Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening.

PDF Version Also Available for Download.

Description

In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the ... continued below

Physical Description

18 p.

Creation Information

DiMelfi, R. J.; Alexander, D. E. & Rehn, L. E. October 25, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the expected service life of nuclear reactor pressure vessels. We address the characteristics of two general strengthening effects that we believe are relevant to the differing defect cluster characters produced by neutrons and electrons in four different alloys: two pressure vessel steels, A212B and A350, and two binary alloys, Fe-0.28 wt%Cu and Fe-0.74 wt%Ni. Our results show that there are differences in the post-irradiation mechanical behavior for the two kinds of irradiation and that the differences are related both to differences in damage produced and alloy chemistry. We find that while electron and neutron irradiations (at T {le} 60 C) of pressure vessel steels and binary iron-based model alloys produce similar increases in yield strength for the same dose level, they do not result in the same post-yield hardening behavior. For neutron irradiation, the true stress flow curves of the irradiated material can be made to superimpose on that of the unirradiated material, when the former are shifted appropriately along the strain axis. This behavior suggests that neutron irradiation hardening has the same effect as strain hardening for all of the materials analyzed. For electron irradiated steels, the post-yield hardening rate is clearly greater than that of the unirradiated material, and the flow curves cannot be made to superimpose. The binary iron-base model alloys studied here show a less pronounced difference in flow behavior for neutrons and electrons than exhibited by the steels, implicating the effect of alloy chemistry. Our results are analyzed in the context of classical theories dealing with the interaction between the deformation microstructure, i.e. glide dislocations, and irradiation-produced defects. Our findings provide clues about the way different alloy constituents interact with the different kinds of irradiation damage to strengthen the material differently.

Physical Description

18 p.

Notes

OSTI as DE00750440

Medium: P; Size: 18 pages

Source

  • 6th International Conference on Nuclear Engineering, San Diego, CA (US), 05/10/1998--05/15/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/RE/CP-94733
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750440
  • Archival Resource Key: ark:/67531/metadc703962

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 25, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 4:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DiMelfi, R. J.; Alexander, D. E. & Rehn, L. E. Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening., article, October 25, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc703962/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.