Novel photon detection based on electronically-induced stress in silicon

PDF Version Also Available for Download.

Description

The feasibility of microcantilever-based optical detection is demonstrated. Specifically, the authors report here on an evaluation of laboratory prototypes that are based on commercially available microcantilevers. In this work, optical transduction techniques were used to measure microcantilever response to photons and study the electronic stress in silicon microcantilevers, and their temporal and photometric response. The photo-generation of free charge carriers (electrons, holes) in a semiconductor gives rise to photo-induced (electronic) mechanical strain. The excess charge carriers responsible for the photo-induced stress, were produced via photon irradiation from a diode laser with wavelength {lambda} = 780 nm. The authors found that ... continued below

Physical Description

11 p.

Creation Information

Datskos, P. G.; Rajic, S.; Egert, C. M. & Datskou, I. April 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The feasibility of microcantilever-based optical detection is demonstrated. Specifically, the authors report here on an evaluation of laboratory prototypes that are based on commercially available microcantilevers. In this work, optical transduction techniques were used to measure microcantilever response to photons and study the electronic stress in silicon microcantilevers, and their temporal and photometric response. The photo-generation of free charge carriers (electrons, holes) in a semiconductor gives rise to photo-induced (electronic) mechanical strain. The excess charge carriers responsible for the photo-induced stress, were produced via photon irradiation from a diode laser with wavelength {lambda} = 780 nm. The authors found that for silicon, the photo-induced stress results in a contraction of the crystal lattice due to the presence of excess electron-hole-pairs. In addition, the photo-induced stress is of opposite direction and about four times larger than the stress resulting from direct thermal excitation. When charge carriers are generated in a short time, a very rapid deflection of the microcantilever is observed (response time {approximately} {micro}s).

Physical Description

11 p.

Notes

OSTI as DE98004901

Source

  • 12. annual international symposium on aerospace/defense sensing, simulation and controls, Orlando, FL (United States), 13-19 Apr 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98004901
  • Report No.: ORNL/CP--97596
  • Report No.: CONF-980412--
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/672028 | External Link
  • Office of Scientific & Technical Information Report Number: 672028
  • Archival Resource Key: ark:/67531/metadc703933

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 7:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Datskos, P. G.; Rajic, S.; Egert, C. M. & Datskou, I. Novel photon detection based on electronically-induced stress in silicon, report, April 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc703933/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.