Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions

PDF Version Also Available for Download.

Description

In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they ... continued below

Physical Description

13 p.

Creation Information

Tachiki, M. & Machida, M. July 18, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they consider how to excite their modes and point out that excitations of in-phase mode with the highest propagation velocity among their N modes are the most efficient way for electromagnetic wave emissions. Finally, they clarify that in-phase excitations over all junctions are possible by using Josephson vortex flow states. They show simulation results of Josephson vortex flow states resonating with some Josephson plasma modes and predict that superradiance of electromagnetic field may occur in rectangular vortex flow state in which spatiotemporal oscillations of electromagnetic fields are perfectly in-phase.

Physical Description

13 p.

Notes

INIS; OSTI as DE00759075

Medium: P; Size: 13 pages

Source

  • SPIE 14th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, FL (US), 04/24/2000--04/28/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/MSD/CP-102357
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 759075
  • Archival Resource Key: ark:/67531/metadc704186

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 18, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 1:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tachiki, M. & Machida, M. Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions, article, July 18, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc704186/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.