Oxides and Surface Magnetism
R.C. O'Handley and M. Oliveria
M.I.T.
DE-FG02-91 ER45458
Final Report
DOE/ER/45458--7

The general objective of this program was to study the magnetism and structure of iron oxide films with a view to enhancing control over growth mode, oxidation state and fundamental understanding in this complex system. In particular, we sought to create new magnetic metal/oxide multilayers and composites based on improved knowledge of the magnetic properties at Fe and Fe$_3$O$_4$ surfaces and at Fe/Fe$_3$O$_4$ interfaces.

The project had three parts: 1) deposition and characterization of iron films up to 0.1 μm on fused quartz, 2) deposition and characterization of Fe$_3$O$_4$ films up to 0.1 μm on fused quartz and 3) fabrication and characterization of Fe/Fe$_3$O$_4$/Fe/... multilayers.

1) The structure and magnetic properties of sputtered Fe/SiO$_2$ were studied first. The most interesting result here is the variation of magnetic properties with Fe film thickness, t. M_s is approximately 1680 gauss and $H_C = 25$ Oe for $t > 0.1$ micron. Below a thickness of 0.1 micron the magnetization drops monotonically to 1560 gauss at 100Å but the coercivity peaks at 37 Oe near 400 Å then decreases for thinner films. This interesting behavior is similar to that observed in fine iron particles where the peak in H_C is associated with the onset of single domain behavior. This result is described in detail in Ref. 1.

2) The Fe oxide study (task 2) proved to be very important. By using reactive sputtering, we were able to locate a robust processing region, which would give thickness independent properties for the Fe$_3$O$_4$ to be used in the multilayer studies. In addition we synthesized ferromagnetic Fe$_{1-x}$O, the first report of such a phase. The ferromagnetism is attributed to the cation disorder. Interestingly, the same cation disorder that causes a reduction in moment in sputtered Fe$_3$O$_4$ films, induces a moment in Fe$_{1-x}$O. The Fe$_{1-x}$O films are believed to contain defective "Fe$_3$O$_4$-like" regions that are ferromagnetic. Initial measurements indicate that this phase demonstrates a large magentoresistance, similar to those obtained in other granular magnetic composites. This result is described in publication 2.

3) The purpose of the multilayer study (task 3) was to see if Fe could be used to enhance the moment and possibly the coercivity of magnetic oxides. We were able to verify that the Fe layers couple ferromagnetically through the Fe$_3$O$_4$ layers; there was no sign of double hysteresis loops due to independent switching of the Fe and Fe$_3$O$_4$ layers. The saturation magnetization followed a linear mixture rule as expected. The coercivity was not linear, but showed a peak coercivity with a small Fe contribution. The origin of the peak has not yet been determined. The nonlinear dependence of remanence on Fe thickness suggests exchange coupling of the Fe to the Fe$_3$O$_4$ layers. A very unexpected and important result was that we were able to control the texture of the film (on a glass substrate!) by altering the deposition sequence and the iron thickness fraction:

$$[(0.45) \text{Fe/Fe}_3\text{O}_4] \rightarrow (100)/(100)$$
$$[\text{Fe}_3\text{O}_4/\text{Fe}] \rightarrow (311)/(110)$$

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
That is, thin Fe layers deposited on Fe$_3$O$_4$ (001) also assumed the (001) orientation. However, Fe$_3$O$_4$ layers sputtered onto Fe (110) assumed a (311) orientation.

Publications

3.

Personnel

Y.K. Kim received his Ph.D. in 1994. He joined Quantum Corp (Rocky Mountain Magnetics), then returned to Korea in Sept. 1997 to work with Samsung Electronics.

Kevin Fahey transferred to Stanford after the non-renewal of this project. He is completing his Ph.D. there.

Prof. M. Oliveria left M.I.T. to work at Motorola.

Dr. R.C. O'Handley continues as a Senior Research Scientist at M.I.T.

Post script

The sputtering system constructed by Dr. Kim for this project using M.I.T. startup funds has served four other projects: Growth of high T_C superconductors; growth of perpendicular Ba-ferrite/Co bilayers; growth of Fe-Si-N nanostructured films; and growth of novel Co-Cr-Ta textured films.