Progress toward achieving a commercially viable solar reflective material

PDF Version Also Available for Download.

Description

Solar thermal technologies use large mirrors to concentrate sunlight for renewable power generation. The development of advanced reflector materials is important to the viability of electricity production by solar thermal energy systems. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. Production processes associated with candidate materials must be scalable to mass production techniques. A promising low-cost construction uses a stainless steel foil substrate with a silver reflective layer protected by an optically transparent oxide topcoat. Thick (2 to 4 micron), dense alumina coatings provide durable protective layers. The ... continued below

Physical Description

12 p.

Creation Information

Kennedy, C.E. & Smilgys, R.V. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Solar thermal technologies use large mirrors to concentrate sunlight for renewable power generation. The development of advanced reflector materials is important to the viability of electricity production by solar thermal energy systems. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. Production processes associated with candidate materials must be scalable to mass production techniques. A promising low-cost construction uses a stainless steel foil substrate with a silver reflective layer protected by an optically transparent oxide topcoat. Thick (2 to 4 micron), dense alumina coatings provide durable protective layers. The excellent performance of alumina-coated reflector materials in outdoor and accelerated testing suggests that a larger field trial of the material is warranted. The key to producing a greater quantity of material for field deployment and testing without incurring substantial capital is the use of a chilled drum coater. An existing chamber is being modified, and the deposition rate will be increased prior to the installation of a drum coater to produce 1-ft wide by 10-ft long strips of solar reflector material. The production and performance of these materials are discussed.

Physical Description

12 p.

Notes

OSTI as DE98007229

Source

  • 11. international vacuum web coating conference, Miami, FL (United States), 9-11 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98007229
  • Report No.: NREL/CP--510-24058
  • Report No.: CONF-9711164--
  • Grant Number: AC36-83CH10093
  • DOI: 10.2172/656732 | External Link
  • Office of Scientific & Technical Information Report Number: 656732
  • Archival Resource Key: ark:/67531/metadc704195

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 31, 2016, 7:03 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kennedy, C.E. & Smilgys, R.V. Progress toward achieving a commercially viable solar reflective material, report, June 1, 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc704195/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.