A.8.3.2.1 Image Fields 37
A.8.3.2.2 gviewer Utility 37
A.8.4 DATABASE UTILITIES 37
A.8.4.1 DBTOOL 37
A.8.4.2 DBUTIL 38



iv

List of Figures

Figure 1 (Main interface) _______________________________________________________________ 3
Figure 2 (Building name dialog)__________________________________________________________ 5
Figure 3 (Robot name dialog)____________________________________________________________ 6
Figure 4 (Robots section)_______________________________________________________________ 7
Figure 5 (Color Dialog) ________________________________________________________________ 7
Figure 6 (Map section) _________________________________________________________________ 8
Figure 7 (Dock Dialog) ________________________________________________________________ 9
Figure 8 (List section)_________________________________________________________________ 10
Figure 9 (Path Dialog) ________________________________________________________________ 11
Figure 10 (Path Assembler dialog) _____________________________________________________ 12
Figure 11 (Path assignment) ____________________________________________________________ 14
Figure 12 (Mission Dialog) ____________________________________________________________ 15
Figure 13 (2D and 3D robot display) _____________________________________________________ 16
Figure 14 (Navigation diagnostics) ______________________________________________________ 17
Figure 15 (Monitor interface) ___________________________________________________________ 18
Figure 16  (Active list filled)____________________________________________________________ 19
Figure 17  (Indicator dialog) ___________________________________________________________ 20
Figure 18  (Write dialog) ______________________________________________________________ 21
Figure 19 (ARIES status display) ________________________________________________________ 22
Figure 20 (Indicator display) ___________________________________________________________ 22
Figure 21 (Alternative grid arrangement) _________________________________________________ 23
Figure 22 (Maximum columns and rows) __________________________________________________ 23
Figure 23 (Mission Report dialog) ______________________________________________________ 24
Figure 24 (Highlighted aisle) ___________________________________________________________ 25
Figure 25 (History Dialog)_____________________________________________________________ 25
Figure 26 (3D Tour) __________________________________________________________________ 27
Figure 27 (3D Tour menu hierarchy)_____________________________________________________ 28
Figure 28 (Points, Wire frame, Flat shaded, and Smooth shaded scenes)_____________________ 28
Figure 29 (Drum culling and rendering options) ____________________________________________ 30
Figure 30 (Low (left) and high (right) detail drums) _________________________________________ 31
Figure 31 (High (left) and low (right) proximity scenes) ______________________________________ 31
Figure 32  (Record editor via 3D tour)____________________________________________________ 33
Figure 33  (ariesddb main interface) _____________________________________________________ 34
Figure 34  (Record field controls)________________________________________________________ 34
Figure 35  (Search dialog) _____________________________________________________________ 35
Figure 36  (Search results) _____________________________________________________________ 35
Figure 37  (Record editor) _____________________________________________________________ 36
Figure 38  (gviewer utility) _____________________________________________________________ 37



1

A.1.  Introduction

The Site Manager is the mechanism by which users of the Autonomous Robotic Inspection Experimental
System (ARIES) govern the inspection of a site.  The interface allows users to associate each building with
a site, multiple inspection vehicles (these vehicles are referred to as robots in the interface) to each building,
and graphically determine the paths that each robot is to follow.  Additionally, the Site Manager provides a
wide range of real-time feedback from each robot during an inspection mission.  This data ranges from a
graphical display (2D and 3D) of the robot’s location and the position of its cameras to detailed graphs
displaying any on-board variable desired.  Mission reports are generated by each robot at the end of its
mission.  These reports detail the status of every inspected aisle and provide a second by second account of
the robot’s whereabouts and camera positions for that mission.   The Site Manager also provides a method
for inspecting the drum database associated with each storage facility.  Each drum in the database is shown
in its correct location on both the 2D and 3D maps of the building.  Users can gain access to detailed drum
information simply by “clicking” on a drum.  Through its wide range of functions, the Site Manager
provides all of the tools necessary for the management of the ARIES system in an easy to use graphical
user interface.

This manual is arranged in the typical order that a user would operate the Site Manager.  Section A.2
describes the layout of the main interface.  Section A.3 describes the creation of a site.  Section A.4
describes mission creation and execution.  A description of real-time robot monitoring follows in section
A.5.  Mission reports are discussed in section A.6.  Section A.7 details the use of the 3D-site inspection
interface.  The final section illustrates the use of database management and viewing interfaces.

A.1.1 ARIES Off-board Software Installation

A.1.1.1 Installation

The ARIES off-board software distribution is contained in a single file called ARIES.tar.Z.  Copy this file
to the desired destination directory and execute the following pair of commands:

uncompress ARIES.tar.Z
tar -xvf ARIES.tar

This will create a directory called ARIES, under which the entire ARIES distribution is stored.

A.1.1.2 Environment

In order for the ARIES software to execute correctly, a number of steps must be taken:

1. The environment variable ARIES_ROOT_DIR must be set to the installation destination
directory.  If the archive was extracted in /usr/local/, then ARIES_ROOT_DIR must be set to
/usr/local/ARIES/.

2. ARIES_ROOT_DIR/platforms/IRIX/bin must be added to the execution path of any user who
is to run the ARIES software.

3. All of the files in ARIES_ROOT_DIR/src/apps/resource must be copied into /usr/lib/X11/app-
defaults.



2

4. The ARIES software has been tested under IRIX 5.3 and 6.2.  However, it is directly
dependent on one library that is not usually installed with the IRIX OS.  libGLC.a (Silicon
Graphics’ OpenGL Character Rendering Library) must be in /usr/lib.

A.1.1.3 Recompiling the Software

All of the off-board software source code is contained in ARIES_ROOT_DIR/src under the directories
apps/ and libraries/.  Each of the applications is stored in its own directory and contains its own Imakefile.
The first line of these Imakefiles contains a macro revealing the location of the ARIES software
distribution.  If the software is to be recompiled, this macro must be reassigned to the correct value (the
value of ARIES_ROOT_DIR).

A.1.2 Running the Site Manager

The Site Manager executable should already be in your PATH environment variable.  Check with your
system administrator if it is not.  The following statement gives the usage of the Site Manager executable:

site [options] [site file]

where options can be

-vi use the vi editor for code modification.
-dead use only dead reckoning in automatically

generated code.
-r <integer>    number of milliseconds between updates.
-noserver       disable communications (monitor, display).
-john   use user defined origin in code

generation.
-notex  disable texture mapping for inventor

files.
-movie  save frames for animation (3D Tour).
-h              this help screen.



3

A.2. Main Interface

A.2.1 Interface Layout

Figure 1 depicts the main interface of the Site Manager.  It might be useful to use this screen shot as
reference while reading the rest of the user’s guide.  Most of the terminology labeled on this figure is used
throughout the manual.

A.2.2 Map Navigation

The following two sections describe the two methods of map navigation used in the Site Manager.  These
tools provide an easy method for detailed viewing of any section of the map.

A.2.2.1 Panning

Panning is simply the act of “sliding” the map to the desired view.  Press and hold the middle mouse button.
The map will translate with the cursor as long as the middle mouse button remains pressed.  Drag the map
to the desired location and release the button.

A.2.2.2 Zooming

Zooming is accomplished by drawing a zoom box with the right mouse button.  Press and hold the right
mouse button.  Drag out a zoom box by moving the cursor away from the point where the right button was
originally pressed.  A white box is drawn using the original point and the cursor position as its corners.

Figure 1 (Main interface)

2D map
Map section

List section

Robots section

Target

Marker

Path

Drum

Dock



4

When the right button is released, the boundary of the box will become the boundary of the new view.  This
method can be used any number of times in succession to progressively zoom in on a desired region.  The
MapàZoom previous selection will make the previous view the current view.  Additionally,
MapàZoom extents will cause the entire building to be visible on the map.

A.2.3 Viewing Options

The View pull down menu provides a method for controlling what is drawn on the map.  The following list
details the options available via the View menu.  Turning on only those items of interest is an excellent
method of reducing the complexity in any given area of the map.

• Targets. Determines if LIDAR targets will be drawn.
• Markers. Determines if navigation markers will be drawn.
• Docks. Determines if docks will be drawn.
• Paths. Determines if paths will be drawn.
• Animation. When checked, all zoom operations are animated over a short period to indicate a

changing map view.
• Drums. The options in this menu determine which, if any, of the drum levels are drawn.



5

A.3. Site Creation

A site is defined to be a storage facility with at least one building in which drums are stored.  Sites can have
as many buildings as desired.  Each building must have a two dimensional, AutoCAD description of the
building’s layout.  Each building may optionally have a three dimensional, Inventor description of the
building’s structure.  Each building must be assigned at least one robot.  Multiple robots can be assigned as
needed.  Associated with each building is a set of paths for the robots to travel.  This section describes how
this information is entered into the Site Manager.

A.3.1 Creating a New Site

Site information is stored in a site file.  These files are analogous to the commonly used document files
associated with word processors.  Site files can be opened, saved, and saved as another filename.
Additionally, new sites can be created.  All of these operations are performed through the File pull down
menu.  If the Site Manager is invoked with no command line arguments, a new site is automatically created
and is ready for editing.

A.3.2 Naming the Building and the Site

A name must be given for both the building and the site so that it can be identified by the ARIES system.
The site name can be entered/changed via the EditàSite name menu selection.  Similarly, the building
name can be entered/changed via the EditàBuilding name selection. Figure 2 represents the dialog box
used to enter each of these names.

Each site file is associated with only one building.  A separate site file must be maintained for each building
at a site.  Buildings within the same site should be given unique building names but should all use the same
site name.  This naming convention, while not critical to the ARIES system, will organize all site data in
the same place in the ARIES file structure.  This organization will help users to identify mission reports
with the appropriate buildings and sites.

Figure 2 (Building name dialog)



6

A.3.3 Specifying Building Models

Every building must be assigned an AutoCAD model that describes its layout.  AutoCAD models used in
the Site Manager must be stored in the version 12 DXF format.  Selecting MapàChange DXF pops up a
file selector that allows users to select the appropriate model.  The MapàDXF units option lets users
specify the units used in the DXF file (inches, feet, centimeters, or meters).  Optionally, a 3D Inventor v1.0
file can be assigned to the building for use in the 3D Tour.  Use the MapàChange IV and MapàIV
units  selections in the same manner described above to assign the Inventor file.

A.3.4 Creating Robots

Multiple robots may be associated with each building.  Each robot is represented by both a unique name
and a unique color.  The name of the robot must match the name of the computer board installed inside of
the robot.  Site Manager uses this robot name to identify it during mission specification, associate mission
reports with the correct robot, and establish a communication link with the robot during mission execution.
It is crucial that this name is correct; therefore it should only be entered or changed by someone with
intimate knowledge of the system.  The color of the robot is only used to identify it within the Site Manager
and may be changed freely.

A.3.4.1 Adding Robots

Robot’s are added via the RobotsàAdd… menu selection.  Enter the name of the robot in the dialog box
shown in Figure 3.  Ensure that this name matches the name of the computer board installed in the
inspection vehicle.

Repeat this process for each robot assigned to the building.  As each new robot is added, it is assigned a
random, unique color.  Section A.3.4.3 describes how this color can be changed.

A.3.4.2 Setting the Current Robot

The Robots section of the work region (Figure 4) provides access to most of the robot manipulation
functions.  The option menu on the left-hand side of the section allows users to select which robot is
considered the current robot.  Operations such as aisle assignment, mission generation, and real-time
monitoring are all performed on the current robot.  Simply click on the option menu to get a list of all of the
robots associated with the building.  Choose the robot for which you want subsequent actions to modify or
use.

Figure 3 (Robot name dialog)



7

A.3.4.3 Changing a Robot’s Color

The colored push button next to the current robot option menu indicates the color that represents the
current robot within the site manager.  Pressing this button activates the standard color selector shown in
Figure 5.  Use this dialog to change the color of the current robot.

A.3.4.4 Deleting Robots

Select RobotsàDelete current to delete the current robot.  Additionally, the skull and crossbones icon in
the Robots section will delete the current robot.

A.3.5 Path Creation

Path creation and modification is by far the most complex action performed by users of the Site Manager.
In a nutshell, the process of path creation entails marking the places on the map which define navigation
points, connecting these points to create paths and drum aisles, specifying the location of navigational aids,
and instructing the Site Manager to create the actual assembly programs the robots will use to navigate and
inspect the building.

Figure 4 (Robots section)

Figure 5 (Color Dialog)



8

A.3.5.1 Terminology
The following list describes the terminology that must be understood for path creation.

• Marker - Markers are simply locations on the floor placed by the user to indicate points where
the robot will have to go.  For example, markers are used to define the start and end of a drum
aisle.  Markers are denoted as cyan X’s on the map of the building.

• Path - A path is defined as the straight line between two markers.  When two markers are
connected, two paths are created; the first path goes from marker 1 to marker 2, and the second
path goes from marker 2 to marker 1.  It is important to understand this concept for the cases
where detailed editing of path programs is necessary.  Paths are denoted as dashed lines or
solid lines (solid lines indicate drum aisles) on the map.

• Aisle - Aisles are simply paths that cause the robot to traverse an aisle of drums.  Only these
paths will cause the robot to search for and inspect drums.  Aisles are represented as solid lines
drawn in the color of the robot that is assigned to them (see Section A.4 - Mission assignment).

• Dock - Docks represent the location of a docking station.  These are represented by peach
circles with an arrow representing the direction of the docking beacon.  Each dock is circled in
the color of the robot assigned to dock with it.

• Target - LIDAR Targets are the mechanism by which the robot corrects its position in
environments when sonar alone is not adequate.  Targets are represented as small green circles
surrounded by radiating lines.

• Origin - The origin represents the coordinates (0.0, 0.0).  It is represented by a red X on the
map.  All coordinates entered by the user are relative to this origin.

A.3.5.2 Map Section

The Map section (Figure 6) of the work region is crucial to path creation.  The toggle buttons across the
top of the Map section control what action will be taken when the user clicks on the map or types in a
coordinate in the input text box.  The cursor shown over the map always reflects which button is currently
selected.  The following list describes what actions each button represents.

• Yellow Arrow - The arrow allows users to select items on the map by clicking on them.
Selected items appear in yellow and are highlighted in the List section.  Additionally, the arrow
allows users to connect markers to form paths.

• Green Target - Each mouse click or coordinate entered in the text box will result in the
creation of a new target.

• Cyan Marker - Each mouse click or coordinate entered in the text box will result in the
creation of a new marker.

Figure 6 (Map section)



9

• Peach Dock - Each mouse click or coordinate entered in the text box will result in the creation
of a new dock.  In addition to coordinates, a third value may be entered in the text box to
indicate the direction of the docking beacon (direction should be given in "bgrees," or binary
degrees).

• Red Origin - Each mouse click or coordinate entered in the text box will result in a new
location for the origin.

• Robot - This button allows the user to assign aisles to specific robots for inspection.  This
process is detailed in section A.4.1.

Below the text box is a series of icons.  The following list describes the action performed by each icon.

• Wrench - This icon brings up the modification dialogs for any items selected.  Docks and
paths each require more information that can be entered on the main interface.  Once a dock or
a path is selected, click on this icon to bring up its modification dialog.

• Path - This icon will create a path between two selected markers.
• Magnifying glass - This icon zooms out one level.  Zooming in is accomplished by drawing a

zoom rectangle over the map.  Press the right mouse button and drag out a box.  When the
button is released, the view will zoom in to the rectangle.  Users can zoom in as many times as
they wish.  This icon will back out to previous views one at a time.

• Telescope - This icon zooms out to the building’s extents (zoom all).
• Center origin - This icon places the user’s origin at the center of the building.
• Original origin - This icon places the user’s origin at the origin of the building model.
• Deselect - This icon deselects all items.
• Trash can - This icon deletes all selected items.

A.3.5.3 Dock Modification

In addition to a dock’s position, the azimuth, dock number and marker offset from of the dock must be
entered.  Select a dock and click on the wrench icon in the Map section (or select EditàModify selected).
This action invokes the Dock Dialog shown in Figure 7.

Figure 7 (Dock Dialog)



10

Turn the azimuth thumb wheel or enter a value in the text box in order to specify the direction of the
docking beacon.  The azimuth must be specified in bgrees (binary degrees) which are defined according to
the chart on the dialog.  The arrow on the dock symbol on the map will point in the direction of the
specified azimuth.  The distance entered in the offset text box determines how far away the robot will be
when it docks.  Each docking station is given a number from 0 to 31 when it is installed.  Find out the
number assigned to the dock and enter it the number text box.  The number and azimuth must be correct so
that the robot can be properly referenced.  The final section of the dialog allows users to manually edit and
assemble the docking program.  See section A.3.6 for a complete description on manual program
modification.

A.3.5.4 List Section

The List section (Figure 8) of the work region provides users with a detailed list of markers, docks, targets,
and paths.  The option menu at the top of the section can be used to determine which list is seen.  Clicking
on a list item will result in it being selected as if it were clicked on the map.  The list provides an excellent
method for viewing detailed information about each item on the map.

A.3.5.5 The Creation Process

Paths are typically entered by first measuring the building to determine the positions of the navigation
markers and navigational aids.  The navigation markers are entered by clicking the marker button in the
Map section and entering the coordinates of the measured markers.  The navigational aids are then entered
using the appropriate operator in the Map section.  Paths are created in one of two ways.  First, enter
multiple selection mode under EditàMultiple selection.  Select exactly two markers and press the
Connect Markers icon in the Map section (or select EditàDis/Connect markers).  A shortcut to this
method is to use the arrow cursor to select a marker.  Without releasing the left mouse button, drag the
cursor to the next marker.  A dashed line should follow your cursor from the first marker.  Release the
mouse button near the desired maker and the path will be created.  Continue connecting markers until all of
the paths have been created.

A.3.6 Path Modification

Figure 8 (List section)



11

Path creation is only the first step in completing the path entering process.  Paths have many attributes that
can be set via the Path Dialog (Figure 9).  To access the path dialog, select a path (use the yellow arrow
cursor or the path list in the List section) and click on the wrench icon in the Map section (or select
EditàModify selected).  Notice that the Path dialog allows parameter editing in both of the directions
associated with the connection of two markers.  Make sure that the selected path direction matches that of
the path for which you wish to change the attributes.

The following sections describe the functions of each of the Path Dialog sections.

A.3.6.1 Classification

The classification section allows users to specify whether the selected path is a drum aisle or a navigation
path.  The classification of a path is independent of the direction of the path.  In other words, if a path is
designated as an aisle, both directions will be treated as aisles.  This treatment is necessary because of the
drum navigation routines.  Even if drums do not exist on one side of an aisle, the robot must operate
cautiously while operating near the drums that do exist.  Selecting the aisle classification will ensure that
the robot will navigate correctly in the vicinity of drums.  The text box provides a method for users to give
each aisle a name.  For example, a naming system for each aisle may already exist in the storage facility.
Users can enter the same names here for use in the Site Manager.

A.3.6.2 Direction

Because each path actually represents a forward and backward path, the user must specify which direction
will be modified by subsequent path modification operations.  Listed with each direction are the marker

Figure 9 (Path Dialog)



12

numbers where the path starts and ends.  Marker numbers can be viewed in the marker list in the List
section.  A yellow arrow appears on the map indicating the currently selected direction of travel for the
selected path.

A.3.6.3 Inspection Type

The inspection type section is only available for paths designated as aisles.  Two types of inspections are
possible: visual and other.  Visual inspections cause the robot to stop at each drum column, take and
analyze several pictures of each drum, and record the results in the drum database.  Other type inspections
simply cause the robot to traverse the aisle in the selected direction.  Other type inspections are useful for
test runs as well as cases where only one side of an aisle has drums on it; use a visual inspection for the
direction that has drums and an other inspection for the direction that does not.

Within each inspection type is a section which allows expert users to manually edit the programs generated
by the Site Manager (before the programs can be edited, the BuildingàUpdate paths selection described
in section A.3.7 must be executed).  The file name of the SGV file generated is given in quotes so that it
can be identified within the ARIES file structure.  Pressing the Edit push button invokes a standard text
editor on the SGV file associated with the path.  Users can edit the path program in this editor.  If the
program is edited manually, the Manual toggle must be selected so that the Site Manager will not write
over the user’s file the next time the paths are updated.  If the file should ever need to be rewritten by the
Site Manager, select the Automatic toggle button.  Manually edited paths must also be manually
assembled.  The Assemble push button will invoke the Path Assembler (PASM) dialog shown in Figure
10.

Figure 10 (Path Assembler dialog)



13

Click on each toggle button next to any option desired during the assembly process.  Typical options
include Debug mode and Verbose mode to aid in debugging errant programs.  Press the Assemble
button to invoke PASM on the file with the selected options.  Any error messages will appear in the Error
Messages text box.  It may be useful to keep both the Path Assembler dialog and the text editor open
until the program assembles correctly.  It is important that all manually edited paths have assembled
correctly or a “No Path” error will be generated when any missions requiring that path are generated.

A.3.6.4 Target Assignment

The green target/arrow icon allows users to specify which targets will be used for the currently selected
path and direction in the automatically generated paths.  Clicking this icon will change the cursor to the
green target/arrow.  Use this cursor to graphically select which targets (zero to three targets can be
selected).  Targets currently selected for use on this path are highlighted by a yellow, double arrow.
Selected targets can be deselected by clicking on them again.  Target assignment is the most crucial aspect
of path modification.  Targets should be selected so that the LIDAR system has a good view of all the
targets selected for most or all of the length of the path.  Target assignment is usually a trial and error
process until a combination is found that allows robots to navigate the path with minimal error.  Don’t
forget to assign targets for both directions of each path.

A.3.7 Completing the Site

After all of the path information is correct, the Site Manager must be told to write the assembly programs
necessary for robot navigation.  Select the Update paths entry from the Building pull down menu.  There
will be a slight delay while the programs are written and assembled.  The user will be notified when the
path writing process is complete.  It is important to repeat this step any time new paths are added or old
ones are modified.

The final step in site creation is saving your work.  Select either Save or Save as… from the File pull
down menu.  Site files should be saved with a .site extension so that they will be easily recognized the next
time Site Manager is executed.



14

A.4. Mission Assignment

Mission assignment is the most common task executed by users of the Site Manager.  Fortunately, mission
assignment, unlike site creation, can be broken down into two easy steps.

A.4.1 Path Assignment

Each aisle in the building must be assigned to a robot before it can be inspected.  Path assignment is
accomplished by selecting the robot toggle button from the Map section.  The toggle button is represented
by a robot cursor drawn in the color of the current robot.  Use the cursor to click on any aisle(s) that the
current robot will be responsible for inspecting.  All aisles selected will be drawn in the color of the robot
assigned to inspect them.  Each aisle can only be assigned one robot for inspection.  In addition, clicking on
any dock will cause that dock to become the current robot’s home dock.  A circle drawn in the robot’s color
around a dock indicates the home dock of the current robot.  The sample map image in Figure 11 depicts
one aisle assigned to a blue robot and two unassigned aisles.

Figure 11 (Path assignment)

Use the technique described above to associate all of the robots in each building to the appropriate set of
aisles.  The current robot can be changed via the option menu of the Robot section at any time during
the path assignment process.  Each time path assignments are made remember to save the site.  Path
assignments are stored along with the rest of the site information.



15

A.4.2 Mission Generation

Once path assignments are complete, only one step remains before inspection missions can be executed.
Select a robot for the next mission by making it the current robot.  Next, activate the Mission Dialog
shown in Figure 12 by selecting BuildingàMission generation.

The current time and date will appear in the Mission Dialog.  Set the time and date that the robot should
begin its inspection mission by using the option menus and time text box.  If the robot receives the mission
later than the specified time, it will leave immediately.  Therefore, if the robot should leave as soon as it is
activated, simply leave the current time on the dialog.  Once a time is selected, press the Generate
mission push button.  The robot will inspect each of the aisles that it has been assigned.

Figure 12 (Mission Dialog)



16

A.5. Real-time Mission Data

The Site Manager is capable of displaying a wide range of data gathered from the robot while a mission is
being executed.  It is very important that the name of each robot in the site matches the name of the
machine installed in the corresponding ARIES vehicle; this name is used to establish a communication link
between the Site Manager and the robot.

A.5.1 Robot Display

The current robot can be displayed by selecting the Display current option under the Robots pull down
menu.  Figure 13 depicts how the robot will be displayed on both the 2D and 3D maps (the 3D map is
discussed in section A.7).  The position and orientation of the robot will be accurately represented on both
maps.  Additionally, the 3D map displays the position and orientation of the camera and mast systems.
Using the Site Manager as a display mechanism provides a method for the user to monitor the vehicle’s
progress without following the robot around or using a video surveillance system.

Figure 13 (2D and 3D robot display)

A.5.2 Navigation Information

If a robot is currently being displayed as described in the previous section, additional navigational
information can be gathered from the robot.  Select RobotsàNavigation diagnostics.  Figure 14 shows
a typical screen from the Site Manager when both display and navigation information have been selected.



17

The solid red lines indicate that the robot has made a navigational correction based on a positive LIDAR
fit.  The line is drawn between what the robot thinks is the center of the two targets used to make the
correction.  This information is useful for troubleshooting in conditions where the robot is consistently
veering from its intended path.  In errant situations, these lines will get progressively farther away from the
actual location of the targets.  The small “+” signs indicate one of several things based on the following
color code:

• Magenta - LIDAR target
• Green - drum center
• Cyan - wall corner

A.5.3 Monitor
Monitor is a separate program that can be invoked via the Site Manager interface, using RobotàMonitor
current.  Monitor was designed to help keep the user informed as to the status of the ARIES vehicle while
it is inspecting a site.  It allows the user to monitor specified variables on-board ARIES in real-time,
displaying them via a variety of indicators using OpenGL graphics.

Controls are provided for specifying which variables are to be monitored, including several variable
databases containing over 1,000 preset entries.  The user may also add user-defined variables to the
database, monitor higher level states, and write values to any of the ARIES computers.

A.5.3.1 Invocation
Monitor will most often be invoked from the Site Manager application.  It will automatically begin
monitoring the currently selected vehicle.

Monitor is also designed to be invoked directly from an IRIX command prompt.  Typing “monitor” will
give the following usage:

Figure 14 (Navigation diagnostics)



18

ARIES Monitoring Program v3.0

Usage: monitor [options] <robot name>
-h display this help message
-f <.mon file> preload monitor file
-r <update rate (ms)> indicator update rate
-aa antialias lines

• <robot name> corresponds to the name of the on-board computer connected to the radio
Ethernet bridge.  Use the name “none” to run monitor in a diagnostic mode that allows the
program to function without a connection to an actual vehicle.

• ‘-h’ will give the above usage statement.
• ‘-f <.mon file>’ allows the user to pass a file containing a particular saved Monitor

configuration.  Monitor requires that the file be specified with the correct path.
• ‘-r <update rate (ms)>’ sets the update frequency of the Monitor indicator, in milliseconds.

This value defaults to 500 ms.  Care should be taken not the set the value too high.  33 ms will
give a 30 frames/sec update speed, far and away faster than the data can currently be polled
from the vehicle.

• ‘-aa’ enables OpenGL antialiasing.  This smoothes lines over, removing their pixilated
appearance.  It is an expensive process, and should only be used on machines that support this
feature through hardware.

A.5.3.2 Interface Layout

A.5.3.2.1 Main Interface

Active indicator list

Pulldown menu

Action buttons

Figure 15 (Monitor interface)

When Monitor is invoked, it is in the state shown in Figure 15, and starts with no monitors defined.

A.5.3.2.1.1 Pull down Menu

The pull down menu contains two panes, File and Status.  File contains controls for loading and saving the
current list of indicators.  It will automatically come up in the directory defined specifically for holding
Monitor files within the ARIES installation.  When launched from Site Manager, the exit option is
disabled.  To close Monitor simply double click in the upper left corner.

A.5.3.2.1.2 Active Indicators List



19

While Figure 15 does not show any active indicators, it will contain all of the defined indicators for the
monitoring session.  Figure 16 illustrates what a typical list may contain.

Figure 16  (Active list filled)

Each list entry is formatted as [Indicator Type] [Variable Name] [ARIES Computer] [Size of
variable in bytes].

A.5.3.2.1.3 Action Buttons

Press Add to invoke the indicator dialog.  This will let the user define new indicators to be added to the
active list.  If an indicator is selected in the list, Modify will invoke the indicator dialog with the controls set
for that particular indicator.  Delete will remove the indicator from the list.

Monitor initiates communication between the application and the ARIES on-board computer.  It will invoke
the indicator displays and update them at a preset frequency.



20

A.5.3.2.2 Indicator Dialog

Variables contained in
database

Computer name
(which database)

Sort by variable label
or address

Search string

Variable description Action buttons

Aesthetic
parameters

Variable
parameters

Figure 17  (Indicator dialog)

The indicator dialog is used to define and modify individual indicator attributes.  Figure 17 shows the
layout of the dialog when a particular variable from the database is chosen.

A.5.3.2.2.1 Database Browser

The left section of the dialog allows the user to browse the databases for the ARIES vehicle.  The current
database is displayed in the top list, listed by address and variable name.  The Computer option menu
changes which database is active in the list.  There is a variable database for each of the computers on-
board ARIES.

To help browse the database more efficiently, controls are provided for searching and sorting the current
database.  The Sorting option menu allows the user to choose between sorting the database entries by
name or by address.  As the user types in the Search text box, the list is dynamically searched for entries
that match the letters in the box.

A.5.3.2.2.2 Defining Variables Outside the Database

When a variable is to be monitored that is not predefined in any of the databases, the control located in the
upper right corner can be used to set its essential parameters.  A variable’s Computer, Address, and Size
define it completely.



21

Name Display

Digital

Horizontal
Bar Graph

Vertical Bar
Graph

Needle and
Dial

Plot vs.
Time

Table 1 (Indicator displays)

A.5.3.2.2.3 Indicator Types

The section in the middle-right of the dialog contains aesthetic parameters of the database.  These are not
necessary for the variable definition, but allow for more control over how the variable will be indicated.  In
addition to scale, sign, and limit controls is the “Indicator:” option menu.  It allows the user to choose
among five different indicator forms:

A.5.3.2.2.4 Action Buttons

Among the action buttons is Write.  For the variable currently defined in the dialog, a value can be written
to that address.  Monitor will take into account both the sign and size of the variable when it is written.
Figure 18 shows the layout of the write dialog.

Figure 18  (Write dialog)

A.5.3.2.3 Monitoring Variables
The action button Monitor from the main interface initiates communication between the application and the
ARIES on-board computer.  It will invoke the indicator displays and update them at a preset frequency.



22

A.5.3.2.3.1 ARIES High Level Status

Aside from detailed variables from assorted locations on the on-board computers, Monitor also provides
high-level status information about the ARIES vehicle (shown in Figure 19).  This is the “executive
summary” status, determined from a series of variables from different computers.

Figure 19 (ARIES status display)

A.5.3.2.3.2 Indicator Display

Figure 20 illustrates the layout of the indicator display.  The indicators are arranged in a configurable grid.
Action buttons More Cols and More Rows are provided to modify the arrangement of the grid.  Figure 21
shows a better arrangement of the indicators, one that takes advantage of the shape of the window.

Action buttons

Variable
indicator

Figure 20 (Indicator display)



23

Figure 21 (Alternative grid arrangement)

Figure 22 further demonstrates the effects of the More Cols and More Rows action buttons.  Resizing the
indicator window also helps the indicators cover the maximum amount of space.  Among the control
buttons is Pause which temporarily discontinues communication with the ARIES vehicle.

Figure 22 (Maximum columns and rows)



24

A.6. Mission Reports

Each robot generates a mission report at the conclusion of an inspection.  The status of each aisle inspected
as well as a second by second history of the robot’s activities are included in the report.  The latest mission
report from the current robot can be viewed by selecting BuildingàView mission report.  The dialog
shown in Figure 23 allows users to view the contents of the mission report.

A.6.1 Mission Information

The mission information section provides high-level mission information.  The time and date the mission
started, the building inspected, and the inspection vehicle are all listed in this section.

Figure 23 (Mission Report dialog)

Aisle information

Mission information

Status filter

Success graph



25

A.6.2 Aisle Information

The aisle information area lists each aisle that was supposed to be inspected
on the mission.  Aisles are listed in the order in which they were inspected.
Aisles are identified by either the user-defined name or the aisle number.
Other information includes the inspection type for both entering and exiting
the aisle and the status of the robot after inspecting the aisle.   The eight
possible statuses are listed in the Statuses section.  Note that the status
refers only to whether or not the aisle was inspected, not the state of the
drums on the aisle.  Clicking on any aisle in the list causes it to be
highlighted by a white box in the map region (Figure 24).  If the selected
aisle was not completed, a white “X” will appear where the error occurred.
This marker is useful for determining the location of aisle blockages or
sections of an aisle that are too narrow to navigate.

A.6.3 Status Filter

The toggle buttons in the Statuses section can be used to filter out what is shown in the aisle list.  Only
those aisles whose status matches a checked toggle button will be listed.  It is often useful to list all statuses
except those that are “complete”.  This filter will provide a list of only those aisles where an error occurred.

A.6.4 Success Graph

The success graph provides a quick method for viewing the overall success of a mission.  The graph
indicates the percentage of the aisles which received a “complete” status.

A.6.5 View History

A detailed account of the robot's activities are stored with each mission report.  This history can be viewed
on both the 2D and 3D maps.  Viewing the history is like watching a movie of the inspection mission.
Pressing the View history push button pops up the dialog shown in Figure 25.

Figure 24
(Highlighted aisle)

Figure 25 (History Dialog)



26

The toggle buttons in the Show History section control which maps the history will be shown on.  Use the
speed thumb wheel to control how quickly the animation is played.  The index thumb wheel allows the user
to control precisely which part of the animation is played.  The Play, Stop, and Rewind buttons act just like
their counterparts on a VCR.  Press Play to start the animation, Stop to stop it, and Rewind to return to the
beginning.  Closing the dialog causes the history animation to disappear from both maps.



27

A.7. 3D Site Inspection

The 3D Tour provides a method for visualizing a site that simple 2D maps cannot furnish.  The use of 3D
Tour requires a 3D AutoCAD (or Open Inventor) file of the site.  This file is typically specified during Site
creation (see A.3.3).  The 3D Tour allows users to monitor not only the position of the robot, but also the
movements of its cameras.  The entire drum database can viewed at once as opposed to one level at a time
on a 2D map.  Each component of a site from docks to targets to the actual building are rendered as life-
like 3D objects as opposed to being represented by symbols on a 2D map.  To launch the 3D Tour (Figure
26) select Buildingà3D Tour.

A.7.1 Viewing Options

The viewing options are accessed via a pop up menu.  Press the right mouse button anywhere over the 3D
window to pop up the menu hierarchy shown in Figure 27.

Figure 26 (3D Tour)



28

Figure 27 (3D Tour menu hierarchy)

A.7.1.1 Rendering

Four different rendering options are available.  Points simply renders each vertex in the 3D scene as a
point draws no connecting lines or faces.  This rendering mode is the fastest but is by far the lowest quality.
Wire frame rendering is slightly slower but connects the adjacent vertices of each object with lines
providing a better view of the scene.  Flat shaded rendering draws each item as a series of connected
polygons.  Smooth shaded rendering goes one step further by using shading to help approximate curved
surfaces and lighting effects.  Although this rendering technique is the slowest, it provides the highest
quality images.
Figure 28 shows examples of the same scene rendered using each of the four rendering techniques.

Figure 28 (Points, Wire frame, Flat shaded, and Smooth shaded scenes)

Rendering
Perspective
View
Options
Reset
Close

Points
Wire frame
Flat shaded
Smooth shaded

Traveler
Robot (Real)
Robot (History)

3 Two-sided lighting
3 Cull backfaces
3 Headlight
3 Fixed light

3 Dxf model
3 Inventor model

3 Only suspect drums
3 Bad drums in red

Use proximity
Scale detail

Attached to base
Attached to turret

Attached to base
Attached to turret



29

A.7.1.2 Perspective

Several perspectives are provided for viewing and navigating the 3D scene.  The following list describes
each perspective and how mouse movements are used to navigate within it.  The navigation methods will
require a little practice for those users unaccustomed to 3D interfaces.

• Traveler - This perspective acts as though the user were a traveler in the scene.  Pressing only the left
mouse button and moving the mouse in a vertical manner causes the traveler to walk forward and
backward.  Horizontal motion with the left button pressed rotates the traveler left and right.  The
middle mouse button in combination with vertical motion raises and lowers the traveler’s head.

• Robot (Real) - This perspective attaches the user to the robot being displayed (This option is only
valid if a robot is currently being displayed).  The user can attach to the base (fixed orientation) or the
turret (revolving orientation) of the robot.  As the robot moves around the building, the user will travel
with it.  Pressing the left mouse button in combination with vertical movement increases and decreases
the distance between the user and the robot.  Horizontal motion with the left button pressed changes
the angle at which the user is attached.  Pressing the middle button allows users to modify not only the
angle of attachment with respect to the ‘z’ axis of the robot (up), but also with the ‘x’ axis of the
robot.  Pressing both the left and middle mouse buttons in combination with vertical motion causes the
user to look up and down based on the point of attachment.

• Robot (History) - If a history is being played, this perspective will attach the user to the history robot.
Navigation in this mode works identically to that of the Robot (Real) perspective.

The Site Manager will remember the latest navigation settings for each perspective.  Therefore, if the user
switches from one perspective to another, the navigation settings will be restored the next time the
perspective is chosen.  This feature allows users to jump from one perspective to another without having to
readjust the viewing position.  The Reset button near the bottom of the menu will reset the current
perspective to its default values.  Close closes the 3D Tour.

A.7.1.3 View

The View menu provides a list of rendering options that can be toggled on and off by the user.  The
following list details each entry in the menu.

• Two-sided lighting - Two-sided lighting should be turned off for well organized 3D models.  If some
faces appear very dark while others adjacent to it are lit correctly, turn this option on.

• Cull backfaces - Polygons that face away from the user do not need to be drawn.  Turning this option
on will greatly increase the frame rate of the scene.  If some of the polygons in the scene disappear,
turn this option off.

• Headlight - Turning this option on will light the scene as if the user were wearing a miner’s hat.
• Fixed light - This option turns on the fixed light source that is automatically placed at the origin of the

building.



30

• DXF model - When this option is selected the 2D map will be superimposed over the floor of the 3D
scene.  This option is particularly useful when the text of the 2D map is used to label different sections
of a large building;

• Inventor model - This option determines whether the 3D model of the building is drawn.  Turning this
option off for complex scenes may increase the response of the system.

• Only suspect drums - If selected, this option causes only those drums that are bad to be drawn.
Doing so provides a quick method for locating all of the bad drums in a building.

• Bad drums in red - If selected, all bad drums will be drawn in red.  Otherwise, the bad drums will be
drawn in their actual or coded color, depending on the selected mode.

A.7.1.4 Options

Both of the selections in the options menu address drum rendering.  The first selection, Use proximity,
controls whether or not the proximity field is used to cull drums (drum culling is discussed in detail in the
following section).  The second selection, Scale detail, applies only when the proximity field is in use.  This
selection causes the level of detail of each drum to be based on its distance from the viewer.  Drums farther
away will be drawn in lower detail that those close to the observer.  Activating detail scaling should result
in a dramatic increase in frame rate.

A.7.2 Drum Culling and Rendering

Drum culling is the process by which some of the drums in a building are not drawn based on either the
observer’s position or the user’s selection.  Drum culling is necessary due to the large number of drums (up
to 12,000) that can be stored in a typical building.  The frame rate on a typical graphics workstation would
become so low as to make the 3D Tour unusable if all of the drums in a building were drawn. Figure 29
shows the drum culling and rendering options available at the bottom of the 3D Tour window.

A.7.2.1 Detail

The Detail thumb wheel and text box control how much detail is used to render each drum.  Because
curved surfaces, such as cylinders, can not be rendered exactly by computers, they must be approximated
by a series of connected polygons.  Changing the detail level simply changes the number of polygons used
to approximate each drum.  The higher the number, the better the drums will look and the longer it will take
to render each drum.  Try to find a setting where both the drum quality and frame rate are acceptable.
Figure 30 shows the same scene rendered with low and high detail drums.

Figure 29 (Drum culling and rendering options)



31

Figure 30 (Low (left) and high (right) detail drums)

A.7.2.2 Proximity

Changing the detail level of the drums is often not sufficient for achieving an acceptable frame rate.  The
Proximity thumb wheel and text box control the area around the observer in which drums are rendered.  If
the Use proximity option is selected, only those drums within the specified distance from the observer will
be rendered.  Using the proximity distance to cull drums allows users to see drums in their immediate area
while allowing Site Manager to increase the frame rate of the 3D Tour by not rendering unnecessary
drums.  Additionally, if the Scale detail option is selected, drums are drawn with decreasing detail as their
distance from the observer increases.

Figure 31 shows two images of the same scene.  The left image was rendered with a very high proximity;
therefore, all of the drums are rendered and are rendered with the same level of detail.  The right image
used a proximity value of twenty and was rendered with the Scale detail option on.  Notice that the drums
are drawn with successively fewer polygons as they get farther away from the observer.

Figure 31 (High (left) and low (right) proximity scenes)

A.7.2.3 Level



32

The Level toggle buttons allow the user to control which drum levels will be drawn.  Use these toggle
buttons to reduce the number of drums drawn or to focus on a particular drum level.

A.7.2.4 Color Coding

Drums can be rendered in either their actual colors or using a color coding scheme.  If Realistic colors are
selected, the drums are rendered in the color stored in the corresponding database record.  If Color-coded
is selected, drums are rendered using the following color code.

• Bad drums - Red
• 55 gallon drums - Green
• 85 gallon drums - Cyan
• 110 gallon drums - Yellow

 
 

A.7.3 Drum Selection

One of the greatest advantages of the 3D Tour is the ability to graphically view the drum database.
Because each drum is located in the correct position within the building, the 3D Tour allows users to locate
drums in the database in the same manner that they would locate drums in the building.  Bad drums can
quickly be recognized by the user and quickly found in the actual building by those responsible for
replacing them.  The drum database record for each drum can be accessed by clicking on any drum from
any perspective with the left mouse button.  The database record viewer described in the next section is
popped up and the drum is outlined by a yellow highlight box.



33

A.8. Database Management

Separate databases are kept for the most recent ARIES vehicle mission and for the entire facility defined in
the Site Manager.  The databases are stored in a proprietary binary format and special tools are needed to
retrieve the data.  Select BuildingàRead building's drum database or BuildingàRead robot's drum
database to bring the desired database into the Site Manager.

A.8.1 Invocation
These databases can be accessed through Site Manager or from a stand alone program called ‘ariesdbb’
(ARIES Drum Database Browser).

A.8.1.1 From Site Manager
‘ariesddb’ can be invoked from the BuildingàDatabase browser entry in the Site Manager.  More
conveniently, individual drum records can be accessed from the 3D tour or the 2D map.  Simply click on
any of the drums, and a drum database record editor will appear, allowing the user to scroll through all of
the field values for that drum.

3D tour window

Drum database
record editor

Figure 32  (Record editor via 3D tour)

A.8.1.2 From IRIX Command Prompt
ariesddb is also designed to be invoked directly from an IRIX command prompt.  Typing “ariesddb” will
give the following usage:

ARIES Database v2.0

Usage: ariesdbb [.db file]

• <.db> corresponds to the name of the ARIES drum database to be browsed.



34

A.8.2 Browser Interface Layout

A.8.2.1 Main Interface

Entries list
Field controls

Dataset name
Pulldown menu

Figure 33  (ariesddb main interface)

When ariesddb is invoked, it is in the state shown in Figure 33, and starts with no records in the entries list.

A.8.2.1.1 Pull down Menu
The pull down menu contains three panes: File, Records, and Examine.  File contains controls for
loading and saving the current database.  It will automatically come up in the directory defined specifically
for holding ARIES database files for a particular site or vehicle.  When launched from Site Manager, the
exit option is disabled.  To close ariesddb simply double click in the upper left corner.

Records contains entries for adding, editing, and deleting records in the database.  Examine will pop up
the search dialog in either search or sort mode.

A.8.2.1.2 Entries List
While Figure 33 does not show any record entries, it will contain some or all of the fields and their
corresponding values for all of the records in the database.  The controls on the right side of the interface
control what fields will be shown for each record.

Figure 34  (Record field controls)



35

Each record is listed (shown in Figure 34) with the field name first, following by that field’s value for that
record.

A.8.2.2 Search/Sort Dialog

Search
parameter editor

Search
parameter list

Action buttons

Parameter field

Figure 35  (Search dialog)

A.8.2.2.1 Searching
Searching the database for records meeting certain criteria is accomplished through the search dialog
(Figure 33).  How to search for something is best demonstrated by example:

Suppose that we are interested in finding all of the drums that have a HEIGHT greater than 2, COLOR of
black, and a known RATING.  Click HEIGHT from the right set of radio buttons, and enter the top left
section of the dialog.  Notice that it says HEIGHT and gives an editor type based on the type of field
selected. Enter “2” and select ‘>’ from the list of comparison operators.  Go to the set of action buttons and
click ‘Add’.  This particular search field now appears in the search fields list.  Add the other two search
fields by repeating this procedure for “COLOR = black” and “RATING != unknown.”

Figure 36  (Search results)

Figure 13 shows the main interface after a search has been completed.  The user is able to view any field
from the records, not just the ones used in the search.



36

A.8.2.2.2 Sorting
In the search parameter section of the search dialog, a radio box contains buttons for both search and sort.
At any point in adding new search criteria to the search list, a sort may be added.  Simply select a field and
choose if the records should be sorted in ascending or descending order.

A.8.2.3 Data Set Manipulation
Notice in Figure 36 that data set indicator indicates “Data Group #2.”  Each time the database is searched
or sorted, a new data set is generated.  This allows the user to move freely among all of the data sets,
including the original.  As the browser moves to new data sets, the 3D tour in Site Manager will show that
data set.

A.8.3 Record Editor

Figure 37  (Record editor)

The record editor, shown in Figure 37 allows the user to view and edit the information contained in all
fields of the record.

A.8.3.1 Field Types
Field types supported by ARIES include:

Field Type Field Editor
Integer Text box
Char Text box
Float Text box
Enumeration Option menu
File Text box + file selector controls
Time Text box
Character Array Text box

Table 2  (Editor field types)

A.8.3.2 Images
Images a treated differently than the other fields.  While all other fields are generic, image fields are
reserved for ARIES image files specifically.



37

A.8.3.2.1 Image Fields
A window is provided beside the text box containing the filename of the image.  This allows a small
preview of the image file read by the ARIES vehicle.  Controls are provided for reassigning this field via a
file selector, as well as viewing it more closely.  Pressing the “View” button will activate the gviewer
utility.

A.8.3.2.2 gviewer Utility
gviewer, shown in Figure 38, allows for a closer view of the image.  Once up, the user can use the up and
down arrow keys to zoom or shrink the image.  The escape key will exit the application.

Figure 38  (gviewer utility)

gviewer is also a stand-alone IRIX application.  It can be invoked on any img file created by the ARIES
vision software.  When invoked on multiple img files, the left and right arrow keys will move through the
images.

A.8.4 Database Utilities
Because the ARIES database format is in binary, files cannot be edited or viewed with standard text
editors.  These utilities were added for easier manipulation of the ARIES drum databases.

A.8.4.1 dbtool
When invoked from the IRIX command prompt, dbtool gives the following usage:

ARIES Drum Database Tool v0.x

Usage: dbtool [options] <mode>
where [options] are:

-I case insensitive field matching
-v verbose mode

where <mode> is:
-merge   (merge one database with another)

args: <new db> <out db> <field name>
* the merger will automatically extract the
  name of the database to merge with from



38

  the header of the <new db>.

-rename  (rename a field in a database)
args: <in db> <out db> <old field> <new field>

-convert (convert a database to a new template)
args: <in db> <out db> <template>

•  ‘-I’ will make dbtool case insensitive when scanning for field names.
• ‘-V’ will make dbtool report each step it is taking when executing a command.
• ‘-merge’ merges a database brought back from an ARIES vehicle with the master database on

the off-board computers.
• ‘-rename’ copies the input database to a new database, with one field name changed.
• ‘-convert’ copies one database to another given a new database template.  Any fields that

match from the input database to the given template will be copied.

A.8.4.2 dbutil
When invoked from an IRIX command prompt, dbutil gives the following usage:

Drum Database Utility v1.0

Usage: dbutil <option>
-gen <filename> <count> <desc>
-header <dbfile> <header string>
-read <filename>
-print print data
-search <dbfile> <fieldname> <value>
-sort <dbfile> <fieldname>
-stats <filename>
-subset <filename>

• ‘-gen’ will generate a new database file with random record field values.
• ‘-header’ changes the user header value of the database.  ARIES uses this field to store

information about the site and mission the database was created in.
• ‘-read’ will read the entire contents of the database.  Often used to time the speed of the

database reader.
• ‘-print’ cause dbutil to print the records as it operates in them.
• ‘-search’ performs a simple search of a database for a single field value.
• ‘-sort’ performs a simple sort of a database for a single field value.
• ‘-stats’ prints low-level information about the internal organization of the database file.  An

example output:

             database size:    98304 bytes
                block size:      512 bytes
              total blocks:      192 blocks
         record table size:      790 bytes
         delete table size:        5 bytes
         format table size:      771 bytes
             total records:      157
             empty records:        0
      smallest record size:      112 bytes
       average record size:      440 bytes
       largest record size:      522 bytes
            deleted blocks:        0



39

          total efficiency:    70.27 %
            overhead space:     3.36 %
              unused space:    26.37 %

• ‘-subset’ is reserved for ARIES software developers.



1

Program Flow: Outline

1. umask()[io.h] and [sys/stat.h] and [sys/types.h] (_umask())
2. XUInitErrorLog() [xu_error.c]
3. InitRandom() [mon_main.cpp]
4. Getenv() [stdlib.h]
5. sprintf() [stdio.h]
6. strcat() [string.h]
7. XUProgError() [error.c]
8. ParseCommandLine() [sm_main.cpp], [adb_main.cpp], [dbt_main.cpp], [dbu_main.cpp], [mon_main.cpp]
9. Gethostname() [winsock2.h]
10. InitParameters() [sm_main.cpp]
11. XtVaAppInitialize()
12. sprintf()
13. XtVaSetValues()
14. XtDisplay()
15. XtScreen()
16. DefaultGC() [sm_xwin.cpp]
17. DefaultColormap()
18. InitX()
19. ChangeRobotMenu() [sm_robots.cpp]
20. SetUnits() [sm_utility.cpp]
21. FillItemList() [sm_items.cpp]
22. sprintf()
23. XULabelSetString() [xu_utility.cpp]
24. NewMessage() [sm_utility.cpp]
25.  XtAppMainLoop()



2

Program Flow: Ring One Detail

1.  umask()[io.h] and [sys/stat.h] and [sys/types.h] (_umask())

2. XUInitErrorLog() [xu_error.c]
2.1. fopen()
2.2. XUSystemError()[xu_error.c]
2.3. fchmod()
2.4. fileno()
2.5. XUProgError()[error.c]

3. InitRandom() [mon_main.cpp]
3.1. time()
3.2. srand()

4. Getenv() [stdlib.h]
5. sprintf() [stdio.h]
6. strcat() [string.h]
7. XUProgError() [error.c]

7.1. fprintf()
7.2. va_start()
7.3. vsprintf()
7.4. time()
7.5. localtime()
7.6. strftime()
7.7. fflush()
7.8. va_end()
7.9. sprintf()
7.10. FatalErrorMessage() [xu_error.c]
7.11. ErrorMessage() [xu_error.c]
7.12. Strcmp()
7.13. exit()

8. ParseCommandLine() [sm_main.cpp], [adb_main.cpp], [dbt_main.cpp],
[dbu_main.cpp], [mon_main.cpp]
8.1. sprintf()
8.2. strcmp()
8.3. fprintf()
8.4. GiveHelp() [sm_main.cpp]
8.5. atoi()

9. Gethostname() [winsock2.h]
10. InitParameters() [sm_main.cpp]

10.1. ParseWarehouseFile() [sm_parser.cpp]
10.2. InitNullHouse() [sm_house.cpp]

11. XtVaAppInitialize()
12. sprintf()
13. XtVaSetValues()
14. XtDisplay()
15. XtScreen()



3

16. DefaultGC()
17. DefaultColormap()
18. InitX()

18.1. GetColors() [sm_xwin.cpp]
18.2. XmCreateForm()
18.3. CreateMenuBar() [sm_xwin.cpp]
18.4. XmCreateForm()
18.5. XtVaSetValues()
18.6. OGLXCreateColorEditor()
18.7. CreateMap()
18.8. CreateToggleIcons()
18.9. CreateLogo()
18.10. XmCreateLabel()
18.11. XtVaSetValues()
18.12. XULabelSetString() [xu_utility.cpp]
18.13. XtManageChild()
18.14. CreateRobotArea() [sm_xwin.cpp]
18.15. CreateItemListArea() [sm_xwin.cpp]
18.16. CreateDockShell() [sm_docks.cpp]
18.17. CreatePathShell( ) [sm_xpath.cpp]
18.18. CreateMissionShell( ) [sm_mdl.cpp]
18.19. CreatePasmShell( ) [sm_xpa.cpp]
18.20. CreateRDLShell( ) [am_rdl.cpp]
18.21. CreateTourShell( ) [sm_tour.cpp]
18.22. CreateHistoryShell( ) [sm_history.cpp]
18.23. InitBrowserState( ) [sm_db_int.cpp] [db_init.cpp] [adb_init.cpp]
18.24. XtManageChild()
18.25. XtRealizeWidget()
18.26. CreateCursors( ) [sm_xwin.cpp]
18.27. InitMap( ) [sm_map.cpp]
18.28. GetCurrentTime( ) [sm_utility.cpp]

19. ChangeRobotMenu() [sm_robots.cpp]
19.1. XtUnmanageChild()
19.2. XtDestroyWidget()
19.3. LLRetrieve()
19.4. // XfreeColors()
19.5. MakeNullMenu() [sm_robots.cpp]
19.6. XmCreatePushButton()
19.7. XtVaSetValues()
19.8. XtAddCallback()
19.9. XmCreatePulldownMenu()
19.10. XmCreateOptionMenu()
19.11. InstallHelpText() [sm_utility.cpp]
19.12. XtMalloc()
19.13. XallocColor()
19.14. XmCreateToggleButton()
19.15. XtManageChild()
19.16. ChangeRobotToggle() [sm_robots.cpp]

20. SetUnits() [sm_utility.cpp]
20.1. XtVaSetValues()
20.2. ResetLights() [sm_3Ddraw.cpp]



4

21. FillItemList() [sm_items.cpp]
21.1. XmListDeleteAllItems()
21.2. sprintf()
21.3. sprintf()
21.4. PadString() [sm_utility.cpp]
21.5. PadString() [sm_utility.cpp]
21.6. sprintf()
21.7. XmStringCreateSimple()
21.8. XmListAddItem()
21.9. XmListSelectPos()
21.10. XULabelSetString() [xu_utility.cpp]

22. sprintf()
23. XULabelSetString() [xu_utility.cpp]

23.1. XmStringCreateSimple()
23.2. XtVaSetValues()
23.3. free()

24. NewMessage() [sm_utility.cpp]
24.1. XUProgError() [error.c]

25. XtAppMainLoop()



5

Program Flow: Ring Two Detail

1.  umask()[io.h] and [sys/stat.h] and [sys/types.h] (_umask())

2. XUInitErrorLog() [xu_error.c]
2.1. fopen()
2.2. XUSystemError()[xu_error.c]

2.2.1. fprintf()
2.2.2. exit()
2.2.3. va_start()
2.2.4. vsprintf()
2.2.5. strcat()
2.2.6. strcat()
2.2.7. time()
2.2.8. localtime()
2.2.9. strftime()
2.2.10. fprintf()
2.2.11. fflush()
2.2.12. va_end()
2.2.13. sprintf()
2.2.14. FatalErrorMessage()
2.2.15. ErrorMessage()
2.2.16. fprintf()
2.2.17. exit()

2.3. fchmod()
2.4. fileno()
2.5. XUProgError()[error.c]

2.5.1. fprintf()
2.5.2. va_start()
2.5.3. vsprintf()
2.5.4. time()
2.5.5. localtime()
2.5.6. strftime()
2.5.7. fflush()
2.5.8. va_end()
2.5.9. sprintf()
2.5.10. FatalErrorMessage()
2.5.11. ErrorMessage()
2.5.12. strcmp
2.5.13. exit()

3. InitRandom() [mon_main.cpp]
3.1. time()
3.2. srand()

4. Getenv() [stdlib.h]
5. sprintf() [stdio.h]
6. strcat() [string.h]
7. XUProgError() [error.c]



6

7.1. fprintf()
7.2. va_start()
7.3. vsprintf()
7.4. time()
7.5. localtime()
7.6. strftime()
7.7. fflush()
7.8. va_end()
7.9. sprintf()
7.10. FatalErrorMessage() [xu_error.c]

7.10.1. XmCreateWarningDialog()
7.10.2. XtVaSetValues()
7.10.3. XtUnmanageChild()
7.10.4. XmMessageBoxGetChild()
7.10.5. XtAddCallback()
7.10.6. XmStringCreateLtoR()
7.10.7. XmStringFree()
7.10.8. XtManageChild()

7.11. ErrorMessage() [xu_error.c]
7.11.1. XmCreateWarningDialog()
7.11.2. XtVaSetValues()
7.11.3. XtUnmanageChild()
7.11.4. XmMessageBoxGetChild()
7.11.5. XmStringCreateLtoR()
7.11.6. XmStringFree()
7.11.7. XtManageChild()

7.12. Strcmp()
7.13. exit()

8. ParseCommandLine() [sm_main.cpp], [adb_main.cpp], [dbt_main.cpp],
[dbu_main.cpp], [mon_main.cpp]
8.1. sprintf()
8.2. strcmp()
8.3. fprintf()
8.4. GiveHelp() [sm_main.cpp]

8.4.1. printf()
8.4.2. exit()

8.5. atoi()

9. Gethostname() [winsock2.h]
10. InitParameters() [sm_main.cpp]

10.1. ParseWarehouseFile() [sm_parser.cpp]
10.1.1. OpenFile()
10.1.2. XUmalloc()
10.1.3. LLCreateList()
10.1.4. NextToken()
10.1.5. ParseSite()



7

10.1.6. CleanUp()
10.1.7. ParseBuilding()
10.1.8. ParseAcad()
10.1.9. ParseIv()
10.1.10. ParseRobots()
10.1.11. ParseOrigin()
10.1.12. ParseTargets()
10.1.13. ParseMarkers()
10.1.14. ParseDocks()
10.1.15. ParsePaths()
10.1.16. ReportParseError()

10.2. InitNullHouse() [sm_house.cpp]
10.2.1. XUmalloc()
10.2.2. LLCreateList()

11. XtVaAppInitialize()
12. sprintf()
13. XtVaSetValues()
14. XtDisplay()
15. XtScreen()
16. DefaultGC() [sm_xwin.cpp]
17. DefaultColormap()
18. InitX()

18.1. GetColors() [sm_xwin.cpp]
18.1.1. XWhitePixelOfScreen()
18.1.2. XtScreen()
18.1.3. XBlackPixelOfScreen()
18.1.4. XtVaGetValues()
18.1.5. XtVaSetValues()
18.1.6. XmCreatePushButton()
18.1.7. XQueryColor()
18.1.8. XAllocNamedColor()
18.1.9. XAllocColor()
18.1.10. XtDestroyWidget()

18.2. XmCreateForm()
18.3. CreateMenuBar() [sm_xwin.cpp]

18.3.1. XmStringCreateSimple()
18.3.2. XmVaCreateSimpleMenuBar()
18.3.3. XtNameToWidget()
18.3.4. XtVaSetValues()
18.3.5. XmStringFree()
18.3.6. CreateFilePulldown()
18.3.7. CreateEditPulldown()
18.3.8. CreateViewPulldown()
18.3.9. CreateRobotsPulldown()
18.3.10. CreateMapPulldown()
18.3.11. CreateBuildingPulldown()
18.3.12. CreateHelpPulldown()
18.3.13. XtVaSetValues()
18.3.14. XtManageChild()



8

18.4. XmCreateForm()
18.5. XtVaSetValues()
18.6. OGLXCreateColorEditor()
18.7. CreateMap()
18.8. CreateToggleIcons()
18.9. CreateLogo()
18.10. XmCreateLabel()
18.11. XtVaSetValues()
18.12. XULabelSetString() [xu_utility.cpp]

18.12.1. XmStringCreateSimple()
18.12.2. XtVaSetValues()

18.13. XtManageChild()
18.14. CreateRobotArea() [sm_xwin.cpp]

18.14.1. XmCreateFrame()
18.14.2. XmCreateLabel()
18.14.3. XtVaSetValues()
18.14.4. XmCreateForm()
18.14.5. XmCreateRowColumn()
18.14.6. XtVaSetValues()
18.14.7. XtMalloc()
18.14.8. XCreatePixmapFromBitmapData()
18.14.9. XtVaCreateManagedWidget()
18.14.10. XtAddCallback()
18.14.11. InstallHelpText()
18.14.12. CreateRobotOption()
18.14.13. XtManageChild()

18.15. CreateItemListArea() [sm_xwin.cpp]
18.15.1. XmCreateFrame()
18.15.2. XUCreateOptionMenu()
18.15.3. XtVaSetValues()
18.15.4. InstallHelpText()
18.15.5. XmCreateForm()
18.15.6. XmCreateLabel()
18.15.7. XmCreateScrolledList()
18.15.8. XtAddCallback()
18.15.9. XULabelSetString()
18.15.10. XtManageChild()

18.16. CreateDockShell() [sm_docks.cpp]
18.16.1. XtCreatePopupShell()
18.16.2. XUAddCloseProtocol()
18.16.3. XUTurnOffResize()
18.16.4. XmCreateForm()
18.16.5. XUCreateThumbWheel()
18.16.6. XUGetThumbWheelWidgets()
18.16.7. XUWidgetInForm()
18.16.8. XtVaSetValues()
18.16.9. XmCreateLabel()
18.16.10. XtManageChild()



9

18.16.11. XmCreateText()
18.16.12. XtAddCallback()
18.16.13. XmCreateFrame()
18.16.14. XCreatePixmapFromBitmapData()
18.16.15. XCreatePixmapFromBitmapData()
18.16.16. XtVaCreateManagedWidget()
18.16.17. XmCreatePushButton()
18.16.18. XmCreateRadioBox()
18.16.19. XmCreateToggleButton()
18.16.20. XUWidgetInForm()
18.16.21. XmCreateRowColumn()

18.17. CreatePathShell( ) [sm_xpath.cpp]
18.17.1. XtCreatePopupShell()
18.17.2. XUAddCloseProtocol()
18.17.3. XmCreateForm()
18.17.4. CreateBottomArea()
18.17.5. XmCreateRowColumn()
18.17.6. XtVaSetValues()
18.17.7. XtMalloc()
18.17.8. XtNumber()
18.17.9. XmCreateFrame()
18.17.10. XmCreateLabel()
18.17.11. XtManageChild()
18.17.12. XmCreateRadioBox()
18.17.13. XmCreateToggleButton()
18.17.14. XtAddCallback()
18.17.15. XmCreateRowColumn()
18.17.16. XmCreateText()
18.17.17. CreateInspectionArea()

18.18. CreateMissionShell( ) [sm_mdl.cpp]
18.18.1. XtCreatePopupShell()
18.18.2. XUAddCloseProtocol()
18.18.3. XmCreateForm()
18.18.4. XmCreateFrame()
18.18.5. XmCreateLabel()
18.18.6. XtVaSetValues()
18.18.7. XUCreateOptionMenu()
18.18.8. XUOptionMenuButtons()
18.18.9. XmCreateText()
18.18.10. XmCreateRowColumn()
18.18.11. XmCreatePushButton()
18.18.12. XtAddCallback()
18.18.13. XtManageChild()

18.19. CreatePasmShell( ) [sm_xpa.cpp]
18.19.1. XtCreatePopupShell()
18.19.2. XUAddCloseProtocol()
18.19.3. XmCreateForm()
18.19.4. XmCreateFrame()
18.19.5. XmCreateLabel()
18.19.6. XtVaSetValues()
18.19.7. XmCreateRowColumn()
18.19.8. XtMalloc()



10

18.19.9. XtNumber()
18.19.10. XmCreateToggleButton()
18.19.11. XtManageChild()
18.19.12. XmCreatePushButton()
18.19.13. XtAddCallback()
18.19.14. XmCreateScrolledText()

18.20. CreateRDLShell( ) [am_rdl.cpp]
18.20.1. XtCreatePopupShell()
18.20.2. XUAddCloseProtocol()
18.20.3. XmCreateForm()
18.20.4. XmCreateFrame()
18.20.5. XmCreateLabel()
18.20.6. XtVaSetValues()
18.20.7. XtManageChild()
18.20.8. XULabelSetString()
18.20.9. CreateBarGraph()
18.20.10. XmCreateScrolledList()
18.20.11. XtAddCallback()
18.20.12. XmCreateRowColumn()
18.20.13. XtMalloc()
18.20.14. XtNumber()
18.20.15. XmCreatePushButton()
18.20.16. XmCreateToggleButton()

18.21. CreateTourShell( ) [sm_tour.cpp]
18.21.1. XtCreatePopupShell()
18.21.2. XUAddCloseProtocol()
18.21.3. XmCreateForm()
18.21.4. CreateControls()
18.21.5. XmCreateFrame()
18.21.6. XtManageChild()
18.21.7. XUWidgetInForm()
18.21.8. XUProgError()
18.21.9. // use ChoosePixelFormat()
18.21.10. glXChooseVisual()
18.21.11. sprintf()
18.21.12. XtVaSetValues()
18.21.13. XtVaCreateManagedWidget()
18.21.14. XtAddCallback()
18.21.15. GlXCreateContext()
18.21.16. fprintf()
18.21.17. exit()
18.21.18. AddPopupMenu()
18.21.19. ResetTraveller()
18.21.20. ResetRealBase()
18.21.21. ResetRealTurret()
18.21.22. ResetHistoryBase()
18.21.23. ResetHistoryTurret()

18.22. CreateHistoryShell( ) [sm_history.cpp]
18.22.1. XtCreatePopupShell()
18.22.2. XUAddCloseProtocol()
18.22.3. XmCreateForm()
18.22.4. XmCreateRowColumn()



11

18.22.5. XUCreateThumbWheel()
18.22.6. XtManageChild()
18.22.7. XmCreateFrame()
18.22.8. XmCreateLabel()
18.22.9. XtVaSetValues()
18.22.10. XmCreateToggleButton()
18.22.11. XtVaSetValues()
18.22.12. XtNumber()
18.22.13. XmCreatePushButton()
18.22.14. XtAddCallback()
18.22.15. XUWidgetInForm()
18.22.16. XUGetThumbWheelWidgets()

18.23. InitBrowserState( ) [sm_db_int.cpp] [db_init.cpp] [adb_init.cpp]
18.23.1. GUBuildHSItoRGBTable()
18.23.2. fprintf()
18.23.3. exit()
18.23.4. LLCreateList()
18.23.5. LLNewAppend()
18.23.6. strcpy()
18.23.7. DBInitX( )

18.24. XtManageChild()
18.25. XtRealizeWidget()
18.26. CreateCursors( ) [sm_xwin.cpp]

18.26.1. XCreatePixmapCursor()
18.26.2. XCreateBitmapFromData()

18.27. InitMap( ) [sm_map.cpp]
18.27.1. XtVaGetValues()
18.27.2. GLwDrawingAreaMakeCurrent()
18.27.3. LLCreateList()
18.27.4. LLNewAppend()
18.27.5. CreateDisplayLists()
18.27.6. glClearColor()
18.27.7. LLRetrieve()
18.27.8. GUCopyPoint2D()
18.27.9. SetAspectRatio()
18.27.10. //glBlendFunc()
18.27.11. //glHint()
18.27.12. //glEnable()

18.28. GetCurrentTime( ) [sm_utility.cpp]
18.28.1. time()
18.28.2. localtime(0
18.28.3. ClearHelpText()
18.28.4. XtAppAddTimeOut()

19. ChangeRobotMenu() [sm_robots.cpp]
19.1. XtUnmanageChild()
19.2. XtDestroyWidget()
19.3. LLRetrieve()
19.4. // XfreeColors()



12

19.5. MakeNullMenu() [sm_robots.cpp]
19.5.1. XmCreatePushButton()
19.5.2. XtVaSetValues()
19.5.3. XtAddCallback()
19.5.4. XmCreatePulldownMenu()
19.5.5. XmCreateOptionMenu()
19.5.6. XtMalloc()
19.5.7. XmCreateToggleButton()
19.5.8. XtManageChild()
19.5.9. XtManageChild()

19.6. XmCreatePushButton()
19.7. XtVaSetValues()
19.8. XtAddCallback()
19.9. XmCreatePulldownMenu()
19.10. XmCreateOptionMenu()
19.11. InstallHelpText() [sm_utility.cpp]

19.11.1. XtAddEventHandler()

19.12. XtMalloc()
19.13. XallocColor()
19.14. XmCreateToggleButton()
19.15. XtManageChild()
19.16. ChangeRobotToggle() [sm_robots.cpp]

19.16.1. LLRetrieve()
19.16.2. XtVaGetValues()
19.16.3. XCreatePixmapFromBitmapData()
19.16.4. XtVaSetValues()
19.16.5. XmDestroyPixmap()
19.16.6. XCreatePixmapCursor()
19.16.7. UpdateCommunication()

20. SetUnits() [sm_utility.cpp]
20.1. XtVaSetValues()
20.2. ResetLights() [sm_3Ddraw.cpp]

21. FillItemList() [sm_items.cpp]
21.1. XmListDeleteAllItems()
21.2. sprintf()
21.3. sprintf()
21.4. PadString() [sm_utility.cpp]
21.5. PadString() [sm_utility.cpp]
21.6. sprintf()
21.7. XmStringCreateSimple()
21.8. XmListAddItem()
21.9. XmListSelectPos()
21.10. XULabelSetString() [xu_utility.cpp]

21.10.1. XmStringCreateSimple()
21.10.2. XtVaSetValues()
21.10.3. free()



13

22. sprintf()
23. XULabelSetString() [xu_utility.cpp]

23.1. XmStringCreateSimple()
23.2. XtVaSetValues()
23.3. free()

24. NewMessage() [sm_utility.cpp]
24.1. XUProgError() [error.c]

24.1.1. fprintf()
24.1.2. va_start()
24.1.3. vsprintf()
24.1.4. time()
24.1.5. localtime()
24.1.6. strftime()
24.1.7. fflush()
24.1.8. va_end()
24.1.9. sprintf()
24.1.10. FatalErrorMessage()
24.1.11. ErrorMessage()
24.1.12. strcmp
24.1.13. exit()

25. XtAppMainLoop()



14

Header File Structure

<stdio.h>  [\h]
<stdlib.h>
<math.h>
<time.h>
<ctype.h>
<float.h>
<signal.h>
<time.h>
// <times.h>
<sys\types.h>
<sys\stat.h>
// <unistd.h>
<stdarg.h>
<string.h>
<limits.h>

// <X11/Intrinsic.h>
// <X11/Shell.h>
// <X11/StringDefs.h>
// <X11/cursorfont.h>
// <X11/Xutil.h>

// <Xm/Xm.h>
// <Xm/DrawingA.h>
// <Xm/Text.h>
// <Xm/Label.h>
// <Xm/Form.h>
// <Xm/Frame.h>
// <Xm/PushB.h>
// <Xm/RowColumn.h>
// <Xm/BulletinB.h>
// <Xm/Separator.h>
// <Xm/ToggleB.h>
// <Xm/ToggleBG.h>
// <Xm/ArrowB.h>
// <Xm/Scale.h>
// <Xm/DrawnB.h>
// <Xm/CascadeBG.h>
// <Xm/CascadeB.h>
// <Xm/Protocols.h>
// <Xm/AtomMgr.h>
// <Xm/List.h>
// <Xm/SelectioB.h>

// <X11/GLw/GLwMDrawA.h>
<windows.h>
<GL/gl.h>
// <GL/glx.h>
<GL/glu.h>

// <Sgm/ThumbWheel.h>

"..\..\libraries\include\ACAD.h"



15

"..\..\libraries\include\XU.h"
"..\..\libraries\include\GU.h"
"..\..\libraries\include\IGLX.h"
"..\..\libraries\include\OGLX.h"
"..\..\libraries\include\OGLIv.h"
"..\..\libraries\include\OGLAlive.h"
"..\..\libraries\include\LL.h"



16

main()

[sm_main.cpp]

Calls:
umask(0);
XUInitErrorLog()[Xu_error.c]
getenv()
sprintf()
strcat()
XUProgError()
ParseCommandLine()
gethostname()
strcmp()
InitParameters()
XtVaAppInitialize()
XtVaSetValues()
XtDisplay()
XtScreen()
DefaultScreen()
DefaultGC()
DefaultColormap()
InitX()
ChangeRobotMenu()
SetUnits()
FillItemList()
XULastFilename()
XULabelSetString()
NewMessage()
XtAppMainLoop()

Variables (global & static local):
XmNtitle
Dxfw
Ivw

Purpose:
Sets up parameters, generates errors if program not started properly,

Warnings:



17

XUInitErrorLog ()

[Xu_error.c]

Calls:
fopen()
XUSystemError() [error.c]
fchmod()
fileno()
XUProgError() [error.c]

Variables (global & static local):
stderr
TopLevel
logfile

Purpose:
Generates error if logfile cannot be opened with append permissions.  Also starts the XUProgError function

Warnings:

XUProgError ()

[Xu_error.c]

Calls:
fprintf()
exit()
va_start()
time()
localtime()
strftime()
fflush()
va_end()
sprintf()
FatalErrorMessage()
ErrorMessage()
strcmp()

Variables (global & static local):
stderr
errlog
StatusTable[ ]

Purpose:
Determines type of error and generates the correct error message.

Warnings:



18

ParseCommandLine ()

Calls:
sprintf()
strcmp()
fprintf()
GiveHelp()
atoi()

Variables (global & static local):
info
SiteFile
lead
stderr
UseTex

Purpose:
Examines command line parameters and generates any help information if needed.  Also sets up internal
information based on command line parameters.

Warnings:

InitParameters ()

[sm_main.cpp]

Calls:
ParseWarehouseFile()
InitNullHouse()

Variables (global & static local):
SiteFile
house
New
info

Purpose:
Starts the InitNullHouse function.  Also sets up all the parameters for the info class.

Warnings:



19

InitX ()

[sm_xwin.cpp]

Calls:
GetColors()
XmCreateForm()
CreateMenuBar()
XmCreateForm()
XtVaSetValues()
OGLXCreateColorEditor()
CreateMap()
CreateToggleIcons()
CreateLogo()
XmCreateLabel()
XtVaSetValues()
XULabelSetString()
XtManageChild()
CreateRobotArea()
CreateItemListArea()
CreateDockShell()
CreatePathShell()
CreateMissionShell()
CreatePasmShell()
CreateRDLShell()
CreateTourShell()
CreateHistoryShell()
InitBrowserState()
XtManageChild()
XtRealizeWidget()
CreateCursors()
InitMap()
GetCurrentTime()

Variables (global & static local):
TopLevel
RightForm
XmNrightAttachment
XmNbottomAttachment
XmNtopAttachment
XmNtopWidget
XmATTACH_FORM
XmATTACH_WIDGET
MenuBar
ColorShell
HelpLabel

Purpose:
Sets up all window objects (menus, toolbars, etc.).  Sets up program parameters (warehouse, robot, paths,
etc.)

Warnings:



20

ChangeRobotMenu ()

[sm_robots.cpp]

Calls:
XtUnmanageChild ()
XtDestroyWidget ()
//XFreeColors()
LLRetrieve()
MakeNullMenu()
XmCreatePushButton()
XtVaSetValues()
XtAddCallback()
XmCreatePulldownMenu()
XmCreateOptionMenu()
InstallHelpText()
XtMalloc()
XAllocColor()
XmCreateToggleButton()
XtManageChild()
ChangeRobotToggle()

Variables (global & static local):
info
RobotBs[ ]
house
RobotOption
RobotMenu
ColorB
XmNleftAttachment
XmATTACH_FORM
XmNy
XmNleftOffset
XmNwidth
XmNheight
XmNactivateCallback
RobotModCB
RobotForm
XmNradioBehavior
display
Cmap
XmNindicatorType
RobotOptCB
XmNbackground
XmNmenuHistory

Purpose:
Alters the robot menu.  Determine which robot has been selected. Updates all necessary parameters (color,
buttons, etc.)  for the robot.

Warnings:
XFreeColors is commented!



21

SetUnits ()

[sm_utility.cpp]

Calls:
XtVaSetValues()
ResetLights()

Variables (global & static local):
house
DXFUnits[ ]
IVUnits[ ]
XmNset (I think this is an X-windows parameter)

Purpose:
Determines which measurement units (length) to use depending on the type of file opened.  Seems to set
everything to feet though.

Warnings:

FillItemList ()

[sm_items. cpp]

Calls:
XmListDeleteAllItems ()
LLRetrieve()
sprintf()
PadString()
XmStringCreateSimple()
XmListAddItem()
XmListSelectPos()
XULabelSetString()

Variables (global & static local):
ItemList
house
ItemLab

Purpose:
Determines what the user is trying to place (TARGET, MARKER, DOCK, and PATH) and places it into
the list.

Warnings:
No default value for switch statement!!!



22

*XULastFilename ()

[xu_utility.cpp]

Calls:
strlen ()

Variables (global & static local):

Purpose:
Truncates a full path to extract only the last filename.

Warnings:

XULabelSetString ()

[xu_utility.cpp]

Calls:
XmStringCreateSimple ()
XtVaSetValues()
free()

Variables (global & static local):
XmNlabelString

Purpose:
Simple convenience function to set the string of a label widget.

Warnings:

NewMessage ()

[sm_utility. cpp]

Calls:
XUProgError ()

Variables (global & static local):
TopLevel
NOTE_ERROR

Purpose:
Generates an error message

Warnings:



23

XUSystemError ()

[xu_error.cpp]

Calls:
fprintf ()
exit()
va_start()
vsprintf()
strcat()
strerror()
time()
localtime()
strftime()
fflush()
va_end()
sprintf()
FatalErrorMessage()
ErrorMessage()

Variables (global & static local):
stderr
errno
errlog
StatusTable[ ]
TopLevelUpFlag

Purpose:
Generates the appropriate system error desired by the context of the call.

Warnings:

FatalErrorMessage ()

[XU_error.cpp]

Calls:
XmCreateWarningDialog ()
XtVaSetValues()
XtUnmanageChild()
XmMessageBoxGetChild()
XtAddCallback()
XmStringCreateLtoR()
XmStringFree()
XtManageChild()

Variables (global & static local):
DialogPixmap
XmNsymbolPixmap
XmNalignment
XmALIGNMENT_BEGINNING



24

XmNokCallback
ExitCallback
ErrorString
XmFONTLIST_DEFAULT_TAG
XmNmessageString

Purpose:
Popups a standard dialog box displaying a message with an OK button to make it go away.

Warnings:

ErrorMessage ()

[xu_error.cpp]

Calls:
XmCreateWarningDialog ()
XtVaSetValues()
XtUnmanageChild()
XmMessageBoxGetChild()
XtVaSetValues()
XmStringCreateLtoR()
XmStringFree()
XtManageChild()

Variables (global & static local):
DialogPixmap
XmNsymbolPixmap

Purpose:
Popups a standard dialog box displaying a message with an OK button to make it go away.

Warnings:
Only differs from FatalErrorMessage by NOT calling XtAddCallBack and XtManageChild.

GiveHelp ()

[sm_main.cpp]

Calls:
printf ()
exit()

Variables (global & static local):

Purpose:
Generates a listing of all command line parameters and what they correspond to.

Warnings:



25

ParseWarehouseFile ()

[sm_parser.cpp]

Calls:
OpenFile ()
XUmalloc()
LLCreateList()
NextToken()
ParseSite()
ParseBuilding()
ParseAcad()
ParseIv()
ParseRobots()
ParseOrigin()
ParseTargets()
ParseMarkers()
ParseDocks()
ParsePaths()
CleanUp()
ReportParseError()
CloseFile()

Variables (global & static local):
ware
CurrentToken

Purpose:
Goes through a file and sets-up sites, building, robot information.  Returns NULL if errors occur.

Warnings:
No default on switch statement.

InitNullHouse ()

[sm_house.cpp]

Calls:
XUmalloc ()
LLCreateList()

Variables (global & static local):
house
SiteFile[ ]

Purpose:
Sets the house (struct???) to default positions.

Warnings:



26

GetColors ()

[sm_xwin.cpp]

Calls:
XWhitePixelOfScreen ()
XBlackPixelOfScreen()
XtVaGetValues()
XtVaSetValues()
XmCreatePushButton()
XQueryColor()
XAllocColor()
XAllocNamedColor()
XtDestroyWidget()

Variables (global & static local):
TopLevel
wp
bp
BackgroundColor
backp
display
Cmap
frontp
mp
tp
dp
mdp
np
op

Purpose:
Sets the colors of the screen to values allowed.

Warnings:

CreateMenuBar ()

[sm_xwin.cpp]

Calls:
XmStringCreateSimple ()
XmVaCreateSimpleMenuBar()
XtNameToWidget()
XtVaSetValues()
XmStringFree()
CreateFilePulldown()
CreateEditPulldown()
CreateViewPulldown()
CreateRobotsPulldown()
CreateMapPulldown()
CreateBuildingPulldown()
CreateHelpPulldown()
XtVaSetValues()



27

XtManageChild()

Variables (global & static local):
MenuBar

Purpose:
Creates a menu with File, Edit, View, Robots, Map, Building, Help pulldowns.

Warnings:

OGLXCreateColorEditor ()

[oglx_xcolor.cpp]

Calls:
XmStringCreateSimple ()
SgOglCreateColorChooserDialog()
XtVaSetValues()
XtAddCallback()
XmStringFree()
XtVaGetValues()
XtUnmanageChild()

Variables (global & static local):

Purpose:
Creates a dialog box with OK, Cancel, and a color editior.

Warnings:

CreateMap ()

[sm_xwin.cpp]

Calls:
XmCreateFrame ()
XtManageChild()
XtVaSetValues()
XUProgError()
glXChooseVisual()
XtVaCreateManagedWidget()
XtAddCallback()
XtAddEventHandler()
XtVaSetValues()
glXCreateContext()
fprintf()
exit()

Variables (global & static local):
TopLevel
attribs[ ]
glxmap
glxcontext

Purpose:



28

Creates the map in which the site will be created.
Warnings:

CreateToggleIcons ()

[sm_xwin.cpp]

Calls:
XmCreateFrame ()
XmCreateLabel()
XtVaSetValues()
XmCreateForm()
XtMalloc()
XmCreateRadioBox()
XCreatePixmapFromBitmapData()
DefaultRootWindow()
DefaultDepthOfScreen()
XtVaCreateManagedWidget()
InstallHelpText()
XtAddCallback()
CreateMapIcons()
XmCreateText()
XtAddCallback()
XtManageChild()

Variables (global & static local):
MapFrame
ctoggles [ ]
RobTog
InputText
InputLab

Purpose:
Creates Menu Icons and updates them based on selection.

Warnings:

CreateLogo ()

[sm_xwin.cpp]

Calls:
XmCreateBulletinBoard ()
LoadGIF()
XCreatePixmapFromBitmapData()
DefaultDepthOfScreen()
XtVaCreateManagedWidget()
XCreatePixmap()
RootWindow()
DefaultScreen()
DefaultDepthOfScreen()
XPutImage()
CreateProcessedLogos()
//XUSetDialogPixmap()



29

XtManageChild()

Variables (global & static local):
LogoBB

Purpose:
Loads a GIF image, if error sets logo to default.  If load is correct, updates logo with loaded image.

Warnings:
XUSetDialogPixmap is commented.

CreateRobotArea ()

[sm_xwin.cpp]

Calls:
XmCreateFrame ()
XmCreateLabel()
XtVaSetValues()
XmCreateForm()
XmCreateRowColumn()
XtMalloc()
XCreatePixmapFromBitmapData()
DefaultDepthOfScreen()
XtVaCreateManagedWidget()
XtAddCallback()
XtNumber()
InstallHelpText()
CreateRobotOption()
XtManageChild()

Variables (global & static local):
RobotFrame
RobotForm

Purpose:
Allows you to change a robots name, add/delete a new robot.

Warnings:

CreateItemListArea ()

[sm_xwin.cpp]

Calls:
XmCreateFrame ()
XUCreateOptionMenu()
XtVaSetValues()
InstallHelpText()
XtVaSetValues()
XmCreateForm()
XmCreateLabel()
XmCreateScrolledList()



30

XtAddCallback()
XULabelSetString()
XtManageChild()

Variables (global & static local):
ItemLab
ItemList

Purpose:
Sets up a list corresponding to the button pressed ("targets", "markers", "docks", "paths")

Warnings:

CreateDockShell ()

[sm_docks.cpp]

Calls:
XtCreatePopupShell ()
XUAddCloseProtocol()
XUTurnOffResize()
XmCreateForm()
XUCreateThumbWheel()
XUGetThumbWheelWidgets()
XUWidgetInForm()
XtVaSetValues()
XmCreateLabel()
XtManageChild()
XmCreateText()
XtAddCallback()
XmCreateFrame()
XCreatePixmapFromBitmapData()
DefaultDepthOfScreen()
XtVaCreateManagedWidget()
XmCreatePushButton()
XmCreateRadioBox()
XUWidgetInForm()
XmCreateRowColumn()
XtParent()

Variables (global & static local):
DockShell
AzWheel
wheel
box
offset
DockCB
number
SGVLabel
AutoTog
ManTog

Purpose:
Creates a shell that is responsible for determining the dock type, and position.



31

Warnings:

CreatePathShell ()

[sm_xpath.cpp]

Calls:
XtCreatePopupShell ()
XUAddCloseProtocol()
XmCreateForm()
CreateBottomArea()
XmCreateRowColumn()
XtVaSetValues()
XtMalloc()
XtNumber()
XmCreateFrame()
XmCreateLabel()
XtManageChild()
XmCreateRadioBox()
XtAddCallback()
XmCreateText()
CreateInspectionArea()

Variables (global & static local):
PathShell
frames[ ]
toggles[ ]

Purpose:
Creates a shell that is responsible for path placement (classification and placement).

Warnings:

CreateMissionShell ()

[sm_mdl.cpp]

Calls:
XtCreatePopupShell()
XUAddCloseProtocol()
XmCreateForm()
XmCreateFrame()
XmCreateLabel()
XtVaSetValues()
XUCreateOptionMenu()
XUOptionMenuButtons()
XmCreateText()
XmCreateRowColumn()
XmCreatePushButton()
XtAddCallback()
XtManageChild()



32

Variables (global & static local):
MissionShell
MissionFrame
robotlab
month
MonthWs
day
DayWs
timebox
meridian
MeridianWs

Purpose:
Sets up mission parameters based on month, day, time.

Warnings:

CreatePasmShell ()

[sm_xpa.cpp]

Calls:
XtCreatePopupShell ()
XUAddCloseProtocol()
XmCreateForm()
XmCreateFrame()
XmCreateLabel()
XtVaSetValues()
XmCreateRowColumn()
XtMalloc()
XtNumber()
XmCreateToggleButton()
XtManageChild()
XmCreatePushButton()
XtAddCallback()
XmCreateScrolledText()

Variables (global & static local):
PasmShell
FlagTogs
ErrorText

Purpose:
Creates buttons used for pasm assembly.

Warnings:
The following is commented from one of the XtVaSetValues function calls
/*

XmNcolumns, 80,
*/

CreateRDLShell ()



33

[sm_rdl.cpp]

Calls:
XtCreatePopupShell ()
XUAddCloseProtocol()
XmCreateForm()
XmCreateFrame()
XmCreateLabel()
XtVaSetValues()
XtManageChild()
XULabelSetString()
CreateBarGraph()
XmCreateScrolledList()
XtAddCallback()
XmCreateRowColumn()
XtMalloc()
XtNumber()
XmCreatePushButton()
XmCreateToggleButton()

Variables (global & static local):
RDLShell
date
Robot
site
build
ReportList

Purpose:
COME BACK TO THIS ONE !!!  Creates a

Warnings:
Errors if necessary

CreateTourShell ()

[sm_tour.cpp]

Calls:
XtCreatePopupShell ()
XUAddCloseProtocol()
XmCreateForm()
CreateControls()
XmCreateFrame()
XtManageChild()
XUWidgetInForm()
XUProgError()
glXChooseVisual()
DefaultScreen()
sprintf()
XtVaSetValues()
XtVaCreateManagedWidget()
XtAddCallback()
glXCreateContext()



34

fprintf()
exit()
ResetTraveller()
ResetRealBase()
ResetRealTurret()
ResetHistoryBase()
ResetHistoryTurret()

Variables (global & static local):
TourShell
attribs[ ]
glxtour
TourContext

Purpose:
Sets up the 3D Tour app.  Resets 3D Robot values and traveller’s orientation.

Warnings:

CreateHistoryShell ()

[sm_history.cpp]

Calls:
XtCreatePopupShell()
XUAddCloseProtocol()
XmCreateForm()
XmCreateRowColumn()
XmCreateToggleButton
XUCreateThumbWheel()
XtManageChild()
XmCreateFrame()
XmCreateLabel()
XtVaSetValues()
XUWidgetInForm()
XUGetThumbWheelWidgets()

Variables (global & static local):
HistoryShell
SpeedWheel
IndexWheel
MapTog
TourTog

Purpose:
Initializes the history dialog and sets up other history parameters.

Warnings:

InitBrowserState ()

[sm_db_init.cpp]



35

Calls:
GUBuildHSItoRGBTable ()
fprintf()
exit()
LLCreateList()
LLNewAppend()
#ifdef SITE_MANAGER  DBInitX( )

Variables (global & static local):
BrowserState

Purpose:
Initializes the BrowserState parameters and calls functions for color values, linklists, etc.

Warnings:
DBInitX( ) only works if SITE_MANAGER is defined as true.

CreateCursors ()

[sm_xwin.cpp]

Calls:
XCreatePixmapCursor()
XCreateBitmapFromData()

Variables (global & static local):
cselect
ctarget
cmarker
cdock
corigin
crobot
cchoose

Purpose:
Sets the color and other attributes of the cursors used throughout the program.

Warnings:

InitMap ()

[sm_map.cpp]

Calls:
XtVaGetValues ()
GLwDrawingAreaMakeCurrent()
LLCreateList()
LLNewAppend()
CreateDisplayLists()
LLRetrieve()
GUCopyPoint2D ()
SetAspectRatio()



36

//glBlendFunc()
//glHint()
//glEnable();

Variables (global & static local):
MapWidth
MapHeight
ViewList
view
info
border

Purpose:
Sets up map parameters, and creates display list on first run.

Warnings:

GetCurrentTime ()

[sm_utility.cpp]

Calls:
time()
localtime()
ClearHelpText()
XtAppAddTimeOut()

Variables (global & static local):
MyTime

Purpose:
Gets the current time from the system clock.

Warnings:
Uses GetCurrentTime as a parameter for the XtAppAddTimeOut() function.  Recursive function with no
stop??

*LLRetrieve ()

[ll_lists.cpp]

Calls:
fprintf()
LLQuickReadTraverse()

Variables (global & static local):

Purpose:
Returns the data specified.

Warnings:
Even though function is listed as void returns node->data.

MakeNullMenu ()

[File.cpp]



37

Calls:
XmCreatePushButton ()
XtVaSetValues()
XtAddCallback()
XmCreatePulldownMenu()
XmCreateOptionMenu()
XmCreateToggleButton()
XtMalloc()
XtManageChild()

Variables (global & static local):
ColorB
RobotMenu
RobotOption
RobotBs[ ]
info

Purpose:
Sets up the robot menu so there is no entries.

Warnings:

InstallHelpText ()

[sm_utility.cpp]

Calls:
XtAddEventHandler()

Variables (global & static local):

Purpose:
Sets up handlers for the help text dialogs.

Warnings:

ChangeRobotToggle ()

[sm_robots.cpp]

Calls:
LLRetrieve ()
XtVaGetValues()
XCreatePixmapFromBitmapData()
XtVaSetValues()
XmDestroyPixmap()
XCreatePixmapCursor()
XCreateBitmapFromData()
UpdateCommunication()

Variables (global & static local):
crobot



38

info

Purpose:
Sets the robot button’s toggle parameter based on connection to server.

Warnings:
The ConnectedToServer if section sets the info.display parameter to true and then false.  I’m not sure how
this updates the toggle button.

ResetLights ()

[sm_3Ddraw.cpp]

Calls:

Variables (global & static local):
light_position

Purpose:
Sets the OpenGL lights positions to the X and Y coordinates of the origin.  Z value is set to 6.

Warnings:
There is a section that is commented out that moves the lights according to the scale used.

PadString ()

[sm_utility.cpp]

Calls:

Variables (global & static local):

Purpose:
This function adds empty spaces “  “ to a string of characters.  The length of the spaces depends on the

second parameter passed to the function.

Warnings:
Although it is an integer, found is set to false.  It is probably defined as an integer somewhere else though.

OpenFile ()

[sm_scanner.cpp]

Calls:
PushFileContext()
LLCreateList()
PushFileContext()
strcpy()
fopen()
fprintf()
PopFileContext()
XUmalloc()
NextLine()



39

Variables (global & static local):
FileList
CurrentFilename
line
TokenBuffer
LineNum

Purpose:
Opens the file for reading, initializes the line counter to 1, and reads in the first buffer full.

Warnings:
Errors if necessary

*XUmalloc ()

[xu_utility.cpp]

Calls:
malloc()
fprintf()
exit()

Variables (global & static local):

Purpose:
Gets memory from the OS for data.

Warnings:

LLCreateList ()

[ll_lists.cpp]

Calls:
malloc()
fprintf()

Variables (global & static local):

Purpose:
Creates an empty Linked List.

Warnings:

NextToken ()

[sm_scanner.cpp]



40

Calls:
Eof()
getch()
inspect()
ProcessComment()
ProcessFilename()
isspace()
isalpha()
isdigit()
ProcessLiteral()

Variables (global & static local):
TokenBuffer[ ]
LineNum
TabOffset

Purpose:
Parses a string and returns the next token.

Warnings:

ParseSite ()

[sm_parser.cpp] and [sm_rdlparser.cpp]

Calls:
Match()
XUstrdup()

Variables (global & static local):
SiteSym
AssignOp
ware
TokenBuffer
StringSym
SemiColon

Purpose:
COME BACK TO THIS!!!!

Warnings:
There are two listings for this function in the site manager directory.  Which one will get picked by the
compiler to perform the required operation?

ParseBuilding ()

[sm_parser.cpp] and [sm_rdlparser.cpp]



41

Calls:
Match()
XUstrdup()

Variables (global & static local):
BuildingSym
AssignOp
ware
TokenBuffer
StringSym
SemiColon

Purpose:
COME BACK TO THIS!!!!

Warnings:
There are two listings for this function in the site manager directory.  Which one will get picked by the
compiler to perform the required operation?

ParseAcad ()

[sm_parser.cpp]

Calls:
Match()
ACPParseDXFFile()
fprintf()
XUstrdup()
atoi()
FindHouseLimits()

Variables (global & static local):
AcadSym
AssignOp
ware
TokenBuffer
stderr
StringSym
LParen
Literal
RParen
SemiColon

Purpose:
Parses AutoCAD files, so one can draw a site in that format and Site Manager will understand.

Warnings:
flags |= ACP_EXPLODE_BLOCKS is commented out.

ParseIv ()

[sm_parser.cpp]



42

Calls:
Match ()
XUstrdup()
atoi()

Variables (global & static local):
IvSym
AssignOp
ware
TokenBuffer
StringSym
LParen
Literal
RParen
SemiColon

Purpose:
Parses OpenInventor files and converts them into a format that Site Manager will understand.

Warnings:
Errors if necessary

ParseRobots ()

[sm_parser.cpp]

Calls:
Match()
LLNewAppend()
XUstrdup()
atoi()
LLRetrieve()
ReportParseError()

Variables (global & static local):
RobotsSym
LCurly
CurrentToken
RCurly
StringSym
AssignOp
Literal
LParen
RParen
SemiColon
RCurly

Purpose:
COME BACK TO THIS!

Warnings:



43

ParseOrigin ()

[sm_parser.cpp]

Calls:
Match()
atof()

Variables (global & static local):
OriginSym
AssignOp
ware
TokenBuffer
Literal
SemiColon

Purpose:
COME BACK TO THIS!!

Warnings:

ParseTargets ()

[sm_parser.cpp]

Calls:
Match()
LLNewAppend()
atoi()
atof()

Variables (global & static local):
TargetsSym
LCurly
CurrentToken
RCurly
ware
Literal
LParen
RParen
SemiColon

Purpose:

Warnings:

ParseMarkers()

[sm_parser.cpp]

Calls:



44

Match()
LLNewAppend()
atoi()
atof()

Variables (global & static local):
MarkersSym
LCurly
CurrentToken
RCurly
ware
TokenBuffer
Literal
LParen
RParen
SemiColon

Purpose:

Warnings:

ParseDocks()

[sm_parser.cpp]

Calls:
Match()
LLNewAppend()
atoi()
atof()
LLRetrieve()
ReportParseError()

Variables (global & static local):
DocksSym
LCurly
CurrentToken
RCurly
ware
TokenBuffer
Literal
LParen
RParen

Purpose:
What the function does.

Warnings:
Errors if necessary

ParsePaths()

[sm_parser.cpp]

Calls:



45

Match()
LLMalloc()
LLCreateList()
atoi()
XUstrdup()
FindMarker()
ReportParseError()
FindRobot()
ParseSGV()
LLAppend()

Variables (global & static local):
PathsSym
LCurly
CurrentToken
RCurly
ware
PathSym
AisleSym
AssignOp
TokenBuffer
Literal
StringSym
LParen
RParen
RCurly

Purpose:

Warnings:

ParseSGV ()

[sm_parser.cpp]

Calls:
Match()
ReportParseError()
atoi()
FindTarget()
LLAppend()

Variables (global & static local):
LCurly
CurrentToken
VisualSym
AssignOp
AutoSym
HumanSym
MoveSym
InspectSym
VisSym
OtherSym
TargetsSym
TokenBuffer



46

SemiColon
RCurly

Purpose:

Warnings:

CleanUp()

[sm_parser.cpp] & [sm_rdlparser.cpp] & [alv_actions.cpp] & [alv_creature.cpp]

Calls:
In the sm_rdlparser.cpp file
CloseFile()
or in alv_* functions
ALVCloseFile()

Variables (global & static local):

Purpose:
Closes the file associated with the current parsing.

Warnings:
I am not sure if this function has been finished.  There is still a commented section and the sm_parser.cpp
function has no code in it whatsoever.

ReportParseError ()

[sm_scanner.cpp] & [mon_load.cpp]

Calls:
va_start()
vsprintf()
va_end()
fprintf()

Variables (global & static local):
stderr
CurrentFilename
LineNum
line

Purpose:
Reports an error in the parsing engine if one occurs.

Warnings:

CloseFile ()

[sm_scanner.cpp] & [mon_scanner.cpp]

Calls:
fclose()
free()



47

PopFileContext()

Variables (global & static local):
CurrentFile
line
TokenBuffer

Purpose:
Closes the file and frees the memory used by it.

Warnings:
The mon_scanner.cpp function returns an integer (0) whereas the sm_acanner returns void.  There is also a
difference in the order of the functions.

XUmalloc()

[xu_utility.cpp]

Calls:
malloc()
fprintf()
exit()

Variables (global & static local):
stderr

Purpose:
Allocates necessary memory resources.  Reports error if necessary.

Warnings:

CreateFilePulldown()

[sm_db_xwin.cpp] & [sm_xwin.cpp]

Calls:
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XtNameToWidget()
XmStringFree()

Variables (global & static local):

Purpose:
Creates necessary buttons and events (keyboard accelerators, etc.) for the file pulldown menu.

Warnings:
Two occurrences of this function reside in the site manager directory.  Overloads the new operator.

CreateEditPulldown ()

[sm_xwin.cpp]



48

Calls:
XmStringCreateSimple ()
XmVaCreateSimplePulldownMenu()
XmStringFree()
XtParent()

Variables (global & static local):

Purpose:
Creates all the necessary buttons and events (keyboard accelerators, etc.)  for the edit pulldown menu.

Warnings:
Overloads the delete operator

CreateViewPulldown ()

[sm_xwin.cpp]

Calls:
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XtVaSetValues()
XtNameToWidget()
XmStringFree()
XtParent()

Variables (global & static local):

Purpose:
Creates all the necessary buttons and events (keyboard accelerators, etc.) for the view pulldown menu.

Warnings:

CreateRobotsPulldown()

[sm_xwin.cpp]

Calls:
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XtNameToWidget()
XmStringFree()
XtParent()

Variables (global & static local):
DisplayTog
DiagTog

Purpose:
Creates all the necessary buttons and events (keyboard accelerators, etc.) for the robot pulldown menu.

Warnings:
Overloads the delete operator



49

CreateMapPulldown()

[sm_xwin.cpp]

Calls:
XtMalloc()
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XtNameToWidget()
XtVaSetValues()
XmStringFree()
XtParent()

Variables (global & static local):
Dxfw
Ivw
DXFUnits[ ]
IVUnits[ ]

Purpose:
Creates all the necessary buttons and events (keyboard accelerators, etc.) for the map pulldown menu.

Warnings:

CreateBuildingPulldown()

[sm_xwin.cpp]

Calls:
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XmStringFree()
XtParent()

Variables (global & static local):

Purpose:
Creates all the necessary buttons and events (keyboard accelerators, etc.) for the map pulldown menu.

Warnings:

CreateHelpPulldown ()

[sm_xwin.cpp]

Calls:
XmStringCreateSimple()
XmVaCreateSimplePulldownMenu()
XmStringFree()
XtParent()

Variables (global & static local):

Purpose:



50

Creates button and necessary events for the help pulldown menu.

Warnings:

CreateMapIcons ()

[File.cpp]

Calls:
XmCreateRowColumn()
XtVaSetValues()
XtMalloc()
XCreatePixmapFromBitmapData()
XtVaCreateManagedWidget()
InstallHelpText()
XtAddCallback()
XtManageChild()

Variables (global & static local):

Purpose:
Creates the Map toolbar.

Warnings:

LoadGIF ()

[sm_xgifload.cpp]

Calls:
SetupColorAndDisplayInfo()
fopen()
XUSystemError()
fseek()
ftell()
malloc()
fread()
strncmp()
XUProgError()
fprintf()
free()
XCreateImage()
ReadCode()
AddToPixel()
ColorDicking()

Variables (global & static local):
fp
RawGIF
Raster
id
RWidth
RHeight



51

HasColormap
BitsPerPixel
numcols
BitMask
Background
NEXTBYTE
Red[ ]
Green[ ]
Blue[ ]
used[ ]
numused
cols[ ]
LeftOfs
TopOfs
Width
Height
CodeSize
ClearCode
EOFCode
FreeCode
InitCodeSize
MaxCode
ReadMask
Image
theImage
BytesPerScanline
CurCode
OldCode
FinChar
InCode
OutCode[ ]
OutCount
fname
FinChar
Prefix[ ]
Suffix[ ]

Purpose:
Loads a GIF formatted picture into memory and performs the necessary conversions in order to render the
image on screen.

Warnings:

CreateProcessedLogos ()

[sm_xwin.cpp]

Calls:
XUmalloc()
XCreateImage()
XQueryColor()
XGetPixel()
XPutPixel()
XCreatePixmap()
XPutImage()



52

XPutImage()

Variables (global & static local):
display
theVisual
ZPixmap
Cmap
theImage
GrayPixmap
BlackPixmap

Purpose:
Changes the color values of the screen and places images on the screen.

Warnings:

CreateRobotOption ()

[sm_xwin.cpp]

Calls:
XmCreatePushButton()
XtVaSetValues()
XtAddCallback()
XmCreatePulldownMenu()
XmCreateOptionMenu()
InstallHelpText()
XtManageChild()

Variables (global & static local):
ColorB
RobotMenu
RobotOption
RobotBs[ ]

Purpose:
Creates a button and menu for the robots.

Warnings:

CreateBottomArea ()

[sm_xpath.cpp]

Calls:
XmCreateRowColumn()
XCreatePixmapFromBitmapData()
XmCreatePushButton()
XtVaSetValues()
XtAddCallback()
XmCreateToggleButton()
XmCreateLabel()



53

XtManageChild()

Variables (global & static local):
ChooseTog

Purpose:
Creates all the components that are displayed at the bottom of the screen.

Warnings:

CreateInspectionArea()

[sm_xpath.cpp]

Calls:
XtMalloc()
XmCreateFrame()
XmCreateLabel()
XtVaSetValues()
XtManageChild()
XmCreateRowColumn()
XmCreateToggleButton()
XtAddCallback()
CreateSubForm()

Variables (global & static local):
FileLabels
frames[ ]
VisButton
OButton

Purpose:
Creates the Inspection, Visual, and Other buttons used for guiding the robot.

Warnings:

XUAddCloseProtocol ()

[xu_utility.cpp]

Calls:
XmInternAtom()
XtDisplay()
XmAddWMProtocols()
XmAddWMProtocolCallback()
XUProgError()

Variables (global & static local):
TopLevel

Purpose:
Given a shell widget, this function will communicate to the window manager what action should be taken
when the window manager "close" option is selected.

Warnings:



54

XUCreateOptionMenu ()

[xu_dialog.cpp]

Calls:
XUmalloc()
sizeof()
GetButtonCount()
XtMalloc()
sprintf()
XmCreatePulldownMenu()
XmCreateOptionMenu()
XmStringCreateSimple()
XtVaSetValues()
XmCreatePushButton()
XtAddCallback()
XtManageChild()
XmStringFree()

Variables (global & static local):

Purpose:
Creates the Menu and buttons for the option commands.

Warnings:

XUOptionMenuButtons()

[xu_dialog.cpp]

Calls:
XtVaGetValues()

Variables (global & static local):

Purpose:
Gets the list of the buttons in the option menu.

Warnings:

CreateBarGraph ()

[sm_rdl.cpp]

Calls:
XmCreateLabel()
XmCreateFrame()
XmCreateDrawingArea()
XtAddCallback()
XtManageChild()

Variables (global & static local):



55

percent
graph

Purpose:
Creates a window with a graph in the drawing area.

Warnings:

CreateControls ()

[sm_tour.cpp]

Calls:
XmCreateForm()
XUWidgetInForm()
XmCreateRowColumn()
XUCreateThumbWheel()
XUGetThumbWheelWidgets()
XtVaSetValues()
ResetProximityWheel()
XmCreateForm()
XmCreateLabel()
XmCreateToggleButton()
XtAddCallback()
XtManageChild()
XUWidgetInForm()
XmCreateRadioBox()

Variables (global & static local):
ControlForm
detail
info
dw
proximity

Purpose:
This function creates a

Warnings:
This statement is commented out of one of the XtVaSetValues() calls:
/* SgNangleRange, MAX_DETAIL - MIN_DETAIL,   */

XUWidgetInForm ()

[xu_utility.cpp]

Calls:
va_arg()
XtVaSetValues()
fprintf()
va_end()

Variables (global & static local):



56

Purpose:
Attaches values to the widget passed to the function.

Warnings:

ResetTraveller ()

[sm_tour.cpp]

Calls:

Variables (global & static local):
traveller
house

Purpose:
Sets the viewpoint’s origin to the middle of the room.

Warnings:

ResetRealBase ()

[sm_tour.cpp]

Calls:

Variables (global & static local):
RealBase

Purpose:
Sets up initial parameters for the Robot’s real base.

Warnings:

ResetRealTurret ()

[sm_tour.cpp]

Calls:

Variables (global & static local):
RealTurret

Purpose:
Sets up the initial parameters for the robot’s turret.

Warnings:

ResetHistoryBase ()

[sm_tour.cpp]

Calls:



57

Variables (global & static local):
HistoryBase

Purpose:
Sets up the initial parameters for the history base.

Warnings:

ResetHistoryTurret ()

[sm_tour.cpp]

Calls:

Variables (global & static local):
HistoryTurret

Purpose:
Sets the history turret to its initial parameters.

Warnings:

XUCreateThumbWheel ()

[xu_wheel.cpp]

Calls:
XUmalloc()
sizeof()
XmCreateForm()
XtVaSetValues()
XmCreateText()
sprintf()
XtAddCallback()
XtVaCreateManagedWidget()
XmCreateLabel()
XtManageChild()

Variables (global & static local):
ThumbWheel

Purpose:
Creates a new widget with parameters specified.

Warnings:
The sprintf was originally listed as sprintf(buf, "%.2f", val), but then changed to sprintf(buf, "%g", val).

XUGetThumbWheelWidgets ()

[xu_wheel.cpp]

Calls:
XtVaGetValues()



58

Variables (global & static local):
twheel

Purpose:
Sets the passed variables to the values of the thumbwheel.

Warnings:
*twheel is declared, but twheel is used in the function.

GUBuildHSItoRGBTable ()

[gu_twod.cpp]

Calls:
fprintf()
AllocateColorTable()
powf()
GUHSItoRGB()

Variables (global & static local):
stderr
GUTableResolution
GULookupShift
HSItoRGBTable[ ][ ][ ]

Purpose:
Sets up the HSItoRGBTable to the colors that can be displayed on the system.  Similar to a color cube.

Warnings:

*LLNewAppend()

[ll_lists.cpp]

Calls:
LLMalloc()
LLAppend()

Variables (global & static local):

Purpose:
Appends a new item to the beginning of the list.

Warnings:

CreateDisplayLists ()

[sm_draw.cpp]

Calls:
gluNewQuadric()
glGenLists()
glNewList()



59

glLineWidth()
glBegin()
glVertex2f()
glEnd()
glEndList()
DrawModel()
DrawTarget()
DrawDock()
gluDisk()
DrawArrows()
Create2DdrumDLs()
sprintf()
ACPParseDXFFile()
fprintf()

Variables (global & static local):
quadobj
lorigin
LENGTH
lmodel
house
ltarget
ldock
lcircle
DLOutline
DLLidar
larrows
flags
RobotModel
AriesRootDir

Purpose:
Creates the OpenGL display lists for all objects.  This saves memory and speeds performance.

Warnings:

GUCopyPoint2D ()

[GU.h]

Calls:
memcpy()
sizeof()

Variables (global & static local):

Purpose:
Copies the memory location of “a” and places it in “b.”

Warnings:
Function is defined in GU.h.



60

SetAspectRatio ()

[sm_map.cpp]

Calls:
LLRetrieve()
GUCopyPoint2D()

Variables (global & static local):
View
ViewList
info
house
MapHeight
MapWidth

Purpose:
Corrects the perspective of the two-dimensional application.

Warnings:

ClearHelpText ()

[sm_utility.cpp]

Calls:
sprintf()
strcat()
XULabelSetString()

Variables (global & static local):
MyTime
MyClear
info

Purpose:
Resets the help dialog box to initial values.

Warnings:

LLQuickReadTraverse ()

[ll_lists.cpp]

Calls:

Variables (global & static local):

Purpose:
Moves through the list and sets the LastReadPtr to the found node.  Also returns the same node.

Warnings:



61

UpdateCommunication ()

[sm_comm.cpp]

Calls:
XtVaSetValues()
XUProgError()
ClearHelpText()
LLDestroyList()
LLCreateList()
LLRetrieve()
MakeConnection()
XtRemoveWorkProc()
EndComm()

Variables (global & static local):
house
info
DisplayTog
DiagTog
TopLevel
FitList
FIDList
FitDiagType
FIDDiagType
DisplayWorkProcId
ConnectedToServer

Purpose:
Checks the communication between the robot and server.  If no robots are present, displays an error
message.  Updates the FitList and the FIDList and processes work orders to the robots.

Warnings:

PushFileContext ()

[sm_scanner.cpp]

Calls:
LLMalloc()
strcpy()
LLAppend()

Variables (global & static local):
CurrentFile
line
TokenBuffer



62

ChPos
LineNum
ch
CurrentToken
CurrentFilename
FileList

Purpose:
Updates the file context with the current parameters being used.

Warnings:

PopFileContext ()

[sm_scanner.cpp]

Calls:
LLRetrieve()
strcpy()
LLDelete()

Variables (global & static local):
FileList
CurrentFilename
CurrentFile
line
TokenBuffer
ChPos
LineNum
ch
CurrentToken

Purpose:
Passes the current parameters the current values of the FileList.  This function does the opposite of
PushFileContext().

Warnings:

NextLine ()

[sm_scanner.cpp]

Calls:
fgetc()
fprintf()

Variables (global & static local):
TabOffset
CurrentFile
line[ ]
ChPos
ch



63

Purpose:
This function reads in the next line from the input file.

Warnings:

Eof ()

[sm_scanner.cpp]

Calls:
feof()

Variables (global & static local):
CurrentFile

Purpose:
Returns true or false based on the result of the feof function on the current file.

Warnings:

getch ()

[sm_scanner.cpp]

Calls:
NextLine()

Variables (global & static local):
ch
LineNum
line[ ]

Purpose:
Gets the current character and updates the line counter if the current charater is and end of line command.

Warnings:

inspect ()

[sm_scanner.cpp]

Calls:

Variables (global & static local):
ch

Purpose:
Returns the value of the ch integer.

Warnings:

ProcessComment ()

[sm_scanner.cpp]



64

Calls:
advance()
getch()

Variables (global & static local):

Purpose:
Advances through and ignores the comment.  Accepts both the /* and the // varations.

Warnings:

ProcessFilename ()

[sm_scanner.cpp]

Calls:
getch()

Variables (global & static local):
TokenBuffer[ ]
StringSym

Purpose:
Checks the validity of the TokenBuffer as a unix filename.

Warnings:

ProcessLiteral ()

[sm_scanner.cpp]

Calls:
getch()
isdigit()
advance()
inspect()

Variables (global & static local):
TokenBuffer[ ]
MinusEqualsOp
Literal

Purpose:
Checks the ALVTokenBuffer for its validity as a literal.

Warnings:

*XUstrdup ()

[xu_utility.cpp]

Calls:
XUmalloc()
strlen()
sizeof()
strcpy()



65

Variables (global & static local):
source

Purpose:
Given a string, this function will malloc a new copy and return a pointer to the new memory.  (exact
functionality of strdup, but POSIX compliant).

Warnings:

* ACPParseDXFFile ()

[dxf_flow.cpp]

Calls:
InitVars()
setjmp()
ACPOpenFile()
ACPNextToken()
CheckString()
MatchString()
ACPMatch()
ParseHeaderSection()
ParseTablesSection()
ParseBlocksSection()
ParseEntitiesSection()
ACPError()
ACPCloseFile()
HandleOptions()
BuildModelArray()

Variables (global & static local):
ExceptionBuf
ACPCurrentToken
SemanticRec

Purpose:
Converts a DXF format into an ACPModel.

Warnings:

FindHouseLimits()

[sm_utility.cpp]

Calls:

Variables (global & static local):

Purpose:
Determines the extents of the warehouse

Warnings:
There is still a commented section in theis function.



66

ReportParseError ()

[sm_scanner.cpp]

Calls:
va_start()
vsprintf()
va_end()
fprintf()

Variables (global & static local):
stderr
CurrentFilename
LineNum
line

Purpose:
Prints out an error if one occurs in the parsing process.

Warnings:

LLMalloc ()

[ll_lists.cpp]

Calls:
malloc()
fprintf()

Variables (global & static local):
stderr

Purpose:
Allocates the memory resouces for the linked list.  Reports error if one occurs.

Warnings:

* FindMarker ()

[sm_parser.cpp]

Calls:
LLRetrieve()

Variables (global & static local):
ware

Purpose:
Retrieves the marker from the linked list and checks to see if it is the one specified.

Warnings:



67

*FindRobot ()

[sm_parser.cpp]

Calls:
LLRetrieve ()
strcmp()

Variables (global & static local):
ware

Purpose:
Gets the robot from the linked list and checks to make sure that was the one asked for.

Warnings:

LLAppend ()

[ll_lists.cpp]

Calls:
LLCreateNode()

Variables (global & static local):

Purpose:
Places a node at the end of the list with the data specified.

Warnings:

*FindTarget ()

[sm_parser.cpp]

Calls:
LLRetrieve()

Variables (global & static local):
ware

Purpose:
Matches the target specified with the one in the liked list.

Warnings:

ALVCloseFile ()

[alv_scanner.cpp]

Calls:
fclose()
free()
PopFileContext()



68

Variables (global & static local):
CurrentFile
line
ALVTokenBuffer

Purpose:
Closes the file that is currently being used by the program.  Also clears the memory contents.

Warnings:

SetupColorAndDisplayInfo ()

[sm_xgifload.cpp]

Calls:
DefaultScreen ()
RootWindow()
DefaultGC()
DefaultVisual()
DefaultColormap()

Variables (global & static local):
theScreen
display
rootW
theGC
theCmap

Purpose:
Gives the screen and all other color components the default values.

Warnings:

ReadCode ()

[sm_xgifload.cpp]

Calls:

Variables (global & static local):
Raster[ ]
CodeSize
ReadMask

Purpose:
Fetch the next code from the raster data stream.  The codes can be any length from 3 to 12 bits, packed into
8-bit bytes, so we have to maintain our location in the Raster array as a BIT Offset.  We compute the byte
Offset into the raster array by dividing this by 8, pick up three bytes, compute the bit Offset into our 24-bit
chunk, shift to bring the desired code to the bottom, then mask it off and return it.



69

Warnings:

AddToPixel ()

[sm_xgifload.cpp]

Calls:

Variables (global & static local):
YC
Height
Image
BytesPerScanline
XC
used[ ]
numused
Width
Interlace
Pass

Purpose:
If a non-interlaced picture, increments YC to the next scan line. If it's interlaced, deals with the interlace as
described in the GIF spec.  Puts the decoded scan line out to the screen if it hasn't gone past the bottom of it

Warnings:

ColorDicking ()

[sm_xgifload.cpp]

Calls:
XAllocColor()
fprintf()
XQueryColors()
abs()
XUProgError()
CopyMemory()
XFreeColors()

Variables (global & static local):
HasColormap
nostrip
numcols
used[ ]
defs[ ]
Red[ ]
Green[ ]
Blue[ ]



70

display
theCmap
dispcells
stderr
numused
ptr

Purpose:
Converts to the colors in the image file.  If no file, sets the color to default.

Warnings:

CreateSubForm ()

[sm_xpath.cpp]

Calls:
XmCreateForm ()
XmCreateLabel()
XtVaSetValues()
XmCreateRadioBox()
XtManageChild()
XmCreateToggleButton()
XmCreateRowColumn()
XmCreatePushButton()
XtAddCallback()

Variables (global & static local):
FileLabels[ ]
toggles[ ]

Purpose:
Creates all the necessary buttons, columns for the form area of the screen.

Warnings:

GetButtonCount ()

[xu_dialog.cpp]

Calls:
fprintf ()

Variables (global & static local):

Purpose:
Counts the number of buttons on the menu.  If count exceeds 50, generates an error message.

Warnings:

ResetProximityWheel ()

[sm_tour.cpp]

Calls:
XUSetThumbWheel()



71

XtVaSetValues ()

Variables (global & static local):
house
info
pw

Purpose:
Sets the maximum and home positions of the proximity wheel to either 1 and 0 (respectively) if there is no
model defined in the house structure.  Else sets the maximum to the value of the house’s extents and the
home to half.

Warnings:

AllocateColorTable ()

[gu_twod.cpp]

Calls:
powf()
malloc()

Variables (global & static local):
GUTableResolution
HSItoRGBTable[ ][ ]

Purpose:
Allocates all the memory resources for the HSItoRGBTable.

Warnings:

GUHSItoRGB ()

[gu_twod.cpp]

Calls:
sinf()
cosf()
max()
min()

Variables (global & static local):

Purpose:
Converts H to R, S to G, and I to B.

Warnings:

DrawModel ()

[sm_draw.cpp]

Calls:
glColor3f()



72

glBegin()
glVertex2fv()
glEnd()

Variables (global & static local):
house

Purpose:
Draws the ACPModel that is passed to the function.

Warnings:

DrawTarget ()

[sm_draw.cpp]

Calls:
gluDisk()
glBegin()
glVertex2f()
glEnd()

Variables (global & static local):
D_LENGTH
LENGTH

Purpose:
Draws a target using OpenGL commands. Looks like it is a square.

Warnings:
glLineWidth(2.0) was commented out of the function.

DrawDock ()

[sm_draw.cpp]

Calls:
gluDisk()
glBegin()
glVertex2f()
glEnd()

Variables (global & static local):
quadobj
DOCK_LENGTH

Purpose:
Draws the AutoCharger using OpenGL commands.

Warnings:

DrawArrows ()

[sm_draw.cpp]



73

Calls:
glColor3f()
glBegin()
glVertex2f()
glEnd()

Variables (global & static local):
LENGTH

Purpose:
Draws an arrow using OpenGL commands.

Warnings:
Although the function changes the color used to yellow, it never changes the color back to what it was
originally.

Create2DdrumDLs ()

[sm_drums.cpp]

Calls:
gluNewQuadric()
XtNumber()
glGenLists()
glNewList()
glColor3fv()
gluDisk()
glEndList()

Variables (global & static local):
sizes
DrumDLs[ ]
colors[ ]

Purpose:
Creates the display lists for the 2D drums.

Warnings:

LLDestroyList ()

[ll_lists.cpp]

Calls:
LLEraseList()
free()

Variables (global & static local):

Purpose:
Erases the linked list and frees the memory that was used.

Warnings:



74

MakeConnection ()

[sm_comm.cpp]

Calls:
CheckComm()
StartComm()
XUProgError()
XtVaSetValues()
XtAppAddWorkProc()

Variables (global & static local):
TopLevel
info
DisplayTog
DiagTog
house
center
DisplayWorkProcId

Purpose:
Checks the communication between the robot and the server.  Starts if necessary.  Also shows errors if
there are ones present.

Warnings:

EndComm ()

[comm_ComUtil.cpp]

Calls:
clock()
CloseSocket()

Variables (global & static local):
Client[ ]
NORM
HIGH
ROBOTD
CLOSE_CONNECTION
REQ
INACTIVE
Time

Purpose:
This function terminates communication with the server.  It sends a close connection signal to the  server to
let the server know to close the connection.  This function closes both lines of communication and does not
return until the server responds to the close connection request.

Warnings:

LLDelete ()



75

[ll_lists.cpp]

Calls:
fprintf()
LLQuickWriteTraverse()
destroy()
free()

Variables (global & static local):
stderr

Purpose:
Removes the selected node from a linked list.

Warnings:

NextLine ()

[sm_scanner.cpp]

Calls:
fgetc()
fprintf()

Variables (global & static local):
TabOffset
CurrentFile
Line[ ]
ChPos
ch

Purpose:
This function reads in the next line from the input file.

Warnings:

advance ()

[sm_scanner.cpp]

Calls:

Variables (global & static local):
ChPos
line[ ]
ch

Purpose:
Advances the character to the next line (prefixed).

Warnings:

InitVars ()



76

[dxf_flow.cpp]

Calls:
ACmalloc()
LLCreateList()

Variables (global & static local):
model
ACPModel
LayerType
LLlist
EntityType

Purpose:
Sets the model parameters to default values.

Warnings:

ACPOpenFile ()

[dxf_scanner.cpp]

Calls:
fopen ()
ACPError()

Variables (global & static local):
fp
ACPLineNum

Purpose:
Opens the specified file.  Reports error if one occurs.

Warnings:

ACPNextToken ()

[dxf_scanner.cpp]

Calls:
NextLine()
ParseInt()
ACPError()
GetBasicType()
ParseHex()
ParseFloat()

Variables (global & static local):
line[ ]
SemanticRec

Purpose:



77

Increments the current counter to the next token of the DXF file.  Converts it into an appropriate ACP
command.

Warnings:

MatchString ()

[dxf_scanner.cpp]

Calls:
CheckString()
ACPError()

Variables (global & static local):
SemanticRec

Purpose:
Compares two strings together and reports an error if they don’t match.

Warnings:

ACPMatch ()

[dxf_scanner.cpp]

Calls:
ACPError()
ACPNextToken()

Variables (global & static local):
ACPCurrentToken

Purpose:
Matches the passed parameter to the current ACP token.  If no match reports error and sets the ACP current
token to the next token in the series.

Warnings:

ParseHeaderSection ()

[dxf_header.cpp]

Calls:
AllocateHeaderMemory()
ACPMatch()
ACPError()
AssignHeaderMemory()
MatchString()



78

Variables (global & static local):
ACPCurrentToken
HeaderVariables[ ]
SemanticRec

Purpose:
Parses the header section of code until a start code token is checked.

Warnings:

ParseTablesSection ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()
ParseAppidTable()
ParseDimstyleTable()
ParseLtypeTable()
ParseLayerTable()
ParseStyleTable()
ParseUcsTable()
ParseViewTable()
ParseVportTable()
ACPError()

Variables (global & static local):
SemanticRec

Purpose:
Checks the stringv parameter of the SemanticRec class and then calls the function for the appropriate table.

Warnings:

ParseBlocksSection ()

[dxf_blocks.cpp]

Calls:
ACPMatch()
CheckString()
ParseSingleBlock()
ACPError()

Variables (global & static local):
SemanticRec

Purpose:
Calls the ParseSingleBlock function if there is a block in the current file.

Warnings:



79

ParseEntitiesSection ()

[dxf_entities.cpp]

Calls:
ACPMatch()
CheckString()
StoreVertices()
EntityIndex()
ParseEntity()

Variables (global & static local):
PolylineMode
SemanticRec
NextStart
model
polyline

Purpose:
While in the Entities section of the DXF file, calls all the necessary functions to complete the parsing of
this section.

Warnings:

ACPError ()

[dxf_flow.cpp]

Calls:

Variables (global & static local):
ACPErrorMesg
ACPErrorLineNum
ACPLineNum
TerminateParse

Purpose:
Generates an error message for the AutoCAD Parser to call when errors arise.

Warnings:

ACPCloseFile ()

[dxf_scanner.cpp]

Calls:
fclose()

Variables (global & static local):
fp



80

Purpose:
Closes the file used by the AutoCAD parser.

Warnings:

HandleOptions ()

[dxf_tools.cpp]

Calls:
ExplodeBlock()
ChangeBylayer()
ConvertSolid()
SegmentArc()
SegmentText()
ConvertTrace()
ConvertMesh()
ExplodeDimension()
ExplodePolyline()
ConvertThickness()
ConvertElevation()

Variables (global & static local):

Purpose:
Compares the option parameter to 11 different choices and calls the appropriate function.

Warnings:

BuildModelArray ()

[dxf_flow.cpp]

Calls:
ACmalloc ()
sizeof()
LLRetrieve()

Variables (global & static local):
model

Purpose:
Moves the entity sub-list to a different section of the model linked list.

Warnings:

LLCreateNode ()

[ll_lists.cpp]



81

Calls:
malloc()
sizeof()
fprintf()

Variables (global & static local):
ListNode

Purpose:
Creates a new node on the linked list.  Sets the prev and next sections to NULL.

Warnings:

LLEraseList ()

[ll_lists.cpp]

Calls:
LLDelete()

Variables (global & static local):
Variables

Purpose:
Deletes all the node entries in the linked lists.

Warnings:

CheckComm ()

[sm_comm.cpp]

Calls:
fork()
sprintf()
execle()
XULastFilename()
clock()
waitpid()
WIFEXITED()
WEXITSTATUS()

Variables (global & static local):
buffer
AriesRootDir

Purpose:
 Checks the communication between robot and server.

Warnings:

StartComm ()
[comm_ComUtil.cpp]



82

Calls:
MAKEWORD()
WSAStartup()
printf()
LOBYTE()
HIBYTE()
WSACleanup()
fopen()
time()
InitializeClient()
InitializeK2AMem()
InitializeSpecialMem()
CreateSocket()
CloseSocket()
clock()
StartTimer()

Variables (global & static local):
ErrLog
stderr
TempId
ConnectedToServer

Purpose:
This function is called to create a socket connection and to connect to the server.  It will wait until a
connection is made before it exits the routine.   This function calls two other routines. It will call a routine
to initialize the client structures as well as call a routine to initialize a copy of the robots memory.

Warnings:

CloseSocket ()

[comm_Socket.cpp]

Calls:
ZeroMemory()
shutdown()

Variables (global & static local):
Client
ComStatus
ConnectedToServer

Purpose:
The purpose of this function is to close the socket connection off.  It will return the state of the message
structures to their initial values before closing the connection.

Warnings:
All the bzero(Client[i].MessBuffer, MAX_MESS_SIZE) statements have been converted to
ZeroMemory(Client[i].MessBuffer, MAX_MESS_SIZE) statements.

LLQuickWriteTraverse ()



83

[ll_lists.cpp]

Calls:

Variables (global & static local):

Purpose:
Traverses the linked lists and returns the node that was searched for.

Warnings:

ACmalloc ()

[dxf_utility.cpp]

Calls:
malloc()
fprintf()
exit()

Variables (global & static local):
stderr

Purpose:
This function is used as a generic memory allocator coupled to the error handler of this application.  When
the function is called, the number of bytes to allocate is required, in addition to the name of the function
calling ACmalloc( ) and the name of the variable being allocated.  This helps with code development; if a
malloc were to fail, having the additional information leaves no doubt which malloc failed, as dbx can be
misleading.

Warnings:

ParseInt ()

[dxf_scanner.cpp]

Calls:
atoi()

Variables (global & static local):
line

Purpose:
Converts the contents of the current line to an integer.

Warnings:

GetBasicType ()

[dxf_header.cpp] & [dxf_scanner.cpp]

Calls:



84

ACPError ()

Variables (global & static local):
GroupCodes[ ]

Purpose:
Checks the GroupCodes structure and compares it to the current type.  If a match occurs, returns the
VarType.  Otherwise reports an error.

Warnings:
There are two instances of this function.  The only difference is the dxf_header function compares type to
GroupCodes[i].GroupId.  The dxf_scanner function compares type to GroupCodes[i].code.

ParseHex ()

[dxf_scanner.cpp]

Calls:
sscanf ()

Variables (global & static local):
line

Purpose:
Checks the line and determines if the value is present within the line..

Warnings:

ParseFloat ()

[dxf_scanner.cpp]

Calls:
atof ()

Variables (global & static local):
line

Purpose:
Converts the current line into a float value.

Warnings:

AllocateHeaderMemory ()

[dxf_header.cpp]

Calls:
GetBasicType()
ACmalloc()
sizeof()

Variables (global & static local):



85

IntIndex
FloatIndex
StringIndex
HeaderVariables[ ]
model

Purpose:
Allocates memory for the type of Header that is in the HeaderVariables structure.

Warnings:

AssignHeaderMemory ()

[dxf_header.cpp]

Calls:
GetBasicType()
ACstrdup()
ACPError()
ACPMatch()

Variables (global & static local):
ACPCurrentToken
model
SemanticRec
IntIndex
FloatIndex
StringIndex

Purpose:
Converts the passed variables to the value of the current token.

Warnings:

ParseAppidTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseDimstyleTable ()

[dxf_tables.cpp]



86

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseLtypeTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseLayerTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()
ParseSingleTable()
ACPError()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached. If there is no table under this layer generates an error
or calls the ParseSingleTable function.

Warnings:

ParseStyleTable ()

[dxf_tables.cpp]



87

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseUcsTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseViewTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()
CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseVportTable ()

[dxf_tables.cpp]

Calls:
ACPMatch()



88

CheckString()

Variables (global & static local):
SemanticRec
ACPCurrentToken

Purpose:
Converts all the tokens until a “ENDTAB” is reached.

Warnings:

ParseSingleBlock ()

[dxf_blocks.cpp]

Calls:
LLCreateList()
sizeof()
CheckString()
StoreVertices()
EntityIndex()
ACPMatch()
ParseEntity()
LLAppend()

Variables (global & static local):
EntityType
PolylineMode
SemanticRec
NextStart
model
polyline

Purpose:
Parses until an “ENDBLK” is reached.  While looping, converts the model’s VertexList values to the
values of the polyline variable.

Warnings:

StoreVertices ()

[dxf_entities.cpp]

Calls:
ACmalloc()
sizeof()
LLRetrieve()
CopyACPoint3D()
LLEraseList()

Variables (global & static local):

Purpose:
Converts the Entity’s data into the data passed by the list.  Then copies the points into a local entity, before
deleting the list.



89

Warnings:

EntityIndex ()

[dxf_entities.cpp]

Calls:
CheckString ()

Variables (global & static local):
EntityFormats[ ]
SemanticRec

Purpose:
Checks the name of the Entity against the SemanticRec.stringv value.  If a match occurs, function returns
the integer value of the location.

Warnings:

ParseEntity ()

[dxf_entities.cpp]

Calls:
ACPMatch ()
AllocateEntity()
ParseEntityHeader()
IsXCoord()
ParseCoordinates()
ParseExtrusion()
IsExtendedEntityData()
GetTypeIndex()
StoreParameter()
IsNormal()
ACPError()
LLAppend()

Variables (global & static local):
format
EntityFormats[ ]
ACPCurrentToken
PolylineMode
model
polyline

Purpose:
Converts an entity and places it on the model list.

Warnings:

ExplodeBlock ()



90

[dxf_tools.cpp]

Calls:
LLRetrieve()
CheckString()
CopyBlockToEntities()
LLDelete()

Variables (global & static local):
model

Purpose:
Parses the block and copies the contents to a linked list before deleting the model->EntityList.

Warnings:

ChangeBylayer ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
CheckString()
LLDelete()

Variables (global & static local):
model

Purpose:
Changes the color so that each layer will be a different one.

Warnings:

ConvertSolid ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
CopyACPoint3D()

Variables (global & static local):
model

Purpose:
Creates a new list and places the points for this instance in their correct position and sets the id to
something recognizable by the program

Warnings:

SegmentArc ()

[dxf_tools.cpp]



91

Calls:
LLRetrieve()
CalcArbitraryAxes()
CopyACPoint3D()
AllocateEntity()
CopyHeader()
cos()
sin()
OrientLineECS()
LLAppend()
LLDelete()

Variables (global & static local):
model

Purpose:
Creates an arc from the AutoCAD file.

Warnings:

SegmentText ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
strlen()
AllocateEntity()
CopyHeader()
CopyPoint2D()
OrientLineECS()
LLAppend()
LLDelete()

Variables (global & static local):
model
Fonts[ ]

Purpose:
Converts the text from DXF files into a font that the Site Manager program can understand and use.
Appends the test to the EntityList of model.  Then deletes a node from it.

Warnings:

ConvertTrace ()

[dxf_tools.cpp]

Calls:

Variables (global & static local):

Purpose:
There is noting in this function!



92

Warnings:
I don’t think this function has been completed.  There is nothing in it.

ConvertMesh ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
LLDelete()
AllocateEntity()
CopyHeader()
CopyACPoint3D()
LLAppend()
LLDelete()

Variables (global & static local):
model

Purpose:
Converts the DXF mesh to a usable Site Manager class.

Warnings:
ConvertPolyfaceMesh(poly)  was commented out of the function.

ExplodeDimension ()

[dxf_tools.cpp]

Calls:

Variables (global & static local):

Purpose:
There is nothing in this function!!!

Warnings:
I do not think this function was completed. There is nothing in this function!!!

ConvertThickness ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
LineThickness()
LLDelete()

Variables (global & static local):
model

Purpose:
Updates the thickness of the lines to the current value of the entity.



93

Warnings:

ExplodePolyline ()

[dxf_tools.cpp]

Calls:
LLRetrieve()
AllocateEntity()
CopyHeader()
CopyACPoint3D()
OrientLineECS()
LLAppend()
LLDelete()

Variables (global & static local):
model

Purpose:
Creates a polyline class that is used for splines (I think).

Warnings:

ConvertElevation ()

[dxf_tools.cpp]

Calls:
LLRetrieve()

Variables (global & static local):
model

Purpose:
Goes through the entity list and converts the AutoCAD parameters into an elevation parameter.

Warnings:

InitializeSpecialMem ()

[comm_Initialize.cpp]

Calls:

Variables (global & static local):
SpecialRoot

Purpose:
This function initializes the header node for the linked list of special variables.  The header is initialized to
values that ensure that it will never be used or deleted in the linked list.

Warnings:
Although the comments in this function say not to set any of the variables to negative values, that is all this
function does.



94

InitializeK2AMem ()

[comm_Initialize.cpp]

Calls:

Variables (global & static local):
K2AMem[ ]

Purpose:
This function is called from the StartComm function.  This function initializes the copy of the robots
memory to zero.

Warnings:

InitializeClient ()

[comm_Initialize.cpp]

Calls:
ZeroMemory()

Variables (global & static local):
Client[ ]

Purpose:
This function is called to reset some important values in the message structure.  The Id value for the
structure, pointers, and the socket buffers are set to some initial values.

Warnings:

CreateSocket ()

[comm_Socket.cpp]

Calls:
ZeroMemory()
htons()
gethostbyname()
fprintf()
CopyMemory()
socket()
perror()
SetSocketOptions()
connect()
sizeof()

Variables (global & static local):
Client[ ]

Purpose:
The purpose of this function is to create a socket and make a connection.  Another function is called to set
up the socket options.

Warnings:



95

There is a LOT of commented out sections in this function.

StartTimer ()

[comm_Initialize.cpp]

Calls:

Variables (global & static local):

Purpose:

Warnings:
Everything in this function has been commented out!

ParseSingleTable ()

[dxf_tables.cpp]

Calls:
LLMalloc()
ACPMatch()
ACstrdup()
ACPError()
LLAppend()

Variables (global & static local):
model
ACPCurrentToken
SemanticRec

Purpose:
Parses a single table of AutoCAD information and converts it into usable site manger data.

Warnings:

*AllocateEntity ()

[dxf_entities.cpp]

Calls:
LLMalloc()
ACmalloc()

Variables (global & static local):
EntityFormats[ ]
model

Purpose:
Allocates the memory resources for the entity that will be created.

Warnings:



96

ParseEntityHeader ()

[dxf_entities.cpp]

Calls:
SetEntityDefault()
ACstrdup()
ACPError()
ACPMatch()

Variables (global & static local):
ACPCurrentToken
SemanticRec

Purpose:
Goes though the header and extracts all relevant information.

Warnings:

ParseCoordinates ()

[dxf_entities.cpp]

Calls:
ACPMatch()

Variables (global & static local):
ACPCurrentToken
SemanticRec

Purpose:
Converts the AutoCAD coordinates into a system that site manager can use.

Warnings:
Errors

ParseExtrusion ()

[dxf_entities.cpp]

Calls:
ACPMatch()

Variables (global & static local):
SemanticRec

Purpose:
Converts the SemanticRec values into the entity’s values.

Warnings:



97

GetTypeIndex ()

[dxf_entities.cpp]

Calls:
ACPError()

Variables (global & static local):
ACPCurrentToken
GroupCodes[ ]
format

Purpose:
Passes the type and index parameter the values of the ACPCurrentToken’s data.

Warnings:

StoreParameter ()

[dxf_entities.cpp]

Calls:
ACstrdup()
ACPError()

Variables (global & static local):
SemanticRec

Purpose:
Stores the parameters of the SemanticRec class into the entity list.

Warnings:

IsNormal ()

[dxf_entities.cpp]

Calls:

Variables (global & static local):
format

Purpose:
Checks to see if any of the format list entries match the passed variable.

Warnings:

CopyBlockToEntities ()



98

[dxf_blocks.cpp]

Calls:
MatLoadId()
InsertBlock()

Variables (global & static local):
BlockMat

Purpose:
Calls two other functions.

Warnings:

CalcArbitraryAxes ()

[dxf_tools.cpp]

Calls:
CopyACPoint3D()
sqrt()
fabs()
ACPCrossProduct()

Variables (global & static local):
Wy
Wz

Purpose:
Performs the entire math that is needed to calculate the axes relative to Site Manager.

Warnings:

CopyHeader ()

[dxf_tools.cpp]

Calls:

Variables (global & static local):

Purpose:
Copies all the parameters of entity “b” into entity “a.”

Warnings:

OrientLineECS ()

[dxf_tools.cpp]

Calls:
CalcArbitraryAxes()
CopyACPoint3D()



99

Variables (global & static local):

Purpose:
Orients the line in the Site Manager’s world.

Warnings:
Errors

LineThickness ()

[dxf_tools.cpp]

Calls:
AllocateEntity()
CopyHeader()
LLAppend()

Variables (global & static local):

Purpose:
Creates a new entity and converts its points to reflect the thickness of the imitated line.

Warnings:

SetSocketOptions ()

[comm_Socket.cpp]

Calls:
setsockopt()
sizeof()
perror()
MakeSocketEfficient()

Variables (global & static local):
Client[ ]

Purpose:
 This function sets up the various options needed on the socket in order to ensure the socket will remain
active and operate asynchronously.

Warnings:
There are two if statements that have been commented out by Mr. Paul McCarty.

ACstrdup ()

[dxf_utility.cpp]

Calls:
ACmalloc()
sizeof()
strcpy()



100

Variables (global & static local):

Purpose:
Given a string, this function will malloc a new copy and return a pointer to the new memory.  (exact
functionality of strdup, but POSIX compliant).

Warnings:

MatLoadId ()

[dxf_blocks.cpp]

Calls:

Variables (global & static local):

Purpose:
Converts the matrix that is passed into the function into an identity matrix.

Warnings:
Errors

InsertBlock ()

[dxf_blocks.cpp]

Calls:
LLRetrieve()
AdjustBlockMatrix()
MatTranslate()
AllocateEntity()
CopyEntity()
OrientCopy()
CheckString()
MatPush()
InsertBlock()
MatPop()
LLAppend()

Variables (global & static local):
BlockMat
model

Purpose:
Recursively calls itself (until the NodeCount of the BlockList reaches 0) so the function can perform all the
necessary translates for the entity being placed on screen.

Warnings:
Errors

ACPCrossProduct ()

[dxf_math.cpp]



101

Calls:

Variables (global & static local):

Purpose:
Performs the entire math needed for a matrix cross product.

Warnings:

MakeSocketEfficient ()

[comm_Socket.cpp]

Calls:
setsockopt()
sizeof()
perror()

Variables (global & static local):
Client[ ]

Purpose:
This function sets up the socket so that it will be more efficient.

Warnings:

AdjustBlockMatrix ()

[dxf_blocks.cpp]

Calls:
MatTranslate()
MatRot()
MatScale()

Variables (global & static local):
BlockMat
attr[ ]

Purpose:
Performs a translate, rotation, and scaling of the matrix.

Warnings:

MatTranslate ()

[dxf_blocks.cpp]

Calls:
MatLoadId()
MatCopy()
MatMultiply()



102

Variables (global & static local):

Purpose:
Translates (moves) a matrix to the position specified in the passed parameters.

Warnings:

CopyEntity ()

[dxf_blocks.cpp]

Calls:
ACmalloc()
sizeof()
CopyACPoint3D()

Variables (global & static local):
Purpose:

Copies the entity “b” into entity “a.”
Warnings:

OrientCopy ()

[dxf_blocks.cpp]

Calls:
MatPntMultiply()

Variables (global & static local):
BlockMat

Purpose:
Calls the function MatPntMultiply() on all the vertexes of the entity to be copied

Warnings:
Errors

MatPush ()

[dxf_blocks.cpp]

Calls:
LLCreateList()
LLMalloc()
CopyMatrix()
LLAppend()

Variables (global & static local):
MatrixList
ACPMatrix

Purpose:
Creates a new matrix with the same properties as the original matirx.



103

Warnings:

MatPop()

[dxf_blocks.cpp]

Calls:
LLRetrieve()
CopyMatrix()
LLDelete()

Variables (global & static local):
MatrixList
BlockMat

Purpose:
Removes the matrix that was created by the MatPush() function from the MatrixList.

Warnings:

MatRot ()

[dxf_blocks.cpp]

Calls:
cos()
sin()
MatLoadId()
MatCopy()
MatMultiply()

Variables (global & static local):
Variables

Purpose:
Rotates the matrix by the angle listed in the second parameter.

Warnings:

MatCopy ()

[dxf_blocks.cpp]

Calls:

Variables (global & static local):

Purpose:
Places all the entries of the source matrix into the destination matrix.

Warnings:

MatScale ()

[dxf_blocks.cpp]



104

Calls:
MatLoadId()
MatCopy()

Variables (global & static local):

Purpose:
Multiplies the matrix by the scaling factor.

Warnings:

MatMultiply ()

[dxf_tools.cpp]

Calls:

Variables (global & static local):

Purpose:
Adds the multiplication of the first two matrices into the result matrix.  Function also clears the entry with
0.0 before placing the result.

Warnings:
Errors

MatPntMultiply ()

[dxf_blocks.cpp]

Calls:
CopyACPoint3D()

Variables (global & static local):

Purpose:
Multiplies a three dimensional ACPoint by the matrix passed.

Warnings:
Errors



Table of Contents

Program Flow:  Outline.............................................................................................................................5
Program Flow:  Ring One Detail ...............................................................................................................6
Program Flow:  Ring Two Detail ..............................................................................................................9
Header File Structure ..............................................................................................................................18
Main.c {Include files}.............................................................................................................................20
main().....................................................................................................................................................21
StartTasks() ............................................................................................................................................22
StartServer() ...........................................................................................................................................23
InitializeRobot()......................................................................................................................................24
WaitToStart()..........................................................................................................................................26
StartRecording() .....................................................................................................................................26
ReferenceRobot() ....................................................................................................................................27
GetToNextSubgoal() ...............................................................................................................................28
CompleteNextSubgoal() ..........................................................................................................................29
ReturnHome() .........................................................................................................................................31
DockRobot() ...........................................................................................................................................33
ShutDownRobot() ...................................................................................................................................34
EvlInit()..................................................................................................................................................35
StartCom()..............................................................................................................................................36
StartMemory() ........................................................................................................................................37
InitializePower() .....................................................................................................................................38
InitializeWarnLight()..............................................................................................................................38
CheckArray() {Thread} ..........................................................................................................................39
HandleMessages() {thread}.....................................................................................................................39
Init_Winsock()........................................................................................................................................41
InitializeServer().....................................................................................................................................41
CreateSocket() ........................................................................................................................................42
ServerCommand() {Thread} ...................................................................................................................42
InitializeOffsets() ....................................................................................................................................43
InitSuperCom().......................................................................................................................................43
SyncClock() ............................................................................................................................................44
InitializeNodeTable() ..............................................................................................................................44
InitializePathNode()................................................................................................................................45
InitializeInspectionTable() ......................................................................................................................45
InitializeFileTable() ................................................................................................................................46
ParseMission() ........................................................................................................................................47
InitializePathDatabase() ..........................................................................................................................49
InitializeMissionList().............................................................................................................................49
CopyDrumDatabase()..............................................................................................................................51
OpenDrumDatabase() .............................................................................................................................51
CreateDrumDatabase()............................................................................................................................52
GetNodeNumber()...................................................................................................................................53
InitializeHostVariables() .........................................................................................................................53
InitializeDataSet()...................................................................................................................................54
InitializeLift() .........................................................................................................................................54
InitializeBarcode() ..................................................................................................................................55
WriteOutImageDirectory() ......................................................................................................................55
// InitializeVision() .................................................................................................................................56
RecordMission() {thread} .......................................................................................................................56
GetReferenceActionFilename() ...............................................................................................................58
GetFileNameNumber()............................................................................................................................58



2

InsertMissionListData() ..........................................................................................................................59
ExecuteProgram() ...................................................................................................................................60
ResetMissionList() ..................................................................................................................................61
ReadNextSubgoal() .................................................................................................................................61
FindPath()...............................................................................................................................................62
RemoveProgramFromDB() .....................................................................................................................62
GoBackToLastNode() .............................................................................................................................63
MarkPathBlocked().................................................................................................................................63
ResetVariables()......................................................................................................................................65
ReportProgramError().............................................................................................................................65
GetDockActionFilename() ......................................................................................................................66
StopRecording()......................................................................................................................................66
AbortMission() .......................................................................................................................................67
TransferAllData() ...................................................................................................................................67
DiscontinueTasks() .................................................................................................................................68
ResSysOff().............................................................................................................................................68
InitializeSupervisor() ..............................................................................................................................69
InitializeControl() ...................................................................................................................................69
Supervisor() {thread}..............................................................................................................................70
Control() {thread} ..................................................................................................................................72
InitializeK2AMem() ...............................................................................................................................73
InitializeActiveBlocks() ..........................................................................................................................73
Memory() {Thread} ................................................................................................................................74
MonitorPower() {Thread}.......................................................................................................................74
WarnProc() {Thread} .............................................................................................................................75
FillInArrayAgain()..................................................................................................................................75
SolveNxNArray()....................................................................................................................................77
GetResponse().........................................................................................................................................77
SetSocketOptions() .................................................................................................................................78
ReadFromClient() ...................................................................................................................................78
ProcessClientCommands() ......................................................................................................................79
GetNewClient().......................................................................................................................................80
WriteToClient() ......................................................................................................................................80
GetTimeFromServer().............................................................................................................................81
LostTime()..............................................................................................................................................81
BuildMissionFileName().........................................................................................................................83
InitIO() ...................................................................................................................................................83
NextToken() ...........................................................................................................................................84
GetSiteName() ........................................................................................................................................84
GetBuildingName().................................................................................................................................86
GetStartNodeName()...............................................................................................................................86
GetHomeNodeName().............................................................................................................................87
GetReferenceAction()..............................................................................................................................87
StartMission() .........................................................................................................................................88
GetStartTime()........................................................................................................................................88
GetOffset()..............................................................................................................................................89
CloseIO() ................................................................................................................................................89
GetHomeNode()......................................................................................................................................90
GetActionFile().......................................................................................................................................90
BuildDatabaseFile() ................................................................................................................................91
RemoveFiles().........................................................................................................................................91
CreatePathDatabase()..............................................................................................................................93
BuildNodeTable() ...................................................................................................................................93
BuildFileTable()......................................................................................................................................94



3

BuildPathList() .......................................................................................................................................94
DeletePathDatabase() ..............................................................................................................................96
BuildArray() ...........................................................................................................................................96
FillInArray() ...........................................................................................................................................97
MHCopyFile().........................................................................................................................................97
DBOpen() ...............................................................................................................................................98
DBCreateOnly()......................................................................................................................................98
DBWriteUserData() ................................................................................................................................99
MoveBBAbsolute() .................................................................................................................................99
InitPort()...............................................................................................................................................101
SetScannerOperation() ..........................................................................................................................101
GetValue() ............................................................................................................................................102
Convert2ByteSigned()...........................................................................................................................102
GetFileName() ......................................................................................................................................103
FillInPathName() ..................................................................................................................................103
ReadInstructions().................................................................................................................................104
AdjustRelativeOffsets() .........................................................................................................................104
AddHaltToProgram() ............................................................................................................................105
WritePathProgram()..............................................................................................................................105
MonitorMovement()..............................................................................................................................107
UpdateSubgoalStatus() ..........................................................................................................................108
GetNodeName()....................................................................................................................................108
AdjustCurrentPosition() ........................................................................................................................109
RemoveFromList() ................................................................................................................................109
BlockFromList() ...................................................................................................................................110
WriteOutMissionReport()......................................................................................................................110
CloseDrumDatabases()..........................................................................................................................111
TransferDrumDatabase().......................................................................................................................111
// *** TransferImages().........................................................................................................................112
TransferRecordFile().............................................................................................................................112
InformOffboardDatabase() ....................................................................................................................113
TransferLogFile()..................................................................................................................................113
ClearSupervisorPort() ...........................................................................................................................114
InitializeSemaphores() ..........................................................................................................................114
ClearControlPort() ................................................................................................................................115
HandleSupervisorWriteAndRead() ........................................................................................................115
ReadFromControlPort() ........................................................................................................................116
WriteToControlPort()............................................................................................................................116
PollNeededData()..................................................................................................................................117
ReadDataDirectly() ...............................................................................................................................117
//AssertWarn() ......................................................................................................................................119
//DeAssertWarn()..................................................................................................................................119
FillInVariable().....................................................................................................................................120
MakeSocketEfficient() ..........................................................................................................................120
UpdateReadBuffer() ..............................................................................................................................121
ExtractMess() .......................................................................................................................................121
ReadSocketLine()..................................................................................................................................122
CloseSocket()........................................................................................................................................122
Send_Id()..............................................................................................................................................123
Read_Block() ........................................................................................................................................123
Write_Block() .......................................................................................................................................124
Read_Var() ...........................................................................................................................................124
Read_Special()......................................................................................................................................125
Write_Special().....................................................................................................................................125



4

Close_Connection() ..............................................................................................................................126
Down_Load()........................................................................................................................................126
Dis_Asm() ............................................................................................................................................127
Load_Status()........................................................................................................................................127
Com_Status() ........................................................................................................................................128
Mission_Status() ...................................................................................................................................128
Unknown_Command()..........................................................................................................................129
GetConnection() ...................................................................................................................................129
CreateMess().........................................................................................................................................130
WriteSocketLine().................................................................................................................................130
Connect()..............................................................................................................................................132
SendMessageMH()................................................................................................................................132
NextLine() ............................................................................................................................................133
Eof() .....................................................................................................................................................133
ProcessFilename().................................................................................................................................134
ProcessId()............................................................................................................................................134
ProcessLiteral().....................................................................................................................................135
Match().................................................................................................................................................135
GetAisleBehavior() ...............................................................................................................................136
AddToNodeTable() ...............................................................................................................................136
AddToFileTable() .................................................................................................................................137
AddToList() ..........................................................................................................................................137
SetLiftValues()......................................................................................................................................138
MoveLift() ............................................................................................................................................138
SendCommand() ...................................................................................................................................139
IsRelativeInstruction()...........................................................................................................................139
Communicate() .....................................................................................................................................140
DownloadPath() ....................................................................................................................................140
LoadDriveAndSteer()............................................................................................................................142



5

Program Flow:  Outline

I.  Mission() [Main.c]

A.  Start() [Main.c]

1.  StartTasks()[Main.c]

2.  InitializeRobot() [Initialize.c]

3.  StartServer() [StartServer.c]

4.  WaitToStart() [Main.c]

5.  ReferenceRobot() [Reference.c]

6.  StartRecording() [Main.c]

7.  GetToNextSubgoal() [Subgoal.c] {Main loop!}

8.  CompleteNextSubgoal() [Subgoal.c]

9.  CompleteNextSubgoal() [Subgoal.c] {End main loop}

10.  ReturnHome() [Subgoal.c]

11.  DockRobot() [Reference.c]

12.  ShutDownRobot() [Main.c]



6

Program Flow:  Ring One Detail

I.  Mission() [Main.c]

A.  Start() [Main.c]

1.  StartTasks()[Main.c]

1.1  EvlInit() [Resource.c]

1.2   StartCom() [Resource.c]

1.3  StartMemory() [Memory.c]

1.4  InitializePower() [Power.c]

1.5  InitializeWarnLight() [WarnLight.c]

1.6  CheckArray() [Main.c]

1.7  HandleMessages() [Mesg.c]

2.  InitializeRobot() [Initialize.c]

2.1.  InitializeOffsets() [Initialize.c]

2.2.  InitSuperCom() [ComUtil.c]

2.3.  SyncClock() [Comm.c}

2.4.  InitializeNodeTable() [NodeTable.c]

2.5.  InitializePathNode() [List.c]

2.6.  InitializeInspectionTable() [Initialize.c]

2.7.  InitializeFileTable() [FileTable.c]

2.8.  ParseMission() [Parser.c]

2.9.  InitializePathDatabase() [Initialize.c]

2.10.  InitializeMissionList() [MissionList.c]

2.11.  CopyDrumDatabase() [Database.c]

2.12.  OpenDrumDatabase() [Database.c]

2.13.  CreateDrumDatabase() [Database.c]

2.14.  GetNodeNumber() [NodeTable.c] {Start}

2.15.  GetNodeNumber() [NodeTable.c] {Home}

2.16.  InitializeHostVariables() [Initialize.c]

2.17.  InitializeDataSet() [DrumData.c]

2.18.  InitializeLift() [Lift.c]

2.19.  InitializeBarcode() [Barcode.c]

2.20.  WriteOutImageDirectory() [Copy.c]

2.21.  InitializeVision[Vision.c]



7

3.  StartServer() [Resource.c StartServer.c]

3.1.  InitializeServer() [Initialize.c]

3.2.  InitializeCom() [Initialize.c]

3.3.  CreateSocket() [Socket.c]

3.4.  ServerCommand() [StartServer.c]

4.  WaitToStart() [Main.c]

4.1.  time()

4.2.  localtime()

5.  ReferenceRobot() [Reference.c]

5.1.  GetNodeNumber() [NodeTable.c] {to}

5.2.  GetNodeNumber() [NodeTable.c] {from}

5.3.  GetReferenceActionFilename() [Reference.c]

5.4.  GetFileNameNumber() [FileTable.c]

5.5.  InsertMissionListData() [MissionList.c]

5.6.  ExecuteProgram() [ReadFile.c]

6.  StartRecording() [Main.c]

6.1.  CreateDirectory()

6.2.  fopen()

6.3.  RecordMission() [Main.c]

7.  GetToNextSubgoal() [Subgoal.c] {Main loop!}

7.1.  ResetMissionList() [MissionList.c]

7.2.   ReadNextSubgoal() [Subgoal.c]

7.3.  FindPath() [Array.c]

7.4.  ExecuteProgram() [ReadFile.c]

7.5.  ResetVariables() [Status.c]

8.  CompleteNextSubgoal() [Subgoal.c]

8.1.  ResetMissionList() [MissionList.c]

8.2.  FindPath() [Array.c]

8.3.  FindInspectionPath() [Inspection.c]

8.4.  ExecuteProgram() [ReadFile.c]

8.5.  UpdateSubgoalStatus() [Subgoal.c]

8.6.  ResetVariables() [Status.c]



8

9.  CompleteNextSubgoal() [Subgoal.c] {End main loop}

9.1.  ResetMissionList() [MissionList.c]

9.2.  FindPath() [Array.c]

9.3.  FindInspectionPath() [Inspection.c]

9.4.  ExecuteProgram() [ReadFile.c]

9.5.  UpdateSubgoalStatus() [Subgoal.c]

9.6.  ResetVariables() [Status.c]

10.  ReturnHome() [Subgoal.c]

10.1.  ResetMissionList() [MissionList.c]

10.2.  FindPath() [Array.c]

10.3.  ExecuteProgram() [ReadFile.c]

10.4.  ResetVariables() [Status.c]

11.  DockRobot() [Reference.c]

11.1.  GetNodeNumber() [NodeTable.c] {to}

11.2.  GetNodeNumber() [NodeTable.c] {from}

11.3.  GetDockActionFilename() [Reference.c]

11.4.  GetFileNameNumber() [FileTable.c]

11.5.  InsertMissionListData() [MissionList.c]

11.6.  ExecuteProgram() [ReadFile.c]

12.  ShutDownRobot() [Main.c]

12.1.  StopRecording() [Main.c]

12.2.  taskNameToId()

12.3.  taskDelete() {Server}

12.4.  AbortMission() [Subgoal.c]

12.5.  TransferAllData() [Copy.c]

12.6.  DiscontinueTasks() [Main.c]

12.7.  ResSysOff() [Resource.c] {That’s all folks!}



9

Program Flow:  Ring Two Detail

I.  Mission() [Main.c]

A.  Start() [Main.c]

1.  StartTasks()[Main.c]

1.1  EvlInit() [Logger.c] - Starts Event Logger.

1.1.1.  EvlTask() [Logger.c] {*Thread}

1.1   StartCom() [Communication.c] - Low-level serial interface

1.2.1.  msgQCreate()

1.2.2.  InitializeIOBoard() [Digital.c]

1.2.3.  DeAssert() [Digital.c]

1.2.4.  InitializeSupervisor() [Communication.c]

1.2.5.  InitializeControl() [Communication.c]

1.2.6.  Supervisor() [Communication.c] {*Thread}

1.2.7.  Control() [Communication.c] {*Thread}

1.3.  StartMemory() [Memory.c]

1.3.1.  InitSuperCom() [ComUtil.c]

1.3.2.  InitializeK2Amem() [Memory.c]

1.3.3.  InitializeActiveBlocks() [Memory.c]

1.3.4.  Memory() [Memory.c] {*Thread}

1.4.  InitializePower() [Power.c]

 1.4.1. MonitorPower() [Power.c] {*Thread}

1.5.  InitializeWarnLight() [WarnLight.c]

 1.5.1. WarnProc() [WarnLight.c] {*Thread}

1.6.  CheckArray() [Main.c] {*Thread}

1.7.  HandleMessages() [Mesg.c] {*Thread}



10

2.  InitializeRobot() [Initialize.c]

2.1.  InitializeOffsets() [Initialize.c] - Calculate ‘DrumDistance’ and ‘DrumAngle’

2.2.  InitSuperCom() [ComUtil.c] - Get a Message Queue ID

2.3.  SyncClock() [Comm.c} - Really screwed up!

2.4.  InitializeNodeTable() [NodeTable.c] - Init.

2.5.  InitializePathNode() [List.c] - Init.

2.6.  InitializeInspectionTable() [Initialize.c] - Init.

2.7.  InitializeFileTable() [FileTable.c] - Init.

2.8.  ParseMission() [Parser.c]

2.8.1.  BuildMissionFileName() [Parser.c]

2.8.2.  InitIO() [Scanner.c]

2.8.3.  NextToken() [Scanner.c]

2.8.4.  CloseIO() [Scanner.c]

2.8.5.  GetActionFile() [Initialize.c]

2.8.6.  BuildDatabaseFile [Parser.c]

2.8.7.  RemoveFiles() [Parser.c]

2.9.  InitializePathDatabase() [Initialize.c]

2.9.1.  CreatePathDatabase() [List.c]

2.9.2.  BuildNodeTable() [NodeTable.c]

2.9.3.  BuildFileTable() [FileTable.c]

2.9.4.  BuildPathList() [List.c]

2.9.5.  DeletePathDatabase() [List.c]

2.9.6.  BuildArray() [Array.c]

2.9.7.  FillInArray() [Array.c]

2.9.8.  SolveNxNArray() [Array.c]



11

2.10.  InitializeMissionList() [MissionList.c] - Init.

2.11.  CopyDrumDatabase() [Database.c] - File copy

2.12.  OpenDrumDatabase() [Database.c]

 2.12.1. DBOpen() [commands.c]

2.13.  CreateDrumDatabase() [Database.c]

2.13.1.  DBCreateOnly() [commands.c]

2.13.2.   DBWriteUserData() [??]

2.14.  GetNodeNumber() [NodeTable.c] {Start} - Init.

2.15.  GetNodeNumber() [NodeTable.c] {Home}

2.16.  InitializeHostVariables() [Initialize.c] - Init.

2.17.  InitializeDataSet() [DrumData.c] - Init.

2.18.  InitializeLift() [Lift.c]

2.18.1.  MoveBBAbsolute() [Lift.c]

2.19.  InitializeBarcode() [Barcode.c]

2.19.1.  InitPort() [Barcode.c]

2.19.2.  InitScanner() [Barcode.c]

2.20.  WriteOutImageDirectory() [Copy.c] - mkdir

2.21.  InitializeVision() [Vision.c] - This would be Breck.



12

3.  StartServer() [StartServer.c]

3.1.  InitializeServer() [\socket\Initialize.c] - Init.

3.2.  InitializeCom() [\socket\Initialize.c]

 3.2.1. InitSuperCom() [ComUtil.c]

3.3.  CreateSocket() [Socket.c] - Set up sockets

3.4.  ServerCommand() [StartServer.c] {*Thread}

4.  WaitToStart() [Main.c] - Just waiting

4.1.  time()

4.2.  localtime()

5.  ReferenceRobot() [Reference.c]

5.1.  GetNodeNumber() [NodeTable.c] {to} - Resolve node # from name

5.2.  GetNodeNumber() [NodeTable.c] {from} - Resolve node # from name

5.3.  GetReferenceActionFilename() [Reference.c] - Assumes only one!

5.4.  GetFileNameNumber() [FileTable.c] - Resolve file # from filename

5.5.  InsertMissionListData() [MissionList.c] - Insert a (?) path

5.6.  ExecuteProgram() [ReadFile.c]

5.6.1.  FillInPathName() [ReadFile.c]

5.6.2.  GetFileName() [FileTable.c]

5.6.3.  ReadInstructions() [ReadFile.c]

5.6.4.  AdjustRelativeOffsets() [ReadFile.c]

5.6.5.  AddHaltToProgram() [ReadFile.c]

5.6.6.  WritePathProgram() [DownLoad.c]

5.6.7.  MonitorMovement() [Monitor.c]

6.  StartRecording() [Main.c]

6.1.  CreateDirectory()

6.2.  fopen()

6.3.  RecordMission() [Main.c] {*Thread} - Playback info



13

7.  GetToNextSubgoal() [Subgoal.c] {Main loop!}

7.1.  ResetMissionList() [MissionList.c] - Free list memory

7.2.   ReadNextSubgoal() [Subgoal.c]

7.2.1.  GetNodeNumber() [NodeTable.c] {start & end}

7.2.2.  UpdateSubgoalStatus() [Subgoal.c] {start & end}

7.3.  FindPath() [Array.c]

7.3.1.  GetNodeName() [NodeTable.c]

7.3.2.  InsertMissionListData() [MissionList.c] - Insert a (?) path

7.4.  ExecuteProgram() [ReadFile.c]

7.4.1.  FillInPathName() [ReadFile.c]

7.4.2.  GetFileName() [FileTable.c]

7.4.3.  ReadInstructions() [ReadFile.c]

7.4.4.  AdjustRelativeOffsets() [ReadFile.c]

7.4.5.  AddHaltToProgram() [ReadFile.c]

7.4.6.  WritePathProgram() [DownLoad.c]

7.4.7.  MonitorMovement() [Monitor.c]

7.5. ResetVariables() [Status.c] - VERY minor



14

8.  CompleteNextSubgoal() [Subgoal.c]

8.1.  ResetMissionList() [MissionList.c] - Free list memory

8.2.  FindPath() [Array.c]

8.2.1.  GetNodeName() [NodeTable.c]

8.2.2.  InsertMissionListData() [MissionList.c] - Insert a (?) path

8.3.  FindInspectionPath() [Inspection.c]

8.3.1.  GetInspectionActionFilename() [Inspection.c]

8.3.2.  GetFileNameNumber() [FileTable.c]

8.3.3.  InsertMissionListData() [MissionList.c] - Insert a (?) path

8.4.  ExecuteProgram() [ReadFile.c]

8.4.1.  FillInPathName() [ReadFile.c]

8.4.2.  GetFileName() [FileTable.c]

8.4.3.  ReadInstructions() [ReadFile.c]

8.4.4.  AdjustRelativeOffsets() [ReadFile.c]

8.4.5.  AddHaltToProgram() [ReadFile.c]

8.4.6.  WritePathProgram() [DownLoad.c]

8.4.7.  MonitorMovement() [Monitor.c]

8.4.8.  UpdateSubgoalStatus() [Subgoal.c]

8.5.1.  ReadDataDirectly() [Memory.c]

8.6.  ResetVariables() [Status.c] - VERY minor



15

9.  CompleteNextSubgoal() [Subgoal.c] {End main loop}

9.1.  ResetMissionList() [MissionList.c]

9.2.  FindPath() [Array.c]

9.2.1.  GetNodeName() [NodeTable.c]

9.2.2.  InsertMissionListData() [MissionList.c] - Insert a (?) path

 9.3. FindInspectionPath() [Inspection.c]

9.3.1.  GetInspectionActionFilename() [Inspection.c]

9.3.2.  GetFileNameNumber() [FileTable.c]

9.3.3.  InsertMissionListData() [MissionList.c] - Insert a (?) path

9.4.  ExecuteProgram() [ReadFile.c]

9.4.1.  FillInPathName() [ReadFile.c]

9.4.2.  GetFileName() [FileTable.c]

9.4.3.  ReadInstructions() [ReadFile.c]

9.4.4.  AdjustRelativeOffsets() [ReadFile.c]

9.4.5.  AddHaltToProgram() [ReadFile.c]

9.4.6.  WritePathProgram() [DownLoad.c]

9.4.7.  MonitorMovement() [Monitor.c]

9.5.  UpdateSubgoalStatus() [Subgoal.c]

 9.5.1. ReadDataDirectly() [Memory.c]

9.6.  ResetVariables() [Status.c] - VERY minor



16

10.  ReturnHome() [Subgoal.c]

10.1.  ResetMissionList() [MissionList.c] - Free list memory

10.2.  FindPath() [Array.c]

10.2.1.  GetNodeName() [NodeTable.c]

10.2.2.  InsertMissionListData() [MissionList.c] - Insert a (?) path

10.3.  ExecuteProgram() [ReadFile.c]

10.3.1.  FillInPathName() [ReadFile.c]

10.3.2.  GetFileName() [FileTable.c]

10.3.3.  ReadInstructions() [ReadFile.c]

10.3.4.  AdjustRelativeOffsets() [ReadFile.c]

10.3.5.  AddHaltToProgram() [ReadFile.c]

10.3.6.  WritePathProgram() [DownLoad.c]

10.3.7.  MonitorMovement() [Monitor.c]

10.4.  ResetVariables() [Status.c] - VERY minor

11.  DockRobot() [Reference.c]

11.1.  GetNodeNumber() [NodeTable.c] {to & from} - Resolve # from name

11.2.  GetDockActionFilename() [Reference.c] - Assumes only ONE dock action!

11.3.  GetFileNameNumber() [FileTable.c] - Resolve # from filename

11.4.  InsertMissionListData() [MissionList.c] - Insert a (?) path

11.5.  ExecuteProgram() [ReadFile.c]

11.5.1.  FillInPathName() [ReadFile.c]

11.5.2.  GetFileName() [FileTable.c]

11.5.3.  ReadInstructions() [ReadFile.c]

11.5.4.  AdjustRelativeOffsets() [ReadFile.c]

11.5.5.  AddHaltToProgram() [ReadFile.c]

11.5.6.  WritePathProgram() [DownLoad.c]

11.5.7.  MonitorMovement() [Monitor.c]



17

12.  ShutDownRobot() [Main.c]

12.1.  StopRecording() [Main.c] - Kill recorder

12.2.  taskNameToId()

12.3.  taskDelete() {Server}

12.4.  AbortMission() [Subgoal.c] - Subgoal = ABORTED

 12.4.1. UpdateSubgoalStatus() [Subgoal.c]

12.5.  TransferAllData() [Copy.c]

12.5.1.  WriteOutMissionReport() [Report.c]

12.5.2.  CloseDrumDatabases() [Database.c]

12.5.3.  TransferDrumDatabase() [Copy.c]

12.5.4.  TransferImages() [Copy.c]

12.5.5.  TransferRecordFile() [Copy.c]

12.5.6.  InformOffboardDatabase() [Comm.c]

12.5.7.  TransferLogFile() [Copy.c]

12.6.  DiscontinueTasks() [Main.c] - Kill ‘MonitorMessages’, ‘CheckArray’, ’

MonitorPower’, ‘WarnLight’, ‘K2Amemory’, ‘Supervisor’, ‘Control’, and

‘EvlTask’

12.6.1.  taskNameToId()

12.6.2.  taskDelete()

12.7.  ResSysOff() [Resource.c] {That’s all folks!}



18

Header File Structure
Includes.h {VxWorks specifc except for ComUtil.h, laser.h, vision.h. }

“ComUtil.h” [\langland\com\tty] {*Local}

<vxWorks.h> [\h] {Wind River}

<taskLib.h> [\h] {Wind River}

<stdio.h> [\h] {Wind River}

<ioLib.h> [\h] {Wind River}

<string.h> [\h] {Wind River}

<msgQLib.h> [\h] {Wind River}

<selectLib.h> [\h] {Wind River}

<sys/times.h> [\h] {Wind River}

<vxWorks.h> [\h] {Wind River}

<taskLib.h> [\h] {Wind River}

<ioLib.h> [\h] {Wind River}

<stdio.h> [\h] {Wind River}

<stdlib.h> [\h] {Wind River}

<string.h> [\h] {Wind River}

<time.h> [\h] {Wind River}

<sys/types.h> [\h] {Wind River}

<sys/stat.h> [\h] {Wind River}

<dirent.h> [\h] {Wind River}

<unistd.h> [\h] {Wind River}

<msgQLib.h> [\h] {Wind River}

<selectLib.h> [\h] {Wind River}

<sys/times.h> [\h] {Wind River}

<hostLib.h> [\h] {Wind River}

<sockLib.h> [\h] {Wind River}

<fcntl.h> [\h] {Wind River}

<netinet/in.h> [\h] {Wind River}

<sys/socket.h> [\h] {Wind River}

<errnoLib.h> [\h] {Wind River}

<sysLib.h> [\h] {Wind River}

<math.h> [\h] {Wind River}

<itxcore.h> [??] **



19

<dpx.h> [??] **

<amc1.h> [??] **

<ima.h> [??] **

<clu.h> [??] **

<hf.h> [??] **

<laser.h> [\langland\mission\vision] {*Local}

<vision.h> [\langland\mission\vision] {*Local}



20

Main.c {Include files}
"Mission.h"

"Includes.h" - Trouble!

"Structures.h" {Which one?}

“Defines.h” {Which one?}

"HostVariables.h" - Not much

"Logger.h"

"States.h" {**Changed “OVERFLOW” to “OVRFLOW”}

"Lift.h"

"DC_01.h"

"Digital.h"

"Resource.h" {Which one?}

"Variables.h" {Which one?} - Enum for computer variables



21

main()
[main.cpp]

Calls:
StartTasks() [main.cpp]
StartServer() [StartServer.cpp]
InitializeRobot() [Initialize.cpp]
WaitToStart() [main.cpp]
StartRecording() [main.cpp]
ReferenceRobot() [Reference.cpp]
GetToNextSubgoal() [Subgoal.cpp]
CompleteNextSubgoal() [Subgoal.cpp]
ReturnHome() [Subgoal.cpp]
DockRobot() [Reference.cpp]
ShutDownRobot() [main.cpp]

Vars (global):
MissionStatus [int, Declarations.cpp]
InspectMode [int, Subgoal.cpp]

Purpose:
Calls initialization routines StartTasks(), StartServer(), InitializeRobot(),

WaitToStart(),
StartRecording(), and ReferenceRobot(); then enters the main program

loop where
GetToNextSubgoal() and CompleteNextSubgoal() are called; and then calls

shutdown
routines ReturnHome(), DockRobot(), and ShutDownRobot().

Warnings:
“while ( Flag != QUIT)” QUIT = -2, but Flag values are BOOL;

GetToNextSubgoal()
might return QUIT!



22

StartTasks()
[Main.cpp]

Calls:
EvlInit() [Logger.cpp]
StartCom() [Communication.cpp]
StartMemory() [Memory.cpp]
InitializePower() [Power.cpp]
// InitializeWarnLight() [WarnLight.cpp]
CheckArray() {thread} [Main.cpp]
HandleMessages() {thread} [Mesg.cpp]

Vars (global):
hCheckArray [HANDLE, Main.cpp]
CheckArrayID [DWORD, Main.cpp]
hHandleMessages [HANDLE, Main.cpp]
HandleMessagesID [DWORD, Main.cpp]

Purpose:
Calls initialization routines EvlInit(), StartCom(), StartMemory(),

InitializePower(), and
InitializeWarnLight(); starts threads CheckArray() and HandleMessages().

Warning:
InitializeWarnLight() is commented out right now.



23

StartServer()
[StartServer.cpp]

Calls:
Init_Winsock() [StartServer.cpp]
InitializeServer() [CommInit.cpp]
CreateSocket() [Socket.cpp]
ServerCommand() (thread) [StartServer.cpp]

Vars (global):
hServerCommand [HANDLE, Main.cpp]
ServerCommandID [DWORD, Main.cpp]

Purpose:
Calls Init_Winsock(), InitializeServer(), and CreateSocket(); and starts the
ServerCommand() thread.

Warnings:
InitializeCom() commented out (function in CommInit.cpp is commented

out and the
important call to InitSuperCom() can be found in InitializeRobot()).



24

InitializeRobot()
[Initialize.cpp]

Calls:
InitializeOffsets() [Initialize.cpp]
InitSuperCom() [ComUtil.cpp]
SyncClock() [Comm.cpp]
InitializeNodeTable() [NodeTable.cpp]
InitializePathNode() [List.cpp]
InitializeInspectionTable() [Initialize.cpp]
InitializeFileTable() [FileTable.cpp]
ParseMission() [Parser.cpp]
InitializePathDatabase() [Initialize.cpp]
InitializeMissionList() [MissionList.cpp]
CopyDrumDatabase() [Database.cpp]
OpenDrumDatabase() [Database.cpp]
CreateDrumDatabase() [Database.cpp]
GetNodeNumber() [NodeTable.cpp]
InitializeHostVariables() [Initialize.cpp]
InitializeDataSet() [DrumData.cpp]
// InitializeLift() [Lift.cpp]
// InitializeBarcode() [Barcode.cpp]
WriteOutImageDirectory() [Copy.cpp]
// InitializeVision() [Vision.cpp]

Vars (global):
CurrentLocation [int, Global.cpp]
HomePosition [int, Global.cpp]

Purpose:
Calls InitializeOffsets(), InitSuperCom(), SyncClock(),

InitializeNodeTable(),
InitializePathNode(), InitializeInspectionTable(), InitializeFileTable(),

ParseMission(),
InitializePathDatabase(), InitializeMissionList(), CopyDrumDatabase(),
OpenDrumDatabase(), and CreateDrumDatabase(); then CurrentLocation

and
HomePosition are set to the value returned by GetNodeNumber(); then

calls are
made to InitializeHostVariables(), InitializeDataSet(), InitializeLift(),

InitializeBarcode(),
WriteOutImageDirectory(), InitializeVision().

Warnings:
InitializeLift(), InitializeBarcode(), and InitializeVision() are commented

out!



26

WaitToStart()
[Main.cpp]

Calls:

Vars (global):
StartYear [int, global.cpp]
StartMonth [int, global.cpp]
StartDay [int, global.cpp]
StartHour [int, global.cpp]
StartMinute [int, global.cpp]

Purpose:
Synchronizes clock onboard robot with Site Manager.

Warnings:
Seems to be logically flawed.  Modifications have been made to handle this

that have
not been tested!

StartRecording()
[Main.cpp]

Calls:
RecordMission() (thread) [Main.cpp]

Vars (global):
RecordFile [static FILE*, Main.cpp]
HistoryName [char[], Global.cpp]
hRecordMission [HANDLE, Main.cpp]
RecordMissionID [DWORD, Main.cpp]

Purpose:
Creates (or recreates) the History file and kicks off the RecordMission()

thread.

Warnings:
No longer creates a “History” directory of the same name (this is not legal

under NT).



27

ReferenceRobot()
[Reference.cpp]

Calls:
GetNodeNumber() [NodeTable.cpp]
GetReferenceActionFilename() [Reference.cpp]
GetFileNameNumber() [FileTable.cpp]
InsertMissionListData() [MissionList.cpp]
ExecuteProgram() [ReadFile.cpp]

Vars (global):
ReferenceActionTo [char[], Global.cpp]
ReferenceActionFrom [char[], Global.cpp]
MissionAnswer [int*, Global.cpp]

Purpose:
Calls GetNodeNumber() on ReferenceActionTo to determine “to” (local

var) and calls
GetNodeNumber() on ReferenceActionFrom to determine “from” so that

the proper
reference action may be called.  The function

GetReferenceActionFilename() returns a
file pointer (local var) to the proper reference file. MissionAnswer[0] is

given the
returning value of GetFileNameNumber() and is given to

InsertMissionListData()
along with local vars “to” and “from”.  Finally, ExecuteProgram() is called.

Warnings:
Note similarities to DockRobot().  Also note the opportunity for a reference

action to
have different starting and ending points.



28

GetToNextSubgoal()
[Subgoal.cpp]

Calls:
ResetMissionList() [MissionList.cpp]
ReadNextSubgoal() [Subgoal.cpp]
FindPath() [Array.cpp]
ExecuteProgram() [ReadFile.cpp]
RemoveProgramFromDB() [Subgoal.cpp]
ResetVariables() [Status.cpp]
RetryCurrentSubgoal() [Subgoal.cpp]
ShutDownRobot() [Main.cpp]
MarkPathBlocked() [Subgoal.cpp]
AbortMission() [Subgoal.cpp]
ReportProgramError() [Main.cpp]
UpdateSubgoalStatus() [Subgoal.cpp]

Vars (global):
CurrentMode [static int, Subgoal.cpp]
CurrentLocation [int, Global.cpp]
StartNodeNumber [int, Global.cpp]
HaltCondition [int, Global.cpp]

Purpose:
Calls are made to ResetMissionList(), ReadNextSubgoal(), and FindPath().

The Status
that FindPath() returns switches several cases: END_OF_FILES, calls

ExecuteProgram(),
if there is an error, several cases are switched on global variable

HaltCondition:
ERROR_IN_PROGRAM, calls RemoveProgramFromDB(), ResetVariables(),
RetryCurrentSubgoal(), and ShutDownRobot() if it fails;

PATH_BLOCKED, calls
MarkPathBlocked(), ResetVariables(), RetryCurrentSubgoal(), and

ShutDownRobot() if
it fails; SYSTEM_NOT_READY calls ShutDownRobot(); GO_HOME calls
AbortMission(); CONTINUE, ERROR_WHILE_EXECUTING, STUCK, and
DC_IGNORE call the default case which calls ResetVariables(),

RetryCurrentSubgoal(),
and ShutDownRobot() if it fails. If ExecuteProgram() succeeds several cases

are switched
on global variable HaltCondition: ERROR_IN_PROGRAM, calls
RemoveProgramFromDB(); PATH_BLOCKED, calls MarkPathBlocked();
SYSTEM_NOT_READY calls ShutDownRobot(); GO_HOME sets local

variable Status



29

to QUIT; CONTINUE, ERROR_WHILE_EXECUTING, STUCK, and
DC_IGNORE

call the default case.  Finally, still in case END_OF_FILES, ResetVariables()
is called.

If FindPath() returns NO_PATH ReportProgramError() and
UpdateSubgoalStatus() are

called. If FindPath() returns ALREADY_THERE the function ends. If
FindPath() returns

PATH_ERROR ShutDownRobot() is called.  The default case calls
ReportProgramError() and UpdateSubgoalStatus().

Warnings:
Bear in mind similarities between this function and CompleteNextSubgoal() and
ReturnHome()!

CompleteNextSubgoal()
[Subgoal.cpp]

Calls:
ResetMissionList() [MissionList.cpp]
FindPath() [Array.cpp]
FindInspectionPath() [Inspection.cpp]
ExecuteProgram() [ReadFile.cpp]
UpdateSubgoalStatus() [Subgoal.cpp]
RemoveProgramFromDB() [Subgoal.cpp]
GoBackToLastNode() [Subgoal.cpp]
ShutDownRobot() [Main.cpp]
MarkPathBlocked() [Subgoal.cpp]
ResetVariables() [Status.cpp]
ReportProgramError() [Main.cpp]

Vars (global):
InspectMode [int, Subgoal.cpp]
CurrentLocation [int, Global.cpp]
EndNodeNumber [int, Global.cpp]
CurrentMode [static int, Subgoal.cpp]
HaltCondition [int, Global.cpp]
StartNodeNumber [int, Global.cpp]

Purpose:
First ResetMissionList() is called, and depending on whether or not the

path is an
inspection path, FindPath() or FindInspectionPath() is called.  The Status

that FindPath()



30

or FindInspectionPath() returns switches several cases: END_OF_FILES,
calls

ExecuteProgram(), if there is an error, several cases are switched on global
variable

HaltCondition:  ERROR_IN_PROGRAM, calls UpdateSubgoalStatus(),
RemoveProgramFromDB(), GoBackToLastNode() and ShutDownRobot() if

it fails;
PATH_BLOCKED, calls UpdateSubgoalStatus(), MarkPathBlocked(),
GoBackToLastNode(), and ShutDownRobot() if it fails;

SYSTEM_NOT_READY calls
UpdateSubgoalStatus() and ShutDownRobot(); GO_HOME calls
UpdateSubgoalStatus(), GoBackToLastNode(), andAbortMission();

CONTINUE,
ERROR_WHILE_EXECUTING, STUCK, and DC_IGNORE call the default

case
which calls UpdateSubgoalStatus(), GoBackToLastNode(), and

ShutDownRobot() if it
fails.

If ExecuteProgram() succeeds several cases are switched on global variable
HaltCondition: ERROR_IN_PROGRAM, calls RemoveProgramFromDB();
PATH_BLOCKED, calls MarkPathBlocked();  SYSTEM_NOT_READY calls
ShutDownRobot(); GO_HOME sets local variable Status to QUIT;

CONTINUE,
ERROR_WHILE_EXECUTING, STUCK, and DC_IGNORE call the default

case.
Finally, still in case END_OF_FILES, ResetVariables() is called.
(The same as GetToNextSubgoal())

If FindPath() returns NO_PATH ReportProgramError() and
UpdateSubgoalStatus() are

called. If FindPath() returns ALREADY_THERE UpdateSubgoalStatus() is
called. If

FindPath() returns PATH_ERROR ShutDownRobot() is called.  The default
case calls

ReportProgramError() and UpdateSubgoalStatus().

Warnings:
Bear in mind similarities between this function and UpdateSubgoalStatus()
and
ReturnHome()!



31

ReturnHome()
[Subgoal.cpp]

Calls:
ResetMissionList() [MissionList.cpp]
FindPath() [Array.cpp]
ExecuteProgram() [ReadFile.cpp]
RemoveProgramFromDB() [Subgoal.cpp]
ResetVariables() [Status.cpp]
ShutDownRobot() [Main.cpp]
ReportProgramError() [Main.cpp]

Vars (global):
EndNodeNumber [int, Global.cpp]
HomePosition [int, Global.cpp]
CurrentMode [static int, Subgoal.cpp]
CurrentLocation [int, Global.cpp]
HaltCondition [int, Global.cpp]

Purpose:
Calls are made to ResetMissionList() and FindPath().  The Status that

FindPath() returns
switches several cases: END_OF_FILES, calls ExecuteProgram(), if there is

an error,
several cases are switched on global variable HaltCondition:

ERROR_IN_PROGRAM,
calls RemoveProgramFromDB() and ResetVariables(); PATH_BLOCKED,

calls
MarkPathBlocked() and ResetVariables(); SYSTEM_NOT_READY calls
ShutDownRobot(); GO_HOME sets local variable Status to FALSE;

CONTINUE,
ERROR_WHILE_EXECUTING, STUCK, and DC_IGNORE call the default

case
which calls ResetVariables().

If ExecuteProgram() succeeds several cases are switched on global variable
HaltCondition: ERROR_IN_PROGRAM, calls RemoveProgramFromDB();
SYSTEM_NOT_READY calls ShutDownRobot(); GO_HOME sets local

variable Status
to FALSE; PATH_BLOCKED, CONTINUE, ERROR_WHILE_EXECUTING,
STUCK, and DC_IGNORE call the default case.  Finally, still in case

END_OF_FILES,
ResetVariables() is called.

If FindPath() returns NO_PATH ReportProgramError()is called. If
FindPath() returns



32

ALREADY_THERE the function ends. If FindPath() returns PATH_ERROR
ShutDownRobot() is called.  The default case calls ReportProgramError().

Warnings:
Bear in mind similarities between this function and UpdateSubgoalStatus()

and
CompleteNextSubgoal()!  Take note of PATH_BLOCKED moved to default case.



33

DockRobot()
[Reference.cpp]

Calls:
GetNodeNumber() [NodeTable.cpp]
GetDockActionFilename() [Reference.cpp]
GetFileNameNumber() [FileTable.cpp]
InsertMissionListData() [MissionList.cpp]
ExecuteProgram() [ReadFile.cpp]

Vars (global):
HomeNode [char[], Global.cpp]
MissionAnswer [int*, Global.cpp]

Purpose:
Calls GetNodeNumber() on HomeNode to determine “to” (local var) and

calls
GetNodeNumber() on HomeNode to determine “from” so that the proper
docking action may be called.  The function GetDockActionFilename()

returns a
file pointer (local var) to the proper reference file. MissionAnswer[0] is

given the
returning value of GetFileNameNumber() and is given to

InsertMissionListData()
along with local vars “to” and “from”. MissionAnswer[1] is set to

END_OF_FILES.
Finally, ExecuteProgram() is called.

Warnings:
Note similarities to ReferenceRobot().



34

ShutDownRobot()
[Main.cpp]

Calls:
StopRecording() [Main.cpp]
AbortMission() [Subgoal.cpp]
TransferAllData() [Copy.cpp]
DiscontinueTasks() [Main.cpp]
ResSysOff() [Resource.cpp]

Vars (global):
MissionStatus [Declarations.cpp]
hServerCommand [Main.cpp]

Purpose:
Shuts down the robot.  Stops recording (StopRecording()), then terminates

the
ServerCommand() thread, calls AbortMission(), transferAllData(),

DiscontinueTasks(),
and ResSysOff(), which exits the program.

Warnings:
Terminates everything.  Might want to shut down in a civil manner, or keep

running.



35

EvlInit()
[Logger.cpp]

Calls:

Vars (global):
RobotsName [char[], Global.cpp]
hLogFile [HANDLE, Logger.cpp]

Purpose:
Creates a log file from Computer’s name.

Warnings:
May want to change to “append” and put a time/date stamp in!



36

StartCom()
[Communication.cpp]

Calls:
InitializeSupervisor() [Communication.cpp]
InitializeControl() [Communications.cpp]
Supervisor() {thread} [Communications.cpp]
Control() {thread} [Communications.cpp]

Vars (global):
Comm_timeout [int, Main.cpp]
SuperMsgQID [HANDLE, Communication.cpp]
ControlMsgQID [HANDLE, Communication.cpp]
MissionMsgQID [HANDLE, Communication.cpp]
hSupervisor [HANDLE, Main.cpp]
SupervisorID [DWORD, Main.cpp]
hControl [HANDLE, Main.cpp]
ControlID [DWORD, Main.cpp]

Purpose:
Creates the Super, Control, and Mission pipes; calls InitializeSupervisor()

and
InitializeControl(); and starts the Supervisor() and Control() threads.

Warnings:
Might want to consider “message” pipes as opposed to “byte” pipes.
Need to insure that pipe message architecture is NOT a bottlelneck!



37

StartMemory()
[Memory.cpp]

Calls:
InitSuperCom() [ComUtil.cpp]
InitializeK2AMem() [Memory.cpp]
InitializeActiveBlocks() [Memory.cpp]
Memory() {Thread} [Memory.cpp]

Vars (global):
ReadDirectSem [HANDLE, Memory.cpp]
WriteDirectSem [HANDLE, Memory.cpp]
MemoryComLink [HANDLE, Memory.cpp]
ReadDirectlyComLink [HANDLE, Memory.cpp]
WriteDirectlyComLink [HANDLE, Memory.cpp]
hMemory [HANDLE, Main.cpp]
MemoryID [DWORD, Main.cpp]

Purpose:
Creates the Read and Write Direct semaphores (ReadDirectSem and

WriteDirectSem).
Calls InitSuperCom() on MemoryComLink, ReadDirectlyComLink, and
WriteDirectlyComLink.  Then calls InitializeK2AMem(),

InitializeActiveBlocks(), and
starts the Memory() thread.

Warnings:



38

InitializePower()
[Power.cpp]

Calls:
MonitorPower() {Thread} [Power.cpp]

Vars (global):
hPower [HANDLE, Main.cpp]
PowerID [DWORD, Main.cpp]

Purpose:
Kicks off the MonitorPower() thread.

Warnings:

InitializeWarnLight()
[WarnLight.cpp]

Calls:
WarnProc() {Thread} [WarnLight.cpp]

Vars(global):
hWarn_Light [HANDLE, Main.cpp]
Warn_LightID [DWORD, Main.cpp]

Purpose:
Kicks off Warning Light thread.

Warnings:



39

CheckArray() {Thread}
[Main.cpp]

Calls:
FillInArrayAgain() [Array.cpp]
SolveNxNArray() [Array.cpp]

Vars(global):
MissionSizeOfArray [int, Global.cpp]
MissionPathList [PathListPntr, Global.cpp]

Purpose:
Who knows?

Warnings:
Local variable “flag” is an int and might should be BOOL.
Sleeps for 30 minutes!

HandleMessages() {thread}
[Mesg.cpp]

Calls:
GetResponse() [Mesg.cpp]

Vars(global):
MissionMsgQID [Communication.cpp]

Purpose:
This thread loops forever waiting on a connection from the MissionMsgQID

pipe.  The
pipe is read and the name of the sender (pipe) is determined.  The

remaining message is
given to GetResponse().  A pipe is opened to the sender, and data is
returned..  The
replying pipe is closed and the waiting pipe disconnects.

Warnings:
Error handling is crude at best (all the exit(1)’s).  Consider “message” pipes

as opposed



40

to “byte” pipes.  Need to check for bottlenecks.



41

Init_Winsock()
[StartServer.cpp]

Calls:

Vars(global):

Purpose:
Start up Winsock.  Currently we are using version 1.1.

Warnings:
Need to call WASCleanup() in Shutdown(), or something like that.

InitializeServer()
[CommInit.cpp]

Calls:

Vars(global):

Purpose:
Functionality duplicated (and called earlier) in InitializeRobot().

Warnings:
May want to remove.



42

CreateSocket()
[Socket.cpp]

Calls:
SetSocketOptions() [Socket.cpp]

Vars(global):
Server [SocketDesc, Declarations.cpp]

Purpose:
This function gets the host (robot) name to get the IP.  A socket is created

and bound to
host IP, ect.  The socket is then set to listen and SetSocketOptions() is

called.

Warnings:

ServerCommand() {Thread}
[StartServer.cpp]

Calls:
ReadFromClient() [ServerUtil.cpp]
ProcessClientCommands() [ProcessCommand.cpp]
GetNewClient() [ServerUtil.cpp]
WriteToClient() [ServerUtil.cpp]

Vars(global):
Server [SocketDesc, Declarations.cpp]
Client [SocketDesc[], Declarations.cpp]
DataReady [int, StartServer.cpp]

Purpose:
Does some FD_??? that I don’t understand and calls select().  Then, while

DataReady is
TRUE, ReadFromClient(), ProcessClientCommands(), GetNewClient(), and
WriteToClient().

Warnings:
“fd” may not be used, what ill effects does this have?



43

InitializeOffsets()
[Initialize.cpp]

Calls:

Vars (global):
DrumAngle [int, Global.cpp]

Purpose:
Calculates global var “DrumAngle” from defines in Mission.h.

Warnings:
May need to check math and “representation” of vars (float, int, ect).

InitSuperCom()
[ComUtil.cpp]

Calls:

Vars (global):

Purpose:
Accepts a pointer to a HANDLE and a name (string) and creates a pipe of

that name and returns the HANDLE.

Warnings:



44

SyncClock()
[Comm.cpp]

Calls:
GetTimeFromServer() [Comm.cpp]
LostTime() [Comm.cpp]

Vars (global):
Time [static struct tm, Comm.cpp]

Purpose:
Calls GetTimeFromServer() and then LostTime().  If there is a discrepancy,

the system
time is updated.

Warnings:
Year 2000 problems?  Not sure who/where the “time server” runs.

InitializeNodeTable()
[NodeTable.cpp]

Calls:

Vars (global):
MissionRootNodeTable [struct NodeData, NodeTable.cpp]

Purpose:
Initializes NodeData structure.

Warnings:



45

InitializePathNode()
[List.cpp]

Calls:

Vars (global):
MissionRootPathNode [struct PathData, Global.cpp]

Purpose:
Initializes PathData structure.

Warnings:

InitializeInspectionTable()
[Initialize.cpp]

Calls:

Vars (global):
MissionRootInspectionTable [struct InspectionTable, Global.cpp]

Purpose:
Initializes InspectionTable structure.

Warnings:
Status of “-1”, no enum?



46

InitializeFileTable()
[FileTable.cpp]

Calls:

Vars (global):
MissionRootFileTable [struct FileData, FileTable.cpp]

Purpose:
Initializes FileData structure.

Warnings:



47

ParseMission()
[Parser.cpp]

Calls:
BuildMissionFileName() [Parser.cpp]
InitIO() [Scanner.cpp]
NextToken() [Scanner.cpp]
GetSiteName() [Parser.cpp]
GetBuildingName() [Parser.cpp]
GetStartNodeName() [Parser.cpp]
GetHomeNodeName() [Parser.cpp]
GetReferenceAction() [Parser.cpp]
StartMission() [Parser.cpp]
GetStartTime() [Parser.cpp]
GetOffset() [Parser.cpp]
CloseIO() [Scanner.cpp]
GetHomeNode() [Initialize.cpp]
GetActionFile() [Initialize.cpp]
BuildDatabaseFile() [Parser.cpp]
RemoveFiles() [Parser.cpp]

Vars (global):
ErrorString [static char[], Parser.cpp]
CurrentToken [int, Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Calls BuildMissionFileName(), InitIO(), and NextToken().  Switches on

token returned.
SITE calls GetSiteName(), BUILDING calls GetBuildingName(),

STARTING_NODE
calls GetStartNodeName(), HOME_NODE calls GetHomeNodeName(),
REFERENCE_ACTION calls GetReferenceAction(), BEGIN_MISSION calls
StartMission(), START_TIME calls GetStartTime(), OFFSET calls

GetOffset(), and the
default case returns ERROR.  Then CloseIO() is called.  Global variable

“State” is
checked against GOT_SITE_NAME, GOT_BUILDING_NAME,

GOT_MISSION,
GOT_START, GOT_REFERENCE_ACTION, and GOT_OFFSET.  If State

does not
indicate GOT_HOME, GetHomeNode() is called.  Then GetActionFile(),
BuildDatabaseFile(), and RemoveFiles() are called.

Warnings:



48

No GOT_DOCK, or some such thing?  Need to test for errors on
GetHomeNode(),

GetActionFile(), and BuildDatabaseFile().



49

InitializePathDatabase()
[Initialize.cpp]

Calls:
CreatePathDatabase() [List.cpp]
BuildNodeTable() [NodeTable.cpp]
BuildFileTable() [FileTable.cpp]
BuildPathList() [List.cpp]
DeletePathDatabase() [List.cpp]
BuildArray() [Array.cpp]
FillInArray() [Array.cpp]
SolveNxNArray() [Array.cpp]

Vars (global):
MissionAnswer [int*, Global.cpp]
MissionSizeOfArray [int, Global.cpp]

Purpose:
Calls CreatePathDatabase(), BuildNodeTable(), BuildFileTable(),

BuildPathList(),
DeletePathDatabase(), BuildArray(), FillInArray(), and SolveNxNArray().

Then
allocates memory (MissionAnswer) for MissionSizeOfArray integers.

Warnings:
Dynamic memory allocation. . . is it set free?

InitializeMissionList()
[MissionList.cpp]

Calls:

Vars (global):
MissionListRoot [struct MissionList, Global.cpp]

Purpose:
Initializes the MissionList structure, MissionListRoot.

Warnings:
Might want to enum “-1”.



51

CopyDrumDatabase()
[Database.cpp]

Calls:
MHCopyFile() [Copy.cpp]

Vars (global):
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]
DatabaseFile [char[], Global.cpp]

Purpose:
Calls MHCopyFile() after assembling the proper Read/Write directory

names.  Copies drum database to temp directory.

Warnings:
Might want to #define hard-coded “.pddb” extension.

OpenDrumDatabase()
[Database.cpp]

Calls:
DBOpen() [Commands.cpp]

Vars (global):
DatabaseFile [char[], Global.cpp]
ReadDesc [static DBDesc*, Database.cpp]
ReadOnBoardDatabase [int, Global.cpp]

Purpose:
Calls DBOpen() on temp drum database.

Warnigns:
ReadOnBoardDatabase is an int, wants to be a BOOL.  Might want to

#define hard-
coded “.pddb” extension.



52

CreateDrumDatabase()
[Database.cpp]

Calls:
DBCreateOnly() [Commands.cpp]
DBWriteUserData() [Commands.cpp]

Vars (global):
RobotsName [char[], Global.cpp]
DatabaseTemplate [char[], Global.cpp]
WriteDesc [static DBDesc*, Database.cpp]
WriteOnBoardDatabase [int, Global.cpp]
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]

Purpose:
Calls DBCreateOnly() on local var DatabaseReport, and global var

DatabaseTemplate.
Calls DBWriteUserData() on local var HeaderInfo.

Warnings:
Might want to change HeaderInfo[512] to HeaderInfo[some #define].
Might want to #define hard-coded “.sddb” extension.
***No longer create a same-name subdirectory (NT/NFS

incompatibility)***



53

GetNodeNumber()
[NodeTable.cpp]

Calls:

Vars (global):
MissionRootNodeTable [struct NodeData, NodeTable.cpp]

Purpose:
Receives local var NodeName and searches for same name within
MissionRootNodeTable and returns NodeNumber if successful.

Warnings:
Slow search method?

InitializeHostVariables()
[Initialize.cpp]

Calls:

Vars (global):
HostVariable [int[], Global.cpp]

Purpose:
initializes HostVariable[] array to 0.

Warnings:



54

InitializeDataSet()
[DrumData.cpp]

Calls:

Vars (global):
DrumDataSet [WriteDataSet[], Global.cpp]
InventoryId [char[][], Global.cpp]
ImageNames [char[][][], Global.cpp]

Purpose:
Initialize InventoryId array, DrumDataSet array, and ImageNames array.

Warnings:
Check space allocated vs space REQUIRED!

InitializeLift()
[Lift.cpp]

Calls:
MoveBBAbsolute() [Lift.cpp]

Vars (global):
DrumStatus [int, Declarations.cpp]
LevelStatus [int, Declarations.cpp]

Purpose:
Calls MoveBBAbsolute() to LEVEL0 and SIZE_55GALLON, and initializes

global
variables DrumStatus and LevelStatus.

Warnings:
Commented out in InitializeRobot().  Who knows if it works!



55

InitializeBarcode()
[Barcode.cpp]

Calls:
InitPort() [Barcode.cpp]
SetScannerOperation() [Barcode.cpp]

Vars (global):

Purpose:
Initializes barcode hardware by calling InitPort() and

SetScannerOperation().

Warnings:
Is commented out in InitializeRobot().  Has not been tested yet!

WriteOutImageDirectory()
[Copy.cpp]

Calls:

Vars (global):
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]

Purpose:
Composes two strings, a filename based on SiteName and BuildingName,

and a
filename for images within the “tmp” subdirectory.  The first filename

(string) is written
into the second when it is opened. 

Warnings:



56

// InitializeVision()
[Vision.cpp]

Calls:
init_system() []
init_doe_iluts() []
init_find_tb() []
init_laser() []

Vars (global):
Not sure.

Purpose:
Initializes vision.

Warnings:
Ignored for now.  And commented out!

RecordMission() {thread}
[Main.cpp]

Calls:
GetValue() [Lift.cpp]
Convert2ByteSigned() [Lift.cpp]

Vars (global):
ContinueToRecord [static int, Main.cpp]
RecordFile [static FILE, Main.cpp]
DoneRecording [static int, Main.cpp]

Purpose:
Records aspects of the robot’s motion for playback.  While

ContinueToRecord is TRUE
the following values are recorded: CPS_CPS1POS, CPS_CPS2POS,

CPS_CPS4POS,
DC01_XPOS, DC01_YPOS, and DC01_AZIMUTH.  They are written to

RecordFile in
that order, every half a second.  When ContinueToRecord is TRUE and the

loop ends
and the global varaible DoneRecording is set to TRUE.



57

Warnings:
ContinueToRecord should be a BOOL.  DoneRecording should be a BOOL.
Dependent on SLEEPRECORDER (Includes.h).



58

GetReferenceActionFilename()
[Reference.cpp]

Calls:
GetFileName() [FileTable.cpp]

Vars (global):
MissionPathList [PathListPntr *, Global.cpp]

Purpose:
Searches MissionPathList for a path program which satisfies “to” and

“from” and is also a
REFERENCE action.  Returns the appropriate action file name (NULL

otherwise).

Warnings:
Is “NULL” tested for when called?

GetFileNameNumber()
[FileTable.cpp]

Calls:

Vars (global):
MissionRootFileTable [struct FileData, FileTable.cpp]

Purpose:
Searches for a filename, Name, in the MissionRootFileTable and returns a

number.

Warnings:
Returns a “-1” if file not found.



59

InsertMissionListData()
[MissionList.cpp]

Calls:

Vars (global):
MissionListRoot [struct MissionList, Global.cpp]

Purpose:
Allocates a MissionList structure and initializes it, passing it to the global

variable
MissionListRoot.

Warnings:
Deallocation?



60

ExecuteProgram()
[ReadFile.cpp]

Calls:
FillInPathName() [ReadFile.cpp]
GetFileName() [FileTable.cpp]
ReadInstructions() [ReadFile.cpp]
AdjustRelativeOffsets() [ReadFile.cpp]
AddHaltToProgram() [ReadFile.cpp]
WritePathProgram() [Download.cpp]
MonitorMovement() [Monitor.cpp]

Vars (global):
MissionListRoot [struct MissionList, Global.cpp]
BatteryFlag [int, Global.cpp]
HaltCondition [int, Global.cpp]
IndexToBuffer [int, ReadFile.cpp]
MissionAnswer [int*, Global.cpp]
NumberOfInstructions [int, ReadFile.cpp]
ProgramBuffer [unsigned char[], ReadFile,cpp]
Acceleration [unsigned char[], ReadFile.cpp]

Purpose:
First, BatteryFlag is checked and then a loop begins which lasts until global

variable
MissionAnswer (incremented) indicates END_OF_FILES.  Within this loop,
FillInPathName() is called on what GetFileName() returns.  The program

length is
checked and then ReadInstructions() and AdjustRelativeOffsets() are

called.  If the
program is longer than 255 instructions, AddHaltToProgram() is called

along with
WritePathProgram() and MonitorMovement().  Outside of the while loop,
AddHaltToProgram() is called along with WritePathProgram() and

MonitorMovement().

Warnings:
Local var InspectMode is also a global name, is there confusion?  Code

replication
{AddHaltToProgram(), WritePathProgram() and MonitorMovement()}

might cause
trouble.  Also need to check the 255 interactions!



61

ResetMissionList()
[MissionList.cpp]

Calls:

Vars (global):
MissionListRoot [struct MissionList, Global.cpp]

Purpose:
This function free()’s the Mission List.

Warnings:
What if MissionListRoot is NULL?

ReadNextSubgoal()
[Subgoal.cpp]

Calls:
GetNodeNumber() [NodeTable.cpp]
UpdateSubgoalStatus() [Subgoal.cpp]

Vars (global):
CurrentSubgoal [InspectionPntr, Subgoal.cpp]
StartNodeNumber [int, Global.cpp]
EndNodeNumber [int, Global.cpp]

Purpose:
The CurrentSubgoal pointer is incremented and if not equal to NULL,
StartNodeNumber and EndNodeNumber are set and tested for validity.

The function
returns with its variable parameter set to TRUE (or Quit on an error).

Warinngs:
StartNodeNumber and EndNodeNumber are members of MissionList too!

Var
parameter TRUE vs QUIT values (need BOOL).  How is return(ERROR)

handled?



62

FindPath()
[Array.cpp]

Calls:
GetNodeName() [NodeTable.cpp]
InsertMissionListData() [MissionList.cpp]

Vars (global):
MissionSizeOfArray [int, Global.cpp]
MissionAnswer [int*, Global.cpp]
MissionArray [ArrayPntr*, Array.cpp]

Purpose:
Calls GetNodeName() for debug purposes.  Then allocates memory for local

variable
“Files”.  Tests to be sure that parameters “i” and “j” are not equal.  Then

creates an array
of filename “numbers” (?) in local var “Files”.  Calls

InsertMissionListData() on
parameter “j” then increments “j” along “MissionArray[][].From”.  The

“Files” memory is
then released.

Warnings:
Produces debug data that you may want to curb.

RemoveProgramFromDB()
[Subgoal.cpp]

Calls:
AdjustCurrentPosition() [MissionList.cpp]
RemoveFromList() [List.cpp]
FillInArrayAgain() [Array.cpp]
SolveNxNArray() [Array.cpp]

Vars (global):
ProgramCounter [int, Global.cpp]

Purpose:



63

First AdjustCurrentPosition() is called on global var ProgramCounter, the
return value is

given to RemoveFromList() and the functions FillInArrayAgain() and
SolveNxNArray()

are called.

Warnings:
Global Var ProgramCounter has same name as

“MissionList.ProgramCounter”.

GoBackToLastNode()
[Subgoal.cpp]

Calls:
AdjustCurrentPosition() [MissionList.cpp]
ResetMissionList() [MissionList.cpp]
FindPath() [Array.cpp]
ExecuteProgram() [ReadFile.cpp]

Vars (global):
ProgramCounter [int, Global.cpp]
CurrentMode [static int, Subgoal.cpp]

Purpose:
Calls AdjustCurrentPosition(), ResetMissionList(), and FindPath().  If
FindPath() returns “END_OF_FILES” ExecuteProgram() is called.

Warnings:

MarkPathBlocked()
[Subgoal.cpp]

Calls:
AdjustCurrentPosition() [MissionList.cpp]
BlockFromList() [List.cpp]
FillInArrayAgain() [Array.cpp]
SolveNxNArray() [Array.cpp]

Vars (global):
ProgramCounter [int, Global.cpp]



64

Purpose:
First AdjustCurrentPosition() is called on global var ProgramCounter, the

return value is
given to BlockFromList() and the functions FillInArrayAgain() and

SolveNxNArray()
are called.

Warnings:
Very similar to RemoveProgramFromDB().



65

ResetVariables()
[Status.cpp]

Calls:

Vars (global):
Oldstate [static int, Status.cpp]
Counter [static int, Status.cpp]
HaltCondition []

Purpose:
Reinitialize status (?) variables.

Warnings:
Enum (-1) for “oldstate”?

ReportProgramError()
[Main.cpp]

Calls:
GetNodeName() [NodeTable.cpp]

Vars (global):
CurrentLocation [int, Global.cpp]
EndNodeNumber [int, Global.cpp]

Purpose:
Calls GetNodeName() to set the local vars “Start” and “End”.  Gives error

report.

Warnings:



66

GetDockActionFilename()
[Reference.cpp]

Calls:
GetFileName() [FileTable.cpp]

Vars (global):
MissionPathList [PathListPntr *, Global.cpp]

Purpose:
Searches MissionPathList for a path program which satisfies “to” and

“from” and is also a
DOCKING action.  Returns the appropriate action file name (NULL

otherwise).

Warnings:
Is return value “NULL” tested for when called?

StopRecording()
[Main.cpp]

Calls:

Vars (global):
ContinueToRecord [static int, Main.cpp]
DoneRecording [static int, Main.cpp]

Purpose:
Sets global var ContinueToRecord to FALSE and waits until global var

DoneRecording
is set to TRUE.  Sleeping for a SLEEPRECORDER quantumn.

Warnings:
Need to make these BOOL’s!



67

AbortMission()
[Subgoal.cpp]

Calls:
UpdateSubgoalStatus() [Subgoal.cpp]

Vars (global):
CurrentSubgoal [InspectionPntr, Subgoal.cpp]

Purpose:
Traverses CurrentSubgoal calling UpdateSubgoalStatus(ABORTED).

Warnings:

TransferAllData()
[Copy.cpp]

Calls:
WriteOutMissionReport() [Report.cpp]
CloseDrumDatabases() [Database.cpp]
TransferDrumDatabase() [Copy.cpp]
// TransferImages() [Copy.cpp]
TransferRecordFile() [Copy.cpp]
InformOffboardDatabase() [Comm.cpp]
TransferLogFile() [Copy.cpp]

Vars (global):

Purpose:
Calls WriteOutMissionReport(), CloseDrumDatabases(),

TransferDrumDatabase(),
TransferImages(), TransferRecordFile(), InformOffboardDatabase(), and
TransferLogFile() [Copy.cpp]

Warnings:
The function call to TransferImages() is commented out!



68

DiscontinueTasks()
[Main.cpp]

Calls:

Vars (global):
hHandleMessages [HANDLE, Main.cpp]
hCheckArray [HANDLE, Main.cpp]
hPower [HANDLE, Main.cpp]
hMemory [HANDLE, Main.cpp]
hSupervisor [HANDLE, Main.cpp]
hControl [HANDLE, Main.cpp]

Purpose:
Calls TerminateThread() on the global vars  hHandleMessages,

hCheckArray, hPower,
hMemory, hSupervisor, and hControl; shutting down those threads.

Warnings:
Might want to kill threads in a more “civilized” manner.

ResSysOff()
[Resource.cpp]

Calls:

Vars (global):

Purpose:
Calls exit(1) and shuts down Mission handler.

Warnings:
Might want a more “civilized” ending.



69

InitializeSupervisor()
[Communication.cpp]

Calls:
ClearSupervisorPort() [TtyUtil.cpp]
InitializeSemaphores() [ComUtil.cpp]

Vars (global):
hSuper [HANDLE, Communication.cpp]

Purpose:
Creates global var handle, hSuper, to Supervisor COM port (SUPERCOM,

Includes.h).
Gets COM state and modifies the DCB, then sets COM state.  Gets COM

timeouts and
modifies the timeouts structure, then sets COM timeouts.  Calls

ClearSupervisorPort()
and InitializeSemaphores().

Warnings:
Timeouts are the same as those for pipes (READTIMEOUT and

WRITETIMEOUT,
Includes.h).

InitializeControl()
[Communications.cpp]

Calls:
ClearControlPort() [TtyUtil.cpp]

Vars (global):
hCtrl [HANDLE, Communication.cpp]

Purpose:
Creates global var handle, hCtrl, to Supervisor COM port

(CONTROLCOMM,
Includes.h).  Gets COM state and modifies the DCB, then sets COM state.

Gets COM



70

timeouts and modifies the timeouts structure, then sets COM timeouts.
Calls

ClearControlPort().

Warnings:
Timeouts are the same as those for pipes (READTIMEOUT and

WRITETIMEOUT,
Includes.h).  Has much in common with InitializeSupervisor(), should

consolodate code!

Supervisor() {thread}
[Communications.cpp]

Calls:
HandleSupervisorWriteAndRead() [TtyUtil.cpp]

Vars (global):
SuperMsgQID [HANDLE, Communication.cpp]

Purpose:
Loops forever.  Waits for a connection on SuperMsgQID pipe.  Reads
COM_MAX_LEN into a buffer.  Searches the buffer for a “,” and divides it

into sender’s
name (pipe_name) and message (buffer2).  The message is cat’d with

“\r\n” and given to
HandleSupervisorWriteAndRead().  Another while(TRUE) loop is created.

Inside, an
attempt is made to create a handle to pipe “pipe_name” and wait for it.

Break from the
loop if a timeout.  If a connection is successfully made with the response

pipe, the data
returned from HandleSupervisorWriteAndRead() (buffer2) is written to

the response
pipe unless that operation failed (Size < 0), in which case the ORIGINAL

message
(buffer) is returned.  The handle is closed.  Finally, the SuperMsgQID pipe

is
disconnected.

Warnings:
Lots of “exit(1)”’s.  Need error handling!  Could replace “while(TRUE)”

with
“while(BOOL)” and exit more gracefully than killing the threads.  Second
“while(TRUE)” probably NEVER loops.  ***Move SuperMsgQID pipe

disconnect to
right after read?***



72

Control() {thread}
[Communications.cpp]

Calls:
ReadFromControlPort() [TtyUtil.cpp]
WriteToControlPort() [TtyUtil.cpp]

Vars (global):
ControlMsgQID [HANDLE, Communication.cpp]

Purpose:
Loops forever.  If ReadFromControlPort() returns TRUE, the following

happens.  A pipe
is created (hMissionQ), and a buffer (buffer2) containing the string

CTRLMSGQID, is
written and the handle is closed.  Then the function waits for a connection

to the pipe
ControlMsgQID.  The buffer (buffer) is filled by reading the pipe.  An

integer (Status)
and a message (buffer2) are taken from the buffer (buffer).  “\r\n” are

appended to the
message (buffer2).  The message is then passed to the function

WriteToControlPort().
The pipe (ControlMsgQID) is then disconnected.

Warnings:
Lots of “exit(1)”’s.  Need error handling!  Could replace “while(TRUE)”

with
“while(BOOL)” and exit more gracefully than killing the threads. ***Move
ControlMsgQID pipe disconnect to right after read?***  Might want to

remove
EVL_INFO messages that are represent statuses and not errors!  Handle

“sscanf()”
differently in Control() and Supervisor()!



73

InitializeK2AMem()
[Memory.cpp]

Calls:

Vars (global):
K2AMem [static int, Memory.cpp]

Purpose:
Sets all members of K2AMem (NUM_VARIABLES) to zero.

Warnings:

InitializeActiveBlocks()
[Memory.cpp]

Calls:

Vars (global):
ActiveBlock [int, Memory.cpp]

Purpose:
Sets all members of ActiveBlock (NUM_BLOCKS) to zero.

Warnings:



74

Memory() {Thread}
[Memory.cpp]

Calls:
PollNeededData() [Poll.cpp]

Vars (global):

Purpose:
Calls PollNeededData() and sleeps for MEM_POLL ms.

Warnings:
Put var instead of TRUE in while() to gracefully shut down (do-while?).

MonitorPower() {Thread}
[Power.cpp]

Calls:
ReadDataDirectly() [Memory.cpp]

Vars (global):
BatteryFlag [Global.cpp]

Purpose:
Loops until local var (Continue) becomes FALSE.  Calls ReadDataDirectly()

on
DC01_BATT2.  If the value at DC01_BATT2 is below
MINIMUM_BATTERY_VALUE for MAX_MINUTES_BELOW_THRESHOLD
(checks every minute), global var BatteryFlag is set to BATTERY_BAD and

the thread
ends.  

Warnings:
Why battery 2?  Is ReadDataDirectly() necessary?  Probably need to test!



75

WarnProc() {Thread}
[WarnLight.cpp]

Calls:
AssertWarn() [Digital.cpp]
DeAssertWarn() [Digital.cpp]

Vars (global):
MissionStatus [int, Declarations.cpp]
LiftMode [int, Declarations.cpp]

Purpose:
Checks to see if global var MissionStatus indicates that the robot is

referencing, moving,
returning, or if the lift is moving.  If so, calls AssertWarn(); if not, calls

DeAssertWarn().

Warnings:
Calls DeAssertWarn() a lot, it that okay?  AssertWarn() and

DeAssertWarn() don’t do
anything right now!

FillInArrayAgain()
[Array.cpp]

Calls:

Vars (global):
MissionSizeOfArray [int, Global.cpp]
MissionArray [ArrayPntr*, Array.cpp]
MissionNumberOfFiles [int, Global.cpp]
MissionBigInt [int, Global.cpp]
MissionPathList [PathListPntr*, Global.cpp]

Purpose:
Initializes the MissionArray matrix.  Fills the MissionArray matrix with

MissionPathList
array.  Sets the identity of the MissionArray marix.

Warnings:



77

SolveNxNArray()
[Array.cpp]

Calls:

Vars (global):
MissionSizeOfArray [int, Global.cpp]
MissionArray [ArrayPntr*, Array.cpp]

Purpose:
Calculates cost from x to y (and gives filename).

Warnings:
MissionSizeOfArray x MissionSizeOfArray x MissionSizeOfArray solution!

GetResponse()
[Mesg.cpp]

Calls:
FillInVariable() [Mesg.cpp]

Vars (global):

Purpose:
Tests for “:” message.  Eats white space at the end of the message.  Calls

FillInVariable()
on local var (str).  Calculates checksum and adds it to “str”.

Warnings:
Who knows if it works!



78

SetSocketOptions()
[Socket.cpp]

Calls:
MakeSocketEfficient() [Socket.cpp]

Vars (global):
Server [SocketDesc, Declarations.cpp]
Client [SocketDesc, Declarations.cpp]

Purpose:
Calls setsockopt() on either Server or Client global vars (sockets), then calls
MakeSocketEfficient() on the said socket.

Warnings:

ReadFromClient()
[ServerUtil.cpp]

Calls:
UpdateReadBuffer() [Socket.cpp]
ExtractMess() [PropMesg.cpp]
ReadSocketLine() [Socket.cpp]
CloseSocket() [Socket.cpp]

Vars (global):
DataReady [int, StartServer.cpp]
Client [SocketDesc[], Declarations.cpp]

Purpose:
Initialize global var DataReady to FALSE.  Loop local var “i” for

MAX_CLIENTS.  Test
client (i) for “ACTIVE” and a message present.  Call UpdateReadBuffer()

and
ExtractMess() and continue.  Call select() on Client, and then if FD_ISSET()

call
ReadSocketLine() on it and ExtractMess().  If there is an error call

CloseSocket() and set
DataReady to TRUE if any clients are active or messages are present.



79

Warnings:
Global var DataReady should be a BOOL.

ProcessClientCommands()
[ProcessCommand.cpp]

Calls:
Send_Id() [ProcessCommand.cpp]
Read_Block() [ProcessCommand.cpp]
Write_Block() [ProcessCommand.cpp]
Read_Var() [ProcessCommand.cpp]
Read_Special() [ProcessCommand.cpp]
Write_Special() [ProcessCommand.cpp]
Close_Connection() [ProcessCommand.cpp]
Down_Load() [ProcessCommand.cpp]
Dis_Asm() [ProcessCommand.cpp]
Load_Status() [ProcessCommand.cpp]
Com_Status() [ProcessCommand.cpp]
Mission_Status() [ProcessCommand.cpp]
Unknown_Command() [ProcessCommand.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
Loop through MAX_CLIENTS, testing for ACTIVE and for “bad” messages.

Call
proper function (see above) for respective message command.

Warnings:



80

GetNewClient()
[ServerUtil.cpp]

Calls:
GetConnection() [Socket.cpp]
CloseSocket() [Socket.cpp]

Vars (global):
Server [SocketDesc, Declarations.cpp]
Client [SocketDesc[], Declarations.cpp]

Purpose:
The function select() is called on the global var Server.  Loops waiting for a

client to connect (polling).  Calls GetConnection() on global var Client[index].  If
there are too many clients, the temp client (TmpClient) is connected then
disconnected.  “ERROR” is returned if no connection is made

Warnings:
Timeout is set at 0?  Local var “TmpClient” is never initialized before going

to
CloseSocket().
**Might want to put polling in thread or put in 500msec delay!

WriteToClient()
[ServerUtil.cpp]

Calls:
CreateMess() [PrepMesg.cpp]
WriteSocketLine() [Socket.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
Checks all (Client) connections for ACTIVE and writes the message.

Warnings:



81

Error checking?

GetTimeFromServer()
[Comm.cpp]

Calls:
Connect() [Comm.cpp]
SendMessageMH() [Comm.cpp]

Vars (global):
DatabaseFD [static int, Comm.cpp]
Time [static struct tm, Comm.cpp]

Purpose:
Waits for a connection (poll with a sleep spec by SLEEPRECORDER) for
MAX_ATTEMPTS.  Asks (the database server?) for the time.  Gets time and
sets global variable Time.

Warnings:
Only asks once for time (comp with loop for connect).

LostTime()
[Comm.cpp]

Calls:

Vars (global):
Time [static struct tm, Comm.cpp]

Purpose:
Gets system time and compares it with global variable Time.  Returns

“TRUE” if time is
off.

Warnings:



83

BuildMissionFileName()
[Parser.cpp]

Calls:

Vars (global):
HistoryName [char[], Global.cpp]
OutputHistoryName [char[], Global.cpp]

Purpose:
Build strings for “MissionName” (parameter) and global vars

“HistoryName” and
“OutputHistoryName”.

Warnings:
See “defines.h” for #defines!  Extensions “.mission” and “.history” are

hard coded
(should be #defines)!

InitIO()
[Scanner.cpp]

Calls:
NextLine() [Scanner.cpp]

Vars (global):
LineNum [int, Scanner.cpp]

Purpose:
Begins parsing MDL file (xxx.mission).  Sets LineNum to 1 and calls

NextLine();

Warnings:
Exported var “LineNum” present in DB package.  Be wary of complications!



84

NextToken()
[Scanner.cpp]

Calls:
Eof() [Scanner.cpp]
ProcessFilename() [Scanner.cpp]
ProcessId() [Scanner.cpp]
ProcessLiteral() [Scanner.cpp]

Vars (global):
TokenBuffer [char[], Scanner.cpp]
LineNum [int, Scanner.cpp]

Purpose:
Returns the next token type.  Ignores comments, calls ProcessFilename(),

ProcessId(),
and ProcessLiteral() if required.  Returns appropriate token for symbols.
Test for end of file.

Warnings:
Could re-implement as table.

GetSiteName()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
SiteName [char[], Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets site name from MDL file and sets appropriate variables (global

SiteName and local
State).

Warnings:



86

GetBuildingName()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
BuildingName [char[], Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets building name from MDL file and sets appropriate variables (global

BuildingName
 and local State).

Warnings:

GetStartNodeName()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
StartNode [char[], Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets StartNode from MDL file and sets appropriate variables (global

StartNode
and local State).

Warnings:



87

GetHomeNodeName()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
HomeNode [char[], Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets HomeNode from MDL file and sets appropriate variables (global

HomeNode
and local State).

Warnings:

GetReferenceAction()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
ReferenceActionFrom [char[], Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets ReferenceActionFrom from MDL file and sets appropriate variables

(global
ReferenceActionFrom and local State).

Warnings:



88

StartMission()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]
GetAisleBehavior() [Parser.cpp]

Vars (global):
MissionRootInspectionTable [struct InspectionTable, Global.cpp]
CurrentToken [int, Scanner.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Adds entries to the MissionRootInspectionTable.  Calls GetAisleBehavior()

for aisle
actions(?).  Sets “GOT_MISSION” flag in State global var.

Warnings:
Status hardwired at “-1” for init?

GetStartTime()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
CurrentToken [int, Scanner.cpp]
State [static int, Parser.cpp]
StartYear [int, Global.cpp]
StartMonth [int, Global.cpp]
StartDay [int, Global.cpp]
StartHour [int, Global.cpp]
StartMinute [int, Global.cpp]

Purpose:
Gets start time from MDL file and sets global var “State” indicating

presence of start date



89

in the “Start*” global variables.

Warnings:

GetOffset()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
XcoordinateOffset [float, Global.cpp]
YcoordinateOffset [float, Global.cpp]
TokenBuffer [char[], Scanner.cpp]
State [static int, Parser.cpp]

Purpose:
Gets offset (global vars “XcoordinateOffset” and “YcoordinateOffset”) and

sets global var
“State”.

Warnings:

CloseIO()
[Scanner.cpp]

Calls:

Vars (global):
fp [FILE*, Scanner.cpp]

Purpose:
Closes MDL file.

Warnings:
Beware of DB package fp!



90

GetHomeNode()
[Initialize.cpp]

Calls:

Vars (global):
HomeNode [char[], Global.cpp]
StartNode [char[], Global.cpp]

Purpose:
Copies global var HomeNode to global var StartNode.

Warnings:
Could check for NULL?

GetActionFile()
[Initialize.cpp]

Calls:

Vars (global):
ActionFilePath [char[], Global.cpp]
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]

Purpose:
Initializes global var “ActionFilePath” with #defines from “defines.h” and

global vars
“SiteName” and “BuildingName”.

Warnings:



91

BuildDatabaseFile()
[Parser.cpp]

Calls:

Vars (global):
DatabaseTemplate [char[], Global.cpp]
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]
DatabaseFile [char[], Global.cpp]

Purpose:
Initializes global var “DatabaseTemplate” with #defines from “defines.h”

and global vars
“SiteName” and “BuildingName”.  Takes “/” out of global var

“DatabaseFile”.

Warnings:
Looks for ‘/’ where now maybe it should look for ‘\’?

RemoveFiles()
[Parser.cpp]

Calls:

Vars (global):
RobotsName [char[], Global.cpp]

Purpose:
Initializes local var “MissionReport” and local var “MissionHistory” with

#defines from
“defines.h” and global var “RobotsName”.  Then removes the files

indicated by local var
“MissionReport” and local var “MissionHistory”.

Warnings:
At one time may have also removed the MDL file.  File extensions “.report”

and
“.history” are hard coded.



93

CreatePathDatabase()
[List.cpp]

Calls:

Vars (global):
MissionRootPathNode [struct PathData, Global.cpp]
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]
DatabaseFile [char[], Global.cpp]

Purpose:
Initializes local var “PathDatabase” with #defines from “defines.h” and

global var s
“SiteName” and “BuildingName” and “DatabaseFile”.  Opens file and reads

in path
database and puts it in a linked list (global var MissionRootPathNode).

Warnings:
File extension, “*.pdb” is hard-wired.  No error checking.

BuildNodeTable()
[NodeTable.cpp]

Calls:
AddToNodeTable() [NodeTable.cpp]

Vars (global):
MissionRootPathNode [struct PathData, Global.cpp]
MissionBigInt [int, Global.cpp]
MissionSizeOfArray [int, Global.cpp]

Purpose:
Traverses node list (global var “MissionRootPathNode”) calling

AddToNodeTable() on
each “To” and “From”.  Global var MissionBigInt stores the cost of the path

with the



94

highest cost, then multiplies by global var “MissionSizeOfArray”.

Warnings:
No error checking.

BuildFileTable()
[FileTable.cpp]

Calls:
AddToFileTable() [FileTable.cpp]
MHCopyFile() [Copy.cpp]

Vars (global):
MissionRootPathNode [struct PathData, Global.cpp]
ActionFilePath [char[], Global.cpp]

Purpose:
Initializes local var “Destination” with #defines from “defines.h”.  Builds

file table (?) by
calling AddToFileTable() on action files in list.  Copies files from list

(global var
“MissionRootPathNode”) from global var “ActionFilePath” directory to
“Destination”
directory by calling MHCopyFile().

Warnings:
Error checking?

BuildPathList()
[List.cpp]

Calls:
GetNodeNumber() [NodeTable.cpp]
AddToList() [List.cpp]

Vars (global):
MissionPathList [PathListPntr*, Global.cpp]
MissionSizeOfArray [int, Global.cpp]
MissionRootPathNode [struct PathData, Global.cpp]

Purpose:



95

Allocates memory and assigns it to global var “MissionPathList”.  Initializes
the array to

NULL, and then calls GetNodeNumber() and AddToList().  Builds path
matrix.

Warnings:
Where is memory freed?



96

DeletePathDatabase()
[List.cpp]

Calls:

Vars (global):
MissionRootPathNode [struct PathData, Global.cpp]

Purpose:
Frees memory associated with global var “MissionRootPathNode”.

Warnings:

BuildArray()
[Array.cpp]

Calls:

Vars (global):
MissionArray [ArrayPntr*, Array.cpp]
MissionSizeOfArray [int, Global.cpp]
MissionNumberOfFiles [int, Global.cpp]
MissionBigInt [int, Global.cpp]
MissionSizeOfArray [int, Global.cpp]

Purpose:
Allocates memory for an array “MissionSizeOfArray” x ”

MissionSizeOfArray”
(MissionArray).  Initializes elements in the array to values

NODE_UNKNOWN,
MissionNumberOfFiles, MissionBigInt, MissionSizeOfArray.

Warnings:
Allocates a LOT of memory!  Where is it set free?



97

FillInArray()
[Array.cpp]

Calls:

Vars (global):
MissionSizeOfArray [int, Global.cpp]
MissionPathList [PathListPntr*, Global.cpp]
MissionArray [ArrayPntr*, Array.cpp]

Purpose:
Builds global array “MissionArray” from global array “MissionPathList”.

Warnings:

MHCopyFile()
[Copy.cpp]

Calls:

Vars (global):

Purpose:
Takes input parameters “WriteDir”, “ReadDir”, and “File” and copies the

“File” from the
“ReadDir” to the “WriteDir”.

Warnings:
A section is commented out which may not make a difference.



98

DBOpen()
[Commands.cpp]

Calls:
AssertNull() [DBLib.h]
CreateDesc() []
DBReportError() [utility.cpp]
FreeDesc() [commands.cpp]
VerifyAriesDB() [create.cpp]
ExtractDescription() [manage.cpp]
CacheRecordTable() [tables.cpp]

Vars (global):

Purpose:
Attempts to open ARIES v2.0 (drum) database file, verifies

(“VerifyAriesDB()”) that it is
said database, calls ExtractDescription() and CacheRecordTable() on it.

Warnings:

DBCreateOnly()
[Commands.cpp]

Calls:
AssertNull() [DBLib.h]
CreateDesc() [commands.cpp]
DBReportError() [utility.cpp]
FreeDesc() [commands.cpp]
ParseDescFile() [DBParser.cpp]
WriteNewHeaders() [create.cpp]
AssertError() [DBLib.h]
CacheRecordTable() [tables.cpp]

Vars (global):

Purpose:
Calls CreateDesc() to create a “DBDesc”, opens the file “dbfile”

(parameter) calls



99

ParseDescFile() and WriteNewHeaders() and then AssertError() on
CacheRecordTable()

Warnings:

DBWriteUserData()
[Commands.cpp]

Calls:
AssertNull() [DBLib.h]
DBReportError() [utility.cpp]
CopyInc() [DBLib.h]
GotoBlock() [DBLib.h]
WriteBlock() [DBLib.h]

Vars (global):

Purpose:
Adds a field to the database.

Warnings:
Lots of “sizeof()” calls.  Make sure none were missed!

MoveBBAbsolute()
[Lift.cpp]

Calls:
SetLiftValues() [Lift.cpp]
MoveLift() [Lift.cpp]

Vars (global):
LiftMode [int, Declarations.cpp]
LevelStatus [int, Declarations.cpp]
DrumStatus [int, Declarations.cpp]

Purpose:
Calls SetLiftValues() then MoveLift() while setting global vars “LiftMode”,

“LevelStatus”,
and “DrumStatus”.



100

Warnings:



101

InitPort()
[Barcode.cpp]

Calls:

Vars (global):
hBarcode [Barcode.cpp]

Purpose:
Initializes comm port (BARCODE_PORT) used for barcode reader.

Warnings:
Test?

SetScannerOperation()
[Barcode.cpp]

Calls:
SendCommand() [Barcode.cpp]

Vars (global):
hBarcode [Barcode.cpp]

Purpose:

Warnings:
Return “ERROR” or “FALSE”?  See InitPort() above!  Calls to WriteEsc()

commented
out.  Who knows if it works?



102

GetValue()
[Lift.cpp]

Calls:
ReadDataDirectly() [Memory.cpp]

Vars (global):

Purpose:
Reads the value of a variable directly (calls ReadDataDirectly()).  If

attempt fails after
MAX_ATTEMPTS, returns error.

Warnings:
MAX_ATTEMPTS is set pretty low (2).

Convert2ByteSigned()
[Lift.cpp]

Calls:

Vars (global):

Purpose:
Converts unsigned int (16-bit value) to signed value.

Warnings:
Test!



103

GetFileName()
[FileTable.cpp]

Calls:

Vars (global):
MissionRootFileTable [FileTable.cpp]

Purpose:
Returns filename from filename “number”.

Warnings:

FillInPathName()
[ReadFile.cpp]

Calls:

Vars (global):
CompleteFileName [char[], ReadFile.cpp]
NumberOfInstructions [int, ReadFile.cpp]

Purpose:
Gets “stat” of copy of path program (in temp dir) and sets global var
NumberOfInstructions to it (# of instructions) size.

Warnings:



104

ReadInstructions()
[ReadFile.cpp]

Calls:

Vars (global):
CompleteFileName [char[], ReadFile.cpp]
NumberOfInstructions [int, ReadFile.cpp]
ProgramBuffer [unsigned char[], ReadFile.cpp]
Acceleration [unsigned char[], ReadFile.cpp]

Purpose:
Reads action file and adds its instructions to “ProgramBuffer” (global var).

Warnings:
Global var “ProgramBuffer” is hard-coded “256*6”.  Where does “Index”

(par) get
updated?  Which “Acceleration” value is used (should be lowest).

AdjustRelativeOffsets()
[ReadFile.cpp]

Calls:
IsRelativeInstruction() [ReadFile.cpp]

Vars (global):
NumberOfInstructions [int, ReadFile.cpp]
ProgramBuffer [unsigned char[], ReadFile.cpp]

Purpose:
Checks if instruction is “relative” and recalculates offset (links).

Warnings:
“Index <=” (guess not)?



105

AddHaltToProgram()
[ReadFile.cpp]

Calls:

Vars (global):
ProgramBuffer [unsigned char[], ReadFile.cpp]

Purpose:
Puts a halt (between linked programs?).

Warnings:
Maybe use “BYTES_PER_INSTRUCTION” instead of “6” in ReadFile.cpp!
Opcode for “Halt” is hard-coded at “20”.  Is this why robot always halts?

WritePathProgram()
[Download.cpp]

Calls:
Communicate() [Download.cpp]
DownloadPath() [Download.cpp]
LoadDriveAndSteer() [Download.cpp]
// InitializeLift() [Lift.cpp]
ClearSignal() [Download.cpp]

Vars (global):
LinkFailureCounter [int, Global.cpp]

Purpose:
Sets K2A variable “DC01_PLOADED” to “0”, calls DownloadPath() and
LoadDriveAndSteer().  Sets K2A variable “DC01_LASTINS” to

“NumOfInstructions - 1”
(par), then sets K2A variable “DC01_PLOADED” to “1”, and calls

InitializeLift().  Sets
K2A variable “DC01_MODE” to “AMODE” and initializes global var
“LinkFailureCounter” to 0.  Calls ClearSignal().

Warnings:



106

Call to InitializeLift() is commented out!  Does InitializeLift() need to be
called each

time?



107

MonitorMovement()
[Monitor.cpp]

Calls:
GetMode() [Monitor.cpp]
CheckStatus() [Status.cpp]
GetProgramCounter() [Monitor.cpp]
AdjustCurrentPosition() [MissionList.cpp]
GetStatus() [Monitor.cpp]

Vars (global):
ModeOfRobot [int, Global.cpp]
ProgramCounter [int, Global.cpp]
HaltCondition [int, Global.cpp]
StatusExceptions [StatusException, Global.cpp]
StatusOfRobot [int, Global.cpp]

Purpose:
Calls GetMode() until global var “ModeOfRobot” is “HMODE”.  While the

global var
“ModeOfRobot” is not “HMODE” functions CheckStatus() and GetMode()

are called (in
between sleeping).  Calls GetProgramCounter() and

AdjustCurrentPosition().  If global
var “HaltCondition” is “DC_IGNORE” (natural halt?) GetStatus() is called

and global
var “HaltCondition” is set.  If AdjustCurrentPosition() does not return

NULL the status is
reported (as an error)

Warnings:
Made an assumption about the size required for local array “Temp[]”.

What about
“GetMode2()”?



108

UpdateSubgoalStatus()
[Subgoal.cpp]

Calls:
ReadDataDirectly() [Memory.cpp]

Vars (global):
CurrentSubgoal [InspectionPntr, Subgoal.cpp]

Purpose:
Gets X and Y position (DC01_?POS) and updates global var

“CurrentSubgoal”.

Warnings:
Global var “CurrentSubgoal” is really global var

“MissionRootInspectionTable”.

GetNodeName()
[NodeTable.cpp]

Calls:

Vars (global):
MissionRootNodeTable [struct NodeData]

Purpose:
Searches global struct “MissionRootNodeTable” for (input param)

“NodeNumber” and
returns a character pointer to the name (“NodeName”).

Warnings:



109

AdjustCurrentPosition()
[MissionList.cpp]

Calls:

Vars (global):
MissionListRoot [struct MissionList, Global.cpp]
CurrentLocation [int, Global.cpp]

Purpose:
Traverses global var “MissionListRoot” until it reaches the end, or the

member var
“ProgramCounter” exceeds parameter “PC”.  Global var

“CurrentLocation” is updated
and NULL or the current position on “MissionListRoot” is returned

depending on
whether or not the end of the list was reached.

Warnings:
Returns “NULL” on else.

RemoveFromList()
[List.cpp]

Calls:

Vars (global):
MissionPathList [PathListPntr*, Global.cpp]

Purpose:
Removes an element(s) from global var “MissionPathList”.

Warnings:



110

BlockFromList()
[List.cpp]

Calls:

Vars (global):
MissionPathList [PathListPntr*, Global.cpp]

Purpose:
Traverses global var MissionPathList and sets element(s) described by input

parameters
to “NO_ACCESS”.

Warnings:

WriteOutMissionReport()
[Report.cpp]

Calls:
WriteOutHeader() [Report.cpp]
WriteOutBehavior() [Report.cpp]
WriteOutStatus() [Report.cpp]
WriteOutPosition() [Report.cpp]

Vars (global):
MissionRootInspectionTable [struct InspectionTable, Global.cpp]
RobotsName [char, Global.cpp]

Purpose:
Composes mission report filename, tries alternate location (temp) on

failure.  Calls WriteOutHeader() to set up file, then WriteOutBehavior(),
WriteOutStatus(), and WriteOutPosition().  Closes the file.

Warnings:
Might want to #define “.report”.  Why try to open a temp file if main fails?



111

CloseDrumDatabases()
[Database.cpp]

Calls:
DBClose() [commands.cpp]

Vars (global):
ReadOnBoardDatabase [int (bool?), Global.cpp]
ReadDesc [DBDesc*, Database.cpp]
WriteOnBoardDatabase [int, Global.cpp]
WriteDesc [DBDesc*]

Purpose:
Tests global vars “ReadOnBoardDatabase” and “WriteOnBoardDatabase”

and calls
DBClose() on global vars “ReadDesc” and “WriteDesc respectively”.

Warnings:
Might want to redirect to EvlMsg.

TransferDrumDatabase()
[Copy.cpp]

Calls:

Vars (global):
RobotsName [char[], Global.cpp]
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]

Purpose:
Builds directory names (drum database)

Warnings:
Might want to #def the extension “.sddb”.



112

// *** TransferImages()
[Copy.cpp]

Calls:
IsImageFile() [Copy.cpp]

Vars (global):
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]

Purpose:
Copies image files offboard.

Warnings:
Not ported!

TransferRecordFile()
[Copy.cpp]

Calls:
MHCopyFile() [Copy.cpp]

Vars (global):
RobotsName [char[], Global.cpp]
HistoryName [char[], Global.cpp]

Purpose:
Calls MHCopyFile() on “RobotsName.history” file in

“*_MISSION_REPORT” (see
#def) directories.  Then removes the file referred to by global var

“HistoryName”.

Warnings:
Might want to #def the extension “.history”.



113

InformOffboardDatabase()
[Comm.cpp]

Calls:
Connect() [Comm.cpp]
SendMessageMH() [Comm.cpp]

Vars (global):
SiteName [char[], Global.cpp]
BuildingName [char[], Global.cpp]
RobotsName [char[], Global.cpp]
DatabaseFD [static int, Comm.cpp]

Purpose:
Waits for successful call to Connect() then builds message passed to

SendMessageMH().
Times out after “MAX_ATTEMPTS” tries.

Warnings:
Might want to #def the extension “.sddb”.

TransferLogFile()
[Copy.cpp]

Calls:
MoveLogFiles() [Copy.cpp]

Vars (global):
RobotsName [char[], Global.cpp]

Purpose:
Builds dirs and filnames, creates a dir with the robot’s name (global var

“RobotsName”).
Calls MoveLogFiles(), checks for an existing file, then copies the log file.

Warnings:



114

ClearSupervisorPort()
[TtyUtil.cpp]

Calls:

Vars (global):
HSuper [HANDLE, Communication.cpp]

Purpose:
Purges Supervisor (port-through) COM port.

Warnings:

InitializeSemaphores()
[ComUtil.cpp]

Calls:

Vars (global):
WriteSem [static HANDLE, ComUtil.cpp]
ReadSem [static HANDLE, ComUtil.cpp]

Purpose:
Creates and initializes read/write semaphores.

Warnings:



115

ClearControlPort()
[TtyUtil.cpp]

Calls:

Vars (global):
hCtrl [HANDLE, Communication.cpp]

Purpose:
Purges Control COM port.

Warnings:

HandleSupervisorWriteAndRead()
[TtyUtil.cpp]

Calls:
GetSizeOfResponse() [TtyUtil.cpp]
GetChecksum() [TtyUtil.cpp]
ClearSupervisorPort() [TtyUtil.cpp]
WriteToSupervisorPort() [TtyUtil.cpp]
ReadFromSupervisorPort() [TtyUtil.cpp]

Vars (global):

Purpose:
Receives a message (func param), validates it by calling

GetSizeOfResponse() and
GetChecksum().  Purges the COM port (“ClearSupervisorPort()”), writes

the message
(“WriteToSupervisorPort()”), and listens for a response

(“ReadFromSupervisorPort()”).

Warnings:
“Supervisor” really means “port-through”.  Timeout on listen
(“ReadFromSupervisorPort()”) is the only way out if there is no answer.



116

ReadFromControlPort()
[TtyUtil.cpp]

Calls:
IsMessForMission() [TtyUtil.cpp]
ClearControlPort() [TtyUtil.cpp]

Vars (global):
hCtrl [HANDLE, Communication.cpp]

Purpose:
Reads a byte from Control port to determine what type of message is

incoming and
reads the data.

Warnings:
Is similar to ReadFromSupervisorPort().  Sure we only read 8 on a “;”

message?

WriteToControlPort()
[TtyUtil.cpp]

Calls:

Vars (global):
hCtrl [HANDLE, Communication.cpp]

Purpose:
Writes message to Control COM port.

Warnings:
Very similar to “WriteToSupervisorPort()”.  No error checking (complete

write &etc)!



117

PollNeededData()
[Poll.cpp]

Calls:
RequestBlock() []
PollExtraData() []

Vars (global):
BLOCK0 [enum, Blocks.h]

Purpose:
Calls RequestBlock() on global var “BLOCK0” (default), then calls

PollExtraData() to get
necessary data that remains.

Warnings:

ReadDataDirectly()
[Memory.cpp]

Calls:
IntegerToHex() [Memory.cpp]
WriteSuper() [ComUtil.cpp]
ReadSuper() [ComUtil.cpp]
ConvertData() [Memory.cpp]

Vars (global):
ReadDirectSem [Memory.cpp]
Variables [Variables.cpp]

Purpose:
Waits for “ReadDirectSem” Semaphore (global), builds a message using

IntegerToHex()
and the global var “Variables” (generated by the “Listings” application).

Calls
WriteSuper() with the message and ReadSuper() for the response.  Calls
ConvertData()
on the response.

Warnings:



118

Local var “Variable” (param) vs global var “Variables”!  Several
“IntegerToHex()”

functions (3).



119

//AssertWarn()
[Digital.cpp]

Calls:

Vars (global):

Purpose:
Commented out; does nothing.

Warnings:

//DeAssertWarn()
[Digital.cpp]

Calls:

Vars (global):

Purpose:
Commented out; does nothing.

Warnings:



120

FillInVariable()
[Mesg.cpp]

Calls:

Vars (global):
HostVariable [int[], Global.cpp]

Purpose:
Gets a value for global var “HostVariable” from input param message

(“mess”).

Warnings:

MakeSocketEfficient()
[Socket.cpp]

Calls:

Vars (global):
Server [SocketDesc, Declarations.cpp]
Client [SocketDesc[], Declarations.cpp]

Purpose:
Increases the size of the send/receive buffers on the (indexed) socket.

Warnings:



121

UpdateReadBuffer()
[Socket.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
Compares message buffer with read buffer and copies any remaining data.

Checks for a
complete message and flags if not done when function ends.

Warnings:
Lots of pointer action.

ExtractMess()
[PropMesg.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
Fills the “To”, “From”, “Command”, “Size”, and “Status” fields in the

global var “Client”.
Checks the “Command” field for “DOWN_LOAD” or “DIS_ASM”.

Warnings:
“i” vs “j”.



122

ReadSocketLine()
[Socket.cpp]

Calls:
UpdateReadBuffer() [Socket.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
Checks the socket receive buffer and puts more data in if there is room.

Calls
UpdateReadBuffer() when done to sync message/read buffers.

Warnings:

CloseSocket()
[Socket.cpp]

Calls:

Vars (global):

Purpose:
Reinitializes the SocketDesc structure (*Sock) passed to it (param).

Warnings:
“UNKNOWN2” vs “UNKNOWN”.  Modified calls to “shutdown()” and

“close()” (now
“closesocket()”), NEED TO TEST!!!



123

Send_Id()
[ProcessCommand.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function will process the Id of the sender if the status  flag is set

appropriately.  In
order to communicate with the server a process must send its Id so the

server knows
who it is Talking to.

Warnings:

Read_Block()
[ProcessCommand.cpp]

Calls:
GetComStatus() [Memory.cpp]
GetBlockData() [Memory.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function retrieves a block of data for the caller.  The block number

being requested
is sent as the first integer in the data array.  Comm is tested with

GetComStatus(), global
var “Client” is reset on failure.  The data is requested with a call to

GetBlockData().

Warnings:



124

Write_Block()
[ProcessCommand.cpp]

Calls:
WriteVariableData() [Modem.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function allows a client to write a block of data to the robot.  The

client will recieve
the status of the write in the return message.

Warnings:

Read_Var()
[ProcessCommand.cpp]

Calls:
GetComStatus() [Memory.cpp]
GetVariableData() [Memory.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function reads a particular variable for the calling process. The

variable that is being
requested is identified by the first  integer in the data array.

Warnings:



125

Read_Special()
[ProcessCommand.cpp]

Calls:
ReadSpecialMessage() [Modem.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function allows the caller to specify an area of memory to be examined

in one of
the computers on board the robot.  This requires that the caller send the

size of
the variable, the address and the computer number of the variable.  This

information is
sent in the first three integers of the data field.

Warnings:

Write_Special()
[ProcessCommand.cpp]

Calls:
WriteSpecialMessage() [Modem.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function allows a caller to write to an area of memory that is not

specified by a
variable name.  The caller must give the size of the variable in bytes, the
address and the computer number of the variable.  This information is sent
in the first three integers of the data array.

Warnings:



126

Close_Connection()
[ProcessCommand.cpp]

Calls:
CreateMess() [PrepMesg.cpp]
WriteSocketLine() [Socket.cpp]
CloseSocket() [Socket.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function allows a client to close its socket connection gracefully.

Although this is
not necessary it is recommended so that the system will can shutdown the
socket and recover more quickly.

Warnings:

Down_Load()
[ProcessCommand.cpp]

Calls:
Com_WritePathProgram() [Modem.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function is called by the control program.  This function allows the

client to
download a path program to the DC-01 for execution.  The success of this

operation is
returned in the reply message.

Warnings:



127

Dis_Asm()
[ProcessCommand.cpp]

Calls:
GetInstructionBlock() [Modem.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function is called by the control program.  It allows the client  to

extract the last
path program that was downloaded.  The client sends the number of

instructions in the
first integer in the data field.

Warnings:

Load_Status()
[ProcessCommand.cpp]

Calls:
GetLoadStatus() [Memory.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function is generally called by the control program.  It gives the caller

an idea of
how heavily loaded the communication system is (ie how many blocks of

data are
actively being polled from the robot).

Warnings:



128

Com_Status()
[ProcessCommand.cpp]

Calls:
GetComStatus() [Memory.cpp]

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function is generally called by the control program to determine if

communications
is intact.

Warnings:

Mission_Status()
[ProcessCommand.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]
MissionStatus [int, Declarations.cpp]
BarcodeStatus [int, Declarations.cpp]
VisionStatus [int, Declarations.cpp]
PanStatus [int, Declarations.cpp]
LevelStatus [int, Declarations.cpp]
DrumStatus [int, Declarations.cpp]
LiftMode [int, Declarations.cpp]
DC01Status [int, Declarations.cpp]
DC01Mode [int, Declarations.cpp]

Purpose:
Puts mission status variables (global) into Client (global) for transmission.

Warnings:



129

Unknown_Command()
[ProcessCommand.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function sets the command in the socket to UNKNOWN.  This is used

to determine
when a valid message is present.  If the command is set to UNKNOWN then

there is not
a message present.

Warnings:

GetConnection()
[Socket.cpp]

Calls:
SetSocketOptions() [Socket.cpp]

Vars (global):
Server [SocketDesc, Declarations.cpp]
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function checks to see if any client has connected to the server.

Warnings:
Returns both “MH_ERROR” and “TRUE/FALSE”.  Lots of “FD_*()” calls.

No
timeouts.  “i” vs “j”.  Call to “select()” uses “PhoneNo + 1”??



130

CreateMess()
[PrepMesg.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:
This function takes information passed to it in the socket structure and

puts it into a
string format that can be sent over the ethernet.  The information used to

build the
appropriate message is as follows TTFFCCSSSSXXDDDDDDDD....\r\n.  TT

is a two
digit hex number determining who the message is to.  FF is a two digit hex

number
determining who the message is from.  CC is a two digit hex number

determining what
the command is.  SSSS is a four digit hex number determining the number

of integers
that follow.  XX is a two digit hex number determining the status of the

message being
sent.  DDDDDDDD is an 8 digit hex number representing an integer.  This is

the data
part of the message that might be needed.

Warnings:
“i”, “j”, and “k”.  '0' should be '\0'??  "Size & 0XFFF" should be "Size &

0XFFFF"??

WriteSocketLine()
[Socket.cpp]

Calls:

Vars (global):
Client [SocketDesc[], Declarations.cpp]

Purpose:



131

The purpose of this function is to write out a message that is in the write
message buffer

to the socket descriptor.

Warnings:



132

Connect()
[Comm.cpp]

Calls:

Vars (global):
DatabaseFD [static int, Comm.cpp]

Purpose:
Sets up socket (DATABASE_MACHINE), calls setsockopt() and connect().

Warnings:
See similarity in CreateSocket() (Socket.cpp).  Linger?

SendMessageMH()
[Comm.cpp]

Calls:
GotMessage() [Comm.cpp]

Vars (global):
DatabaseFD [static int, Comm.cpp]

Purpose:
Sends message to database computer (TimeSever) and listens for a reply for

30 seconds
(?).

Warnings:
Timeout (Timeout.tv_sec) is set to 30 seconds!?  Could loop forever if no

data is ever
sent (need another timeout?) same for read loop?



133

NextLine()
[Scanner.cpp]

Calls:

Vars (global):
fp [FILE*, Scanner.cpp]
ChPos [int, Scanner.cpp]
ch [static int, Scanner.cpp]
TabOffset [int, Scanner.cpp]
line [char[], Scanner.cpp]

Purpose:
Puts the next line (from MDL file-global var “fp”) in a buffer (global var

“line”).

Warnings:
There are “fp”, “ChPos”, and “ch” member variables in the database

package!  DB uses
same general scanner.

Eof()
[Scanner.cpp]

Calls:

Vars (global):
fp [FILE*, Scanner.cpp]

Purpose:
Does EOF (feof()) test on global var “fp”.

Warnings:



134

ProcessFilename()
[Scanner.cpp]

Calls:
getch() [Scanner.cpp]

Vars (global):
TokenBuffer [char[], Scanner.cpp]

Purpose:
Copies chars in between quotes (from call to “getch()”) to global var

“TokenBuffer”.

Warnings:
Why pass in “ch2”?

ProcessId()
[Scanner.cpp]

Calls:
inspect() [Scanner.cpp]
advance() [Scanner.cpp]
CheckReserved() [Scanner.cpp]

Vars (global):
TokenBuffer [char[], Scanner.cpp]

Purpose:
Checks the validity of an identifier.

Warnings:

Dear sir:



135

ProcessLiteral()
[Scanner.cpp]

Calls:
getch() [Scanner.cpp]
inspect() [Scanner.cpp]
advance() [Scanner.cpp]

Vars (global):
TokenBuffer [char[], Scanner.cpp]

Purpose:
Checks the TokenBuffer for its validity as a literal.  Looks like it will

handle unary minus,
decimals, and exponential notation.

Warnings:
Unary “+”?  Test?

Match()
[Scanner.cpp]

Calls:
NextToken() [Scanner.cpp]

Vars (global):
CurrentToken [int, Scanner.cpp]
LineNum [int, Scanner.cpp]
TokenBuffer [char[], Scanner.cpp]
ErrorTString [static char[], Scanner.cpp]

Purpose:
Matches global var “CurrentToken” with input param “token” and handles

errors.

Warnings:



136

GetAisleBehavior()
[Parser.cpp]

Calls:
Match() [Scanner.cpp]

Vars (global):
CurrentToken [int, Scanner.cpp]

Purpose:
Used when parsing the MDL file to determine if an aisle is “VISUAL” or

“OTHER”.

Warnings:

AddToNodeTable()
[NodeTable.cpp]

Calls:

Vars (global):
MissionRootNodeTable [struct NodeData, NodeTable.cpp]
MissionSizeOfArray [int, Global.cpp]

Purpose:
Checks global struct “MissionRootNodeTable” for node and adds

(increments global var
“MissionSizeOfArray”) it if not found.

Warnings:
Memory allocated; set free?  Similar to AddToFileTable().



137

AddToFileTable()
[FileTable.cpp]

Calls:

Vars (global):
MissionRootFileTable [struct FileData, FileTable.cpp]
MissionNumberOfFiles [int, Global.cpp]

Purpose:
Checks global struct “MissionRootFileTable” for node and adds

(increments global var
“MissionNumberOfFiles”) it if not found.

Warnings:
Memory allocated; set free?  Similar to AddToNodeTable().

AddToList()
[List.cpp]

Calls:
GetNodeNumber() [NodeTable.cpp]
GetFileNameNumber() [FileTable.cpp]

Vars (global):
MissionPathList [PathListPntr*, Global.cpp]

Purpose:
Allocates memory for an element (list) on global var “MissionPathList” if

needed.  Gets
node numbers (to, from; GetNodeNumber()) and filename (number;
GetFileNameNumber()).

Warnings:
Allocated memory set free (global array “MissionPathList”)?



138

SetLiftValues()
[Lift.cpp]

Calls:
Communicate() [Download.cpp]

Vars (global):

Purpose:
Bounds tests input params (“Level” and “Size”).  Queries “CPS_DRUMSIZ”

and
“CPS_DRUMLEV” with calls to Communicate().

Warnings:
Still handle 110’s?

MoveLift()
[Lift.cpp]

Calls:
CheckIfLiftWillMove() [Lift.cpp]
SetLiftMode() [Lift.cpp]
GetLiftStatus() [Lift.cpp]
GetLiftMode() [Lift.cpp]
RecordLiftStatus() [Lift.cpp]

Vars (global):

Purpose:
Calls CheckIfLiftWillMove(), then SetLiftMode() (“CPS_PAUTO”).  Sleeps

for 5 seconds
(?), then loops looking for a status of “CPS_PBUSY” or “CPS_OPERLIM”

while in
“CPS_PAUTO” mode.  Calls GetLiftStatus() and GetLiftMode() and sleeps

for 0.5
seconds.  Gets the Status and calls RecordLiftStatus().

Warnings:
“MoveLift2()”?  What does “CheckIfLiftWillMove()” return?  Five (and

0.5) second
sleep?!



139

SendCommand()
[Barcode.cpp]

Calls:
CheckResponse() [Barcode.cpp]

Vars (global):
hBarcode [HANDLE, Barcode.cpp]

Purpose:
Builds message to barcode (<ESC><STX><XXXX><CR><ESC>; where <XXXX>

is the
command).  Calls CheckResponse() for results.

Warnings:
“strlen()” vs 8?

IsRelativeInstruction()
[ReadFile.cpp]

Calls:

Vars (global):

Purpose:
Tests input param “Instruction” to see if it is a relative instruction

(“JUMP”,
“JUMP_GREATER”, “JUMP_LESS”, “JUMP_EQUAL”, “CALL”,

“CALL_GREATER”,
“CALL_LESS”, “CALL_EQUAL”, “JUMP_NOT_EQUAL”,

“CALL_NOT_EQUAL”).

Warnings:
Is this all of them?



140

Communicate()
[Download.cpp]

Calls:
WriteDataDirectly() [Memory.cpp]

Vars (global):

Purpose:
Calls WriteDataDirectly() on input params “Variable” and “Value”.  Tries
“MAX_ATTEMPTS” (2) times.

Warnings:
“MAX_ATTEMPTS” only 2?

DownloadPath()
[Download.cpp]

Calls:
BuildPathMessage() [MesgUtil.cpp]
WriteSuper() [ComUtil.cpp]
ReadSuper() [ComUtil.cpp]

Vars (global):
SuperComLink [HANDLE, Declarations.cpp]

Purpose:
This function takes the instructions from the message buffer and

downloads them to the
K2A.  Breaks the program in to X 30 char blocks.  Calls BuildPathMessage()

to build
message from buffer (input param).  Xfers program with calls to

WriteSuper() and
ReadSuper() (for response).

Warnings:
Looks like “0x2409” is hard coded!  May want to replace "SuperComLink"

with a #def.
See near duplicate ( DownloadPath() ) in Modem.cpp.



142

LoadDriveAndSteer()
[Download.cpp]

Calls:
IntegerToHex() [MesgUtil.cpp]
Checksum() []
WriteSuper() [ComUtil.cpp]
ReadSuper() [ComUtil.cpp]

Vars (global):
SuperComLink [HANDLE, Declarations.cpp]

Purpose:
Builds a message to set Drive and Steer.  Calls IntegerToHex() and

Checksum()

Warnings:
May want to #def ":042A0301".  May want to replace "SuperComLink" with

a #def.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-1
Contract No. DE-AC-21-92MC29115

TABLE OF CONTENTSTABLE OF CONTENTS

INTRODUCTION .......................................................................................................................... 2

PASM:  THE VIRTUAL PATH LANGUAGE ASSEMBLER.................................................................... 4

ENHANCEMENTS ........................................................................................................................11

PSU:  THE PASM SUPPORT UTILITY ...........................................................................................20

RESULTS ....................................................................................................................................22

CONCLUSION .............................................................................................................................24

APPENDIX A:  THE REFERENCE PROGRAM..................................................................................26

BIBLIOGRAPHY...........................................................................................................................27



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-2
Contract No. DE-AC-21-92MC29115

INTRODUCTIONINTRODUCTION
Since the initial offering of

Cybermotion∗ mobile robots to the
research community in 1984, it has
been necessary to provide a means of
introducing a path program to the
robot for execution.  These path
programs tell the robot where to go,
what to do, and what to expect along
the way.  The path programs are
compositions of the Virtual Path
Language (VPL).  The Virtual Path
Language is a collection of simple
instructions that are native to the
robot and very similar to machine
code instructions.  Writing path
programs in Virtual Path Language is
very similar to writing programs in
assembly language.

For the robot to navigate confidently, even in relatively small areas,
quite a few
path programs are required.  Small programs can be manually entered
directly into the robot.  However, this approach becomes impractical as the
number and size of path programs increases.

Now that Cybermotion mobile robots patrol the hallways of large
office buildings providing security and environmental monitoring (Figure
2), the need for management of the literally thousands of path programs is
critical.  Until the availability of tools such as PathCAD, which would
automatically generate the path programs, simplification of the path
programming task comes through the use of the path language assembler,
or PASM.

The initial PASM source code came from the University of South
Carolina’s implementation of PASM for the ARIES (Autonomous Robotic
Inspection Experimental System, Figure 3) hazardous waste inspection
system (Byrd, 1996).  A UNIX version of PASM was needed to be integrated
with “Site Manager” (Figure 4), the operator control software, which ran
on a Silicon Graphics workstation.

                                           

∗ Cybermotion, Inc., Salem, VA.  World-Wide Web:  www.cybermotion.com

Figure 1.  ARIES



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-3
Contract No. DE-AC-21-92MC29115

Site Manager is functionally analogous to Cybermotion’s
“Dispatcher” program (Figure 5).  Dispatcher is the high-level user
interface to the robot.  Real time feedback and interactions with the robot
are possible, as well as diagnostics and path programming.  Because PASM
was specifically tailored for the ARIES project, it lacked certain features
that Cybermotion’s PASM provided for Dispatcher.  On the other hand,
PASM provided a rich set of debug tools, advanced arithmetic expression
evaluation, a number of listing file options, and a structure conducive to
the modification and addition of new instructions via the PASM Support
Utility (PSU).

The productization phase of the ARIES contract specifies that
portions of the software run on Windows NT platforms, although it would
be commercially desirable for the entire code base to be ported.  In
anticipation of this, coupled with the desire to provide Cybermotion with a
next-generation replacement for their current implementation of PASM,
the following milestones had to be met.

The code had to be ported from the UNIX platform to the MS-DOS,
Windows, and Windows NT platforms (both sixteen and thirty-two bit).
Integral to this process would be the migration of the source code from C to
C++ in order to leverage the Microsoft Foundation Classes (MFC) as a future
expansion path.  In terms of providing the functionality of its commercial
compatriot, PASM required the addition of concurrent process compilation
and disassembly capabilities.  This also necessitated the upgrading of the
PASM Support Utility to provide support for concurrent processes.
Wildcard operation was identified as a user requirement, but this could
only be accomplished through the restructuring of PASM to support
operation over multiple files.  Finally, an extensive automated test suite
was needed to ensure compilation integrity and to speed future
modifications and additions.

This document is organized to provide suitable background
information on PASM and its mission in order to emphasize the relevance of
the enhancements that have been made.  Succinct descriptions of the major
enhancements and additions to PASM are given with examples (where

Figure 6.  Site Manager’s 3D Tour



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-4
Contract No. DE-AC-21-92MC29115

appropriate).  A brief, but necessary digression is made concerning the
PASM Support Utility (or PSU) and its impact upon the growth and
expandability of PASM.  Results of extensive testing are given which
showcase PASM against its commercial counterpart, and concluding
remarks are made with regard to the implications of the enhancements and
functionalities of PASM.  Finally, information that is pertinent, but not
critical to the body of this document, such as the actual data from the test
suite, source code listings, and excerpts from the Virtual Path Language
Reference (Cybermotion, 1995) has been relegated to the Appendices.

PASM:  THE VIRTUAL PATH LANGUAGE ASSEMBLERPASM:  THE VIRTUAL PATH LANGUAGE ASSEMBLER
The native control language (or Virtual Path Language) of the

Cybermotion mobile robotic platform is composed of a number of opcodes,
or instructions, which can have up to three parameters.  The opcodes range
from the very simple TURN and RUN instructions, to the more complex
DODRUM instruction.  The TURN and RUN instructions do just as their
name implies, while the DODRUM instruction causes the robot to locate
and inspect a drum.  There are branch and loop opcodes as well as opcodes
that may only be legal within certain constraints.

PASM is basically an assembler.  PASM is used to resolve variable
names, labels, and mnemonics with their numeric values while also
verifying adherence to any parameter limits or rules for opcode usage.  To
best exemplify PASM’s utility, a path programming example is appropriate.

A simple, but common scenario is depicted in Figure 7.  The task is to
command the robot to travel from the place designated as “DOCKPOS,”
through the aisle of drums, to the place designated as “F.”  These “places,”
or nodes, are coordinates on the robot’s world map.  The robot is oriented
and positioned on this world map by “referencing.”

Referencing the robot can occur in several different ways.  The
method that is used in this situation is via docking beacon.  The docking
beacon is a structured light source that the robot finds and uses to bring
itself to a known position and orientation.  The “DOCK” instruction is used
to inform the robot that it is to search for, and use, a particular docking
beacon.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-5
Contract No. DE-AC-21-92MC29115

Once in the known
position and orientation, the
robot must be told where it
is and in which direction it
is facing with regard to the
world map.  This is done
with the “SETXY”
instruction and the
“MEANAZ” instruction,
respectively.  At this point,
the robot may be sent to any
X, Y coordinates on the
world map.

Generally, it is
desirable to have a greater
number of simpler path
programs than to have
fewer, more complicated, path programs.  This gives the operator greater
flexibility in dispatching the robot to particular nodes.  However, in this
case, only two path programs and one reference program are needed.

Similar to header files in computer programs, positions and constants
of interest are kept in separate “definition” files.  Such a definition file for
the area in Figure 9 is given in Table 1.

The default unit of length for Cybermotion mobile robots is one one-
hundredths of a foot.  The keywords “DEFC” and “DEFP” stand for “define
constant” and “define position,” respectively.  The position and constant
definitions in the definition file are used throughout the following path
programs.  This substitution of intuitive labels for numbers and coordinates
is one of the key advantages to using an assembler.

DEFC MED 150
DEFC DOCK_Y 0
DEFC DOCK_X 0
DEFC COL1_Y -400
DEFC ROW1_X -300
DEFC COL2_Y -1000
DEFC ROW2_X 800
DEFP DOCKPOS DOCK_X,

DOCK_Y
DEFP A DOCK_X, COL1_Y
DEFP B ROW1_X, COL1_Y
DEFP C ROW1_X, COL2_Y
DEFP D ROW2_X, COL2_Y
DEFP E ROW2_X, COL1_Y

+Y

+X

BB

CC
DOCKPOSDOCKPOS

AA

DD

EE

FF

55-Gallon Drums

Docking
Beacon

 Figure 8.  A Path Programming Example



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-6
Contract No. DE-AC-21-92MC29115

DEFP F ROW2_X,
DOCK_Y

Table 2.  A Definition File, “TEST.DEF”

The reference program is the means by which the robot is positioned
upon the world map.  The “DOCK” instruction is used such that the robot
will be positioned at the node, “DOCKPOS,” facing the docking beacon.  In
this orientation, the positive X and Y directions are as shown in Figure 10.
From this frame of reference, the coordinates in the definition file (Table
3) were obtained by careful measurement.  Information from this
definition file, as well as several other definition files provided by
Cybermotion are used in the reference program “DOCKREF.SGV” (Table
4).

This reference program is compiled with PASM.  This may be done
from within Dispatcher by typing “Makeact”.  The resulting action file (or
compiled path program, “*.ACT”) is fairly lengthy and complex due to the
initialization code found in the other definition files.  For the sake of
brevity, the compiled reference program is assumed to be functional and
correctly compiled (to see the disassembled action file, please refer to
Table 5 in Appendix C).  The individual path programs, however, merit
closer inspection.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-7
Contract No. DE-AC-21-92MC29115

INCLUDE Defaults.
def

INCLUDE Local.def
INCLUDE Global.de

f
INCLUDE Presets.d

ef
INCLUDE Test.def

DOCK 1, 300,
100

MEANAZ 0
SETXY DOCKPO

S
UNDOCK 1, 0

Table 6.  A Reference Program, “DOCKREF.SGV”

When writing path programs, it is mandatory that each path from
one node to another have a corresponding return path between the same
two nodes.  The two programs need only have common beginning and
ending nodes and do not have to follow the same routes.  For this example
problem, a path will be created that runs from node “DOCKPOS” to node
“F” so that it traverses nodes “A,” “B,” “C,” “D,” and “E.”  The returning
path from “F” to “DOCKPOS” will traverse “E” and “A.”  This will give us
the ability to navigate the drum aisle and then return to the docking
beacon.

The basic path program from “DOCKPOS” to “F” might resemble
that shown in Table 7.  When PASM is used to compile this path program an
action file (“*.ACT”) is created.  This action file is ready to be downloaded
to the robot and executed.  The entire action file, as it would appear on
disk, or within the robot, is given in Table 8.  The data are in hexadecimal.

INCLUDE Test.def

RUNON MED, A
RUNON MED, B
RUNON MED, C
AVOID 1, 50, 50
RUNON MED, D
AVOID 1, 100, 50
RUNON MED, E
RUNON MED, F



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-8
Contract No. DE-AC-21-92MC29115

Table 9. A Path Program, “DOCKPOS_F.SGV”

The data shown in Table 10 are in low-high byte format (remember,
this code is downloaded to a Z80).  The two sixteen bit words appended to
the end of the file are the drive and steer accelerations.  A disassembly
(“pasm -a”) of the action file is given in Table 11 for comparison with the
path program in Table 12.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-9
Contract No. DE-AC-21-92MC29115

10: 29 00 96 00 00 00 70 FE 29 00 96 00 D4 FE 70 FE

20: 29 00 96 00 D4 FE 18 FC 20 00 01 00 32 00 32 00

30: 29 00 96 00 20 03 18 FC 20 00 01 00 64 00 32 00

40: 29 00 96 00 20 03 70 FC 29 00 96 00 20 03 00 00

50: 04 00 0A 00

Table 13. An Action File, “DOCKPOS_F.ACT”

To complete this example, the path program from node “F” to node
“DOCKPOS” must be written (Table 14).  The only requirement for this
path program is that it begins at “F” and ends at “DOCKPOS.”  There is no
requirement that states that a path must retrace its previous route, so this
path program takes a shortcut back to “DOCKPOS” avoiding the drum
aisle.

Table 15.  Disassembly of “DOCKPOS_F.ACT”

Now the robot can be sent through the drum aisle to the node “F,”
and then the robot can return to the node “DOCKPOS” by going around the
drum aisle.  Typing the commands “Send F” or “Send DOCKPOS” in the
Dispatcher command area will dispatch the robot to the proper node
(assuming that these same names have been entered into the action
database).

This very simple example was given to illustrate the properties and
utility of PASM in the generic sense.  Appendix A contains data from the
compilation of many path programs which can be used as a watermark of
functionality.  However, that data is in comparison form, and not rendered
in the detail found in this example.  A further example that deals with

Virtual Path Language Assembler v1.50
 Disassembler mode ... disassembling [dockpo~1.act]
 File contains [8] instructions, [4] additional bytes

        Command:         s:        x:      y:
     runon ( 41)        150         0    -400
     runon ( 41)        150      -300    -400
     runon ( 41)        150      -300   -1000
     avoid ( 32)         1         50      50
     runon ( 41)        150       800   -1000
     avoid ( 32)         1        100      50
     runon ( 41)        150       800    -400
     runon ( 41)        150       800       0

 Drive Acceleration: [  4]
 Steer Acceleration: [ 10]



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-10
Contract No. DE-AC-21-92MC29115

concurrent processes will be used to both give insight into the inner
workings of PASM and emphasize the portions of PASM that have been
modified and enhanced.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-11
Contract No. DE-AC-21-92MC29115

INCLUDE TEST.DEF
RUNON MED, E
RUNON MED, A
RUNON MED,

DOCKPOS

Table 16.  A Path Program, “F_DOCKPOS.SGV”

ENHANCEMENTSENHANCEMENTS
• VVISUAL ISUAL C++C++

The original source code for PASM was written in C.  In order to take
advantage of the utility provided by Microsoft development tools and the
expansion path afforded by C++, the code was tweaked to compile under
Microsoft Visual C++ version 1.52c.  This version of Visual C++ was the last
sixteen-bit compiler for Windows and MS-DOS that Microsoft produced.  A
sixteen-bit version of PASM was maintained to ensure backward
compatibility with Cybermotion’s legacy version of PASM.  However, once
fit for compilation on Visual C++ 1.52c, the code is readily moved to
Microsoft’s current thirty-two bit compiler, Visual C++ 4.2.

At this point the code can be expanded to leverage Win32 API calls
and the Microsoft Foundation Classes (MFC).  MFC greatly simplifies the
development of user-friendly, intuitive user interfaces while also providing
classes that strengthen and simplify the code base.

For example, many development suites incorporate what is termed an
“integrated development environment” (IDE).  In its simplest
implementation, the IDE is a text editor tailored to a particular
programming environment with hooks into the compiler that automate and
simplify its use.  The creation of such an IDE for PASM will be greatly
simplified by the use of MFC.

• WWILDCARD ILDCARD OOPERATIONPERATION
One of the most fundamental user features that was lacking in the

initial version of PASM was the ability to undertake batch compilations by
invoking wildcards in the program names.  In other words, each path
program had to be individually compiled, and each filename had to be
individually entered on the command line.  Wildcard support gives the user
the option to compile every path program in a given subdirectory by typing
“*.SGV” on PASM’s command line.

Adding this functionality resulted in the necessary reconstruction of
the fundamental structure of the code.  Whereas before, one execution of



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-12
Contract No. DE-AC-21-92MC29115

PASM resulted in one compiled path program, now one execution of PASM
had to compile many path programs.  Indeed, some commercial
installations of Cybermotion mobile security robots employ thousands of
path programs.  The original PASM code operated under the assumption
that it would only execute once.  No resource de-allocation or state resets
were necessary.

Although greater detail has been relegated to Appendix B, the
addition of the wildcard capability itself was trivial.  Microsoft provides a
library called “setargv.obj” that, when linked with a program, will expand
all wildcards on the command line.  This is a Microsoft specific extension
and is not portable.  The difficult part was modifying the structure of
PASM so that it would free the appropriate structures and resources then
reinitialize the appropriate variables.

• CCONCURRENT ONCURRENT PPROCESSESROCESSES
The most critical addition to PASM in terms of providing the

functionality of Cybermotion’s commercial version, was that of concurrent
processes.  The main difference between a compiled concurrent process and
an action file, besides the non-Virtual Path Language extensions, is the
ability to handle command strings.  This necessitates a slightly different
form for the compiled code.

As can be seen in Figure 12, the compiled concurrent process
(“*.CCP”) is comprised of three main parts.  The header contains the size
(in bytes) of the executable (or the number of instructions times eight), the
total number of strings that occur in the program, and the total size (in
bytes) that is occupied by the string data.  This header is six bytes, or three
sixteen-bit words.  The body, or program code, is merely composed of the
opcodes with their respective S, X, and Y parameters.  Concurrent process
opcodes begin at 1000 as opposed to Virtual Path Language opcodes which
begin at 0, so each program instruction, along with its three parameters,

L ines * 8 (Program Size in bytes)

N umber of Strings in Program

Size of Total String D ata (bytes)

O pcode S X Y
. . . .

L ine N umber of String O ccurrence Size of String D ata (bytes)

String

H eader Footer
(R epeat A s N ecessary)

Program C ode
(R epeat A s N ecessary)

Figure 11.  Anatomy of a Compiled Concurrent Process



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-13
Contract No. DE-AC-21-92MC29115

takes eight bytes, or four sixteen-bit words.  The footer, or string data, is
variable in size depending upon the usage of strings within the concurrent
process.  Each string is organized as follows:  A byte value for the line
number of the string’s occurrence, a byte value for the size of the string
itself, and then the bytes that compose the string.

A concurrent process has a vocabulary which is partially a subset of
the Virtual Path Language with some Dispatcher specific commands and
some Cybermotion General Peripheral Interface (GPI) specific commands.
The syntax is distinctive with all commands beginning with a period (Table
17).



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-14
Contract No. DE-AC-21-92MC29115

.READW .READB .WRITEW .WRITEB

.JUMP .JUMP= .JUMP> .JUMP<

.JUMP!= .DOCKIN .DOCKOUT .WAIT

.SOUND .LOCK .UNLOCK .SEND

.LOG .PATROL .MAP .CMND

.KILLCP .GPIN .GPOUT .GPSET

.GPCLR

Table 18.  Concurrent Process Vocabulary

Concurrent processes are interpreted by Dispatcher in the same
manner as user commands.  Indeed, the utility of concurrent processes is to
automate routine Dispatcher tasks in much the same way as batch files
automate often used MS-DOS commands.  As such, concurrent processes
possess several qualities that path programs do not, the most significant
being the ability to contain strings.  In addition, concurrent processes are
the means by which the GPI is controlled.  Through the use of the GPI, the
robot can control external devices, such as elevators.

To continue with the example centered around Figure 13, a brief
concurrent process will be composed that causes the robot to negotiate the
drum aisle, return to the docking beacon, and then repeat the process
indefinitely.  This would normally require the operator to continually type
in the commands “send F” and “send DOCKPOS.”

Through the use of a concurrent process, the operator interaction can
be automated where the operator needs only to invoke the concurrent
process (by entering its name) and terminate it (using the Dispatcher
commands “endcp” or “killcp”).  The concurrent process itself is fairly
simple, but it will demonstrate the unique features of concurrent processes.
The source for the concurrent process, “LOOP.CP,” is given in Table 19.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-15
Contract No. DE-AC-21-92MC29115

The concurrent process executes just as if the operator sat down and
typed in the commands.  The definition file “TEST.DEF” is not necessary
because the data in the concurrent process is purely string data, and the
node names “F” and “DOCKPOS” are already known to Dispatcher through
the action database.

START:
.SEND F
.SEND DOCKPOS
.JUMP START

Table 20.  Concurrent Process File, “LOOP.CP”

Now that the concurrent process has been composed, it must be
compiled.  To do so, the “/c” or “-c” command line option is chosen.  This is
compatible with the current implementation of Cybermotion’s PASM.
From within Dispatcher, “Makeccp” (compiled concurrent process) would
be typed to invoke the compiler.  Upon successful compilation of the
concurrent process, a file called “LOOP.CCP” will be created.  This is
analogous to the action file created from the compilation of a path
program.

Figure 14.  Dispatcher



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-16
Contract No. DE-AC-21-92MC29115

Keeping Figure 16 in mind, Figure 17 shows the contents of the actual
compiled concurrent process file (“LOOP.CCP”) in hexadecimal.  The
program has three instruction lines, so the size of the program is twenty-
four.  There are two strings, one for each of the “.SEND” commands.
Including the line number, size, and the actual string, there are twelve
bytes comprising the total string data for both strings.  The three
instructions along with their S, X, and Y parameters follow.  Then the
string data concludes the file.  The first string is one byte long (“F”) and
occurs on line zero.  The second string is seven bytes long (“DOCKPOS”)
and occurs on line one.  There are no NULL terminators on the strings.

Table 21.  Disassembly of “LOOP.CCP”

A disassembly of the “LOOP.CCP” file is given in Table 22.  When
comparing Figure 18 and Table 23, bear in mind that the sixteen bit words
are in low-high byte order.  So, for example, the “.SEND” instruction
(1015) appears as “F703” in hexadecimal.  To ensure the maximum
versatility when debugging, the disassembly of concurrent processes does

0000: 18 00
0002: 02 00
0004: 0C 00
0006: F7 03 00 00 00 00 00 00
000E: F7 03 01 00 00 00 00 00
0016: EC 03 00 00 00 00 00 00
001E 00 01 46
0021: 01 07 44 4F 43 4B 50 4F 53

Program Size (lines * 8)
N umber of Strings

To tal Size of String D ata (Bytes)

“ D O C K P O S ”  (L ine 1, 7 Bytes)

“F” (L ine 0, 1 Byte)

.SE N D  (“F”)

.SE N D  (“ D O C K P O S ” )

.JU M P  (T o Line 0)

Figure 15.  Contents of a Compiled Concurrent Process,
“LOOP.CCP”

Virtual Path Language Assembler v1.50
   Disassembler mode ... disassembling [loop.ccp]

     Command:   s:     x:     y:    string:
 .send (1015)    0      0      0    F
 .send (1015)    1      0      0    DOCKPOS
 .jump (1004)    0      0      0



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-17
Contract No. DE-AC-21-92MC29115

purposely show X and Y parameters for those concurrent process commands
whose only parameter is a string.  Incidentally, the S parameter for these
commands is the index to the string.

• TTHE HE SSTRUCTURE OF TRUCTURE OF PASMPASM
Upon invocation, PASM begins by parsing the command line (Error! Not

a valid link.).  The wildcard expansion routine (“setargv.obj”) simply places
every file specified by the wildcard on the command line delimited by a
space.  Command line parameters can be preceded by a “/” or a “-“, the
latter is not supported by Cybermotion’s PASM.  Command line parameters
may also occur before or after the input file specification.  To view all of
the command line options, the user can enter the “-h” or “/h” command
line option to view a brief help screen (Table 24).

Once the command line has been parsed and the various states of the
compiler have been set, a file or an array of files to be compiled is given to
the main loop of the compiler (Code Listing 1).  The name of the particular
file to be compiled is retrieved, and initialization of the error package,
symbol table, and stack takes place.

PASM is a two-pass compiler that is loosely implemented around
recursive descent (Pettus, 1994, p. 2).  The fact that the Virtual Path
Language lacks formal specification and is continually growing and
changing lend to the difficulty in crafting a suitable compiler.  Recursive
descent is the simplest form of parsing by replacement (Fischer & LeBlanc
Jr., p. 33).  This relatively forgiving framework is ideal for the
unpredictable nature of the Virtual Path Language.  However, the majority
of information concerning the Virtual Path Language is stored in tables
that are easily updated as the language changes, thus simplifying the
addition of new instructions and features to PASM.

In the first pass, the input file is read line by line and each word is
converted to a symbolic representation, or “token,” which is examined to
determine whether or not it represents an identity (ID) or value.  If found
to be an ID, the symbol table is checked for prior references.  If the symbol
table does not contain the ID, it is inserted into the symbol table and the
next token is fetched.  If the token is found to represent a value or an
arithmetic expression, it is evaluated as a floating point or integer value,
whichever is appropriate.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-18
Contract No. DE-AC-21-92MC29115

Table 25.  PASM Command Line Options

If the ID is identified as a command, it is given to the command
parser (Code Listing 2).  The command in question is checked against
various sequence rules for the appropriateness of its occurrence within the
program.  Loop records are created to keep track of the branches and loops
within the program.

The S, X, and Y parameters are then parsed.  If an arithmetic
expression is present, it is evaluated.  The value is stored for semantic
checking during the second pass.  This process is repeated for each of the
three parameters, as necessary.

When compiling a concurrent process, the commands are tested for
those which represent intrinsic Dispatcher commands (Table 26).  Some of
these commands may be followed by a string.  These strings go into a string
buffer of predefined size (2048 bytes, as defined by Cybermotion).  The size
of the string and the line number of its occurrence are recorded.  These
commands are not parsed for their S, X, and Y parameters.

.LOCK .PATROL .SOUND

.UNLOCK .SEND .LOG

.MAP .CMND .KILLCP

Table 27.  Dispatcher Commands Found in
Concurrent Processes

Virtual Path Language Assembler v1.50
 The Path Assembler is invoked by the command

 pasm { <options> <source filename> }

 The following options are available:
 -a Disassembler mode
 -c Compiles concurrent processes
 -d Debug mode
 -g Inhibits creation of .act file
 -h Help
 -i Print include files in the listing
 -L Print listing in landscape format
 -l Print listing file
 -n Set symbol table size
 -o <filename> Allows specifying output file name
 -p Parameter checking
 -q Disable checking of sequence errors
 -s Include symbol table in listing
 -t Sets tab length for listing
 -w Disables warning messages
 -v Verbose mode.  Allows multiple error messages
 -x Produces Hex listing



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-19
Contract No. DE-AC-21-92MC29115

If the token in question is a pseudo operand, it is handled by a
separate function.  A pseudo operand can be one of the following:  A
defined constant (DEFC), a defined position (DEFP), a set drive
acceleration (DEFD), a set steer acceleration (DEFS), an external reference
(EXTERN), or an include file (INCLUDE).

The pseudo operands which specify a constant or constants, check for
an arithmetic expression to evaluate, then assign appropriate values, and
test for parameters that are in violation of set limits.  The external
declarations and references are handled separately.  The includes are
handled with a stack.

In preparation for the second pass, the error package is reinitialized.
When the second pass begins, if a concurrent process is being compiled, the
header (Code Listing 3) is written to disk.  The program is parsed in very
much the same way as it was during pass 1.  The symbol table is queried to
resolve labels with values.  The commands are parsed again, and this time
the values are checked against a table to see whether or not they are within
the range specified for the instruction.

The program data is now written to the output file.  This is the action
file in the case of path programs, or this is the compiled concurrent process
file.  In the latter case, the output must be modified slightly (Code Listing
4) to account for the sixteen bit word opcode.

Finally, a footer is added to the output file.  In the case of the action
file, the footer is the drive and steer accelerations.  If the file is a compiled
concurrent process, the footer is the string data from the Dispatcher
specific commands, if there are any (Code Listing 5).  The resources are
then deallocated (Code Listing 6), all of the files are closed, and if files
remain to be compiled the proper variables are reinitialized (Code Listing
7).  If compilation is complete, the program terminates.

This completes a general overview of the structure of PASM.
Particular attention was paid to the nature of the concurrent process
compilation in order to highlight the major enhancements.  The source
code listings, along with additional detail pertaining to the code itself may
be found in Appendix B.

• TTEST EST SSUITEUITE
The greatest risk any piece of software faces is that of undergoing

modification or enhancement.  In the process of fixing a bug or adding new
capabilities, something may be overlooked or accidentally changed that has
adverse effects upon the program.  Even more disturbing is the prospect
that such an erroneous introduction might go unnoticed for such a length
of time that its origin becomes uncertain.  This can greatly increase the
difficulty in finding and fixing the problem.

During the course of this work, many changes were made to PASM,
and it was critical to be assured that none of the modifications had a



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-20
Contract No. DE-AC-21-92MC29115

negative influence.  In response to this threat, an extensive automated test
suite was developed that quickly and easily demonstrated the integrity of
the compiler.  Implemented as a batch file and largely centered around the
Microsoft MS-DOS file comparison utility, “FC.EXE,” this test suite is both
portable and easily expanded.

The main files, the PASM executable and the test suite batch file,
reside in a root subdirectory.  In this root subdirectory are any number of
subdirectories that contain either path programs or concurrent process
files along with their necessary include and definition files.  From the root
subdirectory, the PASM executable is copied to each child subdirectory and
the respective path or concurrent process files are compiled.  The compiled
files are compared (using the file comparison utility) with files compiled
before any changes were made to PASM.

The file comparison utility simply performs a binary comparison
between two files, and its results are written to disk in a “summary file.”
These summary files are linked together into one large summary file which
shows the file by file comparison for the entire test suite.  This file is then
compared with the same file produced from the unmodified version of
PASM.  This way very subtle changes (even at the bit level) in PASM’s
output can be detected easily and quickly.

All that is needed to add additional files to the test suite is a new
subdirectory that contains the files and a small addition to the batch file.
Of course, as new instructions and methods are added to PASM that do not
exist in the unmodified version, special care must be taken to verify that
the output is correct.  This can be done via the disassembly options or by
examining the actual contents of the output files with a binary editor.
Once the correctness of the output is assured, the test suite may be used as
before.

PSU:  THE PASM SUPPORT UTILITYPSU:  THE PASM SUPPORT UTILITY
The PASM Support Utility (PSU) provides a convenient means of

updating and maintaining PASM as changes occur in the Virtual Path
Language.  The majority of command information is stored in tables within
PASM.  Changes or additions to the language are, to the greatest extent,
reflected in the tables with the exception of any specialized code that is
necessarily added directly.  PSU is used to automatically generate updated
tables for insertion into the PASM source code.

Both PASM and PSU share the same header file (“pasm.h”).  From
this file they have access to the terminals enumeration (Code Listing 8).
From this terminals enumeration, the majority of data for the rest of the
tables is obtained.  PSU has several internal tables that succinctly represent
the instructions (Code Listing 9).  To add a new instruction, these tables are
modified along with the terminals enumeration.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-21
Contract No. DE-AC-21-92MC29115

Once this is done, PSU generates the tables that are used throughout
PASM.  These tables can be directed to a file from which they may be
copied and pasted directly into the PASM source code.  The
“CommandNames[]” and “ECommandNames[]” disassembly tables are put
into the main (“main.cpp”) file, and a reference to “CommandNames[]” in
the header file (“pasm.h”) must also be updated.  The “commands[]” and
“ecommands[]” tables, which contain the primary enumeration,
instruction type, and parameter limits are put into the parser
(“parser.cpp”).  The index of parameter limits “ParLimits[]” is also placed
in the parser.  The scanner (“scanner.cpp”) must have the new
“keywords[]” table added to it as well as the “TokenValue[]” and
“IdValue[]” tables.  Figure 19 provides a summary of these relations.

The “DigitValue[]” and “FileChar[]” tables found in the scanner are
generated with PSU as well as the parameter sign tables,
“ParameterSign[]” and “EParameterSign[],” that are used by the
disassembly functions (“main.cpp”).  However, they are less likely to
change.  PSU also produces several other tables whose functions are no
longer needed.

In order to accommodate the changes imposed by the compilation of
concurrent processes, and to offer the same ease of addition of concurrent
process commands, PSU had to be restructured and modified.  Three new

PSU.cpp
………….
…………….
………….
…………..
…………….

commands[]

keywords[]

TokenValue[]

IdValue[]

ecommands[]

main.cpp

parser.cpp

scanner.cpp

pasm.h
………….
…………….
………….
…………..
…………….

pasm.h
………….
…………….
………….
…………..
…………….

ECommandNames[]

CommandNames[]

Figure 20.  Tables Generated by PSU



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-22
Contract No. DE-AC-21-92MC29115

tables now have to be generated.  These are the “ECommandNames[]”
disassembly table (Code Listing 10), which is created by the
“BuildEDisassemblerTable()” function (Code Listing 11); the
“ecommands[]” commands table (Code Listing 12), which is created by the
“BuildECommandTable()” function (Code Listing 13); and the
“EParameterSign[]” table (Error! Not a valid link.) also used in disassembly,
which is created by the “BuildEParameterSignTable()” function (Code
Listing 14).

Because some concurrent process commands are identical to path
language commands (with the exception of “.” syntax and 1000+ opcode
base) a method was devised to share compilation of these commands with
the path language compiler.  A cross-reference table “E_to_Norm[]” (Code
Listing 15) was placed in the “pasm.h” header file along with the terminals
enumeration.  This cross-reference table indexes the zero-based
enumeration value of the concurrent process terminals with the
appropriate path language command terminal.  If the concurrent process
command has no corollary within the path language command set it is given
an out of range value that the command parser looks for.

This approach allows both concurrent process commands and path
language commands to share the same mechanisms where applicable.
Concurrent process commands that have string parameters or concurrent
process commands that do not have path language functions are handled by
the parser as extensions to the path language.

RESULTSRESULTS
With regard to hard results, PASM was tested over five separate test

suites for a total of  one hundred and sixty-three path programs and thirty
concurrent processes.  The output of PASM was evaluated against that of
Cybermotion’s PASM.  Of the one hundred and sixty-three path programs,
PASM compiled all one hundred and sixty-three (100%).  Differences
between the outputs of PASM and Cybermotion’s PASM occurred in none.
Cybermotion’s PASM compiled only one hundred and thirty-five of the one
hundred and sixty-three path programs (83%).  The data are given in
Appendix A.

Of the thirty concurrent processes files, PASM compiled all thirty
(100%).  Differences between the outputs of PASM and Cybermotion’s
PASM occurred in two (7%).  The data are given in Appendix A.

.gpset xxx, 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16.gpset xxx, 1



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-23
Contract No. DE-AC-21-92MC29115

.gpset xxx, 2

.

.
.
..gpset xxx, 16

.gpset xxx, all

Table 28.  Examples of “.gpset” Usage

Within these two concurrent process files that did not compile
correctly, the culprit was the “.gpset” command, which is a pseudo operand
of the “.gpout” command.  This command sets relays in the GPI according
to a bit mask.  For example, to set relays number one, four, and seven the
correct value for the “.gpset” parameter written to disk in the compiled
concurrent process file is seventy-three (20 + 23 + 26).  To Cybermotion’s
implementation of PASM, the correct syntax for the “.gpset” command in
the concurrent process file would be “.gpset xxx, 1 4 7” (where “xxx”
denotes the proper GPI).  However, this syntax is in violation of the trend
for the Virtual Path Language to always separate parameters with commas.

In Table 29 several uses of the “.gpset” GPI command are shown.  The
first example of “.gpset” usage in Table 30 is the usage that is present in the
two concurrent process files that did not compile properly.  This is the
syntax that PASM rejects.  The other two examples, using multiple calls to
“.gpset” or using the “all” keyword, are legal ways within PASM to
accomplish what the first example does.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-24
Contract No. DE-AC-21-92MC29115

CompilerCompiler Compile TimeCompile Time

Cybermotion’s PASM 1.00.46 minutes

Sixteen bit PASM 55.40 seconds

Thirty-two bit PASM 44.45 seconds

Table 31.  Compilation Times

The largest single test suite contained seventy path programs.  For the
purpose of benchmarking compilation time, this test suite was compiled ten
times (for a total of seven hundred path programs) by Cybermotion’s
PASM, the sixteen bit version of PASM, and thirty-two bit version of PASM.
This was all driven from a batch file to minimize activity not directly
associated with the compilers.  The results are given in Table 32.

CONCLUSIONCONCLUSION
To emphasize the aspects of PASM that have been enhanced or added

throughout the course of this work, two programming examples have been
given.  A general path programming example served as an introduction to
PASM, its mission, and its core functionalities.  An example in concurrent
processes illustrated the underlying architecture of PASM with particular
detail given to the extensions and additions that embody the majority of
effort put into the code.  Portions of the source code itself may be found in
Appendix B.  These modules represent the focus of modifications and
development.

All code was ported to the Microsoft Visual C++ environment.  This
includes both Visual C++ 1.52 and Visual C++ 4.2.  From within each of these
respective environments, sixteen bit and thirty-two bit versions of both
PASM and PSU were created and tested.  Wildcard operation was added,
and all of the restructuring of the code that continuous operation required
was completed and tested.  Concurrent process compilation and
disassembly capabilities were added to PASM, and the functions and
outputs necessary for PSU to support concurrent processes were added.  To
ensure the integrity of compilation, an extensive automated test suite was
created.

 PASM was evaluated against its commercial counterpart.  The test
suite of path programs and concurrent processes was used to identify
compilation inconsistencies between the two.  Benchmarking was
performed to quantify relative execution times.  In each case, PASM was
proven to be competitive, if not superior.

The motivation for this expansion of PASM’s capabilities was in
response to interest that Cybermotion has expressed in PASM.  The ease



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-25
Contract No. DE-AC-21-92MC29115

with which PASM may be updated to support new instructions or methods,
along with additional capabilities such as expression evaluation, universal
units of measure, and expanded debug resources should ensure and solidify
its acceptance in the commercial arena.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-26
Contract No. DE-AC-21-92MC29115

APPENDIX A:  THE REFERENCE PROGRAMAPPENDIX A:  THE REFERENCE PROGRAM

Table 33.  Disassembly of “DOCKREF.ACT”

 Virtual Path Language Assembler v1.50
 Disassembler mode ... disassembling [dockref.act]
 File contains [22] instructions, [4] additional bytes

        Command:         s:        x:      y:
     avoid ( 32)         0        300     100
      warn ( 33)         1         75       0
    radius ( 40)         0        120       0
  cdeflect ( 59)         0         32       1
  wdeflect ( 60)         0         15       3
     state ( 81)         0          0   33280
    writew (  6)         1      11890      10
    writew (  6)         1      12700     100
    writew (  6)         1      12702      36
    writew (  6)         1      11898     150
    writew (  6)         1      11475     241
     readb (  7)         1      11622       0
     jump= ( 12)        15          0       0
      wait (  3)         0          1       0
      jump (  9)        16          0       0
    writeb (  5)         1      16012       1
    writew (  6)         1      13347      50
    writew (  6)         1      11633      15
      dock ( 21)         1        300     100
    meanaz ( 31)         0          0       0
     setxy ( 23)         0          0       0
    undock ( 22)         1          0       0
 Drive Acceleration: [  6]
 Steer Acceleration: [ 15]



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-27
Contract No. DE-AC-21-92MC29115

BIBLIOGRAPHYBIBLIOGRAPHY
Byrd, J. S.  (1996).  Low-Level Stored Waste Inspection Using Mobile
Robots.  Paper

presented at ISRAM ’96 Sixth International Symposium on Robotics
and

Manufacturing,  Montpellier, France.

Cybermotion, Inc.  (1991).  Cybermotion Dispatcher User’s Manual.  (rev
1.2).  Salem,

VA:  Cybermotion, Inc.

Cybermotion, Inc.  (1995).  Virtual Path Language Reference.  (rev. 4.1).
Salem,

VA:  Cybermotion, Inc.

Fischer, C. N.  & LeBlanc Jr., R. J.  (1991).  Crafting a Compiler with C.
Redwood City,

CA:  The Benjamin/Cummings Publishing Company, Inc.

Pettus, R. O.  (1995).  PASM Support Utility Manual.  (Unpublished
programmer’s

reference).  University of South Carolina.

Pettus, R. O.  (1994).  Path Assembler Technical Manual  (Unpublished
programmer’s

reference).  University of South Carolina.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-28
Contract No. DE-AC-21-92MC29115

THE PORTABLE PATH ASSEMBLER (PASM)

INTRODUCTION
The Portable Path Assembler (PASM) is designed to support code development for the
Cybermotion K2A Self-Guided Vehicle.  While intended for use with the Unix environment
developed by the Department of Electrical and Computer Engineering, University of South
Carolina, it was designed to be compatible with existing Cybermotion code and may be
hosted on a PC.  The designation "portable" is given to indicate that PASM itself is
designed to be hosted in any standard C environment and requires only a simple ASCII
terminal.

By default, PASM provides for strict enforcement of the Cybermotion Path Language (CPL)
as defined in the current Cybermotion manual.  However, the Path Language has evolved
over the years as new commands and functionality were added to the K2A.  As a result,
many commands have different parameter values or usage from when they were originally
introduced.  PASM provides an option to accept these early conventions, making it com-
patible with all existing Cybermotion code.  This compatibility is made an option (as
opposed to the default) to encourage programmers to meet current conventions with all new
code.  Since PASM works independent of a specific environment, it does not provide some of
the features of the Cybermotion assembler when used in conjunction with the Dispatcher
program.

The program is loosely implemented as a recursive-descent, top-down parser from a BNF
(Backus-Naur Form) description of the Cybermotion Path Language.  It departs from strict
adherence to these principles for three reasons:

(i) Assemblers, while relatively simple compared to most compiled languages, have
some complications, such as forward references and more than one token look ahead;

(ii) No precise expression of the CPL production rules or of the CPL semantics is avail-
able;

(iii) CPL has evolved over the years in conjunction with modifications to the K2A.  In
some instances these modifications result in inconsistencies with current CPL
descriptions.  Compatibility with all known existing K2A code is a high priority for
PASM, therefore, the actual language implementation accepts all previous code to
the greatest extent possible.

Note:  While some test programs were obtained from Cybermotion, most test
code was written since acquisition of the K2A at USC, therefore, it is likely
that PASM may not accept all early versions of CPL.

All PASM limits, command values, etc., are contained in tables which may be maintained
independent from the code.  This allows these values, which frequently change with
updates to the vehicle, to be modified without changes to the code.  It also supports the use



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-29
Contract No. DE-AC-21-92MC29115

of a consistent technique of parameter checking.  A separate program, the PASM Support
Utility (PSU) was created to maintain these tables.  Like PASM, PSU is written in C and
will function in any standard C environment.  It differs from PASM in that it is intended
for use primarily by developers as opposed to end users and is considerably less “polished”
code.  PSU is described in a later section.

Several features have been added (at the suggestion of Cybermotion) to PASM.  They
include (i) support for units (inches, feet, meters, and centimeters), (ii) expressions (+, -, *,
and ÷), (iii) decimal number support, and (iv) a disassembler.

Error
Messages

Error
Messages

Symbol
Table

First Pass
Initialization

Pass 1
Second Pass
Initialization

Pass 2

Listing
File

Binary
File

Figure 1.  PASM operation

PASM operates as a typical two-pass assembler in order to resolve the problem of forward
references (see figure 1).  The primary purpose of the first pass is to create the symbol table
although the parser performs error checking on both passes.  The error messages are
included in the listing program and may also be sent to the screen if desired.  It generates
an intermediate code (called icode) during the second pass.  The main program uses this
intermediate code to produce the binary output file, which uses the Cybermotion format.

PASM Technology
This section details the technology used to implement PASM.  It primarily applies to the
scanner and parser since these components are most appropriately handled by formal
techniques.  PASM is loosely1 implemented using a top-down approach known as recursive
descent.  Due to the lack of a formal grammar, it cannot be guaranteed that meets the
requirements for the subset of LL(1) grammars which are suitable for use with recursive
descent.  However, the relatively heuristic nature of this technique makes it more suitable
for loosely defined grammars than a table-driven approach using an explicit stack.  Recur-
sive descent parsers may be designed by application of the following five design rules to the
production rules:

                                           

1 The term “loosely” is used here because the PASM grammar is not been formally defined due to

the manner in which it has evolved.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-30
Contract No. DE-AC-21-92MC29115

1) A sequence of elements is translated into a compound statement.

2) A choice of elements is translated into a switch statement (or if statements if the
number of choices is small).

3) A loop is translated into a while or for statement.

4) A non-terminal BNF production denoting another production is translated by a
function call.

5) An element denoting a terminal symbol (x) is translated into a statement of the
form:

IF symbol = x THEN
GetNextSymbol

ELSE
ReturnError;

In order to use these rules to construct a recursive descent parser from a particular gram-
mar, the productions of the grammar must meet the following restrictions.

Restriction 1  Every branch emanating from a choice of elements must lead
toward a distinct first symbol.  An alternative way of stating this restriction is that
no symbol may be a starter of more than one of the alternatives of a given
production (rule).

Restriction 2  For the case there is an empty alternative as one of the choices ,
all initial symbols of the following statements must be distinct from the initial
symbols of the choice in question.  An alternative statement of restriction 2 is that
no symbol may be a possible starter and a possible follower of an alternative which
may possibly be empty.

The current plans for PASM v2.0 are to use a table-driven LL(1) parser with a formal
stack.  This should reduce the code size and improve the performance of the system.  It will;
however, require a formal definition of the PASM grammar.

PASM Usage
PASM is designed to be used either as a stand alone program or as an integral part of the
control environment.  When used as a stand alone program it is invoked by the command

pa { <options> } <filename>.

which follows standard Unix practice.  The path assembler is designed so that a user who is
reasonably experienced in assembler-level programming should be able to use it immedi-
ately.  A minimal help function is included in the form of a help option.  If the -h option is
specified (pa -h or pa /h) the assembler will output a brief help message which gives
the options available and the function of each.  The response to pa -h is given in figure 2
below.  Note that most of the defaults are chosen for the “production case.”  For example, it
is likely that most of the time a listing file will not be needed, therefore the default option is
not to create it.  Likewise, the default is to give only one error message per line although
the “verbose” mode (-v) will give multiple error messages per line.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-31
Contract No. DE-AC-21-92MC29115

Virtual Path Language Assembler v1.33
The Path Assembler is invoked by the command

pa { <options> <filename> }

The following options are available:

-a Disassembler mode
-b Batch mode
-c Inhibits creation of .act file
-d Debug mode
-h Help
-i Print include files in the listing
-L Print listing in landscape format
-l Print listing file
-o <filename> Allows specifying output file name
-p Parameter checking
-s Include symbol table in listing
-t Sets tab length for listing
-w Disables warning messages
-v Verbose mode.  Allows multiple error messages
-x Produces Hex listing

Figure 2.  PASM help screen

PASM Examples
Several example programs (taken from the test suite used in developing the program) are
given to illustrate some of the new features.  The following program illustrates the use of
units and decimal numbers.  The symbol table listing is include to show the values assigned
to each of the symbols.

; PASM Test Suite
; Program 1 - Assembler Command Test (defc and defp)
; 3 August 1994
;
; This program contains a number of versions of the defc and
; defp commands.  It tests both the ability of the program to
; handle different formats and to handle different units.
;
asym defc 1

defc bsym 1
csym defp 1, 2

defp dsym 1, 2
esym defc 0.1 m.

defc fsym 0.1 m.
gsym defp 0.1 m., 0.2 m.

defp hsym 0.1 m., 0.2 m.
defc isym -0.1 m.
defc jsym 1.5 in.
defc ksym -1.5 in.
defc lsym 2.2 cm.
defc msym -2.2 cm.
defc nsym 1.2 ft.
defc osym -1.2 ft.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-32
Contract No. DE-AC-21-92MC29115

defp psym 5 cm., 1 m.
defc qsym $a
defc rsym $a cm.
defp usym $a, $b

Figure 3.  Example program 1.

SYMBOL TABLE CONTENTS:
Symbol          Type       Line     s|x      y
------          ----       ----    -----   -----
asym            Constant    10         1      -
bsym            Constant    11         1      -
csym            Position    12         1       2
dsym            Position    13         1       2
esym            Constant    14        32      -
fsym            Constant    15        32      -
gsym            Position    16        32      65
hsym            Position    17        32      65
isym            Constant    18       -32      -
jsym            Constant    19        12      -
ksym            Constant    20       -12      -
lsym            Constant    21         7      -
msym            Constant    22        -7      -
nsym            Constant    23       120      -
osym            Constant    24      -120      -
psym            Position    25        16     328
qsym            Constant    26        10      -
rsym            Constant    27        32      -
usym            Position    28        10      11

Figure 3.  Symbol table for example program 1.

The second program, given below, illustrates the use of expressions.  It also contains units
to demonstrate that units may be included in expressions.  A listing file is included.

; PASM Test Suite
; Program 2 - 3 August 1994
; Expression test.  This program tests the ability of the
; parser to handle expressions in command statements.
;

defc asym 10
defc bsym 2
defp csym 3, 4
defp dsym 5, 6
defc esym 10

main run esym asym, bsym
run esym asym+bsym, asym
run esym asym+bsym, asym
run esym asym+bsym, asym
run esym csym+dsym
run esym csym-dsym
run esym*esym-(esym+10), csym*dsym
run esym, asym+1.23 m., bsym
run ((10-8)*5/2)*2, 10, 2
run (asym+bsym), asym*(1.1 m. + 23 cm.)/2, -asym*(1.1 m.)/2
run (-(1.145 m. * asym)), 6.98 m./6.98 cm., 1 m./1 ft.

Figure 4.  Example program 2.

Inclusion of the expression evaluator places some restrictions on the variable naming con-
ventions unless spaces are required before and after operators.  PASM v1.33 currently
treats a-b as the symbol “b” subtracted from the symbol “a” as opposed to the single symbol



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-33
Contract No. DE-AC-21-92MC29115

a-b.  This choice was based on standard convention and ease of implementation, however,
the parser can be modified to treat a-b as a single symbol.

It might also be worthwhile including a symbol for the current instruction location.  This
would allow relative addressing and would enhance relocatability of the code.

Virtual Path Language Assembler v1.33 (t6.sgv)         page 1
Line Step  Cmd  s    x     y           Source Text
---- ----  --- --- ----- -----  ------------------------------
   1
   2  ; PASM Test Suite
   3  ; Program 2 - 3 August 1994
   4  ; Expression test.  This program tests the ability of the
   5  ; parser to handle expressions in command statements.
   6  ;
   7    0                       defc asym 10
   8    0                       defc bsym 2
   9    0                       defp csym 3, 4
  10    0                       defp dsym 5, 6
  11    0                       defc esym 10
  12    0    1  10    10     2  main run esym asym, bsym
  13    1    1  10    12    10  run esym asym+bsym, asym
  14    2    1  10    12    10  run esym asym+bsym, asym
  15    3    1  10    12    10  run esym asym+bsym, asym
  16    4    1  10     8    10  run esym csym+dsym
  17    5    1  10 65534 65534  run esym csym-dsym
  18    6    1  80     0     0  run esym*esym-(esym+10), csym*dsym
  19    7    1  10   413     2  run esym, asym+1.23 m., bsym
  20    8    1  10    10     2  run ((10-8)*5/2)*2, 10, 2
  21    9    1  12  2175 63736  run (asym+bsym), asym*(1.1 m. + 23 cm.)/2,
-asym*(1.1 m.)/2
  22   10    1-3750   104     3  run (-(1.145 m. * asym)), 6.98 m./6.98 cm.,
1 m./1 ft.
ERROR REPORT:  warnings: [0], errors: [0]

SYMBOL TABLE CONTENTS:
Symbol          Type       Line     s|x      y
------          ----       ----    -----   -----
asym            Constant     7        10      -
bsym            Constant     8         2      -
csym            Position     9         3       4
dsym            Position    10         5       6
esym            Constant    11        10      -
main            Label       12         0

Figure 5.  Listing file for example program 2.

The output obtained from the disassembler option (pa -a t2) is given in figure 6.  Use of
the disassembler requires that the appropriate output file (.act) be available.

Virtual Path Language Assembler v1.33
Disassembler mode ... disassembling [t6.act]
File contains [11] instructions, [4] additional bytes

Command:  s:    x:    y:
       run (  1) 10    10     2
       run (  1) 10    12    10
       run (  1) 10    12    10
       run (  1) 10    12    10



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-34
Contract No. DE-AC-21-92MC29115

       run (  1) 10     8    10
       run (  1) 10    -2    -2
       run (  1) 80     0     0
       run (  1) 10   413     2
       run (  1) 10    10     2
       run (  1) 12  2175 -1800
       run (  1) 90   104     3
Drive Acceleration: [  4]
Steer Acceleration: [ 10]
[0] milliseconds CPU time

Figure 6.  Disassembler output for program 2.

PASM STRUCTURE
PASM is implement in seven files, main.c, scanner.c, parser.c, symbol.c, util-
ity.c, error.c, and , as shown in figure 7.  This partitioning was chosen to minimize the
number of external references, reducing the risk of harmful side effects as a result of pro-
gram modifications.  The header file, pasm.h, is used by each of the C files to obtain the
necessary information to access functions or variables external to the file.  Some of the val-
ues given in the header file are conditional in order to promote portability.  For example,
the file length values as shown below, allow for differences between MSDOS and Unix.

#ifdef MSDOS
#define FILENAME_LENGTH 8
#define EXTENSION_LENGTH 3
#else
#define FILENAME_LENGTH 32
#define EXTENSION_LENGTH 32
#endif

main.c scanner.c parser.c symbol.c utility.c error.c

pasm.h

Figure 7.  PASM file structure.

A common header file is used to promote consistency and to enhance understandability
since this means that all files see the same header.  While most C compilers are tolerant of
inconsistencies concerning uses of the extern command, conditional expressions are used to
ensure that not object is declared to be both external and internal.  For example, the exter-
nally visible objects in the file parser.c are given as follows:

#ifndef PARSER
extern int ExternEntries;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-35
Contract No. DE-AC-21-92MC29115

extern int ParseCommand(int);
extern void ParsePseudop(int, SymType *);
#endif

The constant PARSER is defined at the beginning of parser.c so that the external decla-
rations for that file are not seen in parser.c.  The same procedure is used for each of the
other files.

Considerable effort was made to choose a partitioning which would minimize the number of
variables with external linkage1.  All external variables which do not need to be accessed by
any functions outside of the file have been declared to be static.  A brief synopsis of the
contents of each of the files is given in Table 1.

FILE CONTENTS
main.c main function, initialization routines, command line parser,

disassembler, exception handler, and general shared
variables for entire program,

scanner.c Routines to get the next token from the source file, handle
units and filenames, and the token tables.

parser.c All parsing and most semantics routines.  The two entry
points are ParseCommand and ParsePseudop

symbol.c Symbol table and access routines
utility.c Stack routines, units conversion table
error.c Error handling routines (RecordError, OutputErrors) plus

various record and control variables for the error system.

Table 1.  Contents of PASM files

                                           

1 A C variable which is defined outside of a function is an external variable and, by default, has

external linkage, which means that it may be accessed from any function in any file.  If an

external variable is defined to be static, then it no longer has external linkage and may be

accessed only in the file where it is defined.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-36
Contract No. DE-AC-21-92MC29115

PASM OPERATION

NextTokenInput Line

Source
File

NextLine

id
IntVal
ChPos
IdPos

token parser

RecordError SymbolTable

icode
CodeState
AccelDrive
AccelSteer

BuildOutput

Semantics
Routines

Figure 8.  PASM data flow model

PASM Dataflow
A data flow model of PASM is given in figure 8.  The input text is fetched from the source
file a line at the time by the routine NextLine (contained in main.c) and placed in the
input line buffer (line[ ], in main.c).  NextLine also handles the context change associ-
ated with the end of an include file by testing the include level when an end of file is found.
It also updates the line number and handles some of the listing chores

The routine NextToken, which is the primary module in scanner.c, returns the token
values, together with appropriate semantic information, from the input line.  NextToken
returns one of the values from the enumeration terminals.  It also updates the global vari-
ables id, IntVal, RealVal, ChPos, and IdPos as appropriate.  id contains the actual id
string of a user identifier, IntVal contains the value of a number token (or RealVal if it is
a decimal number), ChPos is a pointer to the current character in the input line, and IdPos
is a pointer to the start of the string associated with the current token.  IdPos is used by
the error routines to insert the “marker” to identify the offending token.  NextToken is
passed a parameter which specifies whether the token being fetched is a command or an
object.  This information is used to give more precise error and warning messages.

The bulk of the input processing is done by the parser.  It checks for correctness, updates
the symbol table, and creates an output where appropriate.  The output created by the
parser is a C struct (icode) which consists of four integers, representing the opcode and
each of the three parameters.  The function BuildOutput in main.c changes these values
to Cybermotion binary format and writes it to the output file.

Pre-Fetching of Tokens and Characters
PASM adheres to a policy of one-token look ahead to the greatest extent possible.  This
implies that each PASM routine must either fetch a token initially, or expect to have one



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-37
Contract No. DE-AC-21-92MC29115

present and ensure that a new token is available at the exit of the routine.  Since some rou-
tines can only determine that processing is complete by fetching a token which “does not
fit”, i.e., belongs to the next routine, then the best approach is to have all routines assume
that a new token is available at entry.  Likewise, each routine must ensure that a fresh
token is available at exit.  Since only one token is being processed at any given time, the
information for the current token is stored in external variables and is available to all
functions.  The convenience and efficiency of this technique appear to justify any (possible)
increase in possible side effects.  The scanner follows the same policy in fetching characters
and this information is handled in the same fashion.

The main.c File
The file main.c contains the functions and variables which generally apply to the entire
program and are not suitable to encapsulation (as, for instance, the symbol table).  The pri-
mary routines included in the main.c file are:

• the function main
• initialization routines, init, GetInputFile, SetUpPass2
• command line parser (for options), ParseCommandLine, GiveHelp
• pass 1 and pass 2 main functions, pass1 and pass2
• NextLine function
• Output listing functions, OutputListing and OutputHeader
• Code output functions, BuildOutput and OutputDriveSteer
• Disassembler
• HandleException

The primary external variables include:

• file variables
• scanner and lexical variables
• code output variables
• program mode variable, mode

File Variables
The file variables are:

/*
! PASM FILES AND RELATED VARIABLES:
! The integer variables include and IncludeChange are used to implement
! include files.  The file pointers are used as follows:
!
! fp: Pointer to current input file (source or include)
! fplist: Pointer to listing file
! fpout: Pointer to the (binary) output file
*/
char CurrentFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];
FILE *fp, *fpextern, *fplist;
static FILE *fpout;
int IncludeChange = FALSE;
int IncludeLevel = 0;
static char FileName[FILENAME_LENGTH+EXTENSION_LENGTH+2];
static char ListFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-38
Contract No. DE-AC-21-92MC29115

static char OutFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];
static char SrcFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];
static char ExternFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];
static int InputFileSpecified = FALSE;
static int OutputFileSpecified = FALSE;

The filenames and the output file pointer are defined as static since they are not referenced
except in main.c.

Scanner and Lexical Variables
The scanner and lexical variable of the main program are:

/*
! SCANNER AND LEXICAL VARIABLES:
! Current Token Definitions
! These values are set by each call to the scanner function NextToken,
! which returns the value for token.  id, InVal, and IdPos are set
! directly.  These values are used by all PASM routines.
!
! token The token value, one of the values from the enumerated
! list of terminals in pasm.h
! id The identifer string for identifiers and keywords.
! IntVal Value of integer symbols.
! tp Pointer to the starting location of the current token.
! cp Pointer to the current character (start of next token)
!
! The array line[ ] holds the current input line.
*/
char id[ID_LENGTH+1];
char line[LINE_LENGTH + 1];
char *cp, *tp;
int LineCount = 0, LineNumber = 0;
int TabLength = TAB_LENGTH;
int token, IntVal;
float RealVal;
static int PageLength = PAGE_LENGTH_PORTRAIT;
static int page;

Code Output Variables
The code output variables are given below:

/*
! CODE OUTPUT VARIABLES
! The structure icode holds the intermediate code generated by the parser
! during the second pass.  CodeState is a bit-vector variable which is set
! to define the status of icode.  The constants used to set and test the
! bits of CodeState are also used with the variable CmdType which is part
! of the parsers command table.  These constants include:
!
! S_PAR 1
! X_PAR 2
! Y_PAR 4
! COMMAND_PAR 8
! POS_PAR 16 (used by CmdType only)
! S_ERR 32
! X_ERR 64
! Y_ERR 128
!
*/
IcodeType icode;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-39
Contract No. DE-AC-21-92MC29115

int CodeState = 0;
static int CodeGen;

The variable icode, which has the type IcodeType given below,

typedef struct
{
int command;
long pv[3];
} IcodeType;

is used to construct machine commands.  CodeState is a bit-vector variable used to desig-
nate the form of the output command.  Various bits of CodeState are set to indicate the
number and type of operands present.  This information is used by BuildOutput to prop-
erly format the output.  CodeGen is used to control the generation of code.  It is set false if
an error occurs, inhibiting the generation of code.

Program Mode Variable
The program mode variable, mode, is used to specify the operating mode of the assembler.
The various bits of mode are set by the command line option switches.

/*
! PROGRAM MODE VARIABLE:
! The variable mode is a bit-vector which holds the operating mode of the
! program.  The various bits are set by the option switches when the
! program is invoked.
!
! Bit Function Default
! DISASSEMBLER Perform disassembly off
! NO_MULTIPLE One message per error off
! DEBUG Debugging option off
! LISTING_ON Print output listing off
! INCLUDE_SYMBOL_TABLE No listing of symbol table off
! HEX_MODE Produce Hex listing off
! BATCH_MODE Batch mode off
! OUTPUT_INHIBITED Inhibits creation of .act file off
! PARAMETER_CHECK Enables parameter checking off
*/
int mode = 0;

Other main.c Variables
The file main.c contains other external variables, such as the disassembler command
names table, used to supply the mnemonic names for the machine commands and the
parameter sign table, which is used to format the disassembler output.  The general pro-
gram variables are given below:

/*
! GENERAL PROGRAM VARIABLES
!
! The variables given below store general program information.  Their uses
! are consistent with the variable names.
*/
int AccelDrive = 4, AccelSteer = 10;
int pass = 1;
int MaxStep = 0;
static int CurrentStep = 0;
static int IsCommand;
static int CommentLine = FALSE;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-40
Contract No. DE-AC-21-92MC29115

static long CPU_time, start;
static long ListingInhibited = FALSE, lines = 0;

The Pass 1 and Pass 2 Functions

Processing is done
on a per-line basis.

{
SymType *p;

while(NextLine(line, LINE_LENGTH) != EOF)
{
p = NULL; IsCommand = 0;
token = NextToken(COMMAND);
if(token == ID)

{
p = EnterSymbol(id, LABEL);
p->s = CurrentStep;
token = NextToken(COMMAND);
if(token == COLON)

token = NextToken(COMMAND);
}

if(token < LAST_COMMAND)
IsCommand = ParseCommand(token);

else if(token < LAST_PSEUDOP)
ParsePseudop(token, p);

else if(!(token == COMMENT) && !(token == EOLN_TOKEN))
RecordError(es4, ERROR);

if(IsCommand)
CurrentStep++;

if(CurrentStep > MAX_COMMANDS)
RecordError(es12, ERROR);

if(ErrorRaised)
printf("\nErrorRaised!\n");
if(ErrorRaised && (mode & DEBUG))

{
printf("%4d: %s", LineNumber, line);
OutputErrors( );
}

else
FlushErrorQueue( );}

if(mode & DEBUG)
CheckSymbolTable( );

}

New line initialization

Process label if present

Process machine command

Process assembler command

Update step count and
compare to 255

Handle any errors which
were detected for this line

Check symbol table at
end of pass 1

Trap any undefined
commands

Figure 9.  Annotated pass1 code.

The functions pass1 and pass2 are the main programs for pass 1 and pass 2 respectively.
An annotated version of the code from pass1 is given in figure 9.  The code for pass2 fol-
lows a similar organization but contains extra calls associated with creating the output
code and the listing.  pass2 also performs error checking on labels to catch errors such as
duplicate labels.  Both pass1 and pass2 perform the initial processing of each input line,
handling labels and the command.  Once the nature of the command is known, the appro-
priate parser routine (ParseCommand or ParsePseudop) is called and the parser handles
the remaining processing for that source line.

The NextLine Function



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-41
Contract No. DE-AC-21-92MC29115

return EOF

NO

NextLine

Fetch line

EOF?
Include
Level?

Start new
include file

return NULL

return EOF

Include
Change?

Return to the
previous file

Fetch line

EOF?
Include
Level?

YES

NO

NO

YES

YES

NO

return NULL return NULL

YES

NO

Figure 10.  NextLine simplified flowchart

A simplified flowchart of the NextLine function is given in figure 10.  This function is
fairly complex due to both the amount of error checking required and the need to handle
some of the processing of include files.  Since NextLine is the function which detects an
end of file, it is the logical place to put the processing associated with the end of an include
file.  This is done by testing the integer variable IncludeLevel whenever an end of file is
detected.  If an end of file is detected when IncludeLevel is non-zero, then the previous
file context is popped from the include stack and restored.  NextLine also checks the Boo-
lean variable IncludeChange to determine if a new include file has been opened and, if so,
causes a new file header to be output if appropriate.  This is done here rather than while
processing the include directive to avoid complications with the error handler.

The BuildOutput Function
BuildOutput creates the actual binary output values and writes them to the output file.
The input values are contained in the variable icode discussed previously.  It is a simple
function except for the relatively esoteric computations required to create the binary out-
put.  The values for drive and steer acceleration are appended to the output by the function
OutputDriveSteer which is called at the end of the source file.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-42
Contract No. DE-AC-21-92MC29115

The Output Listing Functions
The output listing is created by the functions OutputListing and OutputHeader.
OutputListing is called by pass2 after the current line has been processed and prior to
calling the function OutputErrors, which will insert any error messages accumulated for
the line.  OutputListing calls OutputHeader at the beginning of each page to create the
page header and also updates the variables PageCount and LineCount.  OutputHeader
is implemented as a separate function since it is also called by the initialization routines
and the NextLine function.  OutputListing uses information from the variables
CodeState and mode to determine the appropriate listing format (landscape or portrait,
decimal or hex).

The Disassembler Function
If PASM is invoked with the -a option it functions as a disassembler.  Selection of this
option causes the program to default to the use of the “.act” rather than “.sgv” suffix and to
call the function Disassembler rather than pass1.  Disassembler first scans the input
file to count the number of bytes and to determine if drive and or steer acceleration values
have been included.  It then rewinds the input file and fetches each line and prints the val-
ues for the opcode and parameters.  The opcode mnemonics are supplied since they are
known.  The function uses the parameter sign table (ParameterSign) to determine if the
parameter is signed (-32,768 to +32,767) or unsigned (0 to 65,535).  As with
OutputListing, it also checks the mode variable to determine whether to display the out-
put in decimal or hex format.

The Exception Handler
The exception handler (HandleException) is called if a PASM error (as opposed to a pro-
gram error) is encountered.  It provides a brief message as to the nature of the problem,
closes the open files, and then calls the exit function.  Whenever a PASM function has an
appropriate program invariant, it uses it to test for exceptional conditions.  For example, if
a variable, such as the selector variable for a switch statement, has an “impossible” value,
then an exception is declared and the program is halted.  Occurrence of an exception
strongly implies that there is an error in PASM itself.  For this reason, exceptions are
treated as terminating events and no attempt is made to resolve the problem.  While this
code could be removed after the program has been sufficiently tested, it requires little time
or space and is a reasonable check for correct program operation.

The Scanner

DigitValue Table
IdValue Table

TokenValue Table
Keywords Table

SSccaannnneerr  TTaabblleess

ssccaannnneerr..cc

SSccaannnneerr  FFuunnccttiioonnss
IfUnit

GetFileName
NextToken

Figure 11.  Scanner primary objects



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-43
Contract No. DE-AC-21-92MC29115

The NextToken function returns a token for each input string which represents the value
from vocabulary represented by that string.  The PASM vocabulary is given in figure 12.
The entries LAST_COMMAND, LAST_PSEUDOP, and LAST_TERMINAL are included for differ-
entiation between vocabulary classes and are not always used by the parser.

typedef enum
{
NOP, RUN, TURN, WAIT, BACK, WRITEB, WRITEW, READB, READW, JUMP, JUMP_GT,
JUMP_LT, JUMP_EQ, CALL, CALL_GT, CALL_LT, CALL_EQ, RETURN, ADD, SUB, HALT,
DOCK, UNDOCK, SETXY, SETAZ, JOG, SETACC, COPYB, COPYW, DOCKOUT, DOCKIN,
MEANAZ, AVOID, WARN, MOVE, PICK, PUT, MARK, FOLLOW, WALL, RADIUS, RUNON, PORT,
UNPORT, APPROACH, SCAN, COMP, CURLIM, USE, CRUISE, STOP, VECTOR, ABS, MULT,
DIV, CIRCUM, MTRSOFF, HALL, BREAK, CDEFLECT, WDEFLECT, PATROL, SURVEY, PAN,
TILT, ZOOM, MAUX, DOOR, SETSTDBY, STANDBY, GATE, WBEGINS_AT, WENDS_AT,
JUMP_NE, CALL_NE, WALLOFF_AT, WALLON_AT, GATE_AT, APPRWALL, APPRJUNK,
LAST_COMMAND, DEFC, DEFP, DEFD, DEFS, EXTERN, EXTERN_REF, INCLUDE,
LAST_PSEUDOP,COLON, COMMA, COMMENT, DIVIDE, EOLN_TOKEN, EQUALS, ERR_NUM,
ERR_TOKEN, ID, INTEGER, L_BRACKET, L_PAREN, MINUS, MULTIPLY, NUL, PERIOD,
PLUS, R_BRACKET, R_PAREN, REAL, SEMICOLON, NULL_TOKEN, LAST_TERMINAL
} Terminals;

Figure 12.  PASM vocabulary

A flowchart of the operation of NextToken is given in figure 13.  NextToken first removes
any leading spaces or tabs, then sets the token pointer (tp) to the same value as the char-
acter pointer (cp).  The character pointer contains the address of the next character to be
processed and the token pointer contains the location (in the input line) of the current
token.  Since the parser uses a one-token look ahead, the token pointer can be used by the
error handler to mark the location of an error.  The character is tested to see if it is the end
of line (‘\0’ in the input line) and if so, the token value EOLN_TOKEN is returned.  If the
character is not the end of line character, then it represents the first character of an input
word which must be processed by NextToken.

The first step is to assign a tentative token value to the input word by using the character
as the index to the TokenValue table.  This value is tentative because commands (such as
turn, jog, etc) have the same form as used identifiers, thus all identifiers are initially given
the token value ID.  NextToken then checks for three special cases, identifiers, numbers,
and error tokens, since each of these may contain multiple characters.  If the token value is
ID, then the routine ProcessId is called.  ProcessId will continue to fetch input charac-
ters as long as they are legal identifier characters, placing them in the identifier buffer
(id).  The table IdValue is used to determine if the characters are legal identifier charac-
ters.  Each identifier is then processed by the function LookUpId which attempts to match
it with an entry in the Keywords table.  If a match is found, then the token value from the
table, representing the appropriate command, is returned.  If not, then the token value ID
is returned.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-44
Contract No. DE-AC-21-92MC29115

NextToken

End of line?

return

Remove leading
blanks and set

tp = cp.

Identifier?

Number?

return EOLN

ProcessId

ProcessInteger

cp++

Figure 13.  Flowchart of operation of NextToken

If the token value is not ID, then it is tested to see if it is INTEGER.  If so, the routine
ProcessInteger is called.  ProcessInteger converts the character string to an integer
value which is stored in the variable IntValue (or RealValue if it is a decimal number).
It uses the table DigitValue to assign a value to the characters.  The final test of the
token value is to determine if it is an error character.  If so, then all following error charac-
ters are collected and the value ERR_TOKEN is returned.

If the token is not one of the special cases ID, INTEGER, or ERR_TOKEN, then the value from
the TokenValue table is returned and the character pointer is advanced to the next char-
acter.  The code for NextToken is shown in Figure 14.

The scanner also contains the functions IfUnit and GetFileName.  IfUnit is called in
place of NextToken in any context where a unit is possible and handles all unit conver-
sions.  GetFileName is similar to NextToken but uses a different table (FileChar) to
reflect the differences in the characters which are legal in a filename as opposed to a user
identifier.  It is primarily used when processing include file names.

/*--BEGIN FUNCTION--(NextToken)---------------------------------------------*/

int NextToken(int context)
{



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-45
Contract No. DE-AC-21-92MC29115

id[0] = '\0';
while( *cp == ' ' || *cp == '\t')

cp++;
tp = cp;

if(*cp == '\0')
{
tx = (int) EOLN_TOKEN;
return tx ;
}

tx = TokenValue[(int) *cp ];
if(tx == ID)

ProcessId(context);
else if(tx == INTEGER)

ProcessInteger( );
else if(tx == ERR_TOKEN)

while(TokenValue[(int) *cp++ ] == ERR_TOKEN)
;

else
cp++;

return tx;
}
/*--END FUNCTION--(NextToken)-----------------------------------------------*/

Figure 14.  NextToken code

The Symbol Table
The symbol table stores the relevant information about user identifiers for later use.  The
two primary symbol table functions are QuerySymbol, used to get information concerning
a given symbol, and EnterSymbol, which is used to enter symbols into the table.  Both
functions return a pointer to the appropriate entry in the table, allowing the calling routine
to retrieve whatever information may be desired concerning the symbol.  QuerySymbol
returns the value NULL if the symbol is not found.  The function CheckSymbolTable is
called at the end of pass 1 to determine if there are any undefined symbols in the table.
ListSymbols is used to create the symbol table listing.

QuerySymbol
EnterSymbol
CheckSymbolTable
ListSymbols

Symbol Table Functions

ssyymmbbooll..cc

Figure 15.  Symbol table access functions

The Symbol
The C struct used to hold the symbol information is shown below:



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-46
Contract No. DE-AC-21-92MC29115

typedef struct SymTag
{
char id[ID_LENGTH+1];
int LineNum;
int type;
int s, x, y;
struct SymTag *link;
} SymType;

It holds the identifier string (id), the line number where the symbol was defined, the sym-
bol type, and the appropriate s, x, or y parameter values.  The pointer link is used to
build the table since the symbols are stored as linked lists.

Table Implementation
The table itself consists of an array of 26 pointers to a SymType struct, one for each letter of
the alphabet (see figure 16).  Each symbol is entered into the appropriate string, in the
order in which it is found.  This scheme gives better performance than a single list since the
average length of each list is less than if a combined list were used.  A tree was considered
(in fact, earlier versions of PASM used a tree) but the performance improvement of the tree
did not seem justified by the increased code complexity.  The QuerySymbol and
EnterSymbol functions use the symbol pointers as their entry to the table, however, since
the functions CheckSymbolTable and ListTable operate on the entire table, they are
implemented as simple for loops on the actual table memory.

SymPointers

a pointer Link Link <NULL>

b pointer Link <NULL>

z pointer Link <NULL>

First symbol Second symbol

Memory defined
in program

Memory allocated at run-time (malloc)

Figure 16.  Symbol table structure

The memory for the symbol table, except for the 26 pointers, is dynamically allocated at
initialization.  The file symbol.c contains the following variable definitions for the table:

int NumEntries = 0;
static SymType *SymbolMemory;
static SymType *SymPntrs[26];

The initialization code is given below:
void InitSymTable(void)
{
int i;

SymbolMemory = (SymType *) malloc ((MAX_SYMBOLS) * sizeof(SymType));
if(SymbolMemory == NULL)

HandleException(em1);
for(i = 0; i < 26; i++)

SymPntrs[i] = NULL;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-47
Contract No. DE-AC-21-92MC29115

}

The number of symbols is given by the constant MAX_SYMBOLS, contained in the header
file.  It is currently set to 750, however; the -n option may be used to specify a different
table size at run-time if desired.  The reason for dynamically allocating the memory is to
make it easier to adjust the size of the table.  The QuerySymbol and EnterSymbol rou-
tines (described in following sections) could allocate space as required, which would give the
smallest possible table.  The disadvantage of this approach is that the malloc operation is
relatively slow and the assembly time would increased.  In addition, two of the symbol table
functions, CheckSymbolTable and ListSymbols, treat the table as an array, requiring
that the table be contiguous.  This would not be the case if multiple calls to malloc were
made.  CheckSymbolTable and ListSymbols may be modified to search the table as a
linked list, removing this restriction, although performance will decrease.

The QuerySymbol and EnterSymbol Function

FUNCTION WHERE CALLED PURPOSE
QuerySymbo
l

pass2 (main.c) Checking labels to be sure they are in
table.

primary
(parser.c)

Checking identifiers to determine if
they are in the symbol table while
parsing parameters.

EnterSymbo
l

pass1 (main.c) Entering labels into the symbol table

GetDefineName
(parser.c)

Processing identifiers associated with
DEFC and DEFP.  EnterSymbol is
used since the identifiers do not have
to have been previously defined.

ProcessExtern
(parser.c)

Enter identifier associated with an
EXTERN statement into the symbol
table.

primary
(parser.c)

Called if an identifier found while
parsing a parameter is not already in
the symbol table.

Table 2.  Use of QuerySymbol and EnterSymbol

The QuerySymbol function is used to search the symbol table for a given identifier to
determine if it is in the table.  It returns a pointer to the symbol if found, NULL otherwise.
The code for QuerySymbol is given below:

SymType *QuerySymbol(char *key)
{
int found = FALSE;
SymType *p = NULL;

p = SymPntrs[tolower(key[0]) - 'a'];
while(p != NULL && !found)



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-48
Contract No. DE-AC-21-92MC29115

if(strcmp(p->id, key) == 0)
found = TRUE;

else
p = p->link;

if(found)
return p;

else
return NULL;

}

EnterSymbol first searches the table, using essentially the same code as shown for Query-
Symbol.  If the symbol is not in the table, then it is added using the code segment given
below:

if(NumEntries < SymTableSize)
p = &SymbolMemory[NumEntries++];

else
HandleException("Symbol table is full");

strcpy(p->id, key);
p->type = type;
p->LineNum = LineNumber;
p->link = SymPntrs[i];
SymPntrs[i] = p;

If the symbol is found, then it is checked for consistency using the code shown below:

if((type == CONSTANT) || (type == POSITION) || (type == EXTERN))
RecordError(es10, ERROR);

else if(type == LABEL)
{
if(p->type == UNDEFINED)

p->type = type;
else if(!(p->type == EXTERN))

RecordError(es10, ERROR);
}

else if(type == UNDEFINED)
if(!((p->type == LABEL) || (p->type == CONSTANT)))

RecordError(es13, ERROR);

The various checks on the symbol type are required to ensure that the symbol has been
correctly defined.  For instance, symbols which are defined by DEFC (CONSTANT) or DEFP
(POSITION) should not already be in the table.  They will be found by QuerySymbol when
they are used in parameters.

It should be noted that these checks imply a coordination between the use of
EnterSymbol and QuerySymbol which is not immediately evident.  This
should be cleaned up in future releases of PASM.

The CheckSymbolTable and ListSymbols Functions
Both CheckSymbolTable and ListSymbols are operations on the entire symbol table.  Both
functions contain a loop of the form:

for(i = 0, p = SymbolMemory; i < NumEntries; i++, p++)
<perform appropriate operation on symbol>



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-49
Contract No. DE-AC-21-92MC29115

The operation performed by CheckSymbol is to determine if the symbol is defined and to
print a message for each undefined symbol.  The code to perform this operation is:

if(p->type == UNDEFINED)
{
if(!flag)

{
printf("\tUndefined Symbols:\n");
flag = TRUE;
}

printf("\t[%s] (line %d) is undefined at end of pass %d\n",
p->id, p->LineNum, pass);

}

The variable flag is set the first time an error is found so that the header “Undefined
Symbols” will only be printed once.  The code for ListSymbols is more complex due the
various formatting commands but it is relatively straight forward.

The Parser
The parser has two major entry points, ParseCommand and ParsePseudop, both called by
the main program (pass1 or pass2) for the appropriate pass.  ParseCommand is called if
the input line contains a machine command while ParsePseudop is called if the input line
contains an assembler command (or pseudop).  Once the appropriate parser function is
called, the parser then performs all of the remaining activities to determine appropriate
action for the current source line.  ParseCommand is largely table driven since each K2A
command has the same structure while ParsePseudop has separate routines for each
assembler command.  Both ParseCommand and ParsePseudop depend on the routine
expression to process any arguments present in the current line.

Command and
Parameter Tables

Pseudop
Routines

ParseCommand

ParsePseudop

expression

Figure 17.  Parser structure.

The Semantic Record
Information concerning command arguments is passed in a semantic record, which is of the
form:

typedef struct
{
int type;
int s, x, y;
} SRType;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-50
Contract No. DE-AC-21-92MC29115

The type refers to the parameter type which is defined by the following typedef:
typedef enum

{
S_TYPE, C_TYPE, CP_TYPE, P_TYPE, ERR_TYPE
} ParTypes;

The various parameter types are given in table 3.

TYPE DESCRIPTION
S_TYPE A single byte constant, applicable only to the S parameter.
C_TYPE A single word constant, applicable to either the X or Y parameter.
CP_TYPE A single word constant (X or Y) or two word constants

representing X and Y.
P_TYPE A pair of word constants representing both X and Y (a position

value).

Table 3.  Description of the parameter types

When expression (and a number of the functions contained within expression) is
called, the expected type is passed as a parameter, supplying the information required for
proper processing.  Since the use of a single position parameter (as opposed to an X and a Y
parameter) is optional, the type CP_TYPE is always passed when processing an X value
which could also be a position value.  expression returns the actual type, which will be
either a C_TYPE or P_TYPE, in this case.  An error value (ERR_TYPE) is also defined and is
returned if the parameter can not be properly evaluated.  Two pre-defined semantic record
values, ErrSR and NullSR, are defined as given below:

static  SRType ErrSR = { ERR_TYPE, 0, 0, 0 }, NullSR = { 0, 0, 0, 0 };

ErrSR is returned by expression if an error occurs and NullSR is passed as a parameter
when the applicable parameter is not required.

The Expression Evaluator
The expression evaluation routine is the most complex code in the entire program.  It is
based on the following portion of the PASM BNF:

<expression> ::= <unary op> <term> {<add op> <term>} ;
<unary op> ::= '+' | '-' | empty ;
<term> ::= <primary> {<mult op> <primary>} ;
<primary> ::= <number> | <identifier> | '(' <expression> ')' ;
<number> ::= <number value> <unit> ;
<unit> ::= empty | <unit specification> ;
<unit specification> ::= 'm.' | 'ft.' | 'cm.' | ,’in’ ;
<mult op> ::= '*' | '/' ;
<add op> ::= '+' | '-' ;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-51
Contract No. DE-AC-21-92MC29115

expression

term

primary

PartialSum

a∗b + c∗ d

a b c d

+

∗

a∗ b c∗ d

∗

PartialSum

expression

term

primary

(a) expression evaluator  structure (b) expression evaluator operation

Figure 18.  Expression evaluator structure and operation

The general structure and operation of the expression evaluator is shown in figure 18.  It
consists of four main functions, expression, term, primary, and PartialSum.  The
function expression is the entry routine and handles unary operators and “add ops”
(addition or subtraction).  It first calls the function term to handle “mult ops” (the terms
formed by multiplication or division) for both the left and right operands since the mult ops
have a higher precedence.  After all of the mult ops have been completed for both operands,
expression calls the function PartialSum to perform the appropriate (+ or -) operation.
The function term operates in a similar manner, in that it first calls the function primary
to evaluate the left and right operands, then calls PartialSum to perform the indicated (*
or /) operation.  The function primary handles parenthesized expressions (indicated by the
indirectly recursive call to expression) as well as returning the value of numbers and
variables.  This allows the use of nested expressions to any desired depth.  Information is
propagated between these functions by use of semantic records (SRType).

if(token == MINUS)
LeftOp = PartialSum(NullOp, MINUS, LeftOp);

else
LeftOp = term( );

do
{
if(token == PLUS || token == MINUS)

{
op = token;
token = NextToken( );
}

else
return LeftOp;

RightOp = term( );
LeftOp = PartialSum(LeftOp, op, RightOp);
}

while(token != NULL_TOKEN);

Figure 19.  Simplified expression code.

The general form of expression is given in figure 19.  Both the LeftOp and RightOp are
semantic records.  All of the code for error checking and handling optional commas has been
removed.  The function PartialSum performs the actual arithmetic operation and returns



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-52
Contract No. DE-AC-21-92MC29115

the appropriate value.  The plus (+) and minus (-) operations have a similar form and are
treated in the same fashion syntactically.  The actual operand value is used by
PartialSum to select the appropriate operation.  A similar simplified form of term is given
in figure 20.  As with the expression code, a number of details such as error checking,
have been omitted.

LeftOp = primary( );
do

{
if(token == MULTIPLY || token == DIVIDE)

{
op = token;
token = NextToken( );
}

else
return LeftOp;

RightOp = primary( );
LeftOp = PartialSum(LeftOp, op, RightOp);
}

while(token != NULL_TOKEN);

Figure 20.  Simplified term code

Both of these modules are directly implemented from the BNF.  Consider the first two lines
of the BNF, which are:

<expression> ::= <unary op> <term> {<add op> <term>} ;
<unary op> ::= '+' | '-' | empty ;

The if statement at the beginning of the code for expression handles the optional unary
op while the do - while loop implements the repetition indicated by the use of the braces
(“{“, “}”).  The remainder of the expression evaluator (and the parser itself) are implemented
in a similar fashion.

This technique is known as recursive descent parsing and is described in section 1, PASM
Technology.

switch(token)
{
case ID: <process identifier>;

break;
case INTEGER: <process integer>;

break;
case REAL: <process real number>;

break;
case L_PAREN: match(L_PAREN);

sr = expression( );
match(R_PAREN);
break;

case EOLN_TOKEN: sr = ErrSR;
RecordError(es9, ERROR);
break;

default: sr = ErrSR;
RecordError(es6, ERROR);

}

token = NextToken(OBJECT);
return sr;

Figure 21.  Simplified primary code.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-53
Contract No. DE-AC-21-92MC29115

A simplified version of the code for primary is shown in figure 21.  While this code is quite
straight forward, primary is a very complex function because of the number of details
which must be checked.  For instance, primary has to search the symbol table for each
identifier to retrieve the semantic information or, in pass 1, possibly enter the symbol into
the table if it is not defined.  Since variables may be addresses or byte values (S_TYPE), X
or Y values (C_TYPE), or position variables (P_TYPE), primary must do type checking to
determine if the indicated operation is appropriate.  This is handled by table lookup using
the array TypeCheck.  primary must also check for the presence of units following either
integers or real numbers.  The semantic record variable (sr) is a local variable within
primary and is set by the appropriate code for the first three cases (ID, INTEGER, and
REAL).

A significant portion of the work performed by primary involves type checking, or resolv-
ing the match between the expected type and the actual type.  This is handled by perform-
ing an action from the TypeCheck array, defined below:

typedef enum
{
A1, A2, A3, A4, A5, A6, E1, E2
} ParserActionTypes;

static char TypeCheck[3][4] =
{
{ A1, A2, E1, A3 },
{ E1, A4, E1, E2 },
{ E1, A5, A6, E2 },
};

EXPECTE
D

ACTUAL TYPE

TYPE LABEL CONSTAN
T

POSITION UNDEFINE
D

S_TYPE A1 A2 E1 A3
C_TYPE E1 A4 E1 E2

CP_TYPE E1 A5 A6 E2

Table 4.  Contents of the TypeCheck array

The contents of the TypeCheck array are also shown in table 4 with the argument values
given.  The actual parser actions are given in table 5.

VALUE ACTION TO BE TAKEN
A1: sr.s = p->s
A2: sr.s = p->x
A3: if(pass == 2)

        E2
A4: sr.x = p->x
A5: sr.x = p->x, sr.type = C



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-54
Contract No. DE-AC-21-92MC29115

A6: sr.x = p->x, sr.y = p->y, sr.type = P
E1: Type error (es13)
E2: Undefined symbol (es6)

Table 5.  Parse actions
The values contained in this array represent a parser action (A1 to A6) or an error condi-
tion (E1, E2).  When the primary routine is called, it is passed a value which gives the
expected type.  If the actual parameter is a literal, then the type is taken to be CONSTANT.
If the parameter is an identifier, then it is looked up on the symbol table and the type
stored in the table is used.  The value from the TypeCheck array, using the expected type
and the actual type as indices, is then used as the selector of a switch statement to select
the appropriate action.  This code is shown in figure 22.

switch(TypeCheck[type][p->type])
{
case A1: sr.s = p->s;

break;
case A2: sr.s = (int) p->x;

break;
case A3: if(pass == 2)

{
RecordError(es6, ERROR);
sr = ErrSR;
}

break;
case A4: sr.x = p->x;

break;
case A5: sr.x = p->x;

sr.type = C_TYPE;
break;

case A6: sr.x = p->x; sr.y = p->y;
sr.type = P_TYPE;
break;

case E1: RecordError(es13, ERROR);
sr = ErrSR;
break;

case E2: RecordError(es6, ERROR);
sr = ErrSR;
break;

default: HandleException("Type check error");
}

Figure 22.  Switch statement used with the TypeCheck array

The function used for parameter checking, ParameterCheck, is also considered part of the
expression evaluation code.  This routine, whose code is given in figure 23, is passed the
parameter value (ParValue), the parameter identity (S, X, or Y, par), and the parameter
type (type).  It uses the information in the parameter limit table (ParLimits) to deter-
mine if the parameter is within the legal range and issues a warning if not.

/*--BEGIN FUNCTION--(ParameterCheck)----------------------------------------*/

static void ParameterCheck(long ParValue, int par, int type)
{
if(ParValue < ParLimits[type].NegMin)

{
sprintf(ErrBuf, "%s parameter [%ld] < negative minimum value [%ld]",



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-55
Contract No. DE-AC-21-92MC29115

parameters[par].name, ParValue, ParLimits[type].NegMin);
RecordError(ErrBuf, WARNING);

}
else if(ParValue > ParLimits[type].NegMax && ParValue < ParLimits[type].PosMin)

{
sprintf(ErrBuf, "%s parameter = [%ld] not [%ld - %ld] && [%ld - %ld]",

parameters[par].name, ParValue, ParLimits[type].NegMin,
ParLimits[type].NegMax, ParLimits[type].PosMin,
ParLimits[type].PosMax);

RecordError(ErrBuf, WARNING);
}

else if(ParValue > ParLimits[type].PosMax)
{
sprintf(ErrBuf, "%s parameter [%ld] > maximum value [%ld]",

parameters[par].name, ParValue, ParLimits[type].PosMax);
RecordError(ErrBuf, WARNING);

}
}
/*--END FUNCTION--(ParameterCheck)------------------------------------------*/

Figure 23.  Parameter checking code

Parsing of Machine Commands

(a) command table (b) parameter table

opcode S X Y

Command Command Table Parameter Parameter Table

Parameter Range

Figure 24.  Primary parser tables

ParseCommand uses two tables (see figure 24), the command table and the parameter
table.  The command table has entries of the form

typedef struct
{
char opcode;
char s;
char x;
char y;
} CommandType;

for each command token value.  The opcode is generally the same as the token value but it
is placed in the table for generality.  The s, x, and y values give the parameter type or have
a value of 0 if the parameter is not used with the command.  The current1 parameter values
are:

                                           

1 The modifier current is emphasized because the parameter values are subject to change and

have not been totally defined as of PASM v1.33.  This is one of the reasons they are stored in a

table.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-56
Contract No. DE-AC-21-92MC29115

typedef enum
{
NONE, ACCEL_DRV, ACCEL_STR, AZIMUTH, BEGREES, S_WORD, U_WORD, U_BYTE,
S_WORD_NZ, DISTANCE, DIST_WALL, DIST_TURN, DIST_APPR, DIST_DOCK,
DIST_UNDOCK, DOCK_NUM, R_SPEED, STEERV, DEFLECT, DEFLECT_RATE,

SPI_MODE,
S_512, S_999, BINARY, DIST_JUNK, DOOR_TYPE, S_700, DRIVE_CUR,
STEER_CUR
} ParameterTypes;

The parameter types are based on the allowable range of values for that parameter.  This
range of values is stored in the parameter table and is used to check to determine if the pa-
rameter is within the legal range.  Each entry in the parameter table is of the form

typedef struct
{
long NegMin;
long NegMax;
long PosMin;
long PosMax;
} ParameterLimitType;

which allows for separate positive and negative ranges where appropriate.  This is the
same type used by the ParameterCheck routine which was described previously.

create icode
set CodeState

Process S
Argument

ParseCommand

Pass == 2

CmdData.s

CmdData.x

CmdData.y
&& ! PosPar

Process Y
Argument

Process X
Argument

Check for
remaining

tokens

return

Figure 25.  Flowchart of ParseCommand

A flowchart given the operation of ParseCommand is given in figure 25.  The routine first
gets the appropriate information on the command from the command table and places it in
the C struct CmdData, which has the same type (CommandType) as the command table.  If
it is the second pass then the opcode will be placed in the variable icode and the
CodeState set to COMMAND_PAR.  The parameters are then parsed by blocks of code having
the form

if(CmdData.<parameter>)



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-57
Contract No. DE-AC-21-92MC29115

{
sr = expression(<parameter type>)
if(pass == 2)

<generate code>

}

CodeState is a bit-vector variable used by the BuildOutput routine to determine if a
value is present or not.  ParseCommand sets the appropriate bit to one for each parameter
present in the output.  The corresponding value of the parameter is placed in the variable
icode.  The local variable PosPar is set true if a position parameter (P_TYPE) is found
when processing the X parameter.  In this case it is not necessary to process the Y value.

Parsing of Pseudo-Operations
The second entry point into the parser is the function ParsePseudop, which is called to
handle the occurrence of one of the pseudo-operations DEFC, DEFP, DEFD, DEFS, EXTERN,
EXTERN_REF, or INCLUDE.  ParsePseudop is implemented as a switch statement with an
entry for each operation.  The code ParsePseudop is given in figure 26.

ParsePseudop was implemented as a switch statement to make it more extensible.  New
assembler commands may be added by inserting new case statements with little or no
impact on the remainder of the code.  There are several aspects of the ParsePseudop code
which are worth noting.  First, note that most, but not all, of the case statements begin
with a token fetch (token = NextToken( )), the two exceptions being ProcessExtern-
Ref and ProcessInclude.  Since at least one of the cases did not require a pre-fetch, it
was necessary to place individual statements in each case as opposed to a single statement
prior to the switch.  Second, note that a pointer to the statement label (if any) is passed to
ParsePseudop.  This is to handle the operations, such as DEFC, which may be expressed in
either of the two formats give below:

DEFC MaxSpeed 100
MaxSpeed DEFC 100

The label pointer (label) is passed to ParsePseudop (and on to the actual code to imple-
ment the operation) so that it will be available if needed.  If both an operand and a label
are supplied, then the operand is used by default.

This code also provides a good example of the use of the exception handler.  If ParsePseu-
dop is called with an illegal assembler command, it notes the module in which the error
was detected and calls HandleException to terminate the program.  There are no
“proper” conditions under which HandleException should be called.  Some calls, such as this
one, indicate an error in the PASM code.  In other cases, such as overflow in the symbol
table, the call indicates that a capacity has been exceeded but does not necessarily indicate
an error in the program.  It would be appropriate to better differentiate between these two
cases in later releases of the program.

As with the other entry point into the parser (ParseCommand), the end of line token is
checked to determine if it is a proper terminator (either a newline or a comment) and a
warning is issued if this is not the case.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-58
Contract No. DE-AC-21-92MC29115

/*--BEGIN FUNCTION--(ParsePseudop)----------------------------------------
*/

void ParsePseudop(int command, SymType ∗label)
{
switch(command)

{
case DEFC: token = NextToken(OBJECT);

DefineConstant(label);
break;

case DEFP: token = NextToken(OBJECT);
DefinePosition(label);
break;

case DEFD: token = NextToken(OBJECT);
SetDriveAccel( );
break;

case DEFS: token = NextToken(OBJECT);
SetSteerAccel( );
break;

case EXTERN: token = NextToken(OBJECT);
ProcessExtern( );
token = NextToken(OBJECT);
break;

case EXTERN_REF: ProcessExternRef(label->id);
token = NextToken(OBJECT);
break;

case INCLUDE: ProcessInclude( );
token = NextToken(OBJECT);
break;

default: HandleException("ParsePseudop logic error");
}

if(!TerminatorToken(token))
RecordError(es8, WARNING);

}
/*--END FUNCTION--(ParsePseudop)------------------------------------------
*/

Figure 26.  ParsePseudop

The DEFC and DEFP Commands
Both DefineConstant and DefinePosition first call the function GetDefineName (see
figure 27) to resolve which format applies and to return a pointer to the operand (in the
symbol table).  GetDefineName first determines if the next token is an ID.  If so, then
during pass 1 the symbol table is checked to determine and the symbol is entered if it was
not already in the table.  The symbol is also checked for type by comparing it to the type
passed to the module when it was called (CONSTANT for DefineConstant, POSITION for
DefinePosition).  If the token is not an ID, then the label is returned as the operand if it
exists, else an error message is generated and NULL is returned.

The code for DefineConstant is given in figure 28.  The first action is to
GetDefineName, which returns a pointer to the operand.  The type input parameter for
GetDefineName is set to CONSTANT since this is the expected appropriate type here.
expression is then called to evaluate the value and returns the results in a semantic
record sr, which is defined as a local variable in DefineConstant.  The code in the if
statement which follows causes the values returned by the semantic record to stored in the



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-59
Contract No. DE-AC-21-92MC29115

symbol table entry for the operand.  This code is called on pass 1 since define values must
be available at the beginning of pass 2.  The test (p != NULL) inhibits action if no operand
was found by GetDefineName.  No error message is generated here since this was done by
GetDefineName.

The code for DefinePosition follows the same form but is slightly more complex since
two values are involved.  No parameter checking is done since the intended use for variable
associated with these commands cannot be inferred from the definition.

/*--BEGIN FUNCTION--(GetDefineName)-------------------------------------*/

static SymType *GetDefineName(SymType *label, int type)
{
SymType *p = NULL;

if(token == ID)
{
if(pass == 1)

{
p = EnterSymbol(id, type);
if(p->type != type)

p = NULL;
}

token = NextToken(OBJECT);
}

else if(label == NULL)
RecordError(es9, ERROR);

else
p = label;

return p;
}
/*--END FUNCTION--(GetDefineName)---------------------------------------*/

Figure 27.  GetDefineName

/*--BEGIN FUNCTION--(DefineConstant)-----------------------------------*/

static void DefineConstant(SymType *label)
{
SRType sr = { 0, 0, 0, 0 };
SymType *p;

p = GetDefineName(label, CONSTANT);
sr = expression(C_TYPE);
if((pass == 1) && (p != NULL))

{
p->type = CONSTANT; p->x = sr.x; p->y = 0;
}

}
/*--END FUNCTION--(DefineConstant)-------------------------------------*/

Figure 28.  Code for DefineConstant



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-60
Contract No. DE-AC-21-92MC29115

The DEFD and DEFS Commands
The DEFD and DEFS commands are used to set the drive (DEFD) and steer (DEFS) accelera-
tion values.  They are similar to DEFC and DEFP but are simplified by the fact that they
control the value of program variables (AccelDrive, AccelSteer) rather than an
operand is required.  These commands are implemented by the SetDriveAccel and
SetSteerAccel functions.  The code for SetDriveAccel is given in figure 29.
SetSteerAccel is not shown since it has the same format.  Parameter checking is done on
these values since the desired ranges are known.

/*--BEGIN FUNCTION--(SetDriveAccel)-----------------------------------*/

static void SetDriveAccel(void)
{
SRType sr = { 0, 0, 0, 0 };

sr = expression(C_TYPE);
if(sr.type == ERR_TYPE)

RecordError(es6, ERROR);
else

{
AccelDrive = (int) sr.x;
if(mode & PARAMETER_CHECK)

ParameterCheck(sr.x, X, ACCEL_DRV);
}

}
/*--END FUNCTION--(SetDriveAccel)-------------------------------------*/

Figure 29.  SetDriveAccel code

The Include Directive

/*--BEGIN FUNCTION--(ProcessInclude)-----------------------------------*/

static void ProcessInclude(void)
{
FILE *fpinc;
StackElement x;
char IncludeFile[FILENAME_LENGTH+EXTENSION_LENGTH+2];

if(GetFileName(IncludeFile))
{
if((fpinc = fopen(IncludeFile, "r")) == NULL)

{
sprintf(ErrBuf, "[%s] %s", IncludeFile, es3);
RecordError(ErrBuf, ERROR);
}

else
{
IncludeLevel++;
x.LineNumber = LineNumber;
strcpy(x.filename, CurrentFile);
x.fp = fp;
LineNumber = 0;
fp = fpinc;
strcpy(CurrentFile, IncludeFile);
PushIncludeStack(x);
IncludeChange = TRUE;
}

}



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-61
Contract No. DE-AC-21-92MC29115

else
RecordError(es16, ERROR);

}
/*--END FUNCTION--(ProcessInclude)-------------------------------------*/

Figure 30.  ProcessInclude code.

The code to process the include directive, ProcessInclude, is given in figure 30.  This
code uses the scanner function GetFileName to read the filename into the program vari-
able IncludeFile.  GetFileName is used rather than NextToken because the legal char-
acters for filenames are different from those of program variables.  It also includes the
actions required to open the file.  ProcessInclude increments the variable Include-
Level and pushes the current input file state (the line number, file name, and file pointer)
onto the include stack.  These values are then initialized so that the current file is now the
include file and the variable IncludeChange is set to flag this change for NextLine so that
it can output a new program header.

The EXTERN Command
The processing of the EXTERN command (ProcessExtern) and references to external
objects (ProcessExternalRef) are included in the code for v1.33 but are not yet well
defined.  Their description is omitted for this reason.

Error Handler

(a) error queue (b) queue operations

RecordErrorOutputErrors
RecordError

OutputErrors

InitErrorQueue
FlushErrorQueue

Error Queue

Figure 31.  Error queue

The primary components of the error handler (see figure 31) are the error queue and sev-
eral operations that queue, which are provided by the following functions:

void InitErrorPackage(void)
void RecordError(char *msg, int ErrType)
void OutputErrors(void)
void FlushErrorQueue(void)

The two primary functions of the error handler are the functions RecordError and Out-
putErrors.  RecordError provides a mechanism to associate an error message with a given
token and to place that message in the error queue for later use.  OutputErrors provides a
mechanism to have the error messages either displayed on the screen or placed in the out-
put listing, generally after an entire line is processed.  The error messages may contain
run-time information if desired.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-62
Contract No. DE-AC-21-92MC29115

The Error Queue
The error queue is implemented as a singly-linked list.  The error queue entries
(ErrorEntry) are defined by the code given in figure 32.  The entry for each message con-
sists of the following items:

• A pointer to the actual error message (char *msg)

• The index position of the related token in the input line buffer.

• The error class (WARNING, ERROR).

• dynmsg flag, set true if the message is stored in the error buffer (ErrBuf).  If the
message has been created at run time (stored in ErrBuf), then space will have to
allocated for it in the queue.

• addmsg flag, set true for other than the first message in the queue.  Used when
additional messages are suppressed.

• The pointer (link) used to construct the queue.

/*
! ERROR QUEUE ENTRY STRUCTURE
!
! dynmsg is set if the message pointer in RecordError points to
! ErrBuf.  In this case space is dynamically assigned.  addmsg
! is set for the second (and each succeeding) error for a given
! symbol.  This allows the disabling of multiple error messages
! for a given symbol.
*/
typedef struct ErrTag

{
char *msg;
int ErrPos;
int class;
int dynmsg;
int addmsg;
struct ErrTag *link;
} ErrorEntry;

static ErrorEntry *head = NULL;
static ErrorEntry *tail = NULL;

Figure 32.  Error entry and error queue code.

Error System Variables
The variables used by the error system are given in figure 33.  The variable ErrorRaised
is a flag which may be tested to determine if there are any messages in the error queue.
The array ErrBuf[60] is used to store messages which are created dynamically at run-
time.  The file pointer fperr is static since it is set internally by testing the value of the
mode and pass variables.

/*
! Error system variables which are available externally
! i.e., have external linkage.
*/
int ErrorCount = 0;
int ErrorRaised;



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-63
Contract No. DE-AC-21-92MC29115

int WarningCount = 0;
char ErrBuf[60];
/*
! Error system variables available in error.c only:
*/
static FILE *fperr;
static int FirstError = TRUE;
static int FirstWarning = TRUE;
static int LeftMargin;
static int ErrorSystemInhibited = FALSE;
static int ErrorSystemDisabled = FALSE;
static int TabSize;
static int unclassified = 0;

Figure 33.  Error system variables

The Error Messages
Error messages which are used multiple times are stored in error.c so that they can be
reused to conserve memory.  The error messages as of v1.33 are shown in figure 33.

/*
! ERROR STRING STORAGE:
! Those error strings which are used multiple times are
! stored here to conserve memory.
*/
char *es1  = "\tUSAGE pa { options } < source file >";
char *es2  = "\t      pa -h for help";
char *es3  = " could not be opened";
char *es4  = "Illegal command";
char *es5  = "Exceeds maximum number of extern entries";
char *es6  = "Undefined symbol" ;
char *es7  = "Input line truncated" ;
char *es8  = "Token after end of statement" ;
char *es9  = "Expecting parameter" ;
char *es10 = "Symbol previously defined" ;
char *es11 = "Possible missing comma" ;
char *es12 = "Number of commands exceeds 255" ;
char *es13 = "Type error" ;
char *es14 = "Improper use of keyword" ;
char *es15 = "/0 error" ;
char *es16 = "Invalid filename" ;

Figure 33.  Error message strings

The InitErrorPackage Function
The function InitErrorPackage is called at the beginning of each pass to initialize the vari-
ous internal variables of the error system.  This code follows the general form:

<initialize simple variables>
if(pass == 1)

if(DEBUG mode)
<set operating parameters for stdout>

else
ErrorSystemInhibited = TRUE;

else
if(LISTING mode)

<set operating parameters for listing>
else if(DEBUG mode)



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-64
Contract No. DE-AC-21-92MC29115

<set operating parameters for stdout>

when the simple variables are the counts and the flags.  The operating parameters, which
include the error file pointer (fperr), the tab size (TabSize), and the value of the left
margin (LeftMargin), are a function of the pass and the mode variable.  The error system
is inhibited during pass 1 unless the DEBUG mode is set, in which case the errors are sent to
the stdout.  If a listing file is being created, all errors detected in pass 2 are sent to the
listing file.  If there is no listing file and DEBUG mode is set, all errors detected in pass 2 are
reported to stdout.

The RecordError Function
The RecordError function is used to insert messages in the error queue.  RecordError is
passed an error message and a classification for the message (WARNING or ERROR).  PASM
uses one-token lookahead, which means that when an error is detected, it is always appli-
cable to the current token.  Since the position of the current token is known (the token
pointer variable, tp, from the scanner), it is not necessary to pass this information to
RecordError.

The RecordError function contains a large number of details since it must test a number
of logical conditions, however the general flow of the code, given below, is straight forward.

<determine if message should be accepted>
<record type and increment appropriate count>
<test for maximum number of errors (ERROR_MAX)>
if(RecordInhibited || ErrorSystemInhibited)

return;
<set addmsg>
if(msg == ErrBuf)

{
dynmsg = TRUE;
<allocate space>
}

ErrPos = (tp - line);
<link message into queue>
ErrorRaised = TRUE;

The OutputErrors Function
The OutputErrors function removes messages from the queue, frees the space used by
the variable, and outputs it as determined by the operating variables.  If the message is
sent to the listing, OutputErrors also increments the line number variable (LineNumber)
so that the correct number of lines will appear on the page.

When OutputErrors sends messages to the listing, it includes a marker (the “^” charac-
ter) at the beginning of the applicable token.  The message is written on the line below the
marker, so the message actually occupies two lines.  There are two major formatting prob-
lems.  First, the starting point (the left margin) must be known.  This is computed by the
initialization routine and stored in the variable LeftMargin.  The second problem is com-
puting the tab stops.  Since tabs are stored as a single ASCII code, the index position of a
variable in the input line is not the correct actual location when tabs are used.  The tab size



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-65
Contract No. DE-AC-21-92MC29115

(TabSize) is computed by the initialization routines.  The function PrintMarker uses this
information to compute the number of spaces required to correctly position the marker.

Utility Package
The file utility.c is used to hold various utility routines of general use.  It currently con-
tains the table used for converting the units and the stack routines used for the include
stack.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-66
Contract No. DE-AC-21-92MC29115

THE PASM SUPPORT UTILITY (PSU)

INTRODUCTION
PSU is a support program which is used to automate the creation of the various PASM
tables.  It is designed to run in any (ANSI) environment and has a simple menu interface
for ease of use.  PSU is not designed to be an end user program and is not written to the
same standards as PASM.  It is implemented as a single, rather large (>50K bytes for
v1.40), file (psu.c).  Because PSU uses the same header files as PASM, most PASM
changes are automatically reflected in PSU.  However, PSU is the mechanism by which
most PASM parameter values are defined, so these changes are first made in the appropri-
ate PSU tables, then a new copy of the appropriate PASM table is created and inserted in
the program.  These tables define most of the base values for the Path Assembler so their
accuracy is essential.

PASM Support Utility    v1.40
Vocabulary entries:         [126] entries
Command table:              [89] entries
Alias table:                [11] entries
Parameter table:            [38] entries
Pseudop table:              [6] entries
Last command table entry:   [dowhile=]
Last alias table entry:     [wends]
Last parameter table entry: [Special processing
required]
Last pseudop table entry:   [include]

Press [RETURN] for next screen ..

Figure 1.  PSU opening screen

The PSU opening screen is given in figure 1.  The opening screen gives the sizes of various
tables along with the last entry.  This information has no particular use and is included
primarily for a “sanity check” on the program.  The value given for “Vocabulary
entries” is the value of LAST_TERMINAL in pasm.h.  The vocabulary enumeration is the
primary item from the header file which used by PSU.  The command, alias, parameter,
and pseudop tables are the primary sources of information used by PSU.  There sizes and
last entry are displayed to convey the current state of PSU.

The PSU main menu is given in figure 2.  This menu contains the commands to construct
the primary tables used by PASM.  The token value and keyword tables are used by the
scanner (in scanner.c).  The token value table is used for initial assignments of the token
values representing the appropriate vocabulary component.  The keyword table is used by



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-67
Contract No. DE-AC-21-92MC29115

the scanner to look up identifiers to see if they match a PASM keyword.  If so, the token
value is changed from ID to the appropriate keyword value.

The command and parameter tables are used by the parser (in parser.c) for the information
required to parse machine commands.  These two tables are the primary “intelligence” of
PSU and are fundamental to the operation of PASM.  The structure of these tables will be
discussed in a section to follow.

-------------------------------------------------------------------------
PASM Support Utility   v1.40

[1]:  Menu 2 Items
[2]:  Build Token Value Table
[3]:  Build Keywords Table
[4]:  Build Command Table
[5]:  Build Parameter Table
[6]:  Build Paramater Sign Table
[7]:  Build Parameter List
[8]:  Build Disassember Table
[F]:  Specify Files
[H]:  Help
[M]:  Display Menu
[Q]:  Exit Program

-------------------------------------------------------------------------
Output File:  [Not Specified]
-------------------------------------------------------------------------

(PASM Support Utility) Select Option [ ]

Figure 2.  PSU Main menu

-------------------------------------------------------------------------
PASM Support Utility (Menu2)   v1.40

[1]:  Generate Command Documentation
[2]:  Generate Parameter Documentation
[3]:  Generate PASM Test Suite
[4]:  Generate PASM Parameter Limits Test Suite
[5]:  BuildToLowerTable
[6]:  BuildIsDigitTable
[7]:  BuildIsHexTable
[F]:  Specify Files
[H]:  Help
[M]:  Display Menu2
[R]:  Return to Main Menu
[Q]:  Exit Program

-------------------------------------------------------------------------
Output File:  [Not Specified]
-------------------------------------------------------------------------

(Menu 2  ) Select Option [ ]

Figure 3.  PSU menu 2 items

Menu 2, shown in figure 3, contains the commands for several secondary operations.  These
include general of command and parameter documentation, creation of some simple test
suites, and the construction of several utility tables.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-68
Contract No. DE-AC-21-92MC29115

PSU DATA TABLES
PSU uses two sources of information about PASM, the PASM header file and several
internal tables, the command table, the parameter table, and the pseudop table.  The
internal tables, shown in figure 4, are the only source of information on the actual com-
mands and parameters, so it is vital that they be kept up to date.

Parameter
Table

Pseudop
Table

Command
Table

Alias
Table

Figure 4.  Primary PSU tables

The Command Table

0
1
2
3
4
.
.
.
.

n-2
n-1

Opcode name (string)

Opcode value

Function code value

S parameter type

X parameter type

Y parameter type

Figure 5.  Command table entry

The command table (illustrated in figure 5) contains an entry for each command (and for
each unused opcode within the contiguous opcode map) in the path language.  Each entry
consists of (i) the opcode name, stored as a string, (ii) the opcode value, (iii) the actual
function code assigned to the opcode, and (iv) information about each of the three possible
command parameters.  The opcode value is the same as the index for the location and is
used to reference the table.  The function code is the same value if the opcode is used, 0
otherwise.  This structure allows the use of the opcode as an index to the table while han-



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-69
Contract No. DE-AC-21-92MC29115

dling “holes” in the opcode map.  The parameter types are indices to the parameter table.
The C code used to define each command table entry is given in figure 6.

typedef struct
{
char cmd[16]; /*  command identifier  */
int opcode; /*  opcode value, not always assigned  */
int Fcode; /*  Function code for assigned opcodes  */
int s; /*  index for S parameter in parameters table  */
int x; /*  index for X parameter in parameters table  */
int y; /*  index for Y parameter in parameters table  */
} CmdType ;

Figure 6.  C struct used to define command table entry.

The command table itself is shown in figure 7.  The table is statistically initialized.

CmdType commands[LAST_COMMAND+1] =
{
{"nop", 0, NOP, NONE, NONE, NONE },
{"run", 1, RUN, MAX_SPEED, S_WORD, S_WORD },
{"turn", 2, TURN, NONE, MAX_AZIMUTH, NONE },
.
.
{"dostop@", 92, DOSTOP_AT, NUM_DO_INSTR, S_WORD, S_WORD },
{"apprwall", 93, APPROACH, NONE, DIST_WALL, NONE },
{"apprjunk", 94, APPROACH, NONE, NONE, DIST_JUNK },
{"", 0, 0, 0, 0 },
} ;

Figure 7.  Command table (partial code).

Notice that the last two entries are the alternative forms (apprwall, apprjunk) of the
approach command.  They have the same value of function code but take different argu-
ments.  All unused opcode values are assigned nop’s.

typedef struct
{
char name[32];
char token[32];
} NameType;

NameType AliasNames[16] =
{
{ "call!=", "CALL_NE" },
{ "callneq", "CALL_NE" },
.
.
{ "wend", "WENDS_AT" },
{ "wends", "WENDS_AT" },
{ "", "" }
} ;

Figure 8.  Alias table.

The alias table, shown in figure 8, allows assigning multiple names to a given command.  It
allows compatibility with previous versions of PASM.  This technique is preferred to allow-
ing abbreviations since it is more controllable and less error prone.



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-70
Contract No. DE-AC-21-92MC29115

The Parameter Table

PARAMETER NAME TOKEN VALUE
Unsigned byte (generic value) U_BYTE 0 ⇒ 255
Unsigned word (generic value) U_WORD 0 ⇒ 65,535
Signed word (generic value) S_WORD -32,737 ⇒

32,767
Wall distance (X, Y) DIST_WALL 300 ⇒700
Junk distance (Y) DIST_JUNK 100 ⇒ 1,000
Binary variable (generic value) BINARY 0 ⇒ 1
Collision avoidance distance (X, Y) DIST_AVOID 0 ⇒ 600
Maximum speed (S) MAX_SPEED 0 ⇒ 250
Maximum deflection (X) MAX_DEFLECTION 0 ⇒ 85
Maximum deflection rate (Y) MAX_DEFL_RATE 0 ⇒ 5
Maximum excursion distance (X, Y) MAX_EXC_DIST 0 ⇒ 800
Maximum steer velocity (Y) MAX_STEER_VEL 0 ⇒ 350
Drive motor current limit DRIVE_CUR_LIMIT 0 ⇒ 350
Steer motor current limit (Y) STEER_CUR_LIMIT 0 ⇒ 250
Number of DO instructions (S) NUM_DO_INSTR 1 ⇒ 25
Maximum dock number (S) MAX_DOCK_NUM 0 ⇒ 31
Distance from dock to stop (X) MAX_DOCK_STOP 50 ⇒ 600
Distance from dock to obstacle (Y) MAX_DOCK_OBS 0 ⇒ 600
Door type (S) DOOR_TYPE 0 ⇒ 6
Distance to door center (X) DOOR_DISTANCE 200 ⇒ 600
Width of door opening (Y) DOOR_WIDTH 300 ⇒ 800
Follow distance MAX_FOLLOW_DIS

T
0 ⇒ 600

Gate distance (X) MAX_GATE_DIST ±200 ⇒ ±700
Gate width (Y) MAX_GATE_WIDT

H
0 ⇒ 255

Distance to hall wall (X) MAX_HALL_DIST -600 ⇒ 600
Maximum azimuth value (X) MAX_AZIMUTH 0 ⇒ 1023
Maximum address value (X, Y) MAX_ADDRESS 0 ⇒ 65,535
Maximum absolute direction (Y) MAX_REL_DIRECT 0 ⇒ ±512
SPI mode (S) SPI_MODE 0 ⇒ 2
Maximum RUNON radius (X) MAX_RADIUS 50 ⇒ 1,000
Maximum steer acceleration (X) MAX_STEER_ACC

EL
0 ⇒ 10

Maximum drive acceleration (Y) MAX_DRIVE_ACCE 0 ⇒ 35



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-71
Contract No. DE-AC-21-92MC29115

L
Maximum tilt angle (Y) MAX_TILT_ANGLE -999 ⇒ 999
Maximum undocking distance (X) MAX_UNDOCK_DIS

T
 -32,767 ⇒ 0

Positive word POS_WORD 0 ⇒ 32,767
Unlimited range UNLIMITED -32,767 ⇒

65,535
Special processing required SPECIAL 0

Figure 9.  Parameter table information

The parameter table information is used to (i) determine if the parameter is required and
(ii) define the legal values for the parameter.  The table given in figure 9 gives the infor-
mation contained in the parameter table.  The process by which this information was gath-
ered was to start at the beginning of the opcode sequence and identify each unique parame-
ter.  Many of the parameters, the maximum value of an address for instance, are over-
loaded (used in several different situations).  The same numerical value will occur more
than once where the types of parameters differ substantially and there is a good chance
that one might be changed without affecting the other.  (Note:  It may be necessary to
separate some of the existing over-loaded parameters in the future.)  The parameter values
are assigned by an enumeration in pasm.h.  The C code for the parameter table entry and
for the table itself is shown is figures 10 and 11.

The enumeration also includes NONE in the first position (i.e., NONE = 0) to be used where
no parameter is required.

typedef struct
{
char par[32]; /*  parameter identifier  */
char Ptoken[16]; /*  string for ParameterType enum entry  */
int Pcode; /*  Numeric value of function code (opcode)  */
int Dcode; /*  Symbolic value of function code  */
long NegMin; /*    */
long NegMax; /*    */
long PosMin; /*    */
long PosMax; /*    */
} ParType;

Figure 10.  C struct for parameter table entry

ParType parameters[LAST_PARAMETER+1] =
{
{ "None", "NONE", 0, NONE, 0, 0, 0, 0 },
{ "Unsigned byte (generic value)", "U_BYTE", 1, U_BYTE, 0, 0, 0, 255 },
{ "Unsigned word (generic value)", "U_WORD", 2, U_WORD, 0, 0, 0, 65535 },
{ "Signed word (generic value)", "S_WORD", 3, S_WORD, -32737, 0, 0, 32767 },
{ "Wall distance", "DIST_WALL", 4, DIST_WALL, 0, 0, 300,700 },
{ "Junk distance", "DIST_JUNK", 5, DIST_JUNK, 10, 0, 00, 1000 },
.
.
{ "Maximum drive acceleration", "MAX_DRIVE_ACCEL", 32, MAX_DRIVE_ACCEL, 0, 0, 0, 35 },
{ "Maximum tilt angle", "MAX_TILT_ANGLE", 33, MAX_TILT_ANGLE, -999, 0, 0, 999 },
{ "Maximum undocking distance", "MAX_UNDOCK_DIST", 34, MAX_UNDOCK_DIST, -32767, 0, 0, 0 },
{ "Positive word", "POS_WORD", 35, POS_WORD, 0, 0, 0, 32767 },
{ "Unlimited range", "UNLIMITED", 36, UNLIMITED, -32767, 0, 0, 65535 },



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-72
Contract No. DE-AC-21-92MC29115

{ "Special processing required", "SPECIAL", 37, SPECIAL, 0, 0, 0, 0 },
{ "", "", 0, 0, 0, 0},
} ;

Figure 11.  Partial code for parameter table

The Pseudop Table

typedef struct
{
char pseudop[32];
char PseudopToken[16];
int PseudopCode;
} PseudopType;

Figure 12.  C struct for pseudops

The final table is the pseudop table, which holds the definitions of the PASM pseudops (or
assembler directives).

PseudopType pseudops[LAST_PSEUDOP - LAST_COMMAND + 1] =
{
{ "defc", "DEFC", DEFC },
{ "defd", "DEFD", DEFD },
{ "defp", "DEFP", DEFP },
{ "defs", "DEFS", DEFS },
{ "extern", "EXTERN", EXTERN },
{ "include", "INCLUDE", INCLUDE },
{ "", "", 0 }
} ;

Figure 13.  pseudop table

PARAMETER DOCUMENTATION
PSU can create simple documentation on either commands (figure 14) or parameters (figure
15).  The primary use of this feature is for checking the contents of the tables themselves.

run (1) (position command)
S-Parameter: Maximum speed
X-Parameter: Signed word (generic value)
Y-Parameter: Signed word (generic value)

turn (2)
S-Parameter: None
X-Parameter: Maximum azimuth value
Y-Parameter: None
.
.

dowhen!= (87)
S-Parameter: Number of DO instructions
X-Parameter: Maximum address value
Y-Parameter: Signed word (generic value)

dowhile= (88)
S-Parameter: Number of DO instructions



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-73
Contract No. DE-AC-21-92MC29115

X-Parameter: Maximum address value
Y-Parameter: Signed word (generic value)

Figure 14.  Example command documentation

None                           NONE           [0..0], [0..0]
Unsigned byte (generic value)  U_BYTE         [0..0], [0..255]
Unsigned word (generic value)  U_WORD         [0..0], [0..65535]
Signed word (generic value)    S_WORD         [-32737..0], [0..32767]
Wall distance                  DIST_WALL      [0..0], [300..700]
Junk distance                  DIST_JUNK      [10..0], [0..1000]
Binary variable                BINARY         [0..0], [0..1]
Collision avoidance distance   DIST_AVOID     [0..0], [0..600]
Maximum speed                  MAX_SPEED      [0..0], [0..250]
Maximum deflection             MAX_DEFLECTION [0..0], [0..85]
Maximum deflection rate        MAX_DEFL_RATE  [0..0], [0..5]
Maximum excursion distance     MAX_EXC_DIST   [0..0], [0..800]
Maximum steer velocity         MAX_STEER_VEL  [0..0], [0..350]
Drive motor current limit      DRIVE_CUR_LIMIT [0..0], [0..350]
Steer motor current limit      STEER_CUR_LIMIT [0..0], [0..250]
Number of DO instructions      NUM_DO_INSTR   [0..0], [1..25]
Maximum dock number            MAX_DOCK_NUM   [0..0], [0..31]
Distance from dock to stop     MAX_DOCK_STOP  [0..0], [50..600]
Distance from dock to obstacle MAX_DOCK_OBS   [0..0], [0..600]
Door type                      DOOR_TYPE      [0..0], [0..6]
Distance to door center        DOOR_DISTANCE  [0..0], [200..600]
Width of door opening          DOOR_WIDTH     [0..0], [300..800]
Follow distance                MAX_FOLLOW_DIST [0..0], [0..600]
Gate distance                  MAX_GATE_DIST  [-700..-200], [200..700]
Gate width                     MAX_GATE_WIDTH [0..0], [0..255]
Distance to hall wall          MAX_HALL_DIST  [-600..0], [0..600]
Maximum azimuth value          MAX_AZIMUTH    [0..0], [0..1023]
Maximum address value          MAX_ADDRESS    [0..0], [0..65535]
Maximum absolute direction     MAX_REL_DIRECT [-512..0], [0..512]
SPI mode                       SPI_MODE       [0..0], [0..2]
Maximum RUNON radius           MAX_RADIUS     [0..0], [50..1000]
Maximum steer acceleration     MAX_STEER_ACCEL [0..0], [0..10]
Maximum drive acceleration     MAX_DRIVE_ACCEL [0..0], [0..35]
Maximum tilt angle             MAX_TILT_ANGLE [-999..0], [0..999]
Maximum undocking distance     MAX_UNDOCK_DIST [-32767..0], [0..0]
Positive word                  POS_WORD       [0..0], [0..32767]
Unlimited range                UNLIMITED      [-32767..0], [0..65535]
Special processing required    SPECIAL        [0..0], [0..0]

Figure 15.  Parameter documentation.

DEPENDENCIES



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-74
Contract No. DE-AC-21-92MC29115

commands
Table

ParLimits
Table

TokenValue
Table

IdValue
Table

keywords
Table

parser.cscanner.c

psu.c

Command
Table

Parameter
Table

PASM
Vocabulary

Figure 16.  Dependencies

There are a number of dependencies among the PASM vocabulary and the PASM and PSU
tables, as illustrated in figure 16.

1. Changes in the PASM vocabulary require that PSU be re-compiled and all dependent
PASM tables be replaced.

2. Changes in either the command table or parameter table require that PSU be re-
compiled and the dependent PASM tables be replaced.

3. Changes in the alias table require that PSU be re-compiled and that the scanner
keywords table be replaced.

PSU STRUCTURE
The functions which make up PSU can be divided into four groups, (i) the main program,
(ii) initialization, (iii) the application, and (iv) utility.  The program is largely structured
about the menu tasks and there is relatively little coupling between the modules other than
the shared data structures.  The four groups are given below.

Main Program Functions  These functions provide the user interface and handle the
processing of commands.

int GetCommand(void);
int ProcessCommand(int);
int ProcessCommand2(void);
void HandleException(char *);
void help(void);
void MainMenu(void);
void ProcessHelp(int);
void SpecifyFiles(void);
void StatusBar(void);



Computers and Controls - PASM

An Intelligent Inspection and Survey Robot, Final Report, Volume 2 Page A-4-75
Contract No. DE-AC-21-92MC29115

Initialization Code  These functions handle the program initialization.

void init(int, char *[ ]);
void InitTables(void);
void ListTableSizes(void);

Application Routines  These are the functions which perform the actual program tasks.
Generally there is a one to one correlation with the menu items, although several tasks
require more than one function.  This is indicated by the indented lines of code.

void BuildCommandTable(void);
void BuildDisassemblerTable(void);
void BuildIsDigitTable(void);
void BuildIsHexTable(void);
void BuildKeywordsTable(void);

void MkKeywordsArray(void);
void MkToken(char [ ], char [ ]);

void SortKeywords(void);
void BuildParameterList(void);
void BuildParameterSignTable(void);
void BuildParameterTable(void);
void BuildTokenValueTable(void);
void BuildToLowerTable(void);
void CommandDocumentation(void);

void SingleCommand(char [ ]);
void GenerateLimitsSuite(void);
void GenerateTestSuite(void);

int IsJumpOrCall(char *);
void ParameterDocumentation(void);

Utility Functions  The utility routines provide several I/O functions for the program.

int ScreenFull(int);
void ClearScreen(void);
void ScreenActivity(void);
void WaitForNewLine(void);



Appendix B
ARIES:  An Intelligent Inspection and Survey Robot

COMPUTER VISIONCOMPUTER VISION
SYSTEMSYSTEM

Department of Electrical & Computer Engineering
Clemson University



1

B.  VISION SYSTEM

B.1 ABSTRACT

This report documents the design of the ARIES #1 vision system (a component of Task
WBS 2.3) used to acquire drum surface images under controlled conditions and subse-
quently perform autonomous visual inspection leading to a classification as 'acceptable' or
'suspect'.  Specific topics considered herein include:

• Vision System Design Methodology.

• Algorithmic Structure.

• Hardware Processing Structure.

• Image Acquisition Hardware.

Most of these capabilities were demonstrated at the ARIES Phase 2 Demo which was held
on November 30, 1995.  Finally, Phase 3 efforts are briefly addressed.

B.2 INTRODUCTION

The ARIES #1 vision system, on the basis of visual information, makes autonomous deci-
sions about the condition and size of stored drums.  The system locates and identifies each
drum, locates any unique visual features, characterizes relevant surface features of interest
(such as paint blisters, rusted areas, etc.), and updates a database containing the inspec-
tion data.  An adaptive algorithm and learning concept, requiring little effort by unskilled
operators, will be featured to "train" the vision system prior to the actual inspection proc-
ess.

B.3 VISION SYSTEM OVERALL OBJECTIVES

Visual assessment of drum condition is an autonomous assessment of visible and quantifi-
able surface characteristics based upon available image data.  The problem is essentially a
two-class risk minimization problem, where drums are classified as "acceptable'' or
"suspect.'' A drum would be considered "suspect'' if it exhibits sufficient surface deteriora-
tion to warrant warning of possible failure.  The system should err on the conservative side,
i.e., the system should rarely miss a "suspect'' drum, whereas misclassification of a good
drum as "suspect,'', while inconvenient, is not as significant.

The overlapping of class features makes this problem challenging.  For example,

• Good and suspect drums exist in numerous (overlapping) colors.

• Good drums contain regular features, such as text and icons.

• Bad drums also contain regular features.

• Both classes contain bar codes (assumed).

• Both classes also display irregular texture due to other than shading; some is attrib-
utable to flaws and corrosion.



2

• Within drum color variation exists.

Based on expert opinions, the surface blemishes which indicate probable drum failure are
rust patches on the order of 0.5" x 0.5" and paint blisters (indicating internal rust).  The
human inspector usually relies on the characteristic color of rust in classifying it, hence this
was the obvious feature to utilize in segmenting rust patches.  Likewise, the human uses
patterns of the reflections from a blistered surface in classifying it.  This suggested that the
vision system could rely upon texture segmentation for classifying these regions.  Detecting
these features requires a color camera with sufficient resolution to resolve the texture ele-
ments of blisters and lighting with consistent color temperature and direction (with respect
to the camera).

B.3.1 Summary of Key Vision System Development Parameters

The following are important features of the ARIES #1 vision system:

• Color image processing, based upon RGB to HSI conversion, is employed.

• All software is written in C; the top-level consists of mainly ITI hardware function
calls.  In addition, the vision hardware is independent from the ARIES robot platform
and may be used with other image delivery systems.

• Supplemental multi-strobe lighting is used to reduce power consumption and compen-
sate for non-uniform site illumination.

• Structured lighting is used for image segmentation and drum orientation detection.

• Other feature detection algorithms may be added, as needed.

B.3.2 Time and Power

B.3.2.1 Temporal Processing Constraints

The required drum inspection rate requires considerable computational power (which
usually, given the temporal processing constraints, translates into electrical power).  This is
shown in Figure 5.1.  This constraint severely limits the amount of processing available per
drum.  Other constraints include minimal size, weight, and power consumption.

Figure 5-1: Inspection Capacity as Function of Single Drum Inspection Time.



3

B.3.2.2 Current Temporal Processing Capability

At the conclusion of Phase 2, the ARIES #1 vision system had the following temporal per-
formance:

• All vision operations require approximately 3 seconds per half-drum (1 image).

• Total inspection time is therefore 6 sec per drum.  Further speedup may be possible, if
faster strobe recharge times are enabled, and with further algorithm recoding.

B.4 ALGORITHMIC STRUCTURE

The overall structure of the visual inspection process which involves vision consists of the
following steps:

1. Image delivery.

2. Image acquisition.

3. HSI region analysis.

4. Texture analysis.

In addition, an off-line learning algorithm is used to tune vision system parameters.

Processing of acquired image data occurs in two main steps:

1. The images(s) are segmented to ascertain that a drum, or drum portion, exists in the
sensor field of view (FOV).

2. If a drum is found, the size and extent of the drum is computed (using active vision)
and the images are subsequently classified by region.

Therefore, classifying a drum on the basis of passive visual information is carried out in
four steps:

1. Segmenting the drum (section) from the total imaged scene, i.e., finding the image
region corresponding to only the visible part of the drum in the image(s),

2. Segmenting rust regions,

3. Segmenting paint blisters; and,

4. Overall classification and recording of results.

B.5 SEGMENTATION ALGORITHMS

B.5.1 Definition

Segmentation is the process of finding a connected region with a specific property such as
color or intensity, or a relationship (pattern) between pixels.  Classification of a drum as
"suspect'' is done if the number of pixels in rusty regions or in paint blisters exceeds a spe-
cific threshold.  The threshold is tunable, depending upon site-specific requirements.  Since
drum failure modes and human inspector assessments appear to be highly site-specific, it
was deemed necessary that the algorithms should be adaptable to the site requirements.  A
learning algorithm is provided which, given inputs from a human "tutor'', adjusts the algo-
rithm parameters.



4

B.5.2 Addition of Features.

It is straightforward to add additional feature extraction approaches to the present system,
once suitable decompositions into hardware-implementable computations are designed.

B.5.3 Features and Approaches Considered

Initially, all possible processing methodologies (model based, etc.) and potential features
were investigated.  Time constraints led to choice of a feature-extraction/classification
(segmentation) strategy.  Passive image features considered in Phases 1 and 2 include:

• Oriented Fourier features.
• Regional moments of various orders.
• Grey level difference statistics.

- contrast
- entropy

• Grey level run-length statistics.
- grey-level distribution
- run percentage (directionally oriented)

B.5.4 Training Data Available, Developed and Used

Training/Test Data Sources used in Phase 2 included:

• Photographs provided by WSRC/SRTC (several sets).

• Five videotapes of various sites/configurations (digitized large number of images from
tapes) provided by FERMCO.

• Discussions during Hanford site visit, September 1993.

• Lab Drum(s): rusted and not rusted.

• USC mock-site drums: blistered, rusted and not rusted.

Since images were acquired under a variety of uncontrolled conditions (resolution, color
accuracy, reproduction, lighting, etc.), we view the Phase 2 training data as necessary but
not sufficient.

B.5.5 Image Compression

The use of compression algorithms could maximize on-robot 'suspect' image storage capac-
ity.  Stored images, if ultimately to be viewed by the operator, could be compressed with a
lossy compression algorithm (jpeg), which is designed to 'fool' the human visual system.
Our conclusion is that ARIES #1 should not use jpeg compression prior to computer process-
ing for the following reasons:

• Resolution reduction occurs (jpeg characteristic).

• Texture-based algorithm performance is compromised (experimental results).

• Only modest space savings for reasonable (visible) image quality result.



5

B.5.6 Drum Segmentation

Due to warehouse imaging conditions, segmentation of the imaged drum from the scene
background (which consists of, among other entities, other similar drums) is a challenging
task.  Traditional edge extraction and region segmentation techniques fail due to a variety
of non-ideal working conditions (glossy drums, multiple reflections, gradual fading of
intensity, etc.).  This led to a knowledge-based technique which utilizes more information
about the expected properties of the scene.

Another aspect of the drum segmentation is the exclusion of regions on the drum which are
not to be analyzed for rust or blisters.  These regions are paper labels such as barcodes and
warning signs typically found on the drums.  The diffuse reflections from paper are typi-
cally much greater than that from the paint.  Since diffuse reflections are direction insensi-
tive, the paper is segmented from the drum by finding regions which exhibit less change in
intensity when the lighting direction is changed.

From the specification of the problem and the capabilities of the navigation/camera posi-
tioning system, the following is the list of assumptions which can be employed in segment-
ing the drum from the scene:

• The warehouse will contain only three drum sizes.

• Each stack of drums will contain a single drum size.

• Each drum has a homogeneous paint color.  However there is no restriction on or a
priori knowledge of the specific color.

• Projected laser dots are easily discernible on flat-painted surface.

• Specular reflections are easily discernible on glossy-painted surfaces.

• The height of the camera with respect to the floor is known.

• The distance to the drum surface from a camera will be within the range of 24" to 54".

• An image will contain the horizontal center and either the top or bottom edge of a
drum.

• The dominant color of the visible region of a drum is its paint color (barcodes and other
labels do not dominate the scene).

The technique that was developed which utilizes the above assumptions can be decomposed
into a sequence of steps: finding the drum center and distance; finding a rough estimate of
the vertical edges; finding the top or bottom edge; picking a drum size; and then refining
the estimate of the vertical edges.  Each of these steps is described in more detail below.

The process of finding the center of the drum starts by imaging the laser dots projected onto
the surface of the drum.  Using a priori knowledge of the laser/camera geometry, estimates
of the three dimensional location of the dots are found.  For each combination of 3 dots, the
virtual vertical cylinder on which the dots lie is found.  Any of these cylinders whose radius
or location are not within the expected values corresponding to one of the three drum sizes
and the known imaging geometry are excluded from further analysis.  The set of projections
of the virtual cylinder centers on the image plane will be referred to as the center-set.



6

In the case of glossy painted drums, the projected laser dots are much harder to detect since
the majority of the laser energy is reflected specularly away from the camera.  This reduces
the reliability of the laser-center-finding technique.  However, if the drum generates strong
specular reflections, then the location of the specular spots from judiciously located lamps
can be used to locate the center of the drum in the image.  If the lights are vertically in line
with the camera, specular reflections can only occur on surfaces for which the horizontal
component of the surface normal vector is pointing at the camera.  Since the drums are
vertically oriented cylinders, only the vertical stripe closest to the camera, hence at the cen-
ter of the drum image, will be oriented so that specular reflections can be seen.  By isolat-
ing specular reflections matching the expected reflections from the lamps, candidate centers
are determined and included in the center-set.

The drum center is then determined as the mean center of the largest cluster of estimated
centers (a subset of center-set) whose span is less than a predetermined bound.  Using this
drum center and location of the laser dot closest to this center, the distance to the surface of
the drum is estimated via geometry.  Likewise, a rough estimate of the locations of the
drum's vertical edges is obtained assuming a 55-gallon drum.

By restricting the analysis region to be within the rough estimates of the drum's vertical
edges, it is safe to assume that the drum dominates the analysis region.  Thus the ranges of
hue, saturation, and intensity which characterize the drum can be determined via histo-
grams.  By selecting the pixels within these ranges, a binary image is constructed which
represents the drum in the scene.  This binary image is then compared to a set of previ-
ously generated templates.  Each element in this set is a binary image which represents a
drum whose top or bottom is at a known location in the image.  Thus, the template which
best matches the binary image provides the location of the actual top or bottom.

Knowing the vertical height of a drum top or bottom, the height of the camera, and the
heights of the different drum sizes and pallets, the size of the drum is easily deduced.  Once
the drum size is known, the estimate of the locations of the drum's vertical edges can be
improved which in turn defines the final analysis region.

B.5.7 Rust Segmentation

B.5.7.1 Color Space Fundamentals

One of the obvious properties of a rust region is its color; therefore, segmentation using
pixel color as the characteristic element is used.  Typically, the output of color video cam-
eras is in a format which makes it difficult to detect colors, independent of variations in
other parameters such as intensity.  To facilitate the segmentation, the images are con-
verted to a hue-saturation-intensity (HSI) color representation.  In this color space, a color
image is represented by the three gray-level images, referred to as planes.



7

Figure 5-2: RGB Coordinate System

Figure 5-3: Hue Space Color Map (Red = 0 deg)

• Three corners (R,G,B) correspond to primary colors.

• The origin corresponds to no value of any primary color, and therefore is deemed
'black.'

• The maximum value of equal R,G,B values is 'white.'

• Locus of all points where R,G,B components are equal is the diagonal of the cube;
referred to as gray line.

• The other 3 corners of the color cube correspond to secondary colors, yellow, cyan (blue-
green), and magenta (purple).

In the hue plane, a pixel value is a numeric representation of the color.  In the saturation
plane, a pixel value is the purity of the color (high values indicate pure colors whereas low
values indicate substantial mixing with white light).  In the intensity plane, a pixel value
denotes the brightness.  In the implementation of HSI space, each pixel is represented by
three values between 0 and 255.  For the saturation and intensity, 0 represents the mini-
mum values and 255 represents the maximum values.  For the hue, the zero-reference is
cyan; greens are around 45, reds are around 130, and blues are around 210.  RGB to HSI
conversion capability is provided in ITI hardware at a rate of 60 frames/second.



8

B.5.7.2 Application to Drum Images

In training data, rust was found to exhibit hue values typically between 90 and 160.  It was
also found that rust has a saturation value less than 60.  Since this range is dependent on
camera white balance, gamma corrections, and the lighting color temperature, this range
must be established for any differences in these parameters.  A pixel is considered a rust
pixel if its hue and saturation falls within both of these ranges.  Note, however, that if a
pixel has either a high intensity or low saturation value, the hue information is unreliable.
Considering this, the basic element for rust segmentation is a pixel with a hue value within
the range of 90 to 160, a saturation value within the range of 12 to 60, and an intensity
value less than 200.

Labeling all of the rust pixels is performed by thresholding the three planes over the ranges
specified above and then performing a Boolean AND on the results.  Connecting the rust
pixels is the process of finding regions in which the density of rust pixels exceeds a prede-
termined threshold value.  The density of rust associated with a given pixel is defined to be
the number of rust pixels in a neighborhood of that pixel.  A pixel with nine or more rust
pixels in its 4x4 neighborhood is considered a member of a rusty region.

B.5.8 Paint Blister Segmentation

A paint blister is a conglomeration of several small, almost circular bubbles, protruding
from the surface.  Under controlled lighting conditions (intensity and geometry), the image
of the light reflected off of one of these bubbles is a relatively consistent spatial intensity
pattern.  This suggested that the paint blister segmentation could rely on a spatial basic
element.  From frequency analysis over a set of training images, it was found that if a pixel,
x(i,j), in the intensity plane satisfies the conjunction of the following constraints:

(c  x(i,j) - x(i - DELTA i ,j) > 30 quad AND

x(i,j) - x(i + DELTA i,j) > 30 quad AND

x(i,j) - x(i,j-DELTA j) > 30 quad AND

x(i,j) - x(i,j+DELTA j) > 30 quad AND

x(i,j) > 50)

then, this pixel should be classified as part of a paint bubble.  Depending upon the camera
and optics specification (focal length, CCD chip size, resolution, etc.), DELTA i and DELTA
j are chosen to optimize performance.  Labeling the bubble pixels is performed by co-occur-
rence analysis with this pattern and connecting is performed as in the rust segmentation
process.

B.6 LEARNING

Each of the vision algorithms used requires a set of operating parameters which directly
affects system performance.  To optimize this performance, an adaptation or optimization
procedure to generate the optimum parameter set is required.  Unfortunately, the problem



9

cannot be directly formulated as a general nonlinear optimization problem because of the
lack of a suitable quantitative performance measure or objective function.  Instead of
attempting to generate or estimate this performance measure, an interactive, operator-
guided approach is used.

The operator interface used for system training has the form of a multi-window display.
Each of the windows contains the resulting image from the segmentation algorithm using a
specific set of parameters.  The operators task is to only compare between windows to
determine the relative quality of the results.  The Nelder-Mead algorithm (Downhill Sim-
plex Method) is the optimization procedure used.  It requires a comparison of the objective
function values at a limited number of search points (N+1 in N-dimension search space).
For this algorithm, the operator need only decide the best and the worst images presented
in the multi-window display.  The algorithm uses the operator's decision to determine a
new search "point" and hence a new set of images, derived from updated parameters, to
present to the operator.  This procedure continues until a satisfactory result is obtained.

B.7 RESOLUTION, WORKING DISTANCE AND FIELD OF VIEW

Design parameters for the image acquisition subsystem of the ARIES #1 vision system
included the following concerns:

• Image Resolution vs. Available Camera Resolution.

• Number of Cameras vs. Number of Images .

• (Geometric) Distortion, which is especially significant when using structured light and
requiring a large field of view (FOV).

• Design Goal: 1/2" x 1/2" minimum feature dimension, which requires 20 pixels/inch
sensor resolution.

Ultimately, a 6 mm lens with 20-25 inch working distance, which yields 60% of the largest
(110 gal) drum in the FOV was chosen.  It should be noted that high resolution color tech-
nology, at the present time, requires multiple cameras.

B.8 ARIES #1 VISION HARDWARE AND ALGORITHM IMPLEMENTATION

B.8.1 Image Processing Hardware

Since system speed is an all-important constraint, specialized image processing/computer
vision hardware is used to implement the aforementioned segmentation algorithms.  The
vision industry is following two design strategies, one in which hardware is tailored for
specific vision processing tasks, and the other in which general DSP chip set is utilized to
provide more generic capabilities.  The former strategy provides for greater performance if
one's algorithm can be decomposed into a series of subtasks implementable by the hard-
ware.  The latter strategy compromises speed for computational flexibility.  The system
selected falls within the first category.

ARIES #1 employs a modular vision system, manufactured by Imaging Technology Inc.
(ITI), with full scale pipeline processing capabilities.  The system uses two ITI IMA150/40



10

memory managers, each with four Mbytes of reconfigurable memory.  These cards are
designed to carry submodules that perform different image processing operations.  One of
its design features is a multi-input-multi-output cross-port switch that allows the recon-
figuration of the pipeline for different operations.  The current system uses two ITI
IMA150/40 memory managers, each with four Mbytes of reconfigurable memory.

Figure 5-4: ITI IMA

The following submodules are used:

1) Acquisition Module:  The acquisition module is used for digitizing a true color image
(24 bits) from an RGB PAL camera at 25 frames/second.  The resolution used is (768 x
572), which leads to a digitization rate of (768 x 572 x 3 x 25 = 32.94 Mbytes/second).
Also, this module performs the conversion of the camera’s RGB output to the needed
HSI color space in real time.

2) Convolver/Arithmetic Logic Unit:  This is the main module used for most of the vision
tasks required for image segmentation.  This includes convolutions, thresholding,
rank filtering and connecting.  This module also carries a statistical processor which
is used to count the number of pixels that belong to each class during the segmenta-
tion process.

3) Histogram/ Feature Extraction Processor:  This processor is used to perform the nec-
essary histogram operation required for identifying the drum color.  The module is



11

also used to generate both vertical and horizontal projections of the image, which is
necessary to locate the drum in the acquired image.

B.8.2 Image Acquisition System and Hardware

Figure 5-5: Basic Imaging Head (Dot Projector Not Shown)

B.8.3 Passive Components

The imaging system includes four camera subsystems, one for each drum in a stack of four.
It also includes two digitizing modules which provide the ability to digitize images from all
four cameras.  Each camera subsystem consists of a camera with one strobe lamp above it
and one below it.  It also incorporates a five-dot laser structured-light source.  The expected
variability in site ambient lighting and power limitations of the mobile robot led to the
development of a strobe-based image acquisition system.  The camera used is a Panasonic
GP-US502E, three-CCD high-resolution color camera.

To gain more vertical resolution, the version of the camera was chosen to follow the CCIR
PAL standard.  In this standard the camera provides 572 lines versus the 480 lines speci-
fied in the RS-170 NTSC standards commonly used in the USA.  A single PAL image,
referred to as a frame, consists of two interlaced fields separated in time by 0.02 seconds.
To prevent "striping" in the image, one must provide consistent lighting to both of these
fields.  Since we are using strobe lighting, a single flash must be provided for each field and
synchronized to that field (specifically at the start of the CCD integration time).



12

Utilizing the memory management card internal flags, which indicate the start of the next
field, and a custom strobe control circuit, we are able to synchronize any strobe lamp to a
field.  However, since a single strobe has a recharge time on the order of two seconds, we
are unable to provide the lighting for two successive fields (one frame) with a single strobe
lamp.  Even though the fields are lighted at the appropriate time, since the two strobes are
spatially separated, the resultant lighting is not consistent in both fields yielding "striped"
images.  The software solution to this problem is addressed next.

B.8.3.1 Illumination

Each camera system consists of a camera with one strobe lamp above it and one below it.
Since a single image acquired by the camera will have inconsistently illuminated fields due
to the spatial separation of the lamps, two images are taken, one in which the first field is
lit by the upper lamp while the second is lit by the lower and another in which the first field
is lit by the lower lamp and the second by the upper.  Combining the first field from the
first image and the second field from the second image results in an image in which both
fields are lit by the upper lamp.  Similarly, an image lit by the lower lamp is generated.  A
technique using the ITI Convolver/Arithmetic-Unit module has been developed to accom-
plish this process at real-time rates.

B.9 ADDITIONAL ALGORITHMS DEVELOPED

During Phase 2, several ancillary vision algorithms were developed.  Several of these may
be considered for implementation in Phase 3.  Specific algorithms were:

B.9.1 Real-Time Drum-Center Detection Using Active Vision

This capability will be fused with the sonar-based drum location algorithms and allows
more precise positioning of the vision system.  This capability has been demonstrated.

The objective of this algorithm is to find the center of the drum while the robot is moving.
This operation is necessary for the robot to stop in the right position with the stack of
drums to be analyzed in the center of the camera's field of view.  Currently this operation is
done using a sonar system.

The system utilizes one of the cameras and laser dot projectors.  This projector is located
about 10 inches above the center of the camera pointing down such that the dot is within
the field of view for the anticipated working ranges.  This camera-laser arrangement allows
a rough estimate for the range between the camera point-of-projection and the reflection of
the laser dot on the surface of the drum.  The smaller the range is, the higher the location
of the projection of laser dot on the image plane.  Thus, as the robot moves, the laser dot
moves across the surface of the drum changing the range from maximum at the edge of the
drum to a minimum at the center to again a maximum at the other end.  This change in
range can be detected from the projection of the laser dot in the image plane.  Based upon
this idea, the following algorithm was developed in order to find the center of the drum:

1. Acquire an image with laser on.

2. Locate the laser dot in the image if it exists.



13

3. Depending upon the location of the dot in this image compared to the previous image,
we may have one of the following three events:

• UP: The location of the projection of the dot went up which implies a reduction in
the range.

• DOWN: The location of the projection of the dot went down which implies an
expansion in the range.

• FLAT: The location of the projection of the dot did not change which implies no
change in the range.

4. If the laser dot is crossing the drum while  acquiring a sequence of frames we should
expect a sequence of events having the form:[UP, UP, ..., FLAT, FLAT ..., DOWN,
DOWN, ...].  The occurrence of this pattern is a good indication that the laser dot has
passed across a drum.

The implementation of this idea assumes that the speed of the robot is defined by range of
maximum and minimum expected speeds.  Accordingly, the algorithm was designed to tol-
erate variations of the robot speed.  A more accurate version of this algorithm could be
developed if accurate information about the instantaneous speed (or location) of the robot is
provided.

B.9.2 Barcode Detection via Textural Analysis

This capability was carried over from Phase I, and implemented using the ITI hardware.
In Phase 3, the possibility of reading barcodes via the vision system sensors, as opposed to
freestanding barcode readers, will be investigated.

B.9.3 An Efficient and Accurate Algorithm for Direct Measurement of Cylindrical
Surface Parameters

The basic idea is to project a horizontal line pattern onto the object, which is assumed to be
a cylinder.  A passive image is acquired by a camera and some characteristic coordinates
are extracted from the image of the stripes.  These points are then used for an initial esti-
mation of the position, orientation and size of the imaged object, resulting in an initial set
of surface parameters.  Then, the position of the characteristic points for a projection of the
same light pattern on the object given by the estimated surface parameters is computed.
The position, location and size features of this "virtual'' cylinder are estimated, using the
same methods as for the actual image.  The differences between the features computed
from actual and estimated/virtual object are used for an Affine transform of the estimated
cylinder parameters.  This transform results in an updated, improved set of surface
parameters describing the object.  The resulting virtual passive image is again computed
and the correction step repeated as necessary.  The real image taken by the camera and the
virtual image should match.  Also, the surface parameters of the object should be very
accurately estimated by the surface parameters obtained by the successive Affine transform
steps.  ICA is capable of delivering very accurate results with moderate computational cost.
An advantage is that the result is successively improved.  If only a coarse estimation is
needed, the algorithm could be stopped after one or two steps.



14

B.10 REFERENCES

1. A. Busboom and R.J. Schalkoff, “Direct surface parameter estimation using structured
light: A predictor-corrector based approach.” Image and Vision Computing, 1996 (to
appear).

 
2. R.J. Schalkoff et.al. “A modular and extendible image processing system: Update to

version ip6.1 (including DOE inspection effort).” Technical Report TR-080693-0915-I,
Dept. of Electrical and Computer Engineering, Clemson University, August 1993.

 
3. A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.
 
4. R.J. Schalkoff. Digital Image Processing and Computer Vision. John Wiley and Sons,

1989.
 
5. R.J. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches. John

Wiley, 1992.



ARIES #2 Vision System

Brecht Carver, RJ Schalko�

revised by RJS 9/8/97
for internal use only;

NOT FOR DISTRIBUTION

Contents

1 Hardware 2

2 Software 6

List of Figures

1 Placement of vision components on ARIES panning unit. : : : 4
2 ARIES Flash controller schematic diagram. : : : : : : : : : : : 5

List of Tables

1 The components of the ARIES imaging subsystem and the
locations on the robot. : : : : : : : : : : : : : : : : : : : : : 3

2 The cables for the ARIES imaging subsystem. : : : : : : : : : 3
3 Descriptions of the routines in vision.cpp. : : : : : : : : : : : : 7

1



Overview

The ARIES vision system was designed to provide the ARIES robot with
the capabilities of inspecting waste-storage drums for rust, dents, and tilt-
ing. This document describes the construction, installation, and testing of
the ARIES vision system. It also provides a summary of the software com-
ponents.

1 Hardware

The hardware components of the ARIES vision system and their mounting
locations are listed in Table 1. The precise locations of the components
mounted on the panning unit are shown in Figure 1. The cables necessary
for interconnecting the components are listed in Table 2. Note that, other
than cables, the only component which must be manufactured is the ash
controller. This TTL circuit is controlled by the ITI TTL outputs and in
turn controls the lasers and ash heads. A circuit schematic is provided in
Figure 2.

Many of the components have hardware settings which should be set prior
to operation. With the exception of those for the color camera, the settings
are listed in the third column of Table 1. The color camera has parameters
which are set via the front panel switches and others which can only be
accessed via a displayed menu system. The front panel switches should be
set as follows:

� The cluster of four toggle switches should be set, starting with the
GAIN and proceeding in a clockwise direction, to OFF, HOLD, MANU,
and CAM.

� The toggle switch labelled ELC should be set OFF.

� The two rotary color gain dials should be initially centered. Note that
these will be altered later.

Unfortunately, the camera will only display the menu system to either
the S-Video or the Video Out ports on the rear of the camera body, neither
of which are connected to the acquisition module of the ITI system. Thus,
when these need to be altered (or checked), the BNC normally connected
to the B/W camera should be extended and connected to either Video Out

2



Table 1: The components of the ARIES imaging subsystem and the locations
on the robot.
Component Location on Robot Setting
Panasonic GP-US502E Color Camera Head Panning Unit
Panasonic GP-US502E Color Camera Body Tower (see text)
Cosmicar C60607 6mm Lens Color Camera f16, 1m
Pulnix TM6-CN B/W Camera Panning Unit 1.0,MGC,FLD
Cosmicar C60607 6mm Lens B/W Camera f2, 1m
Edmund Scienti�c E43141, 690nm �lter (25mm) TM6-CN Camera
2 Lumedyne #008 Modular Flash Heads Panning Unit
2 Lumedyne #065Z 200WS Power Packs Tower FST, 50WS
2 Lasiris SNF-XXX-690-30, 690� 2nm Lasers Panning Unit
1 Lasiris SLH-513D 13-dot head Upper laser
2 Lasiris M-75 Mounting Brackets Panning Unit
Flash Controller Robot Base
ITI IMPCI Image Manager PCI Bus Computer
ITI CMC-PCI-CLU Module Controller PCI Bus Computer
ITI CMHF Histogram Module CMC-PCI slot #1
ITI CMMEM-16 Memory Module IMPCI CM slot
ITI AMCLR Color Acquisition Module IMPCI AM slot
FBV15040-VME-2 Frontplane Bus CMC-PCI to IMPCI

Table 2: The cables for the ARIES imaging subsystem.

Name From To Cable / Signal
Power Pack Power #1 +12VDC Source Power Pack #1 +12VDC, 28A
Power Pack Power #2 +12VDC Source Power Pack #2 +12VDC, 28A
Flash Power #1 Power Pack #1 Flash Head #1 Lumedyne 034P
Flash Power #2 Power Pack #2 Flash Head #2 Lumedyne 034P
Flash Control #1 Flash Controller Flash Head #1 TTL
Flash Control #2 Flash Controller Flash Head #2 TTL
Laser Power Flash Controller 2 Lasers +5VDC, 250mA
Flash Controller Power +5VDC Source Flash Controller +5VDC, 500mA
IMPCI Strobe #1 IMPCI Flash Controller TTL
IMPCI Strobe #2 IMPCI Flash Controller TTL
Color Camera Power +12VDC Source Camera Controller +12VDC, 1A
Color Camera Signal Camera Controller Camera Head Panasonic GPCA-63
Color Camera Video IMPCI Camera Controller 4 - 75 
 Coaxial
B/W Camera Power +12VDC Source B/W Camera +12VDC, 250mA
B/W Camera Video IMPCI B/W Camera 75 
 Coaxial

3



= 1/4 inch mounting holes

Center of Rotation

Figure 1: Placement of vision components on ARIES panning unit.

4



F = RXE050 Fuse
C2 = 100uF
C1 = 10nF

T = N2907
R1 = 200
R2 = 0 - 500

QB 2Y0

2Y1

2Y2 N2907

QC
QD

B A
B

200-700

1C
2C
1G
2G

7493A

Vcc Vcc

Vcc

Male
D9

Male
D9

Shield

IMA Misc.
Connector

Lamp 1
Trigger

Lamp 2
Trigger

Laser

7400A

Fuse

10nF

+5VDC

+5VDC

Optoisolator

Optoisolator

Gnd
100uF

10uF

10uF

10k

10k

7400A

74LS156

R1
R2

T

C2

Pwr

L

G

2
1

C1

R2
R2

R1

S1

S2

Gnd

Bottom

+5V

7
4
L
S
1
5
6

7
4

9
3
A

7400A
F

T

C2

Pwr

L

G

2
1

C1

S1

S2

Gnd

Top

+5V

R2

R27
4
L
S
1
5
6

7
4

9
3
A

7400A
F

4

9
2

3
5

8

3

Strobe Controller Schematic

Controller Box Circuit Layout

Controller Box

R
1

R
1

Figure 2: ARIES Flash controller schematic diagram.

port. To view the menu, run program Test, enter the command `gl', then
hold the recessed button labelled PAGE (front panel of color camera) down
for two to three seconds. The camera's menu should display on the ITI's
output monitor.

Using the four recessed buttons (PAGE, ITEM, <, >), set the menu
parameters, from top to bottom, to OFF, OFF, OFF, MANU, INT, MANU,
ABC, and USER. When the cursor is on USER, push the PAGE button to
enter a second menu. Again using the four buttons, set the parameters, from
top to bottom, to OFF, 4.0V, FLD, center, center, center. Finally, move the
cursor to RET, press > to move it to END, then press PAGE to exit the
menu system. These parameters need to be set only once after a camera is
purchased (or returned from servicing).

The �nal settings for the color camera are the black balance and the
white balance. Both of these set after the camera has been on at least
15 minutes and should be redone periodically (multiple months or during
routine servicing) and anytime the camera has been o� for a long period of
time (multiple days). The black balance is accomplished by blocking the lens
then momentarily setting the toggle switch labelled AWC/HOLD/ABC to

5



ABC. Once the red LED beside the switch stops blinking, the black balance
is set.

Setting the white balance is accomplished by adjusting the two knobs,
labelled R (red) and B (blue), on the front panel of the camera body until
the image of a neutral gray object (the Delta #22010 18% Gray Card, readily
available at most photography stores, is particularly suited) illuminated by a
ash has a low saturation value (< 30 over the entire object). Both acquiring
and reading the saturation values are accomplished using the program Test.
Command 'ah' acquires a HSI ash image whereas the command 'v' allows
one to peruse (the cursor can be moved about the image using the keys h
[left 1 pixel], j [down], k [up], l [right], H [left 20 pixels], J, K, and L) the
values of the image in the ITI IMPCI memory.

After the hardware components are installed and all hardware settings
correctly set, the program Test should be used to verify the functionality of
the individual components. Test provides the ability to test each subsystem
separately and in unison. Once all components are operational, the lasers
pointing directions should be set using program LaserCal.

2 Software

The primary software for the ARIES vision system consists of four routine
libraries: vision, doe, laser, and util. They are provided as C++ source
code, each consisting of a .cpp and a .h �le. Note that, only those routines
in vision.cpp are directly called by the mission handler. The other libraries
are called by vision or by ancillary programs (Test, Lasercal, and Train).

vision.cpp

The routines contained in vision.cpp provide the interface between the mis-
sion handler and the vision system. Table 3 lists these routines and provides
a brief description for each.

6



Table 3: Descriptions of the routines in vision.cpp.

Routine Description
InitializeVision Initializes ITI cards

Loads rust-�nding parameters and laser calibration data
Allocates memory

CloseVision Deallocates memory
vision Scans lasers to locate and determine number and size of drums

Images each drum and inspects for rust
Detects dents using laser scan
Detects tilt based on two (lower and upper) laser scans

vision save a Saves image of the furthest drum from ITI to disk
vision save b1 Saves image of the nearest drum from ITI to memory
vision save b2 Saves image saved by vision save b1 to disk
do color cal Uses gray-patch on robot to calibrate color camera

7



ARIES VISION SYSTEM

CALIBRATION AND TRAINING GUIDE



1

Color/B&W balance:  Wait for the cameras to warm up.

Camera Focus:  Between 0.5 and infinity.

B&W aperture:  4.0.

Color aperture:  16.0.

Be sure to focus lasers.



2

Calibrating the Lasers - Lasercal.exe

Step 1 - Position ARIES

• Deploy the lift to Level Three using the "Test" application ("T3" command).
• Pan the camera unit to ~120 degrees with respect to the robot using the "Test" application.
• Using the joystick, manually drive the robot until the front of the color camera is about 50 inches from

a flat, smooth, relatively wide, and orthogonal to the floor wall or surface (Figure 1).
• Verify that the surface is orthogonal (Figure 2).

Around 50 inches

Camera

Flat and orthogonal (to the floor) wall

Front of
Robot

Figure 1
X

Y

X = Y

Figure 2



3

Step 2 - Position Single Dot Laser

• Measure the distance from the color camera to the floor (X).
• Measure the distance from the Single-Dot Laser (as opposed to the multi-dot diffraction grating laser)

on the wall to the floor (Y).
• The difference between the two should be around eight inches (Y - X ≈ 8").
• See Figure 3.
• At this point, it's also a good idea to make sure both the lasers are in focus.

Flat and
orthogonal wall

Adjust Single-dot laser

Color camera

X Y

Y – X ≅ 8”

Figure 3



4

Step 3 - Position Color Camera

• Observe position of Single-Dot Laser relative to line drawn on the screen.
• Adjust the position of the color camera until the laser dot is centered on the line (Figure 4).

Single-Dot Laser

Line drawn
on screen

Adjust Color Camera
until Single-Dot Laser is

centered on line

Figure 4



5

Step 4 - Position Black and White Camera

• Observe position of Single-Dot Laser relative to line drawn on the screen.
• Adjust the position of the black and white camera until the laser dot is centered on the line (Figure 5).
• Note:  Consistency of Steps 3 and 4 is very important!

Single-Dot Laser

Line drawn
on screen

Adjust Black and White
Camera until Single-Dot
Laser is centered on line

Figure 5



6

Step 5 - Align the multi-dot laser (rotational)

• Observe the alignment of the Multi-Dot Laser.  Rotate the Laser until the dots are perpendicular to the
plane of the floor (Figure 6).

Good! Bad!

Figure 6



7

Step 6 - Align the multi-dot laser (lateral)

• 

Beams should
be parallel

About 1.9”

About 1.9”
11th dot

Bright dot

15th

14th

1st

10th

11th

12th

13th

.

.

.

.

.



8

Step 7 - Rotate the Multi-Dot Laser

• 

J

K



9

Step 8 - Pan Single-Dot Laser

• 

J

K



10

Step 9 - Reduce Black and White camera f-stop

• 

Reduce f-stop on Black and White
camera to eliminate starburst

Flat and orthogonal
wall

Multi-dot laser

Color camera

Distance from color camera to flat
surface (multi-dots) ≈ 50 inches



11

Step 10 - Locate Single-Dot

• 

j

l

k

h

Center circle over
single-dot laser



12

Step 11 - Drive ARIES towards surface

• Must have at least 10 dots in view (in the screen).
• Measure distance from color camera to multi-dot laser.  This distance should always be between thirty-

three and twenty inches.

15th

14th1st 10th

11th

12th

13th
. . . . .

15th

14th1st 10th

11th

12th

13th
. . . . .

At least 10 pixels

Screen display

Move robot

Around 33” to 20”

Camera

Flat and vertical wall

Front of
Robot

Move robot toward wall



13

Step 12 - Check alignment

• Must have at least 15 dots in view (in the screen).
• Verify that the distance from the color camera to the multi-dots on the surface is between twenty and

thirty-three inches.

1 15Multi-Dot Laser

Single-Dot Laser



14

Step 13 - Drive ARIES towards surface

• Must have at least 10 dots in view (in the screen).



15

Red

Blue

Green



16

Training
Need to run “filelist.bat” to get a list of image files in a file.

Train.exe needs to run in a 129x97 (raster 8x8) Dos box.

Need to name (or rename) to “rust.lut”.

Command “l” loads image.

“Box-in drum”

Use mouse to draw box in “rusty” areas (or in anything else that you want to identify, for example, if you
wanted to find all drums with green stickers, you could train for them).

Command “p” (positive) identifies rust.

Command “n” (negative) would be used to eliminate stickers (or whatever).

NEVER mark black negative!  White/Yellow/Steel would be okay.

Command “mr” (mark rust) identifies all perceived rust in image.

Command “u” undoes last “n” or “p” command.

Parameter “d” has to do with the number of neighboring pixels that are bad before a given pixel is also
considered bad.

Commands “N” and “P” display the negative and positive sets, respectively.



Appendix C
ARIES:  An Intelligent Inspection and Survey Robot

ELECTRICALELECTRICAL
SYSTEMSSYSTEMS

Cybermotion Incorporated



1

C.  ELECTRICAL SYSTEMS

Synopsis of energy storage units
for mobile Robotics

Dr. Jerry Hudgins, C. Richard Shoop and Erica Benjamin

Abstract--The period over which mission critical tasks can be performed  in a mobile
platform will depend on the amount of energy available.  In this paper, the authors will
give a synopsis of present and future technologies in the area of energy storage, which are
available for mobile Robotics.  Present, Prevailer batteries are of sufficient capacity for the
original design, however with the addition of power intensive devices and computers a
different strategy will be required to meet future needs.

C.1 INTRODUCTION

Intelligent autonomous mobile robots are being used in surveillance, inspection and
monitoring environments.  The use of these robots can reduce human exposure in
hazardous environments and minimize manpower requirements.  Presently, research is
being conducted to implement a system for inspecting  low level waste containers.

The Cybermotion platform uses two 12V, 85A*h (34W*h/kg) sealed lead-acid
batteries, the Prevailer, produced by InterAction Battery Corporation.  These batteries are
connected in series to produce a 24V supply.  The Prevailer battery is orientation
independent, which is desirable due to space constraints.  This energy storage device
possess a form factor of 12.75” x 6.75” x 9.875”.  Presently, the robot is capable of 20h of
surveillance with standard Cybermotion equipment.

Our mission requires extra equipment to inspect waste containers and process
received data.  A larger amount of energy will be required to realize these goals.  To provide
this energy, a search of current and future battery technology has been completed and the
following report summarizes this search.

C.2 THE LEAD-ACID BATTERY

The most common electrochemical storage device marketed to date is the lead-acid
battery.  This technology is theoretically capable of energy densities of 161 W*h/kg (see
figure 1) [1], with attainable values close to 41 W*h/kg.  This theoretical energy density
value was derived from complete reaction equations, considering that the real components
are pure elements not chemical compounds or alloys.  Since this technology cannot operate
in pure sulfuric acid, due to damaging corrosion and low conductance, water must be added.



2

The water and excess acid result in an increased weight, reducing the energy density (see
figure 2) [2].

reaction equation:

Pb + PbO2 + 2HSO4
− + 2H+  ↔  2PbSO4 + 2H20

weight of the reaction participants per formula-turnover

[(207.2 + 239.2 + 2) * 97.00] + (2 * 1.008) = 642.4 g

transformed amount of energy

2 * 96,500 A*s = 53.61 A*h

presumptive cell equilibrium voltage of

Eo = 1.928 V (activity of the acid = 1 mol/l)

the (hypothetical) energy per weight amounts to

(53.61 A*h)(1.928 V) / 0.6424 kg  =  160.9 W*h/kg

Figure 1: Theoretical storage ability (lead-acid)

Also, additional weight results from the products of the reaction not being 100%
convertible.  Structural supports of the active material and the separators increase the
nonproductive weight and the resulting energy density decreases [2].



3

Figure 2: Relative weight vs. energy density

Not much room is left for a value-added design of the lead-acid battery.  However,
slight performance improvements are being realized by many manufactures as the demand
increases for new higher energy density batteries in the automotive market (electric cars).

C.3 PARAMETERS FOR OUR SEARCH

For our search the following parameters will be used to narrow the field of interest.

a) Low internal resistance (quick recharge and deep discharge)
b) High energy density (>34 W*h/kg)
c) Off the shelf availability (presently manufactured and sold)
d) Electrical specifications

Terminal Voltage = 12V or 24V
Minimum A*h Capacity = 85A*h

e) Mechanical specifications
Form factor(Prevailer) ≈ 12.75” x 6.75” x 9.875”
Sealed case (orientation independent)

C.4 THE LEAD-ACID BATTERIES

As previously noted, the Prevailer battery is available in a 12V, 85A*h model 8G27.
This battery utilizes a totally sealed recombinant system and can be mounted in almost
any orientation.  There are no corrosive acid fumes or potential for electrolyte spillage
under normal operating conditions.  The Prevailer has a low self discharge rate and can be
stored for 24 months with very little effect on capacity.  Low internal resistance allows a
90% recharge rate in 3.5 hours.  Also, this battery will provide 400, 50% depth of discharge
cycles.  The form factor is 12.75” x 6.75” x 9.875” with a weight of 64 lbs.

The Union battery, marketed by Synergistic Battery, Inc., offers a 12V, 100A*h (37.5
W*h/kg) model PW121000.  This battery has a low internal resistance, 3 mΩ at 26°C,
allowing fast recharge and deep discharge.  Cycle lives of 250 charge/discharge cycles at
100% DOD (Depth Of Discharge) and greater than 600 charge/recharge cycles at 50%  DOD
are possible.  The form factor is 13.28” x 6.96” x 8.56”, which should be a workable
substitute for the Prevailer [3].

The Guardsman, by Douglas Battery, offers a 12V, 95A*h (38.8 W*h/kg) model
DG12-95.  This battery will self-discharge at 3% per month at a temperature of 77°F.
Cycle lives of 120 charge/discharge cycles at 100% DOD and greater than 600
charge/recharge cycles at 50%  DOD are possible. The form factor is 12.60” x 6.6” x 8.13”
with a weight of 63 lb., this also is a possible substitute for the Prevailer battery.

It should be noted that Douglas offers a 12V, 160A*h (DG12-160) and 200A*h
(DG12-200)  battery.  The form factors are 20.7” x 8.7” x 8.86” (weight 132 lbs.) and 20.7” x
10.95” x 8.66” (weight 159 lbs.), respectively [4].



4

Power-Sonic Corporation offers a 12V, 80A*h (38.4 W*h/kg)  model PS-12800.  Cycle
lives of 250 charge/discharge cycles at 100%  DOD and 500 charge/discharge cycles at 50%
DOD are possible.  The battery’s low internal resistance allows discharge currents of ten
times the rated capacity.  The form factor is 12” x 6.6” x 8.2”,  with a weight of 55 lbs.

Also, Power-Sonic offers a 12V, 100 A*h battery model PS121000.  This battery has
a form factor of 13.07” x 6.85” x 8.43 and a weight of 70.5 lbs.  This battery could be
substituted  with modifications to the Cybermotion platform [5].

The final lead-acid battery is a manufactured by Electrosource, Inc. and offers valve-
regulation, with high specific energy (50 W*h/kg).  This newly developed battery is for the
electric car industry and has a projected life span listed as 80,000 miles.  This battery has
higher power capability 300 W/kg vs. 90 W/kg (conventional lead-acid) @ 20% charge [6].

The fundamental importance of this technology is the fiber-glass reinforced lead
wire used as a grid material in the woven-mesh, bi-polar grids.  Sheathed with a
high-density lead-tin alloy, this coaxial wire reduces the weight of the positive plate
grid and extends its useful life.  The fiber-glass core of this composite wire prevents
growth of the positive grid and provides a dimensionally stable foundation for the
positive plate.

These improved positive-grid attributes allow the design of thin positive plates
capable of long-life under deep-cycle operation.  In turn, such plates allow the design
of sealed, recombinant cells and modules capable of significantly higher power and
energy per unit of battery weight compared to conventional lead-acid batteries [7].

This battery has some good attributes such as the ability to recharge to 99%
capaicty in 30 minutes (low internal resistance), sealed valve-regulated technology, and
high specific energy.  However, the dimensions of  29” x 5” x 5.22” and weight of 60 lbs. are
outside our target form factor.

The depth of discharge (DOD) will effect the life time of the battery.  Typically
manufactures will provide curves to estimate the number of cycles that will be realized over
a given temperature range of operation and for a typical charge/discharge ratio (see figure
3) [8].



5

Figure 3: Number of cycles vs. DOD (Power Sonic)

The operating temperature range, for the lead-acid battery, is approximately 0 to
120° F.  It should be realized that the ambient temperature will effect the capacity rating
on the battery (see figure 4) [8].  When operating outside the range of room temperature
the manufacture specifications should be consulted.

Figure 4: Ambient temperature effect on rated capacity (Power Sonic)

All of the lead-acid batteries described are totally sealed, maintenance free, and may
be mounted in any orientation.  There are no corrosive acid fumes or potential for
electrolyte spillage under normal operating conditions.  All batteries are equipped with a
pressure safety valve to relieve the excessive gas pressure (nominally 2 to 6 psi.) caused by
abnormal charging.  The one way valve ensures that no air gets into the battery where the
addition of oxygen would react with the plates causing internal discharge.



6

C.5 OTHER BATTERY TECHNOLOGIES

Nickel-Iron Batteries
Eagle-Picher, Inc presently offers a 6V, 215 A*h (53.1 W*h/kg) battery.  This battery

has a cycle life of approximately 900 charge/discharge cycles at 100% DOD. The form factor
is 10.25” x 7.07” x 8.86” and it weighs 54 lbs.  Water levels must be maintained at each
charge making this technology orientation dependent and maintenance intensive.  The lack
of a sealed system can lead to environmental hazards during operation and charging.
Charging at rates above manufacture specifications will cause excess hydrogen gas to form,
leading to a possible explosion.  Therefore, special charging/monitoring equipment must be
used, increasing the cost above the purchase price of $1400. However, unlike lead-acid,
disposal of a spent nickel-iron battery is environmentally benign [9].

Lithium-Iron Disulfide
Westinghouse Electric Corporation produces a 24V, 30A*h (75 W*h/kg) battery.  The

low internal resistance of this battery allows for continous high power discharge and rapid
charge cycles.  This is a maintenance free battery, totally sealed, and is orientation
independent.  The form factor is 8” x 8” x 9 “ and weighs 30 lbs.

In order to sustain functionality, the electrolyte has to be kept in a molten state,
which presupposes a temperature of 380 to 500°C.  The design of the cell looks
similar to a cell operating at room temperature (see figure 5).  This symmetrical cell
has an iron disulfide electrode placed in the middle of a molybdenum current
conductor and an yttrium oxide texture.  On both sides is a boron nitride felt, which
is soaked with the molten salt electrolyte, lithium-aluminum electrodes and a high-
grade steel housing.  The housing is the negative terminal.  The overall reaction can
be described by the following equation [10]:

The volatile reaction of lithium with water requires the operating environment be
void of water, to preclude an accident.  Under normal operating condition this should not be
of concern.  Research within this technology is focused on finding a less expensive method of
manufacturing the boron felt, reduce positive electrode swelling during discharge, and
lowering the cell voltage during charge cycles [11].



7

Figure 5: Lithium-Iron Disulfide battery [10]

Nickel-Metal Hydride
Ovonic Battery Inc produces batteries with an increased current capacity of 30-50%

over nickel-cadmium or lead-acid batteries.  Most of their products are used in small
consumer electronics and laptop computers (low A*h ratings).  The service life of these
batteries has increased by approximately 50% over their counterparts. Charging systems
for this technology require stringent electronic control to avoid a
possible explosion due to overcharging and limitation of cycle life due to prolonged trickle
charge.

Nickel-metal hydride batteries exhibit no memory effect, have longer lifetimes, and
are void of highly poisonous cadmium.  This will allow for more environmentally friendly
disposal of fewer less toxic batteries [12].

Zinc-Bromine
Johnson Controls is producing a 48V, 126 A*h (60 W*h/kg) battery that operates

near room temperature.  In this system, an active stack of graphite plates and a reservoir
of electrolyte (see figure 6) [13], minimizes self-discharge and provides optimal output in
high power applications.  A network of pumps, pipes and valves are used to transport
electrolyte to the plates and provide an ideal coolant.  The non-sealed nature of this battery
should be corrected when the battery is commercially available (five years).



8

During recharge of a battery zinc is deposited on the cathode, and bromine is generated
at the anode.  In a drop configuration bromine reacts with the complex activating
substance guided along the electrode and the drops deposit on the right side of the
container.  During discharge the bromine complex deposits bromine into the electrolyte.
Therefore, dissolved bromine on the anode and zinc on the cathode are available for the
electrochemical reaction to generate electrical energy.  During the reaction ZnBr2 is
generated.  The salt solutes in the electrolyte and the ZnBr2  concentration increases
during charging while there is a decrease in the ZnBr2  concentration during recharge
[13].

This technology is environmentally hazardous because of the highly reactive and
noxious bromine solution.  In the event of an accident chemical leaks would prove to be
devastating to equipment and any humans who may come in contact with the spill.  The
size and large internal resistance of this battery will be interesting problems to overcome in
future designs.

Figure 6: Zinc-Bromine battery principles

Sodium-Sulfur

The main components of a sodium-sulfur battery (see figure 7) [14] are molten
sodium and sulfur. Enclosed in a metal housing, this battery operates near 350°C to
maintain these molten reactional substances.  This metal housing functions as the positive
electrode.  A ceramic cylinder functions as a separator and an electrolyte, allowing the
passage of sodium ions but no electrons.  This also enables the battery to hold a charge for
long periods of time.  This housing and the ion-conducting beta-aluminum oxide (ceramic)



9

cylinder are connected in a manner to impede the entrance of air and the exit of sodium or
sulfur.  The sulfur +C felt increases the conductivity of the sulfur electrode, hence reducing
the internal resistance.

During the discharge of the cell, sodium ions penetrate the electrolyte cylinder.  In
the negative electrode compartment sodium is consumed and in the positive
electrode compartment the sodium ions react with the sulfur to produce Na2Sx (5 ≥ x
≥ 3).  This process can proceed until the total amount of sodium is consumed or until
the whole sulfur is transformed to Na2S3.  During recharge all reactions proceed in
the other direction [14].

Figure 7 : Sodium-Sulfur battery cell.

A sodium-sulfur battery, 8V 300A*h, manufactured by Chloride Silent Power Ltd.
with Sandia National Laboratories, was tested on the FORD ETX-II vehicle and retained
85% of its initial 292 A*h capacity (3h rate) after 700 cycles.  The materials used in the
manufacture of this technology are lightweight and plentiful.  Long-term goals for this
technology will provide high energy density batteries (200 W*h/kg) for use in commercial
electric vehicles [15].

C.6 CONCLUSIONS



10

At present the lead-acid battery is still the optimal technology for our mission.
Improvements have been realized in this technology and higher capacity units are
available.  Union, Guardsman and Power Sonic offer suitable replacements for the
Prevailer battery.

However, the substitution of primary batteries will not allow our goals to be
realized.  A proposed solution is to upgrade the primary batteries to a higher capacity unit
and add batteries in the turret area for dedicated service to the additional electronics above
the Cybermotion base.

References:

[1] H. A. Kiehne,  “Battery Technology Handbook,”  New York, NY:
Marcel Dekker, Inc. 1989 (pg 5)

[2] H. A. Kiehne,  “Battery Technology Handbook,”  New York, NY:
Marcel Dekker, Inc. 1989 (pg 12-15)

[3] Mr. Casper (CAS),  Synergistic Batteries Inc.,  Maritta, GA:
(1-800-634-6000)

[4] Douglas Battery Co., Winston-Salem, NC: (1-910-650-7000)
“GURB 1-94,”  “GMB 2-94”

[5] Power Sonic,  “Sealed Lead-Acid Batteries,”  Redwood City, CA:
(1-415-364-5001)

[6] Chemical Engineering magizine,  November 1993,  pg 21
[7] B. Jays, A. Datta, C. Mathews, R. Blayner,  “Performance of the HORIZON 

Advanced Lead-Acid Battery,”  Electrosource Inc.,  Austin, TX:
(1-512-445-6606)

[8] Power Sonic,  “Sealed Lead-Acid Batteries,”  Redwood City, CA:  pg 6-7
(1-415-364-5001)

[9] Technical Data Sheet “Battery number NIF-200-5, Nickel-Iron Module,”
J. Whitford,  Eagle Picher,  Joplin, MO.  (1-417-623-800)

[10] H. A. Kiehne,  “Battery Technology Handbook,”  New York, NY:
Marcel Dekker, Inc. 1989 (pg 214-216)

[11] D. Spak,  Westinghouse Electric Co.,  Electrical Power Systems,
Cleveland OH:  (1-216-486-8300)

[12] P. Gifford,  Ovonic Battery Co.,  Troy, MI:  (1-313-362-1750)
[13] H. A. Kiehne,  “Battery Technology Handbook,”  New York, NY:

Marcel Dekker, Inc. 1989 (pg 207 - 210)
[14] H. A. Kiehne,  “Battery Technology Handbook,”  New York, NY:

Marcel Dekker, Inc. 1989 (pg 210-213)
[15] Battery an electrical vehicle update, “Automotive Engineering,”

September 1992



11

Systems Powered by the Turret Batteries
ITEM SPECS QT

Y
12V 5V -12V 24V

IMA 150/40 Board 4 A @ 5V 2 - 40 -
Camera Box 8.4 W @ 12V 4 33.6
AM-CLR Board 0.6 A @ 5V

0.22 A @ 12V
0.06 A @ -12V

2 5.28 6 1.44

CM-HF Board 1 A @ 5V 1 - 5 -
CM-CLU Board 1.8 A @ 5V 1 - 9 -
*Strobe Heads 14.4 A @ 12V 8 *see

below
- -

*Strobe Powerpack 5 A spike @ 12V 4 *see
below

*Laser diodes 60 mA @ 5V 4 - *see
below

-

TTL logic circuit under 50 mA @12V 1 1 - -
*Raster Barcode Reader 500 mA @ 12V 4 *see

below
- -

HKMips Board 5.5 A @ 5 V norm.
0.1 A @ 12 V max.
0.1 A @ -12 V max.

1 1.2 40 1.2

I/O Board 1.5 A @ 5 V max. 1 - 7.5 -
Serial Board 4.6 A @ 5 V

190 mA @ 12 V
190 mA @ -12 V

1 2.28 23 2.28

1 GB Hard Disk Drive (startup values)
1.6 A @ 12 V max.

700 mA @ 5 V max.

1 19.2 3.5 -

Lidar System 0.4 A @ 24 V 9.6
Panaflow Brushless Fan 0.16 A @ 12 V 3 5.76

TOTAL 68.32 134 4.92 9.6

Total Continuous Power Consumption : 216.84 W



Appendix D
ARIES:  An Intelligent Inspection and Survey Robot

MECHANICALMECHANICAL
SYSTEMSSYSTEMS

Department of Mechanical Engineering
University of South Carolina



1

D.  MECHANICAL SYSTEMS

 

D.1 ABSTRACT

 Presented here is a review of the mechanical design and analysis of a camera
positioning system (CPS) developed for the Department of Energy’s ARIES project.  The
ARIES (Autonomous Robotic Inspection Experimental System) project was executed
through a joint effort of three parties: University of South Carolina (USC), Clemson
University, and Cybermotion, Inc., of Salem, Virginia.  The goal of the project was to
develop an autonomous mobile robot that positions a data acquisition package (DAP) which
surveys drums containing hazardous materials in Department of Energy (DOE)
warehouses.  The three positioning systems designed, constructed, analyzed, and tested
throughout three phases are discussed.  Though all three systems (CPS-I, CPS-IE, and
CPS-II) are presented, most emphasis is placed on CPS-IE.  The unique mechanical design
of each CPS is comprised of distinct components including a lift mechanism, a fourbar
mechanism, and a camera panning mechanism.  The components are integrated in a
manner that allows the DAP to be positioned from 0 to 16 feet off the ground while
attached atop a Cybermotion K3A autonomous mobile platform.

 

D.2 INTRODUCTION

Located throughout the United States at various Department of Energy (DOE) sites
are warehouses that store large quantities of low-level radioactive wastes and other
hazardous materials in steel drums (See Figure 1).  The drums come in 55-, 85-, and 110-
gallon sizes and are arranged on pallets and then homogeneously stacked on top of each
other, forming columns of drums ranging in heights from 1 to 4 drums high (sixteen feet
maximum).  The columns of drums are aligned and arranged in aisles three feet wide.  Up
to 10,000 or more of these drums are located in a single warehouse.  Currently, DOE site
personnel visually inspect these drums at least once a week for leaks, corrosion, or
containment failure.  The DOE recognized this monotonous, yet critical inspection process
as an excellent application for an autonomous robot—thus the advent of ARIES.



2

FIGURE 1: ARIES Team in a DOE Low-Level Nuclear Waste Storage Facility

 DOE established several initial constraints that this robot must adhere to:
• must operate untethered and in an autonomous manner;
• must perform inspections in a timely fashion;
• must position itself vertically to survey drums from 0 to 16 feet;
• must be capable of lowering its' center-of-gravity for negotiating spillway berms

with minimum 9% grades;
• must safely traverse and turn in a 3-foot aisle.

  The project was broken into three distinct phases.  Phase I was defined to survey
current technology and prove the conceptual worth of the system.  Phase II focused on the
design and construction of Camera Positioning System I (CPS-I), a prototype.  Phase III
was then intended to analyze CPS-I, enhance its design, and using this information
construct CPS-IE (enhanced). Phase I began in the fourth quarter of 1992 and the contract
with DOE ceased at the end of Phase III, or the first quarter of 1997.  Following Phase III
the project was turned over to Cybermotion, Inc. to produce CPS-III, a productized version
of the system.

The ARIES system consists of a mobile robotic platform (Cybermotion’s K3A) (See
Figure 2), the CPS which sits atop the K3A, and a remote command center where all
operations are processed.  For increased stability, the system is navigated through a
warehouse in a compact (stowed) position.  Upon entering an aisle of drums the system
extends a Data Acquisition Package (DAP) down to acquire data from the lowest drum
using a fourbar-mechanism.  A panning-mechanism then rotates the DAP through a 93°
sweep while collecting data on the drum.  Finally, a lifting-mechanism provides a vertical
translation of the DAP to the three remaining drums.  The process is repeated for each
drum column.



3

FIGURE 2: Cybermotion's K3A Mobile Robotic Platform

The DAP was developed by Clemson University.  A single package consists of a color
camera, a black and white camera, two flash lamps, two light sensors, two laser light
projectors, and a barcode reader (See Figure 3).  To capture the surface of a drum from top
to bottom, the color camera must be positioned at two different locations on each drum.
The positions are: ± 8 in. from the center of a 55-gallon drum; ± 10 in. from the center of an
85-gallon drum; and ± 12 in. from the center of a 110-gallon drum.

FIGURE 3: Data Acquisition Package (DAP)

 



4

D.3 PHASES I & II

D.3.1 Phase I: Proof of Concept

 The first phase of the ARIES project allowed team members to ascertain the design
concept initially envisioned.  The ARIES team was to deliver reports and demonstrations as
proof of this concept.  There were few mechanical aspects taken into account during Phase
I.
 The ability of an autonomous vehicle to inspect low-level radiation sites was proven
through the technology developed in Phase I.  Issues such as navigation, vision, remote
supervision, on and off board controls, and radiation dose-rate hardness for on board
systems were all developed [2].
 
D.3.2 Phase II: Introduction of CPS-I

 
 The main consideration during Phase II was to design and construct a prototype
(CPS-I) that satisfied the project constraints, while demonstrating its ability to position a
camera package properly and efficiently.  DOE would test this prototype at the University
of South Carolina’s test facility.
 
 
D.3.2.1 CPS Conceptualization

 Several systems were studied during conceptualization to avoid redesigning a pre-
existing mechanism.  These systems were:  “industrial work platforms used for positioning
people (retrofitted for this application); flexible metal bi-stem tubes used for TV camera
positioning; square-nested telescoping pneumatic and hydraulic box-stem tubes; fixed mast
with moving track or continuous lead screw; and a Puma 560 manipulator” [5].  The
industrial work platform seemed the most suitable system for achieving the camera height
translation.  This type of platform is created from a series of interlocking rail elements,
each translating with respect to one another as a result of cable/pulley associations, of
which one element is fixed to ‘ground’.  The motion is a direct result of some type of
actuator: hydraulic, electric, or pneumatic.
 
D.3.2.2 Existing Systems

 The ability to manufacture this system was also a very important issue to study.
Several production concepts were studied and considered before the design process ensued.
The first concept was to simply retrofit a commercially available system to the K3A,
however no readily available system was found to satisfy the conditions required.   The
next concept was to construct CPS-I using ‘off the shelf’ components.  Finding these types of
components deemed unattainable at the time.  The third and final concept was to design
and construct a positioning mechanism, unique to the market, able to be easily productized,
and capable of fulfilling all requirements.  This concept, at the time, seemed the most
reasonable route due to the constraints applied to the system.
 The concept envisioned for CPS-I contained an interlocking rail element lift
mechanism and a parallelogram fourbar mechanism (See Figure 4).  The lift would be an
assembly of five rail elements with three individual DAPs attached on individual elements



5

such that, for every drum stack, each of the three top drums would have its own camera
package retrieving data.  The fourth DAP would be attached to a parallelogram fourbar
mechanism that would extend down and away from the CPS in order to clear the K3A
platform and to retrieve data from the lowest of the four drums.  This design provides a
dedicated DAP for each drum in the stack.
 

 

FIGURE 4: CPS-I

D.3.2.3 CPS Components

 Because CPS-I was designed and manufactured as a prototype, the need for a
versatile construction process arose.  The components had to be easily procured, easily
machined, and easily fastened to one another.  Item Products', Inc. modular fabrication
system was chosen to meet these needs.  This system is made of high strength, precise pre-
engineered components.  The components range from custom 6005-T5 or 6061-T6
aluminum extrusions to eccentric bearing units and all types of connections in between.
The versatility and availability of the Item components made this the system of choice.
 
D.3.3 CPS-I Lift Mechanism

 
 The design of the lift mechanism required that the three camera packages attached
to three of the elements be positioned at specific locations with respect to the center of each
drum in the stack.  These centers are dependent on the respective drum’s size.  The
homogeneous stacks of drums placed in non-homogeneous rows meant that the positioning
of the cameras could be different for each stack.  To accommodate different drum sizes it
was necessary to not only position the elements at a certain height, but to also maintain a
distance between each package.  This motion is defined by two degrees of freedom (DOF)
which requires two inputs.  One of the inputs defines the height the lift can attain with
respect to ground, and the other defines the separation difference between the three camera



6

packages.  The camera packages must be at different heights and separations to retrieve
data from different size drum stacks.
 
D.3.3.1 Element Design

 The lift's interlocking element design was constructed of one stationary aluminum
extrusion or grounded element and four smaller extrusions moving with respect to one
another by means of Item's roller bearing units.  Item's 40 x 80 mm. precut extruded beams
are used as the four moving elements (Elements 2, 3, 4, and 5) on the lift mechanism.  The
one stationary element (Element 1) is an 80 x 80 mm.-extruded beam.  Attached to the
beams are pairs of 14 mm. double bearing units produced by Item.  These roller-type
bearings ride along 14 mm.-diameter rails that are also attached to the subsequent
elements.  The eccentricity of the bearings allows the user to adjust bearing preload for a
proper fit, which aids in the support of a lateral load applied to the elements.   Placed on
each of the bearing units is a lubricated end cap.  This end cap functions as a lubrication
reservoir and through a felt pad, and keeps a thin layer of oil on the rails to maintain a
smooth fluid motion.
 
D.3.3.2 Lift Actuation

 The motion of the lift is provided by a system of five pulleys, five cables, and two
linear actuators.  Each linear actuator controls one of the two DOF associated with the lift
mechanism.  Both actuators are the Electrak 100 models manufactured by Warner Electric.
Eighteen and twenty-four inch linear actuators were used.  Both have a rated continuous-
load capacity of 500 lb. and life expectancies of 33,000 and 27,000 cycles, respectively,
under normal loading conditions.
 
D.3.3.3 Load Analysis

Static and dynamic force analyses (method discussed in Chapter 4) were performed on the
actuators to determine their appropriate load-capacity.  The cable attached to actuator 2 has a
maximum calculated static load of about 153 lb.  The maximum speed attained by the actuators is
2.5 in./sec.  To obtain a reasonable acceleration value for dynamic-loading, tests were performed
using a load cell placed inline with the actuator’s cable.  The average static-load determined by
force-analysis was 151.7 lb., while the average load obtained with the load cell was 146.9 lb.
These static-load values fall within 3% of one another.  Dynamically, a maximum of 175.9 lb. was
measured when accelerating and decelerating the lift at approximately 5 ft./sec2.  Theoretical
calculation of the dynamic load using this acceleration yields 176.75 lb., which is very close to the
measured value.

 The actuators transmit all motion through 0.125 in. diameter steel cables.  These
cables are associated with a group of strategically sized and placed pulleys to form
cable/pulley associations throughout all five elements.  These associations lead to
amplifications of an element's movement when the linear actuator moves.  The relative
amplification of each element is determined by geometrically plotting its movement as a
function of the actuators’ motion.  The positions are determined based on the constant
length of the cables.  Each element moves with its own distance ratio (DR) due to the
cable/pulley association it has with the ground.  Based on the assumption that all cables
remain parallel to the elements, theoretical DR are determined for CPS-I as follows:
Element 2 — 1:1, Element 3 — 3:1, Element 4 — 5:1, and Element 5 — 7:1.  This states
that theoretically a 1 in. actuation will result in a 7 in. translation of element 5.  The actual



7

amplification factor of the mechanism’s fifth element, however, is calculated as 6.5:1 as a
result of angles introduced in the cables.  The velocities and accelerations follow the same
pattern.
 From the conservation of energy principle, the gain of the DR creates a loss in
mechanical advantage (MV).  This exchange is illustrated by the definition of MV.
According to Sahag [7], the applied load multiplied by the distance it moves is equal to the
output load multiplied by the distance it moves (a conservation of energy principle).  The
MV is then the ratio of similar terms.

 

F d F d

MV F F d d
out out in in

out in in out

• = •
= =/ / (1)

             Where FOUT = output load
 dOUT = distance the output load moved
 FIN = applied load
 dIN = distance the applied load moved

 MV = Mechanical Advantage
 dOUT/dIN = Distance Ratio

 Rearranging the terms, it is clear that MV is the inverse of DR.   A MV of 7, according to
this definition, states that on output of 700 lb. requires an input of 100 lb.  These systems,
however, are the opposite.  That is, a 100 lb. output theoretically requires a 700 lb. input.
This results in a MV less than one.  A mechanical disadvantage?  Recall the advantage is
not in the load, but in the DR, which in fact is the inverse of the MV.  To take advantage of
this knowledge, a method of calculating the applied load at the actuator as a function of the
MV of each element in these systems was developed.  This method will be detailed in
Chapter 4.
 
D.3.3.4 Lift Mechanism Equations of Motion

The equations of motion for the lift mechanism were developed by Rocheleau [5] as a
method for calculating the 3 DAP camera heights.  They are approximated as linear
functions based on an analytical geometry model using planes and lines.  The heights of the
cameras attached to Elements 3, 4, and 5 from the floor are denoted as z3, z4, and z5

(measured in inches).  The camera heights are functions of the retraction of actuators 1 and
2, denoted as x1 and x2.  The equations take into account the changes in cable angles as the
mechanism extends upward.  Three triplets of equations are developed for each of the 55-,
85-, and 110-gallon drum columns that may be encountered.  The following sets of
equations are used with an accuracy of ± 0.5 in.:

55-gallon drums:
z3 = 1.829x1 + 0.987x2 + 46.366 (2a)
z4 = 2.646x1 + 1.958x2 + 72.716 (2b)
z5 = 3.450x1 + 2.913x2 + 101.066 (2c)

85-gallon drums:
z3 = 1.864x1 + 0.952x2 + 46.366 (3a)
z4 = 2.720x1 + 1.894x2 + 72.716 (3b)
z5 = 3.565x1 + 2.825x2 + 101.066 (3c)

110-gallon drums:
z3 = 1.881x1 + 0.947x2 + 46.366 (4a)
z4 = 2.755x1 + 1.886x2 + 72.716 (4b)
z5 = 3.619x1 + 2.815x2 + 101.066 (4c)



8

 
   The maximum drum height was constrained to four 110-gallon drums and their
respective pallets.  A 110-gallon drum is approximately 43 in. tall, and along with a 5 in.
pallet the maximum height of a four-drum column is 192 in.  Because the camera must be
positioned at +/-12 in. from the center of the 110-gallon drum, the maximum height the
camera’s focal point needs to be 182.5 in., or 15 ft. 2.5 in.  This information is imperative
during the design process of a lift mechanism.  Since this height fell within the initial
constraint imposed by DOE of 16 ft., CPS-I was designed to reach this 16 ft.-height.
 
 
D.3.3.5 Element Geometry

 To reach this 16 ft.-constraint, the mechanism’s motion must be unhindered
throughout its range of movement.  The length of travel the bearing units must undergo
along their respective rails is a contributing factor to define the element lengths.  The
magnification ratios are once again called upon to determine how much one element moves
with respect to another.  Based on these ratios and contributing assembly constraints, the
calculated element lengths are as follows:  Element 1 - 67.5 in.;  Element 2- 67.5 in.;
Element 3 - 67.75 in.;  Element 4 - 67.75 in.;  Element 5 - 62 in.  Once assembled onto a 3/4
in. aluminum base plate, the minimum height of the lift stands approximately 81 in.  Once
assembled atop the 32 in.-tall K3A, ARIES stands approximately 113 in., or just under 9.5
ft.  Added navigational equipment pushes this height over 10 ft.
 
D.3.4 CPS-I Fourbar Mechanism

 To retrieve information from the lowest drum in each stack, a fourbar mechanism
lowers a DAP out away from the K3A and down to the lower position.  Because ARIES
must turn around in a 3 ft.-aisle, the CPS that sits atop the K3A must be compact enough
such that none of its components overhang the outer edges of the K3A; that is, from an
overhead view the outer most edge is the K3A itself.  To maintain this compactness and
still be able to retrieve data from the lowest drums, a mechanism that moves the DAP
away from the platform and down to its proper height was necessary.  The mechanism
chosen is a special-case-Grashof parallelogram fourbar [4].
 The constraints on the fourbar were established as:

• it must provide full retraction of the DAP over  the K3A
• the DAP is deployed out enough so the camera’s field of view is not

obstructed by the sides of the K3A
• the lateral displacement of the lower fourbar position should be equal to,

or very close to the lateral displacement of the upper fourbar position
The final constraint is intended to maintain a constant vertical line of action along which
the cameras may take data.  This will result in similar data taken at the upper and lower
positions of the lowest drum.

D.3.4.1 Conceptualization

In the conceptual design process of this mechanism several mechanisms were
studied during the type-synthesis phase.  A Watt’s sixbar linkage was considered, but was
dismissed due to its complexity.  The fourbar linkage was then considered.  During the



9

qualitative-synthesis phase the parallelogram geometry of the chosen special case Grashof
mechanism (See Figure 5) was the best package for the application at hand.

FIGURE 5: CPS-I Fourbar Mechanism

The parallelogram geometry of the fourbar is a significant factor in placing the DAP at a
desired location.  A parallelogram fourbar has a unique coupler movement; that is, the coupler
undergoes pure translation.  The initial posture of the coupler will remain throughout the
fourbar’s translation.  In this case, the DAP is the coupler.  The preferred posture of the DAP is
vertical.  Thus if the DAP is initially vertical, then it will remain vertical throughout the fourbar’s
motion.  This is useful because the package will have the same posture with respect to the drums
at a lower as well as an upper position for each drum.  This posture also helps to compact the
fourbar into a stowed position when the vehicle is in motion.

D.3.4.2 Geometry

The development of this mechanism was primarily based on simple kinematic
equations of motion.  To create the geometry, a dimensional-synthesis was performed to
determine the coupler output position as the mechanism actuates through the prescribed
motion.  The lengths of the identical driver and follower links are determined by this
synthesis.  The coupler, or DAP in this case, must clear the K3A along its movement.  It
must be positioned far enough away from the K3A in its lower position such that the field of
view is not blocked.  It also must be properly stowed within the platform boundary.  Using
these constraints, the driver and follower links were calculated to be 49 in. (hinge to hinge).
These links must be identical in length to maintain the parallelogram geometry.  The hinge
to hinge distance on the ground and coupler links also had to be identical but their distance
is not a critical design constraint.  This distance, as assembled, is approximately 17 in.

D.3.4.3 Components

To manufacture this fourbar mechanism, the Item aluminum components were
again used.  28 x 28 mm. aluminum extrusions were used for the driver, follower, and



10

coupler links.  The ground link is constructed of a single 40 x 40 mm. mast.  To allow the
single rotational DOF of each joint, 28 x 28 mm. hinge joints were used.

D.3.4.4 Actuation

To provide motion to the driving link, the amount of torque necessary to drive the
fourbar was calculated.  The camera package and all accessories weigh approximately 5.5
lb.  This requires a maximum torque of 270 in.-lb. created at the driver/ground joint when
the driver is parallel to the floor.   A 0.25Hp 1.8 Amp DC motor, attached to the base of the
system, supplies rotary motion to the driver.  Position control of the input is achieved from
an optical encoder attached to the motor drive to feedback position.  A limit switch is
positioned to halt the motion once the mechanism reaches a stowed configuration.

 
 

D.4 PHASE III

The scope of Phase III was to redesign and enhance CPS-I such that a ‘productized’
system was developed and a working prototype was delivered.  This prototype was to be
demonstrated onsite at a DOE storage facility to ensure the feasibility of the design.  What
actually surfaced from Phase III, however were two systems: CPS-IE and CPS-II.  CPS-IE was
an enhanced version of CPS-I and CPS-II was a less complex productized version.  Both systems
are capable of the same task, however each has its own distinct qualities.

D.4.1 CPS-IE Lift Mechanism

CPS-IE (See Figure 6), an Enhanced version of CPS-I, was constructed for
demonstration at the DOE Fernald Environmental Management site near Cincinnati, Ohio.  To
improve overall efficiency and reliability of the first system several necessary enhancements were
made as follows: lift mechanism revisions; weight reduction of the CPS; fourbar mechanism
revisions; and the addition of a rotational DOF to the DAP to allow for dent detection.



11

FIGURE 6: CPS-IE

D.4.1.1 Concepts

Several lift concepts were considered as follows: using the same lift mechanism as in CPS-
I; designing an extendable mast which would extend and retract like a hinged truss; designing a
single mast system consisting of a single fixed element.  The hinged truss concept was not used
because this required a redesign of the entire system instead of an enhanced version.  The single
fixed mast concept was not used because DOE wanted the system to be capable of compacting
enough to clear a ten-foot bay door in its stowed configuration.  A fixed mast that could reach 16
ft. would extend past the ten-foot height in its stowed configuration.  Thus, the concept chosen
was to enhance the pre-existing lift mechanism.

D.4.1.2 Bearing Configurations

One important factor in the design stage of the enhanced lift mechanism was the
elements’ freedom of relative motion with respect to one another.  Due to the location of the
bearing units on CPS-I, the elements were limited as to how much travel was available
before the bearings from two separate elements collided. This was a result of two bearing
units riding along the same shaft.  Because elements move at different rates with respect to
one another, the contact is eminent.  To avoid this, the design of the lift on CPS-IE had to
have one bearing per shaft.  This would eliminate any contact during the prescribed
motion.  To achieve this, several bearing configurations were studied (See Figure 7).
Concepts were considered using the 14, 10, and 6 mm. bearing units.  As can be seen by
these concepts, each bearing has its own independent shaft to translate on.



12

40 X 80

Double Bearing
Unit 14 Corner Element 1

40 X 80

Co
r
n
e
r
 

E
l
e
m
e
n
t
 

1

Double Bearing
Unit 14

40 X 80

Double Bearing
Unit 10 Corner Element 1

40 X 80

Co
r
n
e
r
 

E
l
e
m
e
n
t
 

1

Double Bearing
Unit 10

Double Bearing
Unit 6

Slide Block

40 X 80 40 X 80

Double Bearing
Unit 6

FIGURE 7: CPS-IE Bearing Configuration Concepts



13

The 6 mm. bearing unit configuration was chosen, and is assembled using
rectangular box elements on which bearing units ride along shafts placed on the inner and
outer faces of these elements (See Figure 8).  This allowed one bearing unit per shaft; thus
the outer and inner bearings could translate along the same plane, but never come into
contact with one another.  This design reduced the overhead footprint of the system
allowing the number of elements to be increased to six if desired.  The addition of a sixth
element to this enhanced version was desired to not only increase the positioning speed, but
to also decrease the stowed height.

FIGURE 8: CPS-IE Lift Mechanism Element Construction

D.4.1.3 Length of Contact

One concern of this new lift design was the maximum lateral load applied to the
6mm bearing units.  According to Item Product’s Inc., manufacturer of these 6mm double
bearing units, they can only withstand a 28 lb. lateral load on each roller [3].  This lateral
load is a result of a couple created by the system's inertia under acceleration.  The couple
has a direct correlation to a parameter defined as length of contact (LOC) (See Figure 9).
LOC is the vertical distance between the point of contact of the outer bearings of one
element and the point of contact of the inner bearings of the next element.  As the LOC
decreases, the moment arm of the couple increases; thus, the lateral load increases.  A safe
minimum LOC was established for each element pair as follows: elements 1 & 2 - 15 in.;
elements 2 & 3 - 12 in.; elements 3 & 4 - 12 in.; elements 4 & 5 - 6 in.; and elements 5 & 6 -
3 in.  This minimum LOC increases the system's stowed height, however is vital to the
overall safety of the system.



14

FIGURE 9: Length of Contact (LOC)

D.4.1.4 Pulley Configurations

Once the element component assembly had been established, the pulley cable
associations were defined.  Recall that one can visually determine how these associations
will effect the motion and magnification of the elements.  The procedure used to determine
the element ratios was to visually inspect the magnifications created as different pulley
configurations were studied. Several pulley/cable configurations were evaluated to arrive at
desired speed amplifications.  Each configuration was defined by the number and location
of pulleys on each element starting with the first moving element (element-2) to the last
moving element (element-6).  For example a two-element system in which the first element
contained two pulleys and the second element had one pulley would be defined as a 2-1
configuration.  Thus, CPS-I would be a five-element system with a pulley configuration 2-1-
1-1.  The number of pulleys on the fifth element is not included simply because there are no
pulleys on element five.  Three configuration concepts and their predicted speed
amplifications are as follows: 0-1-2-1-1, 7x; 2-1-2-1-1, 13x; and 2-1-2-2-1, 15x.  These three
configurations will be defined by their final element speed amplification; thus, the three
pulley configurations are PC7, PC13, and PC15, respectively.

Configuration PC13 was the first of three ‘six element’ configurations studied.  With
a pulley configuration of 2-1-2-1-1, the theoretical element magnifications were as follows:
element 2- 1:1; element 3- 3:1; element 4- 5:1; element 5- 9:1; and finally element 6- 13:1.
Analysis shown in Chapter 4 will prove that approximately 12 in. of actuation are required
to lift element six to a height of 16 ft.  This configuration requires an 867 lb. load on the
actuator.

Configuration PC15 goes one step further and adds another pulley to element 4.
This configuration, 2-1-2-2-1, results in the following theoretical element magnifications:
element 2- 1:1; element 3- 3:1; element 4- 5:1; element 5- 9:1; element 6- 15:1.  Although
this configuration had initially been considered, it was decided that this magnification was
too great for the prototype phase.  Thus this configuration was merely a concept.

After studying configuration PC13 for some time, this seemed the best overall
configuration to use.  In fact, the design was finalized and the lift constructed.  At this time,
the selection of the linear actuator was studied.  The selection process began as a decision



15

based on dynamic loading of the cabling as well as duty-cycle and power consumption of the
actuator.  The dynamic loading, as shown in Chapter 4, is based on 15% over the maximum
static load calculated.  This maximum value is 867 lb., thus the dynamic load is calculated
as approximately 997 lb.  Considering the actuator would experience more of the constant
velocity loads, the dynamic loading was not a consideration in the duty-cycle calculation.
Based on the 997 lb. maximum capacity necessary, the decision to use a 1000 lb. actuator
was chosen.

D.4.1.5 Actuator Selection

Due to procurement issues, the decision was made to use the same linear actuator
used in CPS-I on CPS-IE.  To accommodate this actuator, a final revision was made to the
pulley configuration.  A 7x configuration was chosen to accommodate the 24 in. - 500 lb.
actuator stripped from CPS-I.  The pulley configuration (PC7) of this six-element
mechanism is 0-1-2-1-1. This configuration results in the following theoretical element
magnifications: element 2- 1:1; element 3- 2:1; element 4- 3:1; element 5- 5:1; element 6-
7:1. After geometric evaluation of the angles of the cables on this system, the actual
magnification of the overall system is 6.9x, which is slightly higher than CPS-I.  A simple
change in the PC13 configuration resulted in a major amplification reduction.  This
reduction decreased the theoretical actuator static load capacity to 488 lb. which falls
within the 500 lb. continuous-load rating.  Recalling MV however, the stroke increased to
over 21 in.

The dynamic loads on the actuator were then calculated for the mechanism.
As previously noted, the maximum static load was calculated as 488lb.  Under a
determined 5 ft./sec2 acceleration the additional theoretical dynamic load is calculated as
75.8 lb.; thus, the total actuator dynamic loading condition is 563.8 lb.  This exceeds the
actuator’s continuous-load rating; however, is still under its maximum load-capacity rating.
Life expectancy of this actuator under these conditions was reduced to 10,000 cycles.

D.4.2 CPS-IE Weight Reduction

The biggest enhancement made to CPS-IE was a reduction in the overall weight of
the system.  CPS I weighed 200% over the original estimated value.  This excess weight is
detrimental to the energy stores required to properly position the robot and to actuate a
DAP into the necessary configuration.  This untethered system requires a charging period
which takes away from time that could be spent acquiring data.  A reduction in system
weight results in more infrequent charge times as well as less power consumption during
positioning.

D.4.2.1 DAP Reduction

Several steps were taken to reduce the energy-depleting weight of CPS-I.  The
biggest reduction in weight came from decreasing the number of DAP from four on CPS-I to
one on CPS-IE.  Along with reducing weight, this change decreased system complexity,
minimized system-recharging time, and reduced manufacturing cost.  Element component
weight was also reduced.  The overall weight of CPS-IE was 261 lb., a 34% reduction over
CPS-I.



16

D.4.2.2 Bearing Changes

Another significant weight reduction was obtained by reducing the bearing unit size
on each of the elements.  Recall CPS-I used Item's 14 mm. double bearing units.  Each
bearing unit consists of two rollers, two eccentric adjustment bolts, two lubricating end
caps, an extruded aluminum housing, a variable length steel shaft on which the roller
rides, and a variable length clamp which holds the shaft to an element.  The 14 mm. size
refers to the diameter of the shaft.  Item also offers these units in a 25, 10, or 6 mm. (See
Figure 10) option.  The overall weight of one 14 mm. double bearing unit is 2.04 lb.  The
respective shaft and clamp is 3.24 lb. per meter.  The 10 mm. unit is 2.5 lb. and its
respective shaft and clamp is 1.91 lb. per meter.  The 6 mm. unit is 0.57 lb. and its
respective shaft and clamp is 0.75 lb. per meter.  Thus, per meter the 10 mm. and 6 mm.
units are a 16.5% and 75% reduction in weight, respectively.  Considering CPS-I had 16
bearing units and over 6 meters of shaft, this yields a large overall reduction in CPS
weight.  Several concepts were considered using both the 10 and 6 mm. units.

 

FIGURE 10: Item Products', Inc. 6mm Double Bearing Unit

D.4.3 CPS-IE Fourbar Mechanism

Similarly to CPS-I, the single DAP had to be extended down and away from the lift
mechanism.  Several concepts were considered for this design as follows: a sliding
mechanism to push the package away from the lift; a scissor-type expandable truss that
could also push the package away from the lift; a hinged mechanism that could swing the
package out from the lift; a roller-positioning device which would push the package away
from the lift using the lift’s actuation; actuating the entire CPS forward; and finally an
enhanced version of the fourbar used on CPS-I.

The sliding mechanism was a simple concept, however because the lift mechanism
had to be lowered after the slider had been actuated, the stowed height of the lift would be
increased.  The scissor type expandable truss, although very lightweight and sturdy, was
deemed too complex for an enhancement.  The hinged mechanism was also a simple
concept, however as with the slider, the stowed height would have to be increased.  The
stability of the roller-positioning device was questionable, and its complexity along with the
stowed height being increased were three negative aspects of a mechanism that could be
actuated using the lift mechanism’s motion.  Translating the entire CPS forward so that
the camera could be lowered required a large amount of power as well as a change in the



17

center of gravity (CG) of the system.  Finally, an enhanced version of the fourbar used on
CPS-I was considered.  After considering the experienced gained from the fourbar on CPS-I,
as well as the additional height advantage given by the symmetric nature of the
parallelogram mechanism, the fourbar seemed the mechanism of choice for the enhanced
version.

D.4.3.1 Synthesis

To design the enhanced fourbar, a step by step procedure was followed which began with
a qualitative synthesis.  According to Norton [4], the qualitative development of a fourbar
mechanism is an iterative process between the synthesis and analysis during the design process.
Through this process, one is able to geometrically alter a design according to inherent constraints,
then test the results kinematically and dynamically to verify that it is mechanically acceptable.  If
not, this qualitative synthesis procedure is once again followed to make necessary changes to the
previous iteration.

The first step to the fourbar synthesis is the selection of the mechanism type, or type
synthesis [4].  Part of this synthesis occurred during the conceptual stage of CPS-IE; that is, the
decision to use a fourbar mechanism to translate the camera package down and away from the
mobile platform was already made.  To complete the type synthesis, the only remaining step is to
determine what type of fourbar linkage to use.  One of the biggest benefits of the fourbar used in
CPS-I was its ability to move a camera package to two locations, an upper and a lower, along a
single line of action.  This is beneficial because not only does the mechanism’s lower position
move the camera down and away from the mobile platform, but the upper position adds an
additional height advantage, thus reducing the height requirements of the lift mechanism.  Because
of the fourbar's parallelogram geometry, a calculation of its Grashof condition yields the type
'special-case-Grashof' linkage.

Once the type of linkage is established, the next step in Norton’s design process is the
dimensional synthesis.  This procedure allows the designer a method of determining the lengths or
proportions of the fourbar’s links to provide the necessary motion.  Because of the fourbar's
parallelogram nature, this process is simplified because the driver and follower links, as well as the
ground and coupler links must be equal in length.  Thus the number of decisions is reduced from
four to two.  The easiest method of establishing the geometry of the fourbar is by graphically
plotting out the motion of the links, knowing the initial spatial constraints of the system.  A
compass, a protractor, and a rule, along with knowledge of Euclidian geometry are the only tools
necessary to graphically synthesize the mechanism.

D.4.3.2 Constraints

The initial spatial constraints considered when synthesizing this mechanism were the
limiting factors of the design process.  In this application, there were several constraining factors
imposed.  The lowest position of the camera’s focal point must be 12 in. above the ground to
capture the lowest drum position.  The line of action of the camera’s focal point had be 8.3 in.
from the K3A’s outer most edge to achieve the proper clearance of the camera’s field of view.
When the fourbar on CPS-I was stowed, the entire camera package had to fall within the outer
perimeter of the mobile platform, thus allowing the system to rotate within a three-foot aisle.  The
ground joints of the fourbar were constrained 11.5 in. from the mobile platform’s outer edge
because of the prescribed location of the lift's sixth element.  Finally, the mechanism was designed



18

to minimize link length thus reducing weight, torque requirements, and joint loads.  All constraints
were considered during the graphical synthesis of the mechanism.

Several designer-imposed constraints were then made to aid the graphical synthesis.  The
coupler joints were constrained at 6 in. from the camera’s focal point line of action to account for
the package to rotate for dent detection.  The bottom of the DAP would remain 2 in. off the
ground to avoid any contact.  Finally the outermost edge of the DAP was determined as 3 in.
from the camera’s focal point line of action, which allowed the package to be stowed within the
mobile platform’s perimeter.  With all constraints known at this point, the link lengths were
determined graphically to be 20 in.  The follower link would be located 2.5 in. off the mobile
platform while in the stowed configuration to allow for any linkage rotation.  The ground and
coupler links were then determined as 10.5 in.  The motion can then be plotted graphically to
determine the validity of the mechanism’s positioning (See Figure 11).

FIGURE 11: Constraints and Plot of the Enhanced Fourbar Mechanism

 
D.4.3.3 Quality

The fourbar mechanism's quality is determined by analyzing its position throughout the
motion while checking for interference, toggle positions, and the transmission angle.  There are
several areas of interference along the path of this enhanced fourbar.  Defining the upper of the
two rotating links as the driver, then a straight-line follower link will interfere with the mobile
platform.  To avoid this, the binary link can be reshaped into any form as long as its two hinge
locations do not change.  Thus this link may be angled such that the interference with the mobile
platform is eliminated (See Figure 12).



19

FIGURE 12: Fourbar Links

The toggle position of this mechanism will occur if the angle between the coupler and
either of the two rotating links becomes 180 degrees (See Figure 13).  There are two
configurations in which a toggle position is reached on this type of mechanism.  In this case, the
only configuration of concern is the stowed position.  The parallelogram geometry of this fourbar
will yield colinearity between all links at the toggle position.  An evaluation of the mechanism’s
quality shows that it will reach a toggle position if rotated approximately 5° past its stowed
configuration.  This position, however, is impossible to reach without experiencing interference
with the lift-mechanism.  Toggle position is undesirable in this case because it can cause the
prescribed motion to drastically change creating interference or dangerously unstable motion of
the mechanism.

FIGURE 13: Toggle Position Angle and Transmission Angle

Norton [4] defines the transmission angle as the acute angle between the coupler and the



20

output link.  This angle is important because it defines the direction of the load on the
mechanism’s joint.  At any particular instant along the mechanism’s motion, each joint has a radial
and a tangential component.  The tangential component of the follower link is the load that is
responsible for all torque created at that link.  Thus it is desired to keep this load maximum.  The
radial component, on the other hand, simply directs load onto the joint itself; thus, this load
creates unnecessary stress as well as undesired friction on the joint’s bearings.  As the
transmission angle decreases, the radial load increases while the output torque decreases.  Norton
recommends a transmission angle no less than 35 degrees, unless there is a very small external
load on the follower link.  There is very little external load on this link in this application.  Thus,
the small transmission angle encountered in the stowed configuration was neglected, and its
resulting radial load was later analyzed.  This will be shown in Chapter 4.

D.4.3.4 Dynamic Results

As was stated earlier, the design process of a fourbar mechanism is an iterative process.
Properly designing this mechanism required synthesis followed by analysis.  The analysis of this
mechanism was split into two parts.  To calculate the position, velocity, and acceleration of each
link at any instant of time, a kinematic analysis was done.  Once these values were obtained, a
dynamic analysis was done.  The dynamic analysis determined the forces and torque throughout
the mechanism, including the information at the joints. The maximum torque capacity is 523 in.-
lb. (59.093 N-m) when the driver link is parallel to the floor.  The maximum radial load at a pin
joint is 32.6 lb. (145 N), and occurred at 60° between the ground and the input crank. This is
considerably lower than the maximum dynamic load rating of the bearing (288 lb.) used at the pin
joints.  The life expectancy of these roller bearings, calculated using an L10 life rating, is over 2
billion revolutions.  Both analyses will be shown in detail in Chapter 4.

D.4.3.5 Actuation Concepts

Actuator selection for the new fourbar was complicated because any weight applied to the
sixth element would be magnified 6.9 times at the lift actuator.  This weight would also affect the
system’s stability as the overall center-of-gravity (CG) changes when the system is raised.  Two
designs were considered when determining the actuation of the enhanced fourbar.  One concept to
reduce weight was to use the motion of the lift mechanism to actuate the driver link.  Attaching an
extended lever arm to the existing driver, the lever could be positioned into a cycloid-shaped slot
that smoothly rotates the driver about its pivot point.  The lift’s motion would control not only
the camera’s height, but also its lateral translations.  The other concept was to hinge a linear
actuator on the sixth element attached to another hinge on the driver link of the fourbar.  This
linear actuator would crank the link down and back up as it extended and retracted, respectively.

D.4.3.6 Cycloid-Slot

The first concept, the cycloid-slot, was studied using basic cam design.  According to
Rocheleau and Moore [6], the concept requires a cam that has a rotating follower, as well as a
form-closed joint [4] that would push and pull on the follower.  The lever attached to the driving
link of the fourbar would be the follower in this case.  As the lift mechanism would rise, the lever
would be positioned into the groove.  A continued vertical translation would cause the lever to
rotate around the groove thus the follower, or lever, would rotate and in turn actuate the fourbar



21

(See Figure 14).  At any other time, the fourbar would remain in a stowed position.  The design of
the cycloid is calculated such that the full range of motion would occur along the track.  The
concept would require a brake to hold the fourbar position in place after being rotated, as well as
some type of retractable pin, such as a solenoid, that could be positioned in the groove when the
fourbar needed to be actuated.

FIGURE 14: Fourbar Using the Cycloid-Slot

A kinematic analysis of this cam mechanism was performed to determine its equations of
motion.  The angular position, velocity, and acceleration of the follower were determined using
simple harmonic motion functions along with the basic constraints of the system at hand.  Several
difficulties developed during the study.  After developing the equations of motion, the motion was
modeled physically as well as in Working Model [9].  Both models demonstrated the complexity
of the motion.  As the lever reaches half way through the slot, it reaches a toggle position.
Without an external load applied, the lever’s motion becomes unpredictable at this point. This
could physically be felt on the prototype, and was seen using the Working Model software
package.  To avoid this toggle, the design would have to incorporate another type of force.  This
concept, unique and challenging, became too time consuming to pursue.  A detailed analysis of
the cycloid-slot, however, is shown in Chapter 4.

D.4.3.7 Linear Actuator

The second concept for actuating the fourbar was proposed to crank the driver through a
pivoting linear actuator attached to Element 6 (See Figure 15).  Using the torque requirements
calculated by the dynamic force analysis, the actuator selection could be made.  Input torque was
calculated at 523 in.-lb.  The goal was to keep the actuator as close as possible to Element 6 so
the weight of the actuator did not overly affect the CG of the system.  The actuator, however,
must be mounted so that the mechanism could collapse into a compact stowed position.  To
determine the mounting locations, a simple graphical synthesis was performed to track the motion
of a linear actuator attached to the mechanism.  The pivot location on the driver link was



22

imperative in determining the load capacity and the stroke of the actuator.  A choice to use a 200
lb. actuator approximately 3 in. from the pivot point provided a continuous torque rating of 600
in.-lb.  To mount this along the driver link, at 3 inches from the joint, required a stroke of
approximately 7 in.  The actuator selected is the 8 in. Bug series linear actuator manufactured by
Ultra Motion.  The actuator weighs approximately 3 lb., and has a maximum speed of 2.5 in./sec.
The actuator was mounted using the same hinge joints as the fourbar.

FIGURE 15: CPS-IE Fourbar

D.4.3.8 Manufacture

After the iterative design process was complete, the construction of the fourbar began.
The design of this mechanism was much more complex than the fourbar on CPS-I.  Both driver
and follower links on this mechanism were angled to allow unobstructed motion.  The links were
constructed from Item's 28 x 28 mm. aluminum extrusions.  The angles were machined and the
extrusions were held together using aluminum braces.  Because of the dynamic loads calculated at
the joints, special hinges were made to act as the mechanism’s pin joints.  The hinge housings
were manufactured using a Computer Numerically Controlled (CNC) milling machine.  Each
housing holds two light series ball bearings rated at a dynamic load of 288 lb.  As previously
stated, the maximum dynamic load on the joint by a pin bolted to the fourbar links was calculated
as 32.6 lb.

D.4.3.9 Controlling the Motion

Once installed, the fourbar mechanism worked well during retraction.  The actuator
did, however, experience difficulty when extending.  The fourbar is dropped down during
the actuator’s extension.  Thus the controller must be programmed to account for the
change in the load on the actuator due to the change in torque as the fourbar rotates out
and the CG changes position.  The closed loop gain on the linear actuator was set to
produce smooth motion when the actuator had substantial and a near constant amount of
load on it.  Conversely, when the actuator has a light load on it, when it is close to the
stowed position, an unsmooth, "jerky" motion is experienced.  Controlling the actuator
under a varying load condition is the root of the problem.  To solve this problem, a
compression spring was placed inline over the actuator rod.  When the fourbar nears the
stowed position, the housing of the actuator butts up against the spring, and the spring
starts to compress.  Without the spring, the load on the actuator nearly goes to zero when



23

the fourbar approaches the stowed position.  With the spring, as the actuator approaches
the stowed position, the compression of the spring increases the load on the actuator.  The
end result is a near constant force seen by the actuator throughout its entire stroke.  The
closed loop gain is tuned to this near constant force to produce a very smooth motion
throughout the entire operating range of the fourbar mechanism.

D.4.4 CPS-IE Panning Mechanism

A new constraint on the DAP was added during the design of CPS-IE.  The DOE
wanted the system to detect dents in the storage drums.  Dent-detection requires a laser
mounted on the DAP to sweep approximately 93° while scanning across the drum’s surface.
The rotation occurs along a vertical center of rotation of the DAP.  The immediate concept
envisioned was to simply place a motor and gearhead on top of this axis and allow it to
directly drive the motion.  A linear actuator was chosen to perform the motion because the
PID controller code for the linear actuator was well established and field-tested by the
controls-group.  Using a linear actuator to perform rotary motion was a challenge the
mechanical-design-group faced.

D.4.4.1 Torque Requirements

The first step in designing the panning mechanism was to calculate the amount of torque
necessary to rotate all components of the DAP using a prescribed angular acceleration.  Each of
the nine components along the axis of rotation has its own individual mass (m) and center of
gravity (CG), located a perpendicular distance (d) from this axis of rotation.  The mass moment of
inertia (I) of each of these components was calculated according to its definition.  According to
Norton [4], This second moment of mass is defined as the product of the mass and the square of
the distance to the axis of rotation:

I md= 2
(5)

Knowing the CG coordinates (x, y, z) of each of the camera package’s components with respect
to the axis of rotation simplifies the calculation of the distance d:

d x y z= + +2 2 2

(6)
Using this calculation along with its mass, a total inertia is determined by summing the component
inertias.  Chapter 4 details the values calculated and also displays the dynamic analysis of this
rotation.  In summary, the total moment of inertia calculated for the camera package is 0.857 lb.-
in.-sec2.  According to the dynamic analysis, the torque produced by the rotation of the camera
package can range from 0.857 in.-lb. for a 0.5 rad/sec2 angular acceleration to 1.3 in.-lb. for 1.5
rad/sec2 acceleration.  Using these calculations, the linear actuator can be specified.

D.4.4.2 Actuation

To acquire rotation from a purely translational source, a cabling system was developed.
The initial system simply attached a 0.0625 in. diameter cable to a linear actuator which was
mounted parallel to the DAP's axis of rotation.  The cable then runs to a 1 in. radius pulley which
simply changes the direction of the cable by 90 degrees.  The cable is then wound around and
attached to a 2in-diameter pulley, approximately 1.75 in. from the center.  This offset creates a
moment about the pulley’s axis of rotation.  The center of the pulley is attached to the axis of



24

rotation of the camera package.  Thus, as the pulley rotates, the camera package rotates through
the same angle.  This setup is only viable when the linear actuator is retracting.  Upon extension,
the cable cannot be pushed.  To create a torque in the opposite direction, a linear extension spring
is attached 180 degrees around the pulley from the cable attachment point.  The spring creates an
opposing force to the actuator as the pulley is rotated.  In essence a couple is established.  The
spring is then capable of returning the mechanism back to its original position due to the potential
energy stored within the spring.

One undesirable effect of this concept was the linearity of the spring load.  As the actuator
retracted, the spring was extended.  Because the load is linearly dependent on the extension, the
cable load increased linearly.  This change in load directly effected the controls of the linear
actuator.  As was seen with the fourbar actuator, the actuation is smoother when the load is
constant.  As this load changes, the actuator must be controlled to maintain a smooth sweeping
motion.  It was vital to the camera package to have a very smooth and uninterrupted, constant
angular velocity while data was being taken.  With the changing load, the actuator was constantly
undergoing control changes that result in accelerations placed on the camera package.  These
results were unacceptable, thus a new concept was developed.

D.4.4.3 Dual-Pulley Concept

To maintain a smooth, uninterrupted rotation the torque measured along the axis of
rotation of the camera mechanism must be constant.  Reconsidering the first concept, the torque
created on the pulley by the spring increased as the spring was extended, and decreased as the
spring was retracted.  The goal was to maintain a constant torque during this rotation.  One
method of achieving this was to vary the spring’s attachment location on the pulley as the rotation
occurred.  An effective method of obtaining this is to create a cam-like effect that would change
the radius of the spring’s attachment location while keeping the actuator’s attachment location
radius constant.  Recall, the torque generated along the DAP’s axis of rotation was a result of the
distance or radius from the axis of rotation to the attachment location.  Since torque is the
product of the load created by the spring and its respective radius from the axis of rotation, the
idea was to decrease this radius as the load increased.  A unique dual-pulley concept was
developed to perform the necessary radius change (See Figure 16).



25

FIGURE 16: CPS-IE Panning Mechanism (top)

The connection point on the 2 in.-radius pulley that the actuator rotates remains the same.
A second smaller radius pulley, attached to the extension spring, is then positioned on the larger
pulley, but offset to the axis of rotation.  As the DAP rotates, the actuator radius stays the same,
however the spring’s radius decreases.  Thus as the spring gains potential energy, the lever arm
used through the pulley to create the torque decreases.  The result is a constant torque about the
axis of rotation.  The linear actuator virtually sees a constant torque applied by the spring.

D.4.4.4 Manufacture

Choosing the components of the mechanism (See Figure17) involved selecting a linear
actuator, an extension spring, and the housing that the camera package pivots within.  The linear
actuator was chosen based on the selection of the fourbar actuator.  The same actuator used in
that mechanism was also used for the panning mechanism.  This actuator is a 2 in. model of the
Bug series by Ultramotion.  An in depth review was done to select the proper spring.  Initially the
concept was to use a torsion spring, however the immediate availability was limited compared to
that of extension springs.  Several factors were studied when searching for the correct spring: free
length; maximum extension; preload extension; initial tension; spring rate; and overstressing
extension.  The housing created to hold the package was a simple cutout of 6061 T6 Aluminum
plate with a top and bottom bracket each containing a small roller bearing.  The entire assembly
weighs approximately 22 lb.



26

FIGURE 17: CPS-IE Panning Mechanism (isometric)

D.4.5 CPS-II Concepts

D.4.5.1 Fixed Mast Concept

CPS-II was designed for the second-generation system, ARIES-II, which will be deployed
at Los Alamos National Labs (LANL) in late Fall 1997.  LANL does not need the vertical reach
capability of the first generation CPS-I and CPS-IE, because they do not stack 55-gallon drums
over 3 high and do not stack 85-gallon drums over 2 high.  LANL safety requirements dictate
these conditions.  To save cost and reduce maintenance, it was decided to use a fixed mast on the
CPS deployed at Los Alamos.   A 2.8 m single element mast with a 100 mm. by 100 mm.
extruded aluminum profile is used (See Figure 18).  Parker Hannifin Corporation, Hauser
Division, produces this model, HLE100C.  The profile houses a rolling carriage that is attached to
a timing belt.  A pulley connected to a 25:1 spur gear reducer and a 12 VDC brushless
servomotor on the bottom drives the belt.  The carriage rides along a slot outside the housing,
allowing attachment of a plate to lift the payload.  A fourbar mechanism and a DAP are each
mounted to the plate, and the entire assembly is then mounted on top of the K3A.



27

       

FIGURE 18: ARIES-II

D.4.5.2  Mast Selection

The dimensions of the mast depend on the type of mast chosen and the length of travel
necessary.  At LANL, the maximum height the DAP needs to reach is 120 in.  The fourbar
mechanism attached to the carriage, moves the camera from 12 in. to 50 in. off the ground.  The
lift raises the camera package an additional 70 in. The model chosen contained an extended
carriage; that is, the carriage itself is extended in length to provide a larger bending moment
capacity as well as a larger mounting platform.  For a 70 in. length of travel the extrusion length
was 100 in. and the total mast length was 110 in.  The excess length was due to the pulley
locations as well as a safety region in case the unit is overdriven.  Thus at 110 in. mounted atop
the 32 in. high K3A gives a stowed height of 142 in., or just less than 12 ft.  Recall that the LANL
system was required to reach 10 ft., which was 6 ft. less than CPS-IE.

D.4.5.3 Actuation

Motor and gearhead selection for this unit was based, once again, on the 30 lb. camera
package CG located 3 ft. from the carriage CG.  One consideration in this selection is the inertia
mismatch of the system.  This is a ratio of the inertia of the load and gearhead to the inertia of the
motor’s rotor.  This value must be less than 5:1, but is preferred to be as low as a 1:1 ratio.  As
the inertia mismatch decreases to this 1:1 ratio, this decreases the chance of regeneration.
Regeneration occurs if the mass of the load causes the motor to spin, thus acting as a generator.
The gearhead recommended by Hauser is a 25:1 spurgear reducer, and the motor combination
chosen was a servo amplifier and brushless motor  at 12 VDC.  The drive system was chosen such
that the drive shaft runs through the drive pulley and out the other side.  This shaft was then
attached to a braking system as well as an encoder allowing the system to feedback position
information.



28

The 30 lb. DAP, when extended out horizontally, was 3 ft. away from the mast, resulting
in a moment on the carriage of 90 ft.-lb.  The carriage bearings on the mast are capable of loads
up to 250 ft.-lb.  The 10 in./sec. anticipated vertical speed of the DAP is well under the 30 lb.
rated 150 in./sec. speed for the linear-carriage unit.

D.4.5.4 Fourbar Mechanism

The only changes made to the fourbar on CPS-II are the link lengths.  The driver and
follower links had to increase to 25 in.  This results in a 750 in.-lb. torque capacity, or a 24%
increase from CPS-IE.  A 500 lb. linear actuator similar to the one used on the previous fourbar
was used to drive the mechanism.  The panning mechanism was changed on CPS-II.  The panning
action is now achieved with a rotary actuator to reduce the complexity of the linear actuator,
cable-pulley, and cam-like panning mechanism used in CPS-IE.  A gearhead between the rotary
actuator and the DAP output shaft, allows the user to change the ratio between the motor and the
camera package, thus giving more angular velocity options.

D.4.5.5 CPS-II Results

CPS-II represents a fixed mast system and weighs approximately 223 lb., a 44% decrease
from the original prototype.  This unit is capable of inspecting a stack of three 55-gallon drums
and two 85-gallon drums.  The system maintains 3 DOFs, however there are much fewer moving
parts on this system.  Power consumption is calculated as 0.099kW.  Expected throughput is up
to 100 drums/hour with dent detection and over 300 drums/hour without drum detection.  These
throughput numbers are expected to increase significantly upon further enhancements to the
system.  The system is set to deployed at Los Alamos National Laboratories in late 1997.

D.5 ANALYSIS

 
D.5.1 Center of Gravity Analysis

 
The CG analysis of each system is important because it yields the total weight of the

mechanism, and it also gives the theoretical location of an assumed point mass of each component
which aides in determining the stability of the system.  A composite method of determining the
CG of the overall system is used.  Beer and Johnston's method defines the system’s overall
moment about a point as being equal to the sum of the individual component moments.  Using this
definition, the three components of the overall CG can be computed [1].  The equations are as
follows:



29

X W xW= ∑∑ (7a)

Y W yW= ∑∑ (7b)

Z W zW= ∑∑ (7c)
Using these equations requires that the weight and CG of each individual component of the
composite system be determined with respect to a global coordinate system.  This information
was determined and placed into a spreadsheet, where the calculations were performed.  An overall
CG was determined for each element so the position changes could be modeled, thus allowing the
user to determine worst-case scenarios.  This information is vital to the stability analysis of each
system.

The mass of each component on CPS-I was determined by either removing the component
and weighing it, or by calculating weight knowing the volume and density of the component.  The
component’s CG was either calculated or defined by balancing it on three axes.  This information
was then input into a spreadsheet where the overall CG calculation was performed.  The
individual component weights were used again in the CG analysis of both CPS-IE and –II.  To
find the CG locations on CPS-IE and –II, 3-dimensional models were created using AutoCAD.
The software could calculate the x, y, and z components of a line drawn from a global origin to
the CG of each component.  The global origin is placed at the middle of the top edge on the back
of the baseplate.  With all the information input, the results were tabulated (See Table 1):

POSITION WEIGHT(lb.) HEIGHT(in.) CG-X(in.) CG-Y(in.) CG-Z(in.)

CPS-I stowed 395.7 116(top) -1.32 16.58 30.48

CPS-I maximum 395.7 156(camera) -1.32 16.58 54.47

CPS-IE stowed 261.41 115(top) 0.45 17.85 29.89

CPS-IE maximum 261.41 192(camera) 0.45 17.64 75.88

CPS-II stowed 203.35 133(top) -1.61 14.35 27.0

CPS-II maximum 203.35 120(camera) -1.61 13.06 35.75

TABLE 1: CPS CG Locations

The height of the cameras in each system show that each CPS was designed to reach
different values.  Comparing a percentage of the CG-Z coordinate to the camera height, CPS-I is
35% the total height, CPS-IE is 39.5% the total height, and CPS-II is 30% the total height.  This
simply states that CPS-II has the lowest CG for its total height.  The important factor here,
however is the location of the CG when it is stowed since the robotic platform will be in motion
when the DAP is in the stowed position.  Looking at a percentage decrease in the CG-Z
coordinate, CPS-IE’s CG was lowered 1.94%, and CPS-II was lowered 11.42%.  These values
will be used to calculate the stability of the system on an incline as well as during a sudden
deceleration.



30

D.5.2 Lift Mechanism Actuator Load Analysis

D.5.2.1 Newtonian Force Analysis

To determine the applied load necessary at the actuator of these systems, static and
dynamic force analyses were performed on the cables connecting the elements to the actuator
(Cables 1 and 2).  The dynamic loads associated with this system seemed negligible considering
the small accelerations experienced during normal operation. The maximum speed attained by the
Electrac 100 actuators is 2.5 in./sec.  It is estimated that these actuators reach this speed in
approximately 0.04 sec.  Thus the acceleration is 5 ft./sec.2.  The force on the actuator is this
acceleration multiplied by the mass lifted by the cable attached to the actuator.  The static tension
on each cable was calculated using static equilibrium.  The combined load on the actuators from
Cables 1 and 2 as a function of their actuation was also determined (See Figure 19).  Cable 2 of
CPS-I had a theoretical static load of 153 lb.  This yields a dynamic load of 177.3 lb at 5 ft./sec. 2.
To verify this, a load cell was placed inline with cable 2 on CPS-I.  The system was then raised
and lowered, as it would be under a normal operating environment.  The load cell data was
compared with the calculated static force.  The average load determined statically was 151.7 lb.,
and the average load obtained with the load cell was 146.9 lb.  These values fall within 3% of one
another.  As far as the dynamic loads, a maximum of 175.9 lb. was reached when accelerating and
decelerating the lift.  This is approximately 13% above the maximum calculated static value, and
within 1% of the theoretical dynamic assumption of 177.3 lb.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12
Actuation 1 & 2 (inches)

∆∆

463

464

465

466

467

468

469

470

Tension

∆∆Y5

FIGURE 19: CPS-I Actuator Load

The same procedure was followed on CPS-IE, however at the time of testing the 13X
pulley configuration was assembled.  To validate the static-load analysis that was performed on
CPS-IE (See Figure 20), a load cell was again attached inline with the cable being actuated.  This
time the total load capacity of the system was tested; that is, the full load applied to the single
actuator was determined from Cables 1 and 2 spliced together to yield the maximum static cable
tension.  The data was taken using three different loads on element six.  Thus the values could be
compared to three distinct static force analyses.



31

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12
Actuation (inches)

∆∆

0

100

200

300

400

500

600

700

800

900

1000Tension

∆∆Y6

FIGURE 20: CPS-IE 13X Actuator Load

The dynamic load characteristics encountered with this configuration were very similar to
the characteristics on CPS-I.  To calculate these loads an acceleration of 5 ft./sec.2 is used along
with a maximum static cable load of 859 lb.  This results in a maximum dynamic load of 992 lb.
During testing the largest load measured with a load cell was 957 lb., which is approximately 9%
higher than the highest calculated static load of 859 lb., and within 2% of the estimated theoretical
value.  This 9% compared to the 13% of CPS-IE is then used as the basis when selecting the
actuator and the cables.   Because these dynamic loads were very similar, this 13% value was
considered as a reasonable assumption when performing future dynamic load calculations on a
similar CPS.

The loads on the redesigned 7x system were calculated using the same approach as used
on CPS-I and the 13x system discussed above.  Using this information, a static analysis was done.
The resulting actuator static load under this configuration was 488 lb.  Using the information
gained from the previous two examples, the expected dynamic load should be near 13% of this
value.  A quick look at Newton’s second law shows that the 488 lb. converted to a system mass
accelerated at 5 ft./sec.2 will yield a maximum dynamic load of 564 lb.

D.5.2.2 Mechanical Advantage Force Analysis

To simplify the tedious process of performing a static load analysis, a method was
developed by viewing the mechanical advantage of each element and their respective weights.
Recalling the definition of MV, the ratio of output load to input load is equal to the ratio of input
distance to output distance.

OUT

IN

IN

OUT

d

d

F

F
MV == (8)

  Thus the input force is equal to the product of the output force with the distance ratio
(DR), where the distance ratio is the output distance over the input distance.  The DR is obtained
by inspecting the kinematics of the system.  Once the DR of each element is known, along with
their respective weights, the input force can be calculated for each element.  The sum of these
respective forces will yield a total input force that determines the actuator load capacity.



32

∑ 





=

MV

F
F OUT

IN (9)

Recall, however, that the DR of each element must be exact to obtain a realistic value.
Theoretical DR will yield a theoretical actuator load, which is not a proper value to base the
actuator selection on.  One must acquire the actual DR of the particular element.  This is done
through a kinematic analysis of the mechanism’s motion.  This offers another method to calculate
actuator load capacity, and is verified on the 7x system as shown in Table 2.

Element # Local MV Weight (lb.) Weight/MV (lb.)

2 1/1 11.1 11.1

3 1/1 11.6 11.6

4 1/3 12.0 36

5 1/5 13.8 69.0

6 1/7 50.0 350.0

Total: 477.7

TABLE 2: CPS-IE PC7 Static Load Calculation (MV Method)

Recall that PC7's theoretical static load was determined as 488 lb.  This estimation is within 2% of
the actual value.  The method was used as a fast response method of determining actuator load
capacity for different configurations.

D.5.3 Actuator Life Cycle Analysis

 An analysis of the Electrak 100 linear actuator used in both CPS-I and –IE, defines
relevant life expectancy.  The Warner Electric catalog displays a performance curve for the
Electrak 100.  The plot displays the life (number of cycles) vs. the rated load (percentage).  The
actuator load capacity for each system was 500 lb.  CPS-I actuator-1 required a maximum load of
280 lb., which according to the chart will last a minimum of 27,000 cycles.  Actuator 2 on this
system with a maximum load of 150 lb. should last 33,000 cycles.  CPS-IE’s actuator received up
to its maximum load capacity.  At this maximum, the actuator is expected to perform 10,000
cycles.

D.5.4 Cable Selection Process

During cable selection for the lift mechanisms a cable property-study was performed.
Cables having a minimum breaking strength of 8-12 times the working load were selected.  CPS-I
had a 3/16 in. diameter, 7 x 19-strand nylon coated stainless steel cable with a minimum breaking
strength of 3700 lb.  CPS-IE had a 5/16 in. diameter, 7 x 19-strand nylon coated stainless steel
cable with a minimum breaking strength of 9000 lb.  The pulley contact radii of each CPS was



33

accounted for, and was designed to keep 1/3 of the cable circumference in contact with the pulley
circumference.  Also the pulleys' minimum diameters were designed to be 25 times the cable
diameter to minimize bend radius stresses on the cables.  Minimum fatigue life for the cables was
calculated at 300,000 cycles running on a 3.25 in. diameter pulley.  Cable stretch was also
calculated.  For CPS-I, the 3/16 in.-diameter cable stretches 0.05in per 10 in. cable length under a
1000 lb. load.  The 5/16 in.-diameter cable on CPS-IE stretches 0.025 in. per 10 in. cable length
under the 1000 lb. load.  These factors were taken into account as cables were selected.

D.5.5 Fourbar Actuator Load Analysis

To obtain the loads associated with the fourbar mechanism, a dynamic force analysis was
performed.  To perform a dynamic analysis a kinematic analysis was first done.  An assumption
was made for an initial angular velocity, allowing the kinematic state of each link to be
determined.  A dynamic analysis was then completed using these kinematic values.  This dynamic
analysis gave the resultant loads on each joint, as well as the required input torque, which aids in
selecting the fourbar’s actuator.  Here, the analysis is broken down into four distinct steps, each
important to the solution.  The first step was to set the mechanism’s initial conditions.  Step 2
calculated the second mass moments (moments of inertia) of each moving link.  Step 3 was the
kinematic analysis, and finally step 4 was the dynamic force analysis.  Each step is detailed in the
following paragraphs.

Step 1 was important because it initialized the process.  The inputs included the geometry
as well as the mass of each link.  The goal was to minimize the pin joint load while changing the
shape of the links.  The initial positions, angular velocities, and angular accelerations were also
input during this step.  Actuator specifications can be input to determine the most efficient model
for the job at hand.  Inputs for the fourbar on CPS-IE are shown in Table 3.

Initial Condition Inputs Link 1 Link 2 Link 3 Link 4

Mass(kg.) N/A 1.41 10.17 1.84

Effective Lengths(m.) 0.508 0.508 0.28 0.508

Angular Position(deg.) 0 60 0 60

Angular Velocity(rad./sec.) 0 0 0 0

Angular Acceleration(rad./sec.2) 0.4 0 0.4 0

TABLE 3: CPS-IE Fourbar Initial Conditions

Step 2 of the analysis was to calculate the second moments of mass, or moments of inertia
of each of the three moving links.  The geometry of each link, including the location of its center
of gravity (CG) must be known.  The CG locations are later used as the point at which the link’s
linear acceleration occurs.  The total CG of each link was found by summing up the mass
moments of each known segment of the link and setting this sum equal to the overall mass
moment of that particular link.  The moments of inertia were then calculated for each element
using the parallel axis theorem to account for each individual moment of inertia within the link.



34

The moments of inertia were used in calculating the amount of torque necessary to provide the
desired motion.  An attempt was made to minimize the second mass moments because of their
tendency to resist angular acceleration [4].  The moments of inertia calculated for each of the
three moving links were found using the parallel axis theorem along with the concept that each
link may be broken into a composite of several items.  This theorem and its results are shown
below:

I I mdZZ GG= + 2

(10)
This equation is applied to the individual links' geometry.  The hinges for each link are
approximated as cylinders with a 14 mm. radius.  The links are 28 x 28 mm. extrusions and are
assumed to be rectangular bars.  Using equation 10 along with the links' geometry and CG
locations, the moments of inertia are shown in Table 4.

Link Number 2 3 4

Moment of Inertia(kg-m2) 0.058 0.546 0.087

TABLE 4: CPS-IE Fourbar Links' Moments of Inertia

There is a calculated value for Link 3, however recall that moment of inertia is the resistance to
angular acceleration, and the moment of inertia only effects a rotating body.  There is no effect on
a translating body.  Recall that Link 3 is the DAP which undergoes pure translation; thus, this
calculation is unnecessary.  It is included so that the document could be used at another time
using a fourbar mechanism that requires a coupler rotation.

Step 3 included a partial kinematic analysis of the mechanism.  The position and the linear
acceleration of the link’s CG were calculated.  Each was found analytically using kinematic
equations of a fourbar mechanism.  The following equations are used:

θj
PA peRvectorpositionCG =: (11)

θθ ρϖρα jj ejeaonAcceleratiLinearCG 2: −= (12)
To find the position vectors on Link 2 from the CG to the hinges, the CG properties were found
to be 172.1 degrees and 0.194 m. from hinge 1-2, and 4.8 degrees and 0.316 m. from point hinge
3-2 (See Figure 21).

X

Y

  θ2

R

R12

32

FIGURE 21: Fourbar Link 2



35

)1.172(
12

2194.0 °+= θjeR (13)

)8.4(
32

2316.0 °+= θjeR (14)

To find the position vectors on Link 3, the CG was determined to be 191.8 degrees and 0.373 m.
from hinge 2-3, and 208 degrees and 0.111 m. from hinge 4-3 (See Figure 22).

X

Y

  θ3

R 32

4R 3

FIGURE 22: Fourbar Link 3

)8.191(
23

3373.0 °+= θjeR  (15)
)208(

43
3111.0 °+= θjeR (16)

To find the position vectors on Link 4, the CG was determined to be 192.3 degrees and 0.279 m.
from hinge1-4, and -14.2degrees and 0.243 m. from hinge 3-4 (See Figure 23).



36

X

Y

  θ4

R34

14R

FIGURE 23: Fourbar Link 4

)3.192(
14

4279.0 °+= θjeR (17)
)8.12(

34
4243.0 °−= θjeR (18)

The linear accelerations of each CG with respect to a local XY coordinate system
were then found.  The CG on link 2 is -7.9 degrees from the imaginary straight line that
joins the two hinges and is 0.194 m. from hinge 1-2.  Thus the linear acceleration of the CG
on link 2 is:

 
)9.7(2

2
)9.7(

22
22 194.0194.0 °−°− −= θθ ϖα jj

CG ejea (19)
Recall there is no angular acceleration of link 3.  The linear acceleration for every

point on this body is the same, which is the linear acceleration of hinge 2-3 where the input
and coupler join.  Thus the linear acceleration of the CG of link 3 is the linear acceleration
of its hinge 2-3 location:

22 2
223

θθ ϖα jj
CG eajeaa −= (20)

The linear acceleration of the CG on link 4 was then found.  The CG of this link is
12.3 degrees from the imaginary straight line that joins the link's two hinge points and is
0.279 m. from the hinge 1-4.

  
)3.12(2

4
)3.124(

44
4279.0279.0 °+°+ −= θθ ϖα jj

CG ejea (21)

A similar set of analytical equations exists for all angular velocities and accelerations,
however this analysis is testing for maximum joint forces that occur dynamically during
acceleration.  The CG position and its respective linear acceleration are the only calculations
necessary to proceed with the dynamic analysis, which is the goal of this study.

Step 4 was the dynamic analysis, to find the reaction forces at the pin joints along with the
required input torque placed on the driving link to provide the required kinematic conditions.  The
dynamic analysis used in this document is based on Newtonian mechanics.  To perform a dynamic



37

analysis of the fourbar, force and torque equilibrium equations were found for each link.  A total
of nine equations and nine unknowns were produced, which are easily input into a 9x9 matrix and
simultaneously solved using a matrix solver.

The results of the dynamic force analysis on the fourbar on CPS-IE are shown in Table 5.
These results were found by setting the initial position to a specific location, then accelerating the
driving link, thus modeling the worst case of starting the fourbar in motion from different
locations along its path.  The maximum torque-input necessary was calculated as 523 in.-lb.
(59.093 N.-m.) when the driver link is parallel to the floor.  This value was then used to determine
the actuator specifications for the mechanism.

θθ2

(deg.)
F12x

(N.)
F12y

(N.)
F32x

(N.)
F32y

(N.)
F43x

(N.)
F43y

(N.)
F14x

(N.)
F14y

(N.)
T12

(N.-m.)

60 -
144.967

-31.963 131.06
3

32.03 29.607 33.063 11.379 33.125 51.571
70 -

137.319
-31.196 123.40

4
31.247 21.796 31.954 3.56 31.981 55.777

80 -
130.906

-30.523 116.98
4

30.556 15.283 30.915 -2.955 30.907 58.309
90 -

125.157
-29.895 111.23

1
29.91 9.498 29.91 -8.734 29.867 59.093

100 -
119.678

-29.281 105.75
1

29.277 4.05 28.918 -
14.172

28.84 58.105
110 -

114.131
-28.652 100.20

6
28.629 -1.402 27.923 -

19.608
27.813 55.377

120 -108.14 -27.98 94.221 27.938 -7.235 26.905 -
25.419

26.767 50.991
130 -

101.188
-27.22 87.277 27.162 -

13.972
25.833 -32.13 25.671 45.076

140 -92.384 -26.296 78.485 26.223 -22.51 24.64 -
40.637

24.458 37.809

TABLE 5 Fourbar Dynamic Force Analysis Results

The maximum radial load at the pin joints is -32.6 lb. (–145 N.) on F12x at 60 degrees.
This is considerably lower than the maximum dynamic load rating of the bearings (288 lb.) used at
the pin joints.  The life expectancy of these roller bearings calculated using an L10 life rating, is
over 2 billion revolutions.  The General Bearing Corporation (GBC) predicts the life of their
bearings in several ways.  This method, common to most manufacturers through the Anti-Friction
Bearing Manufacturers Association (AFBMA), is known as L10, or rating life [8].  This value
represents the number of revolutions that 90% of a similar group of bearings will complete before
failure.  GBC’s calculation is shown below:

L
C

P10
3 63 10= ×( )

(22)
In this equation, C is the dynamic capacity of the bearing, and P is the radial load on the bearing.

D.5.6 Cycloid-Slot Analysis

The kinematic analysis of the cycloid-slot actuation concept was based on the cycloidal
displacement of a follower in a slotted cam mechanism.  The equations of motion were developed
with a cam-follower approach using harmonic functions to represent the driver’s angular-position,



38

-velocity, and -acceleration [5].  Harmonic functions are used because they are continuous
through the first and second derivatives of displacement [4].  The jerk function is also continuous
across its differentiation.  The variables used in the analysis are as follows:

θ : driver angle
β : total range of angular travel
D : total travel period
d/D : normalized travel period
α : driver angular acceleration
C : amplitude of the sine wave
ω : driver angular velocity

In this mechanism, zero acceleration is desired at the beginning and end of the motion.  Thus a
sinusoidal function is used for the angular acceleration.  The harmonic function for angular
acceleration is:

α π( ) sin( )d C
d

D
= 2

(23)
Integrate to find the angular velocity ω:

ω
π

π( ) cosd C
D d

D
k= − 





+
2

2 1

(24)

Applying the boundary condition ω = 0 at d = 0 gives k C
D

1 2
=

π
.  The end boundary

condition of ω = 0 at d = D produces the same k1.  Equation (26) can be written:

ω
π

π( ) cosd C
D d

D
= − 













2

1 2
(25)

Integrate to find the displacement:

θ
π π

π( ) sind C
D

d C
D d

D
k= − 





+
2 4

2
2

2 2 (26)

Apply the boundary condition that θ = 0 at d = 0 to yield k2 = 0.  To find the amplitude of
the acceleration sine wave C, apply the boundary condition θ = β at d = D to get:

C
D

= 2
2

π
β

(27)
With all the constants determined, the position, velocity, acceleration, and jerk equations
(S-V-A-J) can be written as follows:



39

θ
β β

π
π( ) sind

D
d

d

D
= − 



2

2
(28)

ω
β

π( ) cosd
D

d

D
= − 













1 2

(29)

α π
β

π( ) sind
D

d

D
= 





2 2
2

(30)

J d
D

d

D
( ) cos= 





4 22
3

π
β

π
(31)

Note that equation (30) is the expression of a cycloid.  The S-V-A-J plots for this cycloidal
displacement function with sinusoidal acceleration are shown below (See Figure 24).

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9

Vertical Distance Traveled (inches)

ω
(t

ad
/in

),
  α

(r
ad

/in
2 ),

  J
(r

ad
/in

3 )

0

20

40

60

80

100

120

θ  (d
eg

rees)

ω (rad/in)

θ (degrees)

α (rad/in2)

J (rad/in3)

FIGURE 24: S-V-A-J Plots for Cycloidal Displacement and Sinusoidal Acceleration

A Mathcad document that plots the path of the cycloid-groove dependent on the total
sweep angle, the vertical travel distance, the lever length, and a prescribed origin was developed.
With this information available, the geometry can be optimized between lever length and the
vertical distance traveled to obtain the optimum motion.  Each input results in a unique cycloid-
groove based on the equation of motion of the lever displacement.  This equation can also be used
to supply data to a CNC milling machine, simplifying the slot manufacturing process.  One of the
plots is shown on Figure 25.



40

0

2

4

6

8

10

12

-12 -10 -8 -6 -4 -2 0

X (inches)

Y
 (

in
ch

es
)

While traveling up, the 
crank roller exits here

Crank pivot 
travels vertically 
along x=0 line

While traveling 
up, the crank 
roller enters here

FIGURE 25: Slot Profile for Cycloidal Displacement and Sinusoidal Acceleration; D=10", L=10"

D.5.7 Panning Mechanism Analysis

To model the Panning Mechanism on CPS-IE a kinematic and dynamic study of the
rotation was performed.  The resulting equations were input into a Mathcad document, and a
model was established enabling a user to input different geometry and components to obtain the
optimum results.  To develop the equations of motion of this system, the overhead geometry
along with the associated variables are shown in Figure 26.



41

FIGURE 26: Panning Mechanism Variables on CPS-IE

The input variables for this analysis are as follows:
φ ≡ angle of rotation of the data acquisition package;
P1R ≡ radius of the large pulley;
P2R ≡ radius of the small pulley;
(xa, ya) ≡ spring attachment point to ground;
(xic, yic) ≡ initial center of pulley-2 when the spring is relaxed;
θt ≡ the angle formed between the tangent line of the spring and the line

defined from (xa, ya) to the center of pulley-1.
Lfree   ≡ free length of the spring
Lmax    ≡ maximum extension of the spring
Lpreload     ≡ preload extension of the spring
IT   ≡ initial tension in spring
k   ≡ spring rate

The point of interest in developing the equations is the center of P2.  P2 is attached
to P1 so there is no translation or rotation of P2 with respect to P1.  Thus the center of P2
is simply a point rotating about an axis (the axis of rotation of P1).  To calculate x-y
coordinates, a rotational transformation is performed.

)sin()cos()( φφφ ccc yixix −=
(32)

)cos()sin()( φφφ ccc yixiy +=
(33)

Referring to Figure 28, several angles and distances were found using simple Euclidean
Geometry:



42

22 ))(())(()( φφφ caca yyxxD −+−= (34)









=

)(

2
sin)(

φ
φθ

D

RP
a (35)









−
−

=
)(

)(
tan)(

φ
φ

φα
ca

ca

xx

yy
a (36)

)()(
2

)( φαφθ
π

φβ −−= (37)

The coordinates of the connection point of cable 2 and P2 (xda, yda) will be tracked using a
rotational transformation similar to P2's center point.  Also the initial and angle-dependent
tangential points of contact between cable 2 and P2 (xt, yt) are defined:

)sin()cos()( φφφ ttda yixix −= (38)

)cos()sin()( φφφ ttda yixiy += (39)

))0(cos(2 βRPxixi ct += (40)

))0(sin(2 βRPyiyi ct −= (41)

))(cos(2)()( φβφφ RPxx ct += (42)

))(sin(2)()( φβφφ RPyy ct −= (43)

θt , the tangent line angle is:









−−=

a

a
L x

y
a tan)(

2
)( φβ

π
φθ (44)

The effective radius of transmitted torque (Rt) is:

))(sin()()( 2

1
22 φθφ LaaL yxR += (45)

Using spring information initially defined, the amount of torque(T) placed at the center of
P1 can be calculated.

)())(()( φφφ rtITxkT +∆= (46)
From this torque, the load on the actuator (Fact) was found:

RP

T
Fact 1

)(
)(

φ
φ = (47)

From these equations developed, the torque was plotted versus the rotation of P1
(See Figure 27).  It was desired to keep a constant torque and the results show a change in
torque of approximately 3 in.-lb. during the rotation with the current setup.  This was as
close to a constant torque as was possible with the geometry configuration and the
available spring selection.



43

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

Angle of Rotation (deg)
T

or
qu

e 
(i

n-
lb

)

FIGURE 27: DAP Torque-Plot

The torque on the mechanism due to inertia of each component was determined to
test for dynamic force effects.  The individual components and their mass and CG distances
were determined (See Table 6).

Component Mass(slug) Distance, d
(in.)

Inertia (lb.-in.-
sec.2)

Strobe(top) 0.0187 0.7575 0.0107
Laser(top) 0.0078 1.647 0.0212

Laser(bottom) 0.0078 1.647 0.0212
Bar Code Reader 0.0622 2.4821 0.3832

ACM(top) 0.0276 1.9139 0.1011
Camera(top) 0.0137 0.5489 0.0047

Camera(bottom) 0.016 0.6733 0.0073
ACM(bottom) 0.0276 1.9139 0.1011

Strobe(bottom) 0.0187 0.7575 0.0107
Mounting Bracket 0.07 1.673 0.1959

TOTAL 0.8570

TABLE 6: Mass, CG Locations, and Inertia of DAP Components

A range of angular accelerations was determined to aid in the selection of the
actuator (See Table 7).  These accelerations were used to determine the torque requirement
thus the necessary load capacity of the selected actuator.  The results in Table 6 display
very small inertia values for each of the components.  This is a result of the axis of rotation
being positioned near the center of mass of the camera package.  This is not coincidental.
One of the concerns during the design process was the location of the axis of rotation.
Placing this axis close to the components’ CG locations decreased these values of inertia,
thus decreasing the torque requirements of the mechanism.



44

Angular
Acceleration(rad./sec.2)

Inertia(lb.-in.- sec.2) Torque(in.-lb.)
0.5 0.8570 0.4285
0.6 0.8570 0.5142
0.7 0.8570 0.5999
0.8 0.8570 0.6856
0.9 0.8570 0.7713
1.0 0.8570 0.8570
1.1 0.8570 0.9427
1.2 0.8570 1.0285
1.3 0.8570 1.1142
1.4 0.8570 1.1999
1.5 0.8570 1.2856

TABLE 7: Panning Mechanism Torque Requirements

D.5.8 Power Consumption Analysis

One important factor considered during the design of these mechanisms was power
consumption.  In an autonomous vehicle, it is imperative to minimize power consumption.
The energy consumed for each system was analyzed (See Table 8).  The analysis is based on
a simple calculation of the work performed by each of the linear actuators.  This work is
simply the load applied multiplied by the distance this load was applied across.  CPS-I’s
actuator 1 carries a 280 lb. load at 1.6 in./sec.  Actuator 2 carries 153 lb. at 1.7 in./sec.  The
total power to perform this actuator work is 0.056 and 0.0294 kW. for every second it moves
it’s respective distance.  The fourbar consumes 0.03 kW.  Thus CPS-I consumes a total of
0.115 kW. of power.  CPS-IE is measured in the same manner.  It’s single lift actuator
moves 500 lb. at a rate of 1.25 in./sec. consuming 0.071kW.  The fourbar moves 200 lb. at a
rate of 1.25 in./sec. consuming 0.03 kW./sec.  The panning mechanism moves 42 lb. at a
rate of 2 in./sec. consuming 0.009 kW.  Thus CPS-IE consumes a total of 0.11 kW.  CPS-II
has a rotary servomotor that must lift a 53 lb. load at a rate of 10 in./sec. consuming 0.06
kW.  The fourbar and the panning mechanism are assumed the same as CPS-IE.  Thus
CPS-II consumes a total of 0.099 kW.  CPS-IE is 4.35% more efficient than CPS-I, thus
CPS-II is 14% more efficient.

System CPS-I CPS-IE CPS-II
Power Consumed

(kW.)
0.115 0.110 0.099

TABLE 8: CPS Power Consumption



45

D.5.9 Stress Analysis

A stress analysis was performed on the actuator load transfer bracket (ALTB) of
CPS-IE (See Figure 28).  Because this bracket receives all loads transferred from the
actuator to the lift mechanism and it acts as a cantilevered beam, the failure of this
component was a concern.  The ALTB was machined from 6061-T6 aluminum with a yield
strength of 40 kpsi. [4].  A 0.5 in. diameter pin transfers the load from the actuator to the
bracket.  The pin is made from 4340 quenched and tempered steel with a yield strength of
124 kpsi. [8].

FIGURE 28: CPS-IE Actuator Load Transfer Bracket (ALTB)

The biggest concern of this component was the tensile stresses created in the upper
and lower regions along the cantilever portion.  The point of highest stress concentration
was analyzed to determine the maximum stress encountered in the material.  The stress
was calculated using the assumption of a 2-D cantilever beam under a vertical load at the
pin location.  Stress elements (Points A and B) were studied as locations of interest (See
Figure 29), then the results were compared to a finite element analysis (FEA).

565lb

R0.25"
1.75"

R0.50"

A

B

2.39"

X

Y

FIGURE 29: ALTB 2D Load Assumption



46

The first step in this analysis was a static force analysis to determine the
component's reaction forces.  The reactions at the fixed end revealed a -565 lb. force in the
y-direction and a 1350 in.-lb. moment in the z-direction.  From these reactions and the
applied uniform load, the stress element values were determined (See Figure 30).

A B

-323psi

1439psi

Z

Y

X

Y

3387psi

323psi

FIGURE 30: Stresses at Points A and B

Mohr's circle was used to determine the maximum principle normal stress at each of the
point elements.  Point A was subjected to a stress concentration of 2.15 due to the pin-hole, thus
the maximum principle normal stress was 2.767 kpsi.  Point B was subjected to a stress
concentration factor of 1.4 based on the assumption of a rectangular filleted bar [8], thus the
maximum principle normal stress was 5.369 kpsi.  Parametric Technology Corporation's
Pro/MECHANICA Version 18.0 was used to calculate the stresses at these locations using FEA
(See Figure 30).   The principle normal stress at point A was estimated as 5.394 kpsi., and point B
was 2.683 kpsi.   These values fall within 1% and 3% respectively.  The critical stress location
(point A) results were within a safety factor of 7 with respect to the material's yield strength.

FIGURE 31: Stress Analysis Results of ALTB on Pro/MECHANICA



47

D.5.10 Stability Analysis

The location of the center of gravity (CG) and its effect on the stability of the overall
system was studied for each CPS.  One of the largest safety concerns inherent of this mechanism
is the system’s stability.  The CG height on all three systems results in a large amount of stored
potential energy.  As the system accelerates and decelerates, inertia forces become a factor.
These forces are even more profound as the system proceeds along an incline.  To determine the
safety limitations of this system a stability analysis was performed.  The first step in determining
the stability of this system is to define what is considered ‘stable’.  The biggest concern is the
possibility of the system falling over as a result of some sudden deceleration.  Thus the system’s
ability to pivot about some point due to its momentum will demonstrate the stability of the
mechanism.

The obvious pivot location that the rotation could occur would be at the K3A’s
wheels.  The three sets of wheels are in an equilateral triangular configuration.  Each set
rotates through the same angle that the CPS rotates.  The hexagonal base of the K3A,
however, stays in one position.  The result is that the location of the wheels’ point of contact
tripod changes as the system turns.  Because of its equilateral design, there are several
wheel configurations that the system may be traveling on (See Figure 32).

FIGURE 32: K3A Undercarriage

The analysis is performed for the 'worst case' wheel configuration.  This occurs when
the horizontal distance between the forward wheel(s) and the y-component of the system’s
CG is smallest (See Figure 33).   This configuration has a contact line of action parallel to
the CPS’s x-axis.  The two sets of wheels that are inline are located in the forward section
of the system.



48

FIGURE 33: ARIES K3A Wheel Configurations

The scenarios considered in this analysis are based on several operating conditions.
The first scenario is a simple test of an acceleration applied to the system on a level surface.
Next the stability is tested as the system is inclined, modeling the behavior experienced on
the ramps encountered during operation.  The accelerations will be varied, and for each the
resultant moment due to the system’s mass and inertia forces encountered during an
acceleration will be calculated.  The point of instability will then be defined as the
acceleration or deceleration which results in a zero moment at the wheel's line of contact.
When this occurs, the system is in a state of balance or equilibrium.  This state is extremely
unstable because any increased acceleration will cause a change of sign in the resultant
moment, which in turn may rotate the system about this line of action.  This test is
performed for each system, and for a large range of inclinations.  The geometry used to
derive the necessary equations is shown in Figure 34.



49

FIGURE 34: Stability Geometry

There were several inputs that were necessary before the derivation of stability
equations was possible.  The variables needed were as follows: system weight; ramp
inclination; acceleration; y-z components of the system’s CG; and the y-component of the
wheel line of contact.  The equations used to determine a resultant moment about this
point are based on Newton’s second law.  This method is used in place of the method of
dynamic equilibrium.  According to Beer and Johnston, one method of viewing inertia forces
is to treat them as any other force.  Some think that “…inertia forces and actual forces,
such as gravitational forces, affect our senses in the same way and cannot be distinguished
by physical measurements.” [1]  Thus the inertia forces, with a magnitude of the product of
the system’s mass and the acceleration it undergoes, were placed in the opposite direction
of this acceleration.  The system’s mass was treated as a point mass, and the location of
this point was the CG location of the entire system (CPS and K3A).

The first step in performing the force analysis was to define a sign convention.  The
worst case scenario is used.  The positive acceleration is in the forward direction, and is
pointed down the slope of the inclination.  The line of action of the two points of contact was
the location where the moments were taken about.  Point A is located in the front, which
consists of two of the three sets of wheels, and Point B is in the rear.  The first step was to
sum moments about each of these points.

zmaWLaMA A −−=)( (48)

zmaWLaMB B −=)( (49)
MA and MB represent the resultant moment about points A and B, respectively.  To

determine the maximum accelerations and decelerations that are acceptable, the resultant
moments are set to zero, and the acceleration is solved for:

z

gL
Decel A−

=max (50)



50

z

gL
Accel B=max (51)

These two calculations are the most important because they represent the safe
range of acceleration which the system may undergo in its specified configuration.  If the
acceleration falls over the maximum in either direction the system is defined as unstable,
and there is a good chance the mechanism will tip over.

Plotting the resultant moments, MA and MB, versus a range of accelerations, shows
a linear relationship.  Figure 35 is a plot with the K3A on level ground.  The plot shows
that the resultant moment is zero when the deceleration is –9-ft./sec2 and the acceleration
is +21-ft./sec2.  The difference in the absolute value of the two accelerations is the safe
range magnitude.  The maximum negative acceleration defines the maximum deceleration
that the system can withstand, while the maximum positive value defines the maximum
acceleration.  This range can easily be found on this plot by reading the ‘safe’ values
between the two x-axis intercepts.

25 20 15 10 5 0 5 10 15 20 25

1 10
4

8000

6000

4000

2000

2000

4000

6000

8000

1 10
4

K3A Acceleration (ft/sec^2)

R
es

ul
ta

nt
 M

om
en

t (
in

-l
b)

MA( )a

MB( )a

a

FIGURE 35: CPS-IE Stability Plot at 0 degrees Inclination

This analysis was performed for each of the three systems.  The results are
summarized below, however a range of results for CPS-IE is shown first.  These results
indicate the maximum accelerations and decelerations for CPS-IE in a large range of
inclinations:



51

Inclination (degrees) Max Deceleration (ft./sec2) Max Acceleration
(ft./sec2)

0 -9.00 21.00
1 -8.44 21.56
2 -7.87 22.11
3 -7.30 22.66
4 -6.73 23.19
5 -6.16 23.73
6 -5.58 24.25
7 -5.01 24.77
8 -4.43 25.58
9 -3.85 25.78

10 -3.27 26.27
11 -2.69 26.76
12 -2.11 27.23
13 -1.53 27.70
14 -0.94 28.17
15 -0.36 28.62
16 0.23 29.06

TABLE 9: CPS-IE Safe Range Accelerations as a function of Inclination

As the inclination increases, the maximum deceleration allowable decreases.  On
level ground the system can accelerate up to 21.00 ft./sec.2 and can decelerate up to -9.00
ft./sec.2  As the inclination increases this deceleration decreases while the acceleration
increases.  At the 9-degree inclination, which is the maximum expected of this system, the
maximum deceleration allowed is –3.85 ft./sec.2 with a maximum acceleration of 25.78
ft./sec.2  The maximum commanded deceleration of the system is –1.3 ft./sec.2 and the
maximum commanded acceleration is 0.65 ft./sec.2  These values fall within the safe range,
however an unexpected abrupt stop is a concern.  When an inclination of 15 degrees is
reached, any deceleration will cause the system to be unstable.  This position is perfectly
balanced, or is in a state of equilibrium.  This is obviously a very unsafe position, and is not
recommended.

The same analysis is performed for negative angles.  In this configuration, the
system is more stable because the CG is not as close to the line of action.  The results of
this analysis show that at the 9-degree inclination, the maximum deceleration is –13.93
ft./sec.2 and the maximum acceleration is 15.70 ft./sec.2  This is a much safer range than the
positive angles.  This range allows an acceleration or deceleration in either direction of
about the same magnitude.  This is due to the CG being in a midpoint location between the
two points of action.  A static system becomes unstable at a negative angle of –32 degrees,
where the maximum deceleration is –25.09 ft./sec.2 and the maximum acceleration has
changed signs to 0.073 ft./sec.2  The lesson here seems to be that the system will travel
down a ramp more safely in a backward direction.  This indeed is what was done during
testing at the Fernald facility.  Similar analyses were performed for CPS-I and CPS-II (See
Table 10).



52

D.5.11 
ystem

Inclinatio
n

(degrees)

Max. Deceleration
(ft./sec.2)

Max Acceleration
(ft./sec.2)

CPS-I 0 -8.76 18.21
9 -3.62 23.03

CPS-IE 0 -9.00 21.00
9 -3.85 25.78

CPS-II 0 -12.98 20.54
9 -7.78 25.32

TABLE 10: CPS Safe Range Accelerations

A trend is shown in this data.  As the CG’s are lowered and centered on the K3A, the range
of safe acceleration is increased.  The increase in range of acceleration on the 9-degree
inclination from CPS-I to CPS-II is approximately a 20% increase.  This range adds to the
safety of the vehicle during its mobility.

D.6 ATTAINMENTS

 
Each of the three systems constructed during this project was unique in its own

way.  As each design became reality and each system was put to the test, many lessons
were learned in the quest to automate the monitoring process.  Each design grew out of its
predecessor, and became a better more efficient machine.  Each of the three designs now
has it's own accomplishments and abilities, a few of which will be presented here.

D.6.1 CPS-I

CPS-I was the first prototype system. The constructed mechanism weighed 395 lb.
It is capable of acquiring data from a column of four 85-gallon drums, while maintaining a
stowed height of just under 10 ft. Overall power consumption was calculated as 0.11 kW.
This system performed successfully during a demonstration for the DOE at USC’s testing
facility on November 30, 1995 with a throughput of  240 drums/hour.

D.6.2 CPS-IE

CPS-IE was constructed as an enhanced version of CPS-I.  Enhancements include a
reduced overall weight to 261 lb., a 34% decrease.  The mechanism as designed is capable of
acquiring data from a stack of four 110-gallon drums, while maintaining a stowed height
under 10 ft.  The CG of this stowed configuration is reduced, which increases the stability of
the system.  The capability of dent-detection was added.  Power consumption on this
system is 0.11 kW.  For nearly 3 weeks in August 1996, ARIES performed its inspection
tasks for DOE management at the DOE Fernald Site north of Cincinnati, Ohio.  The
testing was performed in the TS-4 building onsite.  This testing included the monitoring of
various drum columns, and  the successful navigation within the prescribed confines of each
aisle.  The robot was proven stable when it traversed over spill isolation berms on a 9°



53

ramp.  The overall throughput of ARIES-IE during testing was 60 drums/hour, down from
ARIES-I, due to the addition of dent-detection on the new system.  CPS-IE is scheduled to
be tested, re-evaluated, and put into service at the Idaho National Engineering and
Environmental Laboratory (INEEL) in early 1998.

D.6.3 CPS-II

CPS-II represents a fixed mast system and weighs approximately 223 lb., a 44% decrease
from the original prototype.  This unit is capable of inspecting a stack of three 55-gallon drums
and two 85-gallon drums.  The system maintains 3 DOFs, however there are fewer moving parts
on this system.  Power consumption is calculated as 0.099 kW.  Expected throughput is up to 100
drums/hour with dent detection and over 300 drums/hour without drum detection.  These
throughput numbers are expected to increase significantly upon further enhancements to the
system.  The system is set to deployed at Los Alamos National Laboratories in late 1997.

D.7 DISCUSSION

 
To support the need of an autonomous inspection system for DOE’s low-level nuclear

waste facilities, three systems have been designed, analyzed, and constructed.  The
iterative design process has transformed a concept into proven product.  The project’s
success is supported by the successful completion of many arduous tasks and
demonstrations.  From drawing board, to prototype, to final product, these three designs
(CPS-I, CPS-IE, and CPS-II) shown in Figure 36, have met and in some cases surpassed
the demands of the customer.



54

FIGURE 36: CPS-I, CPS-IE, and CPS-II

The objective of this project is to produce commercial mobile robot systems for
the Department of Energy for use in drum storage inspection.  When ARIES-IE is deployed
at INEEL and ARIES-II at LANL, the objective of the project will have been met.  It is
anticipated that the systems will be tuned, updated and improved.  It is also anticipated
that the systems will be enhanced and modified to tackle other applications such as
decontamination and decommissioning at other DOE nuclear sites.



55

D.8 REFERENCES

1. Beer, Ferdinand P., and Johnston, E. Russell, Jr.  Vector Mechanics for Engineers:
Statics and Dynamics.  5th ed.  New York: McGraw-Hill, 1988.

2. Bostick, Judith L., et al.  An Intelligent Inspection and Survey Robot.  Final Report.
South Carolina Universities Research and Education Foundation.  Clemson
University,  27 January, 1994.

3. Item Products, Inc. Catalog.  Houston, 1995
4. Norton, Robert L.  Design of Machinery.  New York: McGraw-Hill, 1992.
5. Rocheleau, David N.  "Mechanical Deployment System on ARIES an Autonomous

Mobile Robot."  Proceedings of the 4th National Applied Mechanisms & Robotics
Conference. Volume 1, AMR95-020. Cincinnati,  10-13 December, 1995.

6. Rocheleau, David N. and Moore, Matthew M.  "Camera Positioning Mechanism for
ARIES an Autonomous Mobile Robot."  Proceedings of the 1996 ASME Design
Engineering Technical Conference.  96-DETC/MECH-1154.  Irvine, 18-22 August
1996.

7. Sahag, Leon Marr.  Kinematics of Machines.  New York: The Ronald Press
Company, 1952.

8. Shigley, Edward Joseph, and Mishcke, Charles R.  Mechanical Engineering Design.
5th ed.  New York: McGraw-Hill, 1989.

9. Working Model.  Computer Software.  Version 3.0.3 for Windows.  Knowledge
Revolution, 1995.



Appendix E
ARIES:  An Intelligent Inspection and Survey Robot

ROBOTIC VEHICLEROBOTIC VEHICLE
SYSTEMSSYSTEMS

Cybermotion Incorporated



1

E.  ROBOTIC VEHICLE SYSTEMS

WARNING ! THE K2A IS A HEAVY AND EXTREMELY POWERFUL VEHICLE !

Because of its relatively demure appearance, there is a tendency for people to underestimate its potential for
doing damage and bodily harm. Do not attempt to operate the vehicle until you have read this and other
appropriate manuals, and are thoroughly familiar with its operation and safety features !

  DO NOT OPERATE THE VEHICLE IN THE PRESENCE OF PERSONS WHO ARE NOT AWARE
OF ITS POTENTIAL FOR INJURY AND ITS SAFETY FEATURES.

E.1 UNPACKING AND INSPECTION

E.1.1 Removal from shipping crate

Before removing the K2A from its crate, remove the top of the crate and make a quick visual inspection of
the unit. If the crate has sustained substantial damage, or if the vehicle has shifted inside of the crate, do not
proceed with the unpacking process until the carrier has been contacted and has inspected the damage.
Instructions for the removal of the K2A from its shipping crate are stenciled on the crate. After removing
the top of the crate, the access side, and the restraining yoke, remove the chock blocks behind each wheel.
The vehicle may now be rolled slowly out of the crate.

E.1.2 Removal of cover and internal inspection

The vehicle is shipped with its E-STOP circuit open and will not operate until it has been reconnected. DO
NOT SWITCH THE UNIT ON UNTIL THE FOLLOWING INSPECTION HAS BEEN COMPLETED!
Unsnap the 6 cover retaining fasteners and gently lift the cover off the platform. If the cover appears to be
stuck, check to make sure you are keeping it level. A slight amount of jiggling may be required to ease the
cover past the rubber battery tie down straps. Note: Although the E-STOP circuit is left unplugged when
the K2A is shipped , it will be necessary to unplug the connector at this point during subsequent removals
of the cover.
With the cover removed, make the following visual inspection:
Check for loose screws or obvious damage, especially to the cover snaps.
Check the electronics assemblies to assure that all boards are securely in place and that the control
assembly is not loose.
Check for loose wires or battery cables.Check the lower half of the sheet metal body for damage, loose
parts, or the presence of oil.
If loose components are found, tighten them, being careful not to short any electrical circuits with your
tools.
THE BATTERIES USED IN THE K2A ARE CAPABLE OF PRODUCING ENORMOUS SHORT
CIRCUIT CURRENTS. ALWAYS DISCONNECT BOTH THE (+) AND (-) TERMINALS OF THE
BATTERIES BEFORE ATTEMPTING TO WORK ON ANY ELECTRICAL SYSTEM OF THE
VEHICLE!



2

E.1.3 Preliminary power-up tests

During the following tests, the E-STOP circuit should remain disconnected. If any anomalies are noticed
during the following check out, turn the unit off and contact the factory. After inspection of the platform,
perform the following tests.
Place a voltmeter between the test points marked BC (Battery Common) and +12 Volts. The voltage should
measure between 12.0 and 14.5 Vdc.
Move the positive lead of the meter to the +24 Volt test terminal. This voltage should read 0 Volts. Next,
place the key into the key switch and rotate it to the "on" position just long enough to take a voltage reading
and then turn it back off. The voltage should rise to between 24.0 and 29.0 Vdc.
Place the negative lead of the voltmeter in the DC (Digital Common) test point. Repeat the on-off test for
the +5, +12, and -12 Volt test points.

The acceptable limits are:
Test Point Range
+5 Vdc +4.85 to +5.10 Vdc.
+12 Vdc +11.50 to +12.50 Vdc
-12 Vdc -11.50 to -12.50 Vdc.
If all supplies measure properly the key may be left in the on position without danger of damage. When the
key is turned on, the internal computer will run a RAM test program which takes about a second. During
this time, only the DRIVE PWM and STEER PWM LEDs should light. If all RAM memory checks good,
the two PWM lights will turn off, and the FWD/REV LED will light. If a RAM failure is detected, the
LEFT/RIGHT LED will flash, and the vehicle will not operate or communicate over the supervisory link. If
the program down load jumper is installed on the DC-1 Computer card (see K2SRV manual), the DRIVE
PWM and STEER PWM LEDs will light, and all others should be off.
Turn the key switch off and remove the key. Place the cover back on the K2A, being sure to connect the E-
STOP circuit. Snap the cover down, and pull out all three E-STOP buttons. Turn on the key switch. No
motor activity should occur.

E.1.4 Manual Drive Test

The vehicle is now ready for direct control. Place the test umbilical into the "Tether" connector on the K2A
control panel and plug the other end into the LINK connector of the JA-01 box. Plug an RS-232 cable
between the HOST A connector of the JA-01 and the serial port of the HOST computer. Place the
OPERATING DISK in drive A and enter:
A:<ENTER>
K2SRV<ENTER>
NOTE: See K2SRV manual for software requirements and loading instructions.
When the program has booted up and placed the OPERATING MENU on the screen, check for a robot
status of "NORMAL OPERATION". If a "SUPERLINK FAIL" status message is seen, check your
cabling, the power on the JA-01, and the power switch at the vehicle. If any other warnings are received,
consult the K2SRV Software Manual.
If everything is normal, press the MANUAL/TEACH mode button (PF-6) on the HOST. Be prepared to hit
the HALT button (PF-10) should any unexpected action occur. The ENABLE safety interlock LED on the
K2A's control panel should begin to flash, there should be a click from the main drive relay, and you should
hear a low level, 2500 Hz tone. This tone is the PWM signal to the motors, and was intentionally placed in
the audible range to reduce the possibility of the vehicle operating without being noticed. If the tone is
present, it should be possible to drive the vehicle using the joystick.
If the click or tone is absent, check the E-STOP circuit. This series circuit requires that all E-STOP
switches be closed (pulled out), and that the circuit be closed at the turret connector (pins 5 and 6). The



3

circuit is intended to pass through turret mounted interlocks and E-STOP switches. If no turret is mounted,
the supplied dummy connector must be plugged into the turret connector to complete this circuit (pin 5 to
6). (For K2A's originally supplied with PROM revision 3.01 and newer, an open E-STOP line will generate
an "E-STOP ACTIVATED" status message in the K2SRV status window.)
If the problem persists, check the control and motor fuses on the control panel of the K2A platform.

E.2 THEORY OF OPERATION

The K2A platform was designed to provide unsurpassed maneuverability to autonomous and tele-operated
systems in industrial environments. Do not be fooled by its demure appearance, THE K2A IS A HEAVY
DUTY PIECE OF EQUIPMENT (APPROX. 300 lb.), AND CAN CAUSE SERIOUS INJURY OR
DAMAGE IF USED CARELESSLY. Because of its unique three wheel drive system, the platform can
easily develop in excess of 240 lb. of tractive force on a relatively smooth surface. The K2A has sufficient
power to push an adult human about like a rag doll!

E.2.1 Synchro-Drive

The drive system of the K2A represents a relatively new concept in mobility, in which all the wheels of the
vehicle are locked together in both steer and drive. Thus, when a Synchro-Drive vehicle executes a turn, all
three wheels turn in unison and trace parallel paths to each other. The result of this geometry is that the
platform itself does not rotate as a turn is executed. For this reason, a turret flange is provided at the top
center of the vehicle, which rotates in unison with the steering. Systems mounted to this flange will face in
the direction of forward motion of the vehicle. A Synchro-Drive vehicle can thus follow any path geometry.
Since all wheel driving forces are perpetually parallel, these vehicles also have excellent tractive properties,
and can accurately determine their relative motion.
Early (first generation) implementations of Synchro-Drive used a continuous means such as belts or chains
to tie the wheel assemblies together. These configurations suffered from alignment problems due to the
uneven distribution of slack between the driven pulleys. The result of this problem was that the first
generation platforms tended to be relatively inaccurate and they required a significant level of maintenance.
The K2A represents a second generation of Synchro-Drive vehicles and uses a patented concentric shaft
drive system to accomplish the required functions in a much more accurate and reliable manner. There are
no alignment adjustments in the K2A as all gears are permanently keyed to their respective drive shafts.

E.2.2 Mechanical description

The following description refers to the cut-away in Fig. 1: The K2A has two motors (steering and drive)
and associated power trains. The steering motor (A) drives the vertical steering shaft (C) through a spiral
gear reducer (B) which gives a reduction of 106:1. The vertical steering shaft is coupled to the turret
mounting flange at the top. This flange uses an expanding locking collet to assure backlash free
engagement with the turret.
An optical angular pulse encoder (J) is located on the vertical steering shaft just above the spiral reducer in
the upper column housing (M). The ribbon cable connector for the steering encoder is mounted on a plate in
a boss at the bottom of the column, and the round connector of the slip ring is similarly mounted in a
second boss. The slip ring is mounted above the encoder, with its rotating connector (N) being in the center
of the top of the steering shaft.
The lower end of the vertical steering shaft terminates in a miter gear which engages three like gears on the
three leg steering shafts (E). These shafts are hollow and a drive shaft is suspended in the center of each of
them. On the outside end, each leg steering shaft has an identical miter gear that engages a like gear on the
foot housing (F), thus affecting the steering of the wheel.



4

The drive motor (H) has an optical pulse encoder (O) mounted on top of it. The motor drives an oil filled
gear box (I) providing a 24:1 reduction through two levels of spur gears. The output of the drive gear box
(J) has a miter gear which is smaller than those in the steering chain. This gear drives three like miter gears
attached to the three horizontal leg drive shafts. These gears are located in the hollow centers of the 3
steering gears. Each of these shafts is terminated on its outer end by an identical miter gear (K) which
drives the respective foot vertical drive shaft.
The vertical drive shaft for each foot powers its respective wheel through a bevel gear set (L). This gear set
has a reduction ratio that exactly matches the ratio of the wheel diameter and its steering circle (as traced
on the floor). Thus, if the steering is actuated while the drive motor is held fixed, the foot rolls around the
steering circle by reflex action. This action reduces floor damage and makes for a smooth, efficient turn
even while the vehicle is stationary.

E.2.3 Electrical description

The K2A contains two electronic assemblies, the computer and the motor power amplifier. The computer is
based on the Z-80 CPU and is implemented in CMOS to conserve power. The computer card is powered by
a chopper power supply for efficiency and to isolate it from transients produced by the motors. All control
signals from the computer to the motor power amplifier are optically isolated to prevent glitches and to
serve as a protective barrier in the event of catastrophic failure of the motor power amplifier.
Early K2A platforms contained a four quadrant steering and a two quadrant drive motor amplifier. These
units used a relay to accomplish reversing of the drive
motor. Later units use two 4- quadrant amplifiers. The primary reason for this change was the fact that as
heavier loads are placed on the K2A an increasing coupling occurs between the steering and the drive. This
coupling is the direct result of the increased frictional torque at the point of contact of the tire and it has
been found to degrade the accuracy of position determination. The use of a 4 quadrant amplifier on the
drive eliminates this effect. The newer amplifier uses only power FETs in its H-bridges. Additionally, the
new amplifier has improved interlocks. There are slight differences between the signals required by these
two amplifiers (see table below). Cybermotion can upgrade two quadrant systems to four quadrant drives
(consult factory for pricing).

E.2.4 Panel LEDs

As a trouble-shooting aid, the actual optoisolator signals, running from the computer to the motor power
amplifier, pass through LEDs on the K2A control panel. These signals are:
NAME SIGNAL DESCRIPTION
-----------------------------------------------------------------
DRIVE PWM Drive pulse width modulation (power) command.
Lights brighter with increasing drive command.
FWD/REV This signal controls the direction of the drive motor.
ENABLE This signal must be pumped (toggled) by the control computer.
This pumping assures that a failure of the control computer will
halt the vehicle.
STEER PWM Steering pulse width modulation (power) command. Lights
brighter for an increasing steering power command.
LEFT/RIGHT Steering direction command. On power-up or after a reset, this
LED will flash if the computer self test detects a RAM memory
failure.



5

E.2.5 Power Circuits

The K2A contains two, 12 Volt, high capacity batteries which are connected in series to form a 24 Volt
supply. Although the tap between the batteries is brought to the charger connector on the control panel of
the K2A, the batteries are always charged in series. For this reason, IT IS IMPORTANT NEVER TO
DRAW CURRENT FROM THE +12 VOLT BATTERY TAP as this will cause an imbalance of charge in
the two batteries and rapid loss of capacity.
The on-board electronics of the K2A are powered by an encapsulated, isolated switching power supply. To
serve as a trouble shooting aid, the voltages produced by this supply may be measured on test points on the
K2A's control panel. (For details on the acceptable limits for these voltages, see section 1.3).

E.2.6 Torque Limit Adjustments

At the lower right of the K2A's control panel there are two small screw driver adjustments. These
adjustments set the torque fold-over points for the steering and drive servos. Although it is relatively safe to
leave steering torque limit at maximum (fully CW), IT IS IMPORTANT TO LIMIT THE DRIVE
TORQUE TO THE LOWEST LEVEL THAT IS NEEDED. This may be done by adjusting the Drive
Torque Limit adjustment CCW until fold over results during the most demanding operation for which the
vehicle will be used. At fold-over, the pitch of the PWM will change and the thrust of the platform will be
reduced to approximately 15 percent of maximum. In the AUTOMATIC mode, torque fold over will cause
a program to be aborted with a "STALL ABORT" status. In the manual mode, the vehicle will simply lose
power, and the operator will have to reduce the command to zero before the fold over circuit will reset.
Circuit diagrams for the slip rings, the front panel "tether" connector, and other circuits can be found in
Appendix A of this manual.

E.2.7 Communications and control

There are a wide variety of networking protocols in use, however, most were designed for data processing
applications and not for real time control. Of those protocols that were designed for real time control, most
are prohibitively expensive and complex. For these reasons, Cybermotion developed its own protocol based
on the most readily available communications hardware. This protocol uses a standard RS-232
asynchronous transmission and may be implemented on virtually any computer from a main frame to a
micro.

E.2.8 Data Transmissions

The Cybermotion protocol is based on a flexible addressing concept rather than on a rigid set of commands
(such as drive, turn, etc.). The system is master/slave in nature and has only two message formats - a
request for data from a slave computer and a transmission of data to a slave. The message for transmission
of data to a slave is structured as follows:
:NNAAAACCDD....DDSS<CR><LF>
Where:
: Indicates a data transmission.
NN Number of data bytes (2 ASCII hex numerals i.e., 0-F)
AAAA Beginning destination address (4 ASCII hex numerals)
The high byte is sent first.
CC Slave computer number (2 ASCII hex numerals)
DD....DD Data (2 ASCII hex numerals / byte)
SS Check sum for all digit pairs, calculated by subtraction starting
with zero, and represented as 2 ASCII hex numerals
<CR> Terminator (required)



6

<LF> Optional for ease of monitoring.
For example: :020100030102F7<CR><LF>
would transmit two bytes, 01 into address 0100 Hex and 02 into the address 0101 Hex in computer 03
Hex. If slave number 1 received this message properly and calculated the proper checksum (00-02-01-00-
03-01-02=F7H), after the <CR> was received, it would place the two bytes in memory and transmit the
checksum back to the master as a single 8 bit byte (i.e., binary, not in ASCII hex).

E.2.9 Data Requests

The message format for a request for data from a slave computer is as follows:
;NNAAAACC<CR><LF>
Where: ; Indicates a data request
NN Number of data bytes requested (2 ASCII hex
numerals i.e., 0-F)
AAAA Beginning address of data (4 ASCII hex
numerals) The high byte is sent first.
CC Slave computer number (2 ASCII hex
numerals)
<CR> Terminator
<LF> Display aid for monitoring
During reception of this message a slave will calculate the checksum for the message as it is received. After
the slave receives the message it will immediately transmit the requested data in raw 8 bit binary bytes,
subtracting each from the checksum of the received request. After the last byte of requested data has been
transmitted, the slave will append the combined checksum in the form of an 8 bit binary byte (no borrow to
a higher byte is calculated). Action is taken by the slave immediately after the receipt of the computer
number (not on receipt of the <CR>).
For example, if slave 03 received: <CR><LF>;01010003
It would calculate the checksum as; 00 -01 -01 -00 -03 = FB (Hex). Slave 3 would then send the value
found at address 0100 in its memory (say for example the value is 10H), and subtract it from the previous
checksum; FBH - 10H = EBH, and it would then send the combined checksum [0ECH] as a single byte
(binary.)
Slave computer numbers have been assigned as follows:

E.2.10 Quick Drive Message

The Quick drive message protocol will operate only with K2A's that have the K2ASS4 prom (Version 3.03
or later) installed. This dual slave version of the prom is for users that wish to control the K2A from
another on board computer. The Quick message requires a much less time for applications requiring tight
control, as it combines a data transmission and a request. The message can be used on either the
supervisory or control link of K2ASS4 equipped platforms. Quick drive messages may be mixed with
conventional messages. Standard Cybermotion systems do not use this message.
NOTE: ALTHOUGH the quick drive command provides tight coupling, it makes no use of the safety and
navigation subsystems. For this reason, CRUISE is recommended. The message format for a quick drive
message to the K2A is;
*DDDDSSSSCC<CR>
Where: * Indicates a quick drive command.
DDDD Is the drive command (-250 to +250). 4 ASCII Hex
numerals representing a 2 byte word (LOW BYTE FIRST).
SSSS Is the steer command (-350 to +350). 4 ASCII Hex
numerals representing a 2 byte word (LOW BYTE FIRST).



7

CC Is the checksum for DDDDSSSS as described for other
messages.
<CR> Terminator
The K2A will ignore quick drive "*" messages unless it has been placed in either the MANUAL or
MANUAL CLOSED LOOP Modes by transmitting the proper value to MODE (See K2COM.DEF). When
the "*" message is received, the K2A will test the checksum. If this is correct it will reset the deadman timer
to .5 seconds, and execute the steering and drive commands. If more than .5 seconds elapses between "*"
messages, the K2A will go into halt with a "DEADMAN KICKOUT" status (See section 3).
After a proper "*" message, the K2A will return the following response;
xxyyaac
Where;
xx Is the current X Position (In binary, with low byte first).
yy Is the current Y Position (In binary, with low byte first).
aa Is the current Azimuth (In binary, with low byte first).
c Is the checksum in binary, for both the received message and the response.
This is the negative sum of DD, DD, SS, SS, x, x, y, y, a, and a starting
with 00 (as in other messages).

E.2.11 Timing considerations

After making a transmission of data or a request for it, the master must calculate how long to wait for a
reply. If a reply is not received in a reasonable time, the message should be repeated by the master. The
K2SRV programs, for example, will repeat a message three times before signaling an error. Calculating the
time to wait for a reply is normally done by counting the number of characters transmitted in the message
and allowing the time it takes to send a single character multiplied by the number of characters plus 2 (for
response time).
NOTE: If the FDX radio modem is in the path of the data, its baud rate is 2,560 baud
standard and there are 12 bits/byte. This must be used to calculate the time.
For ASCII, the time required to send a character is calculated as:
Xmission Time = (Bytes Sent + 2) * Time/Bit * Bits/Byte
Bits/Byte= 1 start bit + 8 data bits + 2 stop bits = 11
Time/Bit = 1/Baud rate (in bits/second)

E.2.12 Control philosophy

Using the two message protocols above, a master computer can read and write data in a 64 K area of each
slave computer. The actual effect of data transmissions to a slave will be determined by the software
running in the slave. There are two general types of data, control and parametric. For example, writing the
MODE value of the K2A platform is a control function, and determines the algorithms it will execute.
Parametric data is then used by the operating algorithm to do the desired function.
The actual modes available in the K2A are subject to frequent supplementation. A complete description of
the modes available in your platform is contained in the printed listing of K2COM.PRN in the appendix.
Among the operating modes are MANUAL (Torque commanded), AUTOMATIC (Execution of up to 250
program commands in sequence), and CLOSED LOOP (Velocity commanded). (For an explanation of the
automatic mode, see also the K2SRV/K2AAV Software User's Manual.)

E.2.13 Adding computers

On board the vehicle there is often more than one slave computer on a network. Since RS-232 was not
designed for bus operation, it is necessary to OR tie the transmitters of any slaves that must report on a



8

single channel. To implement this the K2A has pull-down resistors (to -12 Vdc) on both the transmit and
receive lines of each channel. Since there is only one receiver (the master's) on the slave-to-master line, any
number of slave transmitters may be added to this line by simply diode OR tying them. The K2A uses a
transistor buffered output to allow it to drive up to 10 slave receivers on the internal link if it is
programmed as a master (see next section).
There are four ways to connect multiple transmitters to a line;
1) Diode OR tying (Cathodes connected together to Rx).
2) Buffered diode OR tying
3) Daisy chaining
4) The turret interface panel (TIP-01 or TIP-02)
If three or fewer receivers are present on a line, it may be driven by a standard RS-232 driver through a
diode (with the cathode connected to the line). If between three and ten receivers are present, the line must
be driven by a transistor buffered output. Finally, if more that ten receivers are present, the line should pass
through an RS-232 receiver, be combined with the signal to be added, and be transmitted out in a daisy
chain fashion to the next slave. As lines become loaded the immunity to noise is reduced, so they should be
kept away from any wires carrying noisy high current signals (such as motor currents). It is also advisable
to use shielded cable for all communications. Since the vehicle is so compact, lines are intrinsically short
and noise problems are relatively rare.
The TIP-01 Turret Interface Panel provides for the serial interconnection of up to eight slave processors
without the user having to worry about buffering problems. The TIP-01 also provides many other functions
such as selecting the highest priority channel for communications with the HOST computer when multiple
channels are available (tether, radio, beacons, etc.). The TIP-01 is highly recommended for vehicles with
multiple slave processors on board. For more information see the TIP-01 manual.
SINCE ALL COMMUNICATIONS BETWEEN THE K2A AND THE TURRET PASS THROUGH
THE SLIP RING, IT IS IMPORTANT TO KEEP NOISE OFF ITS OTHER LINES. For this reason, if
the application turret is to contain motors or other noise sources, it is recommended that the power for these
be supplied by a modest battery in the turret. This battery may then be trickle charged from the main
batteries through the slip ring. An alternate to a battery is a bank of filter capacitors (if the total turret peak
current does not exceed the slip ring current rating). IN EITHER CASE, IT IS IMPORTANT TO LIMIT
INRUSH CURRENTS TO THE TURRET DURING POWER-UP TO AVOID DAMAGE TO THE
SLIP RING OR BLOWING OF THE TURRET FUSE.

E.3 OPERATION OF THE PLATFORM

There are two serial channels on the K2A platform. The first channel is the "Supervisory Link" and is
intended for communication and monitoring with the HOST computer (HOST) as the link master. On this
link the K2A and other on board computers always act as slaves. When the vehicle is operating in an
autonomous mode, this link is used only for monitoring the vehicle's performance. The term "autonomous"
is used here to indicate that the vehicle is navigating on its own, without the need for control signals from
outside. The vehicle may also be controlled in a semiautonomous manner by an alternate host computer. In
this case, the alternate host would control the vehicle through the Supervisory Link via the "Host B" input
of the JA-01 Joystick / Link Arbitrator. This mode is referred to as semiautonomous because, although
there are no humans involved in the process, the vehicle is incapable of operating without a remote
computer's constant input.
The second link is the "Internal Control Link" (or just Control Link for short) and is used to control the
vehicle during autonomous operation. While the K2A is always a slave on the Supervisory Link, it may be
supplied as either a slave or master on the Control Link. Most integrated vehicles supplied by Cybermotion



9

(such as the Nexus) are configured with the K2A as the Control Link master. When the customer intends to
control the vehicle from an on board computer, the K2A is supplied with a different PROM. Thus the K2A
PROM will be marked either K2ASS4 (SLAVE/SLAVE), or K2ASM4 (SLAVE/MASTER).
The two serial communications modules present in the K2A (whether two slaves or a slave and master) are
run as independent background tasks. These modules may be thought of as functioning in much the same
way as a data bus operates within a computer. The K2A software is constantly being upgraded and
supplemented, so for details on the operation of your version consult the K2COM.PRN listing in Appendix
B of this manual. What follows is a brief description of the most common modes of operation.

E.3.1 Control from HOST Computer

The K2A is under the direct control of the HOST computer when the HOST is in either the Halt, Manual,
or Manual Closed Loop Mode. In the Halt mode, the HOST continually transmits halt commands to the
platform, thus over-riding any movement commands issued by another computer.
In the Manual and Closed Loop modes, the HOST continually transmits the values of the JA-01's joystick
position along with a deadman time to the vehicle. The deadman time resets a down counter in the vehicle.
The K2A automatically decrements this time value every 0.1 seconds. If the timer reaches zero, the K2A
will place itself in the Halt mode.
In between the transmissions of this joystick data are interlaced requests for data to fill the menus selected
at the HOST, and transmissions of data entered on the screen by the operator. Because of the heavy
communications overhead required for responsive control, screen update is slowest in these modes. In the
Manual and manual reverse modes, the K2A uses the joystick values directly as PWM commands to the
motors. This means of control is most natural to operators as it closely simulates the response of most
ordinary vehicles.
In the Closed Loop mode (Z Mode in K2SRV software) the joystick commands are used as velocity
commands for the closed loop operation of the steering and drive servos. This mode feels less natural to the
driver and is somewhat more dangerous than the normal Manual modes. As the vehicle approaches a grade,
for instance, no increase in joystick command is required to maintain velocity. By the same token, if the
vehicle hits an obstruction, such as a hapless pedestrian, it will command full power in an attempt to
maintain speed. The proper setting of the Torque Limit Adjustments will minimize these problems (see
section 2.3.3). Driving the vehicle in the Closed Loop mode has the advantage that the act of turning
(especially under heavy loads) cannot back-drive the drive motor. For this reason, driving in this mode
provides better dead reckoning accuracy. This feature makes the Closed Loop Manual mode attractive for
teaching paths to heavy vehicles. The closed loop mode is also preferable on steep grades since the vehicle
will not roll if the Joystick is released.
It is important to distinguish between the mode of operation of the HOST and that of the K2A platform
itself. Indeed, in any mode except the Dual Host mode, the HOST interrogates the mode of the K2A
constantly. In these modes, if the mode of the K2A is different from that last set by the HOST, the HOST
will change itself and the K2A to the Halt mode and announce "MODE TERMINATED". In the Dual Host
Mode, the HOST simply becomes an observer. The following table shows the correlation between these
modes.

E.3.2 Control from alternate host computer

With the HOST in the Dual Host Mode, it is possible for a second host to control the K2A over the
Supervisory Link. This is accomplished by plugging the serial line from the second host into the HOST B
input at the rear of the JA-01 Joystick/Link Arbitrator. In this configuration, the HOST will maintain
control of the vehicle in any mode except the Dual Host Mode. In the Dual Host Mode, the HOST will



10

interrogate the JA-01 for its status using the "S" command (see the JA-01 User's Manual). Bit 0 of the
status byte returned by the JA-01 is used to flag a link request by the B host.
When either host computer is preparing to use the link and does not presently have control of it, it must
repeatedly issue "S" commands. The first "S" command will set the link request bit in the status register. If
the other computer releases the link (using an "R" command), any subsequent "S" commands will receive a
status byte in response. The K2SRV software has the good manners to release the link on any request after
it has accomplished a single communications transaction. If the B Host is not polite enough to release the
link in a reasonable time the HOST will display "LINK BEING HOGGED", but will otherwise do nothing.
This message informs the operator that data appearing on the screen may be stale or totally invalid. It
should also be noted that the "S" command starts conversions on both the X and Y joystick A/D converters.
If the alternate host is to use joystick values in its program, it must issue "S" commands before reading the
joystick registers (see JA-01 manual).
The A HOST input of the JA-01 has a special capability. If any byte is sent into this port with bit 7 set
true, the link is returned to the A Host. This function is used by the HOST if the Halt Mode is selected by
the operator during Dual Host operations. Thus, it is possible to monitor the operation of the platform
while controlling it with another computer. This capability is not only an aid to program development but
also adds a measure of safety to the debug process.

E.3.3 Control from an on board computer

The K2A platform can also be controlled by another on board computer over the Control link provided that
the K2A has been supplied with the K2ASS4 version of its PROM. In this configuration, as in the
arbitrated configuration, the HOST must be placed in the Dual Host Mode. Although the HOST will
continue to check for link requests, it will not receive any and it will therefore never release the link. Since
the Control Link, through which the platform is being controlled, is independent of the Supervisory Link in
this configuration communications throughput is double or better than that of the arbitrated mode.
Although it is not generally preferable, it is also possible to control the K2A on the Supervisory link from
an on board processor. This may be done by interrupting the normal host's communications on the
Supervisory link, and is possible through the use of the PORT REQUEST feature of the TIP-01. The
actual control sequence is the same in either case, but if the Supervisory link is used, all control and
monitoring from the fixed host is lost.
The Halt mode of the HOST continues to function if the Control link is used by the on board host, provided
that the on board master does not repeatedly reset the MODE value. In both this and the arbitrated
configuration, the alternate host computer should frequently request the STATUS of the K2A. If this status
is found to have changed to Halt, the alternate host should become dormant. It is suggested that any user
supplied on board computer be equipped with a slave interface to the Supervisory Link. The K2SRV
software package has diagnostics menus through which the user will be able to view data in the computer
as byte, signed word, or plot values.

E.3.4 Continuous Control

When an on board or remote host is to control the K2A, it may do so in two basic ways; continuous control
or by down-loaded path control.
The K2A may be controlled continuously in either the MANUAL MODE (torque commanded), or in the
CLOSED LOOP MANUAL MODE (velocity commanded). The closed loop mode is generally
recommended for its accuracy, but the driving computer must send smoothed commands. If a step function
is commanded in the closed loop mode, the K2A program will drive the servos violently in order to comply.
When the alternate host takes control of the K2A, it must issue a mode value to the base. This is a single
byte value, written to the MODE address 2400H (See the listing K2COM.DEF). This and all the messages
that are discussed here follow the format described in section 2.4.1. To place the K2A in the torque



11

commanded mode, a 1 is written to this location; for the velocity commanded mode, a 5 is written to
2400H. The MODE value should be written ONLY at the beginning of the control sequence and NOT
repeatedly.
After the MODE has been set to 1 or 5, the host must continuously send a 5 byte message to control the
drive and steering. Between these messages the host can request data using the format described in section
2.4.2, or write other data, but no more than one message should be inserted between the 5 byte control
messages. Alternatively, if the K2A has the K2ASS4 prom installed, the "Quick Drive" message may be
used (See 2.4.3).
If the quick message is not used, the 5 byte "transmit" message is sent to address 2402H (DEADMAN) and
writes the values DEADMAN, DVEL, and SVEL (See K2COM.PRN). The conventional drive format is;

BYTE RANGE MEANING
---------------------------------------------------------------------------------------------------------
1 2-30 DEADMAN TIME SET- The vehicle will stop in this
many 10ths of a second if another message is not received).
2,3 -250 to 250 DRIVE COMMAND- This is a signed 16 bit word, low
byte first, and is either the torque command, or the velocity
command for the drive servo depending on the MODE.
250= 2.50 ft/sec in mode 5.
4,5 -350 to 350 STEER COMMAND- This is a signed 16 bit word, low
byte first, and is either the torque command, or the velocity
command for the drive servo depending on the MODE
350= 350 Binary Deg/sec in mode 5.

These three values (5 bytes) were placed together in the K2A's memory so that they could be sent in a
single message. The message will appear as follows:
:05240201140000FFFFC2<CR><LF>
This means write 5 bytes starting at address 2402H in computer number 01, the deadman being 14H (2.0)
seconds, the drive being 0 and the steering being 0FFFFH (-1 decimal). The negative checksum is C2H.
This would result in an extremely slow turn to the left in closed loop, but would probably do nothing in
mode 1 (since it wouldn't be much torque).
The controlling host should check the status of the K2A by reading the STATUS byte (2401H). The status
should be 0 (normal). Various status values are given in K2COM.DEF in the appendix. When the host is
finished with its move, it should set the MODE back to 0 (HALT).

NOTE: Collision avoidance does not function in this method of control, but it is possible to interrogate the
CA-01 for target range and perform collision avoidance in the controlling software.

E.3.5 Path Program Down-Loading

The K2A may also be controlled by down-loading a path program from an alternate host, and then putting
the K2A into the AUTOMATIC mode by sending a 2 to the mode byte. The path program normally
includes 255 6 byte instructions, a 2 byte positive 16 bit Drive Acceleration value (1 to 5), and a 2 byte
positive 16 bit Steer Acceleration value (1 to 15). The Automatic Mode is used by Cybermotion in all of its
autonomous operations.
IMPORTANT: With K2A software carrying revisions 3.06 and beyond, it is not necessary to send all 255
instructions. Instead, only the needed instructions may be loaded. However, it is now necessary to load the
memory location LASTINS (See K2COM.DEF) with the highest valid program instruction number. When
the K2A is turned on, this value is set to 255, however downloads of programs from the K2SRV or



12

Dispatcher programs may change this value. This value is intended as a safety limit to prevent accidental
execution of invalid program segments. If any instruction above this value is encountered, the vehicle will
halt with a ILLEGAL FUNCTION status.
Once this path program data has been sent, a 1 may be written to PLOADED (2407H) to indicate to the
K2A that it has a valid program loaded. The MODE may then be set to AUTOMATIC (2). When the K2A
is first placed in AUTO there is a slight delay while it calls on the Control link (K2ASM4 only) to try to
find out what standard hardware is connected (such as collision avoidance). After about 2 seconds, the
K2A will begin executing the program. After the first automatic operation, the 2 second delay will not
occur, as the K2A keeps a log of the systems on board. NOTE: IN EARLIER VERSIONS OF THE K2A
SOFTWARE, THE X AND Y POSITION WERE SET TO ZERO AT THE BEGINNING OF AN
AUTOMATIC PROGRAM EXECUTION. THIS IS NO LONGER THE CASE, AND IT IS
IMPORTANT THAT THE USER ASSURE THESE VALUES ARE VALID BEFORE MOVEMENT
COMMANDS ARE EXECUTED! When an END or HALT instruction is encountered, the K2A will
change its MODE back to HALT (0).
It is possible to "fudge" in the AUTO mode, by starting a program which contains a first step of JUMP to
step 0. Thus the K2A will do nothing while the program loops. The host may then write the next few steps
(instructions) which end with another jump to itself. To release the K2A from a loop, the host may rewrite
the jump address. The advantage of using such techniques is that all of the power of the AUTO mode is
available (such as docking instructions and collision avoidance operation).
As of version 3.06, the USE instruction may also be used for modified automatic control. In this case, a
simple program may be down loaded and made to execute with its arguments taken from RAM so as to
continuously change its destination. For example:

Step Instr. S X Y
--------------------------------------------------------------------------------------------
0 WRITEW 1 16000 0 ; Zero X target.
1 WRITEW 1 16002 0 ; Zero Y target.
2 WRITEB 1 16004 0 ; Zero Speed.
3 SET XY - 0 0 ; Zero position.
4 READB 1 16004 - ; New Target?
5 JUMP= 4 - 0 ; IF not loop.
6 USE 004 16000 16002 ; Addr of targets
7 RUN - - - ; Run to target at
8 JUMP 0 - -
Note that the controlling computer would drive the platform by simply putting relative destination
coordinates in addresses 16000 and 16002 and the speed in 16004 (Base 10), and then reading 16004
waiting for it to go to zero to indicate that the move had been executed. If absolute position commands were
used, steps 0, 1, and 3 could be eliminated. NOTE that since the S argument is a single byte, the address it
represents in the USE instruction is 16000 (3E80H) plus its value. The 256 bytes starting at 16000
(3E80H) are reserved as user scratch pad.

E.3.6 Resuming a Path Program

A path program may be interrupted by the K2A, or by an operator at the host terminal. Provided that the
vehicle is not relocated or disoriented (i.e powered down), the interrupted path program may be continued
at the last instruction by sending a mode command of RESUME. When RESUME is executed, the K2A
will head for its next destination from wherever it is. Thus if the vehicle encounters an obstruction, the



13

operator can manually drive it around the obstacle and RESUME the program. The vehicle will head
directly for the next path vector end point from its new location (it will not try to get back on the original
path).

E.3.7 Protected continuous control (Cruising)

The MANUAL, and ZMODE methods of control were designed primarily for direct K2A operation. When
the K2A is used in the Navmaster configuration, these modes do not take advantage of any of the vehicle's
powerful collision avoidance or navigation capabilities. The CRUISE instruction is a unique AUTO mode
instruction in that it causes the vehicle to move while the program goes on to the next instruction.
CRUISE loads the variables DCR.VEL (Drive) and SCRVEL (Steer) with its X and Y arguments, and sets
a flag that causes a background program to attempt to reach these drive and steer velocity targets using
DACCEL and SACCEL, and taking into account data from the collision avoidance system. This allows a
host computer or operator to send velocity requests to the vehicle by writing them into these variables. A
master computer may also change the auto program to invoke DOCKing and WALL navigation behavior.
The X,Y position and azimuth are read by the controlling host during CRUISING just as in the simpler
modes.

E.4 MAINTENANCE

The K2A was designed for minimum maintenance. If your application does not exercise the vehicle a
substantial percentage of the time, except for battery charging, maintenance may be done on 24 month
basis. Tire replacement may occasionally be necessary if the vehicle is operated on harsh surfaces. Tires
are matched for diameter under load, and should be ordered and changed as a set.

E.4.1 Battery charging and maintenance

The K2A uses two, Sonnenschein, 12 Volt, 85 Ah batteries. These batteries may be charged at a rate of up
to 18 Amps without degradation of their performance. Unlike some battery types, these batteries provide
the maximum number of cycles when they are maintained at high levels of charge. If the batteries are
discharged to the end of their capacity they will give fewer cycles. On the other hand, OVER-CHARGING
WILL CAUSE SERIOUS DEGRADATION OF CAPACITY.
If the batteries are to be charged with a standard automotive charger it is important to discontinue charging
as soon as the charge current drops to between 2 and 3 amperes. If unattended charging is to be done over-
night a timer should be placed on the charger and should be set to turn the unit off after 3 to 5 hours
(depending on the state of depletion). AN AUTOMOTIVE CHARGER SHOULD NEVER BE USED
WITH AUTO DOCKING CHARGING STATIONS as contact pitting will occur.
For applications that require maximum battery life, minimum charge times, and/or auto docking, the
Cybermotion BC-01 Battery Charger is recommended. The BC-01 charges at rates up to 16 Amperes and
supplies filtered DC. The charger also contains control circuitry that holds off current until a short time
after contact is made with the battery circuit. This feature allows vehicles to auto dock without contact ring
pitting. The BC-01 may be left on the vehicle indefinitely without harming the batteries. Finally, the BC-01
provides optoisolated output signals that indicate the state of charging to the vehicle (through the DB-01
Docking Beacon System).

E.4.2 Lubrication

The basic lubricant for the K2A's grease points should be extreme pressure grease that meets or exceeds
M.I. G23827(B). One brand that meets this standard is Pennzoil Bearing Grease No. 706. Lubrication
should be done on all grease points every 2000 hours or every two years, whichever comes first.



14

Lubrication points are shown in Figure 2. The grease may be applied to the gears with a rubber knife or
stiff bristle brush. Rotate the respective servo between applications to assure complete coverage. DO NOT
GET THE APPLICATION TOOL CAUGHT IN THE GEAR TEETH AS DAMAGE MAY RESULT.
The drive gear box is filled with oil but should never require maintenance. If an oil leak is experienced or if
the box is drained for service, it should refilled with Penzoil EP Gear Lubricant No. 4096 or equivalent.



Appendix F
ARIES:  An Intelligent Inspection and Survey Robot

FIELD TRIALSFIELD TRIALS

Clemson University, Cybermotion Incorporated,
and The University of South Carolina



1

F.  FIELD TRIALS

F.1 FERNALD

ARIES was tested, evaluated, and demonstrated at Fernald Site during 5-22 August 1996
according to requirements of the project’s Phase 3 proposal. The ARIES tests were
conducted in Building TS-4 at the Fernald Site. This building has translucent plastic walls
and sodium vapor interior lights. TS-4 has capacity for as many as 12,000 drums and is
partitioned into separate halves by short berms.

The time spent at Fernald was both necessary and very beneficial to the completion of
Phase 3. The goal of this demonstration was to characterize productization issues. The
experience of operating the system in the "real environment" was invaluable and identified
areas for further investigation and enhancements (throughput, power efficiency, exception
handling onboard, etc.). During the fourth day at Fernald, the system was fully operational
and navigating drum aisles in the TS-4 facility.

Overall, the system set up easily and worked beyond our expectations. We feel that all
major items from the test plan were at least addressed informally during the 17-day period.
Specific items concerning the Site Manager and operation of the system were covered in
detail with FERMCO personnel. According to feedback from customers at the formal
demonstration on 21 August, the demonstration was successful.

The system now resides at the Cybermotion facility in Salem, VA where it is undergoing
final enhancements for productization. An additional system will be fabricated and tested.
A test aisle facility will be set up in Salem for evaluations and demonstrations. The
University of South Carolina and Clemson University both continue in their efforts to port
the on-board software from VxWorks to the Windows NT platform.

F.2 IUOE

7/14
* Arrived at IUOE facility in late afternoon due to flat tire on truck.

7/15
* Set up system.
* Laser scan was not working.
* Recalibrated vision system.
* Batteries dead.

7/16
* Batteries still dead (breaker tripped on charger).
* Laser scan fixed.
* Fore-bar actuator broke belt.
* Received replacement batteries from Cybermotion.



2

7/17
* Brecht arrives to work on vision system.
* Vision system properly calibrated.
* Arranged overnight shipment for new actuator belt.
* Worked on AutoCAD drawings of test plan layouts.
* Began calibration of color camera.

7/18
* Observed that facility floors are very uneven in places.
* Belt NOT received (they sent it USPS).
* Experimented with methods for automated color calibration.
* Began laying out some paths.
* Brought in some drums for training the vision system.

7/19
* Began training of vision system.
* Received replacement belt(s) for the actuator.
* Actuator still needed other repairs (which were made).
* Having installation problems with Site Manager.
* Vision system auto-calibration routines finally complete.

7/20
* ARIES had some navigation problems.
* Laser scans did not seem to be working properly.

7/21
* ARIES ran pretty much all day.
* Collision avoidance portions of the test plan were completed.
* Navigation problems seem to be resolved.
* A bug was discovered in the  the database portion of Mission Handler.

7/22
* Ran "square-10" navigation precision test.
* Navigated "long aisle."
* Worked on Database bug (and workaround).

7/23
* Ran "long aisle" test.
* Ran "missing pallet long aisle" test.
* Ran "staggared pallet long aisle" test.
* Ran "crooked pallet long aisle" test.
* Set up "chevron" aisles.
* Navigated chevron aisle configuration.
* Determined that corrupted lasercal file was to blame for poor laser scans.

7/24/97
* Determined that INEEL barcodes (here) probably would not be suitable.  They
appear to have been printed with a 9-pin dot matrix printer with a bad ribbon.



3

Barcodes should be laser-printed with dark, well-defined lines.
* Fore-bar actuator broke belt AGAIN!
* Work continues on the vision system.

7/25/97
* Repaired actuator (one belt left).
* Test aisle configuration set up (minus 85-gallon drum aisle).
* Test aisle navigated.
* Read USC barcodes on drums.
* Continued work on vision system.

7/26/97
* Continued debug on database problem.
* Continued work on vision system.
* Trained vision system.

7/27/97
* Killed database bug.

F.3 LOS ALAMOS NATIONAL LABORATORY

11/10

* Arrived at LANL and checked in.
* Made preliminary measurements in the dome.
* Truck carrying system did not arrive until late afternoon and delivered
system to a central receiving point.  Will not be able to unpack until
Wednesday (Tuesday is a holiday).

11/12

* Learned that two (of the eight) crates were heavily damaged in shipping.
Fortunately, they were the crates containing the LIDAR fiducials.  The
status of the system as a whole will not be verified until tomorrow when we
put the CPS on the robot (Although it looks like everything else is okay).
* Crates were delivered to the storage facility this afternoon.
* Computers were set up, and the majority of the crates were unpacked.
* The cold seems to be having minor effects on the offboard computers.

11/13

* Put CPS on robot.
* Discovered that Barcode reader was damaged in shipping.  Have replaced it
with spare.
* Discovered that one of the strobe modules was damaged is shipping and are
trying to repair it (no spare here).



4

* Condition of the LIDAR will be checked tomorrow.
* The rest of the CPS appears intact.
* Have finished unpacking (the escort restriction is seriously curtailing
the amount of time we have to work).

11/14

* Received replacement strobe component.
* Continued preparing AutoCAD map of facility.
* Began placing the fiducials.
* Plan to operate the system (a minimal subset) tomorrow.

11/15

* Completed site measurements and AutoCAD map.
* Set up the inspection site.
* Executed nine inspection runs.
* May have to do some work on front sonar transducers.
* May have a problem with the panning mechanism.
* Initial performance of the vision system has been poor (hope to address
that next week).

11/17

* Made adjustments to ultrasonic transducers (apparently) adversely
affected by the cold.
* Increased number of aisles in test area.
* Covered sensitive electronic components in plastic to protect them from
condensed water falling from the roof of the tent.
* Began to address turning in a 36-inch aisle.
* Calibrated LIDAR.

11/18

* Batteries may be weakened by the cold resulting in less efficient
charging and shorter run times.
* Repaired (shipping) damage to pan mechanism.
* Replaced front ultrasonic transducers.
* Had trouble with E-Stop circuits (maybe due to water from the tent).
* Will attempt to assess the condition of the vision system tomorrow.

11/19

* John left today.



5

* Found loose battery connections.
* Vision system is in poor condition (needs calibration, adjustments,
&etc).
* Are navigating the 36" (really closer to 34") aisles.
* Observed noise from strobes (?) affecting barcode reader performance.
* Began repairing crates for return shipment.

11/20

* Repaired damaged crates (except for one).
* Cleared equipment for free-release.
* Boxed fiducials and CPS.
* Plan to complete packing by noon tomorrow.
* Shipping destination is unclear right now (at Vijay's request), although
it would seem wise to return the system to Cybermotion for continued
testing and preparation for INEEL demo.

F.4 IDAHO NATIONAL ENVIRONMENTAL ENGINEERING LABORATORY

7/12/98
* Arrived in Idaho Falls, ID.

7/13/98
* Arrived at INEEL North Boulevard Robotics Center facility.
* Assembled ARIES II.
* Unpacked equipment for ARIES II.
* Designed test/demo site for coexistence with IMSS.

7/14/98
* Set up and mapped test "Site."
* Completed check out of ARIES II.
* Began test and debug of "Plugin" instruction (for docking the robot).

7/15/98
* John returns to VA.
* Replaced class IIIb laser with class IIIa (eye-safe) laser and de-activated dent detection
system (class IIIb laser).
* Laser calibration training video (Lasercal.exe - for physical calibration of vision system).

7/16/98
* Site Manager training.
* Brief KXA training.
* ARIES shutdown and startup training and video.

7/17/98
* Completed Site Manager training.
* Training on "training" the vision system (train.exe).
* Training on Test application (test.exe).



6

* Review of documentation.
* Review of delivered equipment.

7/18/98
* No activity.

7/19/98
* Return to Columbia, SC.


