Fields in Multilayer Beam Tubes

Glen R. Lambertson
Accelerator and Fusion Research Division
August 1999
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Fields in Multilayer Beam Tubes*

Glen R. Lambertson

Accelerator and Fusion Research Division
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

August 1999

* This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Fields in Multilayer Beam Tubes*

Glen R. Lambertson

Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720
(26 February, 1999)

Abstract. Equations are presented for calculating the fields from a bunched beam that penetrate into the layers of a beam tube of circular cross section. Starting from the radial wave impedance of an outer surface, the wave functions in inner layers are calculated numerically to obtain field strengths or the longitudinal beam impedance. Examples of a vertex-detector region and of an injection kicker are given.

Introduction

The vacuum tubes that enclose particle beams, while usually of thick metal, have at places regions with thin metal or ceramic surrounded by metallic or magnetic structures. Fields from the beam current penetrate these walls, particularly at low frequencies. Calculation of the fields is needed to know the strengths of the fields outside and to determine the beam impedance presented by the multilayer structure. Penetration of the fields is affected by dissipative media and by the necessary matching of boundary conditions at the interfaces between layers. Because the beam is moving often at relativistic speed, it is important to use the field equations for waves propagating axially at the beam velocity along the tube. Reflections at the boundaries between materials are strongly dependent upon the relativistic factor $\beta\gamma$ and upon the ratio of radius of the layer to the wavelength.

The first section below gives equations for calculations using Bessel functions for the circularly cylindrical geometry. These may be used directly for numerical computation. A second section examines the wave functions in various media and gives approximations applicable for the usual parameter ranges. Following are example calculations of some actual cases.

* This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098.
Field equations and method

Assuming cylindrical symmetry about the beam axis, the fields within each of the layers may be obtained from axial TM Hertz vectors (Ref. 1,2,3). These vectors are sums of the modified Bessel functions

\[ \psi_+ = K_0(hr)e^{i(\omega t-k_o z/\beta)} \]  \hspace{1cm} (1a)

\[ \psi_- = I_0(hr)e^{i(\omega t-k_o z/\beta)} \]  \hspace{1cm} (1b)

where

\[ h^2 = \frac{\omega^2}{\nu^2} - \omega^2 \mu \varepsilon + j \omega \mu \sigma \]

\[ h^2 = k_0^2 \left( \frac{1}{\beta^2} - \mu_r \varepsilon_r \right) + j \frac{2}{\delta^2}. \]  \hspace{1cm} (2)

If the material is a metal, the term containing the skin depth \( \delta \) is usually the greater. I have subscripted the \( \psi \) with + or – to indicate that \( K_0 \), infinite at \( r = 0 \), is similar to an outgoing wave and \( I_0 \) an incoming field. While the axial phase velocity is always \( \beta c \), wave fronts in media with \( \mu_r \varepsilon_r \neq \beta^{-2} \) proceed with some radially outward or inward component.

In a structure without axial variation, only the three TM components of the fields arise from the potentials:

\[ E_z = -h^2 \psi \quad E_r = -j \frac{k_0}{\beta} \frac{\partial \psi}{\partial r} \quad H_\phi = -\left( j \frac{k_0}{Z_0} \varepsilon_r + \sigma \right) \frac{\partial \psi}{\partial r} \]  \hspace{1cm} (3)

\( Z_0 \) is \( \mu_0 c = 120 \pi \) ohm. The boundary conditions between layers are simply that \( E_z \) and \( H_\phi \) be continuous, and we shall not need the radial \( E \)-component. It will also be convenient to omit the exponential \( z \)- and \( t \)-dependence when writing the fields.
In the interior of the beam tube with beam current \( I e^{j(\omega t - k_0 z/\beta)} \), we have for radii greater than the beam radius

\[
E_z = -j I Z_0 \frac{k_0}{2\pi} \frac{k_0r}{\beta \gamma} K_0 \left( \frac{k_0r}{\beta \gamma} \right) + B_0 I_0 \left( \frac{k_0r}{\beta \gamma} \right)
\]

\[ (4) \]

\[
H_\phi = \frac{I}{2\pi} \frac{k_0}{\beta \gamma} K_1 \left( \frac{k_0r}{\beta \gamma} \right) + jB_0 \frac{\beta \gamma}{Z_0} I_1 \left( \frac{k_0r}{\beta \gamma} \right)
\]

The constant \( B_0 \) is to be determined. These expressions appear more familiar if we make an approximation for the usual case of \( k_0r/\beta \gamma \ll 1 \):

\[
E_z \equiv -j I Z_0 \frac{k_0r}{\beta \gamma} \ell n \left( \frac{k_0r}{\beta \gamma} \right) + B_0
\]

\[ (4a) \]

\[
H_\phi \equiv \frac{I}{2\pi} \left[ 1 + \frac{1}{2} \left( \frac{k_0r}{\beta \gamma} \right)^2 \left( \ell n \left( \frac{k_0r}{\beta \gamma} \right) + 0.616 \right) \right] + jB_0 \frac{k_0r}{2Z_0}
\]

In the medium of layer \( n \) we shall let \( \psi = A_n K_0(\beta r) + B_n I_0(\beta r) \) and represent the fields as a vector \( F \) that is the product of matrix \( M_n \) and amplitudes \( A_n \) and \( B_n \):

\[
F = \begin{pmatrix} E_+ + E_- \\ H_+ + H_- \end{pmatrix} = M_n \begin{pmatrix} A_n \\ B_n \end{pmatrix}
\]

\[ (5a) \]

with

\[
M_n = \begin{pmatrix} -h^2 K_0 & -h^2 I_0 \\ \left( j \frac{k_0}{Z_0} e_r + \sigma \right) h K_1 & -\left( j \frac{k_0}{Z_0} e_r + \sigma \right) h I_1 \end{pmatrix}
\]

\[ (5b) \]

Within a layer the fields at the inner radius, e.g. \( r = a \), are obtained from the fields at their outer radius, e.g. \( r = b \), using matrix \( M \) and its inverse:
\[ F(a) = M(a)[M(b)]^{-1}F(b) \]  

(6)

At the inner surface of the outermost medium to be considered, we must specify the ratio of fields \( E_z \) and \( H_\phi \). For a compound structure such as a magnet, this may not be simple and may introduce azimuthal variations not strictly provided for in this analysis. Perhaps a suitable approximation can be found. In what follows, I shall choose the simpler case of a uniform exterior medium of infinite radial extent, such as vacuum or a magnetic or conducting material. In this case, only outgoing fields will exist in the material and a sufficient potential is;

\[ \psi_e = A_e K_0(h_e r) \]  

(7)

The ratio \( Z = E/H \) is then given by

\[ Z_e = \frac{-h k_0(h r)}{\left( j k_0 \frac{e_r}{Z_0} + \sigma \right) K_0(h r)} \]  

(8)

and the field vector \( F_e \) at this outer boundary may be written

\[ F_e = \begin{pmatrix} E_e \\ H_e \end{pmatrix} = \begin{pmatrix} Z_e \\ 1 \end{pmatrix} A_e \]  

(9)

where \( A_e \) may be determined from the analysis if knowledge of this outermost field is desired.

By successively applying the matrices \( M \) and \( M^{-1} \) for the layers as in Eq. (6) a matrix-product may be constructed that transforms fields \( F_e \) to the fields at the inner surface of the beam tube, at e.g. radius \( a \).

\[
\begin{pmatrix}
E_z(a) \\
H_\phi(a)
\end{pmatrix} = (M^{-1} \text{ product}) \begin{pmatrix}
Z_e \\
1
\end{pmatrix} A_e \equiv \begin{pmatrix}
F_e \\
F_H
\end{pmatrix} A_e
\]  

(10)

The amplitude \( A_e \) is still unknown, but only the values of \( F_e \) and \( F_H \) (or their ratio) are needed to solve for the constant \( B_0 \) in Eq. (4), which is given by
where \( h = \frac{k_o}{\beta y} \). The longitudinal beam impedance per unit length, \( Z'_B \), that adds to any space-charge term is

\[
Z'_B = -\frac{B_0}{I}.
\]  

(12)

The magnetic field at \( r = a \) is given by

\[
H(a) = \frac{I}{2\pi a} \frac{FH}{FHI_0(ha) - jFE \frac{k_0}{Z_0 h} I_1(ha)}
\]  

(13)

At the outer surface, the field \( F_e \) of Eq. (9) is found using amplitude

\[
A_e = \frac{H(a)}{FH}
\]  

(14)

### Media matrices

In vacuum or in any medium where the value of \( hr \) is less than 0.1 and real, an approximation of Eq. (5) is

\[
M = M = \begin{bmatrix}
  h^2(\ln hr - 0.116) & -h^2 \\
  j\frac{k_0}{Z_0 r} \left[ 1 + \frac{1}{2} (hr)^2(\ln hr - 0.616) \right] & -j\frac{k_0}{2Z_0} h^2 r
\end{bmatrix}
\]  

(15)

Of use in calculating a symbolic inverse is the value of the determinant (valid for any value of \( hr \)):
If we discard terms of order \((hr)^2\), we may find a simple product matrix to transform through one layer of vacuum from radius \(b\) to smaller radius \(a\):

\[
M(a)[M(b)]^{-1} = \begin{pmatrix}
1 & 0 \\
-j \frac{k_0}{Z_0} \frac{b^2-a^2}{2a} & \frac{b}{a}
\end{pmatrix}
\]

In a layer of dielectric or magnetic material, the value of \(h^2\) (c.f. Eq. (2)) may be either positive or negative. For the negative case, it may be convenient to use Bessel functions and Hankel functions \(H_n^{(2)} = J_n - jY_n\); for that we let \(h = jg\), i.e.

\[
g = k_0 \left( \mu_r \varepsilon_r - \frac{j}{\beta^2} \right)^{1/2}
\]

Then \(\psi\) becomes

\[
\psi = A \left( -j \frac{\pi}{2} H_0^{(2)}(gr) \right) + BJ_0(gr)
\]

and

\[
E_z = g^2 \psi \quad H_\phi = -j \frac{k_0}{Z_0} \varepsilon_r \frac{\partial \psi}{\partial r}
\]

The matrix \(M\) is

\[
M = \begin{pmatrix}
-j \frac{\pi}{2} g^2 H_0^{(2)}(gr) & g^2 J_0(gr) \\
\frac{\pi k_0}{2Z_0} \varepsilon_r g H_1^{(2)}(gr) & j \frac{k_0}{Z_0} \varepsilon_r g J_1(gr)
\end{pmatrix}
\]

which becomes for small \(gr\)
The determinant of these is the same as Eq. (16) with $h^2 = -g^2$.

The functions change considerably if the material is a conducting metal with small skin depth $\delta$. The quantity $h$ becomes essentially

$$h \approx \frac{1 + j}{\delta}$$  \hspace{1cm} (23)

and $hr$ is usually very large. Using the asymptotic values of Bessel functions of $x\sqrt{j}$ the field matrix, omitting multiplicative constants, is

$$M = \sqrt{\delta/r} \begin{pmatrix} e^{-hr} & e^{hr} \\ \frac{\sigma}{h} e^{-hr} & \frac{\sigma}{h} e^{hr} \end{pmatrix}$$  \hspace{1cm} (24)

The full transform inward across a layer of thickness $t = b - a$ between radii $b$ and $a$ becomes

$$M(a)[M(b)]^{-1} = \sqrt{\frac{b}{a}} \begin{pmatrix} \cosh(ht) & -\frac{h}{J} \sinh(ht) \\ -\frac{\sigma}{h} \sinh(ht) & \cosh(ht) \end{pmatrix}$$  \hspace{1cm} (25)

A double metal layer

The beam tube at the interaction point for beams in the PEP II collider has two thin layers of beryllium. These are 0.8mm and 0.4mm thick separated by 1.6mm. Outside these is a metal shield. It is desired to know the e.m. field from the beam that reaches silicon detectors that are in the gap between beryllium and the outer shield. Field penetration should be greatest at the low frequency that is present when the beam current is modulated at the orbital frequency $f_0 = 136kHz$. We shall calculate the field per ampere of current at frequency $f_0$ ignoring effects of the detectors and any axial reflections along the Be tube. Parameters for the calculations are given in Table I.
Beryllium fills the radial spaces from $a$ to $b$ and from $c$ to $d$. The shield, assumed to be thick and of copper is at radius $e$.

Table I

<table>
<thead>
<tr>
<th>Radii in mm</th>
<th>$Z_0$</th>
<th>120$\pi$ ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = 25.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b = 25.8$</td>
<td>Orbital frequency $f_0$</td>
<td>136 kHz</td>
</tr>
<tr>
<td>$c = 27.4$</td>
<td>$\beta \gamma$</td>
<td>$6.07 \times 10^3$</td>
</tr>
<tr>
<td>$d = 27.8$</td>
<td>Conductivity of Be</td>
<td>$3 \times 10^7$ mho/m</td>
</tr>
<tr>
<td>$e = 29.8$</td>
<td>Conductivity of Cu</td>
<td>$5.8 \times 10^7$ mho/m</td>
</tr>
</tbody>
</table>

From the values in Table I we calculate

\[
\begin{align*}
  h \text{ in vacuum} & = \frac{k_0}{\beta \gamma} = \frac{4.692 \times 10^{-5}}{m^{-1}} \\
  \delta \text{ in Be} & = 2.492 \times 10^{-4} m \\
  \sigma \delta \text{ in Cu} & = 1.039 \times 10^4 \text{ mho}
\end{align*}
\]

At $r = e$, the copper shield, the ratio of $E_z$ to $H_\phi$ is

\[
Z_e = \frac{1 + j}{\sigma \delta} = \frac{1 + j}{1.039 \times 10^4} \text{ ohm}
\] (26)

In the Be layers, use Eq. (25), designating in Eq. (27), $M1$ for the first layer $a$ to $b$ and $M3$ for the second layer $c$ to $d$. In vacuum, use Eq. (15), designated $M_\nu(r)$. We can then calculate the value at $r = a$ of

\[
\begin{bmatrix} FE \\ FH \end{bmatrix} = M1 \cdot M_\nu(b) \cdot [M_\nu(c)]^{-1} \cdot M3 \cdot M_\nu(d) \cdot [M_\nu(e)]^{-1} \begin{bmatrix} Z_e \\ I \end{bmatrix}
\] (27)

and further find the value of $H_\phi$ using Eq. (13) for $I = 1$ ampere:

\[
H_\phi = 6.366 \text{ A/m}
\] (28)
This result is numerically essentially the same as $I/2\pi a$ indicating that the radially incoming field adds very little to the H-field. This is usually the case.

From Eq. (10) we find

$$A_e = \frac{HO}{FH} = \frac{6.366}{11.898 - j117.45}$$ (29)

The fields at the shield from $I = 1$ ampere are then, using Eqs. (3) and (9)

$$H_\phi(e) = A_e = (5.51 + j54)10^{-3} A/m$$

$$E_z(e) = Z_e A_e = (4.71 - j5.77)10^{-6} V/m$$

$$E_r(e) = \frac{Z_0}{\beta} H_\phi = 2.08 + j20.5 V/m$$

We see in Eq. (29) that the quantity $FH$ is the attenuation factor for the H-field. This factor of only 116 is approximately the same as the simple exponential attenuation through the 1.2mm of beryllium, indicating that reflections and impedance mismatches at the surfaces have contributed little. This can be the case here because the impedances $E/H$ of the outgoing waves in Cu, Be, and vacuum are in this example coincidentally alike within a factor of 1.4.

It is also of interest that if one were to assign infinite conductivity to the shield rather than that of copper, the fields $H_\phi$ and $E_r$ calculate to be 1.7 times stronger. This is a caution about using this common characterization of a conducting surface.
A kicker magnet

This kicker assembly has a pulsed ferrite H-magnet that surrounds a ceramic beam tube. It is desired to know the longitudinal beam impedance as a function of frequency. On the inner surface of the ceramic at radius \(a = 31.7\) mm is a thin coating of Kovar alloy. The coating has surface resistivity \(1/\sigma_t\) of 0.3 ohm/square. The ceramic tube wall is 6.4 mm thick. The yoke, a square frame of ferrite, is 25 mm thick and there are copper windings between ferrite and ceramic. These windings are normally open circuit. While these features do not have cylindrical symmetry, I shall assume that the windings act as neutral spaces, do not carry any net current and do not modify the impedance that the ferrite frame presents to the beam fields inside. The ferrite, between radii \(c\) and \(d\), is surrounded by a shield of, we shall assume, copper. The parameters used are given in Table II.

<table>
<thead>
<tr>
<th>Radii in mm</th>
<th>Ceramic permittivity (\varepsilon)</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = 31.7)</td>
<td>Coating surface resistivity</td>
<td>0.3 ohm/sq</td>
</tr>
<tr>
<td>(b = 38.1)</td>
<td>Coating conductivity</td>
<td>(3.5 \times 10^5) mho/m</td>
</tr>
<tr>
<td>(c = 40.0)</td>
<td>Coating permeability</td>
<td>1000</td>
</tr>
<tr>
<td>(d = 65.0)</td>
<td>Ferrite permittivity</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ferrite permeability</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Copper conductivity</td>
<td>(5.8 \times 10^7) mho/m</td>
</tr>
<tr>
<td>(Z_0)</td>
<td></td>
<td>(120\pi) ohm</td>
</tr>
<tr>
<td>(\beta\gamma)</td>
<td></td>
<td>(6.07 \times 10^3)</td>
</tr>
</tbody>
</table>

As in the previous example, the impedance \(Z_e\) of the thick outer shield of copper is \(-(1+j)/\sigma t\); in this case expressed as a function of frequency. Matrices for the layers of ferrite, vacuum, ceramic, and Kovar follow Eq. (5), (21), and (25). Numerical calculation of the \(Z_B\) then gives the result plotted in Fig. 1. This result is substantially the same as one would obtain from an equivalent-circuit diagram having the resistance of the coating in parallel with the inductance of the magnet yoke; the ceramic acts no differently from a radial spacer.
Figure 1: Beam impedance per unit length of the injection kicker. Solid and dashed curves are respectively the real and imaginary parts.

REFERENCES