CHARACTERIZING TOXIC EMISSIONS FROM A COAL-FIRED POWER PLANT DEMONSTRATING THE AFGD ICCT PROJECT AND A PLANT UTILIZING A DRY SCRUBBER/BAGHOUSE SYSTEM

Final Report

Balily Station Units 7 and 8 and AFGD ICCT Project

October 20, 1994

Work Performed Under Contract No. AC22-93PC93254

For U.S. Department of Energy Pittsburgh Energy Technology Center Pittsburgh, Pennsylvania

By Southern Research Institute Birmingham, Alabama

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161, (703) 487-4650.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Characterizing Toxic Emissions from a Coal-Fired Power Plant Demonstrating the AFGD ICCT Project and a Plant Utilizing a Dry Scrubber/Baghouse System

DOE Contract No. DE-AC22-93PC93254

FINAL REPORT

BAILLY STATION UNITS 7 AND 8 and AFGD ICCT PROJECT

October 20, 1994

Submitted by

Southern Research Institute 2000 Ninth Avenue South P.O. Box 55305 Birmingham, Alabama 35255-5305

Submitted to

U.S.Department of Energy Pittsburgh Energy Technology Center P.O. Box 10940 Pittsburgh, Pennsylvania 15236-0940

Dr. Michael J. Baird, Contracting Officer's Representative Mr. Eric T. Bell, Contracting Officer

SRI Report No. SRI-ENV-94-827-7960

Beel !!

A Notobo

FINAL REPORT

BAILLY STATION UNITS 7 AND 8 AND AFGD ICCT PROJECT

Prepared by SOUTHERN RESEARCH INSTITUTE (Report No. SRI-ENV-94-827-7960)

October 20, 1994

Submitted by: P. Vann Bush Program Manager	Edward B. Dismukes 11/4/94 Edward B. Dismukes Date Principal Investigator
John M. Coyne Date Analytical Coordinator	Joseph D. McCain Date Sampling Coordinator
Larry S/Monroe Date Quality Assurance Auditor	

Approved by:

Vice President

Environmental Division

i No foto

ACKNOWLEDGMENTS

This work was funded under Department of Energy (DOE) Contract No. DE-AC22-93PC93254 through the Pittsburgh Energy Technology Center (PETC). Dr. Richard E. Tischer served as the Contracting Officer's Representative until December 1993, at which time Dr. Michael J. Baird assumed that role. Tom Sarkus, Earl Evans, and Dick Tischer of DOE/PETC took turns at the test site during the time we were on site. Beth Wrobel and Sid Smith of Northern Indiana Public Service Company (NIPSCO) served as Italison with the Bailty Station, and John Cheater and John Henderson served as Italison with the Pure Air AFGD Demonstration Plant. Many other NIPSCO and Pure Air staff were helpful in arranging for and conducting the test.

We appreciate the efforts of the 31 members of the sampling team (24 from Southern Research Institute (SRI) and seven from Guardian Systems, Inc.) to retrieve accurate, representative, and uncontaminated samples to analyze. We also acknowledge the efforts of the numerous staff at SRI and the following organizations who aided in analyses of the samples:

Commercial Testing and Engineering Company Brooks Rand, Ltd. Core Laboratories, Inc. Galbraith Laboratories, Inc.

TABLE OF CONTENTS

ACKNO)WLED	EMENTS		ï
TABLE	OF CO	NTENTS		i
LIST O	F TABL	S		rī
LIST O	F FIGU	NES	x	ď
1.0	EXECU	TIVE SUMMARY		-1
	1.1			-1
	1,2	Bailly Station		-1
		1.2.1 Power Plant Des	cription 1.	-1
		1.2,2 Scrubber Descrip	otion 1.	2
				2
	1,3			3
	***	. –		3
				-4
	1.4	Quality Assurance and Qu		-5
				5
				-5
				.5
	1.5			6
	1.5	₹		-6
				-10
		—		-10 -10
	1.6	-		-10 -11
	1.7			-16
	1.7	Iniission Factora	**************************************	* 14
2.0	INTEC	HICTION	2	.1
2.0	2.1			_
	2.2	-		4
	2.2	,		4
				-5
				-3 -12
	2.3			-14
	2.0			-14
				-15
			,	-18
				-16
		2.3.2 Round Robin Co		-16 -16
				-16 -16
	2.4			-10 -18
	- -			-16
	2.5	Heport Organization		-18
••	AT- A	COMPTION		
3.0			3	
	3.1		Design Features	
				-1
		3.1.2 Scrubber		-3

TABLE OF CONTENTS (Continued)

	3,2		stems included in This Evaluation	
		3.2.1	Flue Gas Streams	
		3.2.2	Solids, Liquids, and Slumes	. 3-5
	3.3	Plant Op	perating Conditions	3-7
		3.3.1	Typical Operating Conditions	. 3-7
		3.3.2	Operating Conditions During Sampling	3-7
4.0	FLUE	GAS SAM	IPLING	4-1
	4.1	Ducting :	Arrangements	4-1
	4.2	Sampling	g Schedule	4-3
		4.2.1	Sampling Details	4-4
		4.2.2	Deviations from Standard Techniques	
	4.3	Samples	Collected	4-13
		4.3.1	Lists of Samples	4-13
		4.3.2	Sampling Methods	
			4.3.2.1 Bulk Solids	
			4.3.2.2 Liquid Streams	
			4.3.2.3 Flue Gases	
		4.3.3	Compositing of Solids and Liquids	
	4.4		ow Rates	
	•••	4.4.1	Unit 8 Boiler	
		4.4.2	Unit 8 Electrostatic Precipitators	. —
		4.4.3	Unit 8 Condensers	
		4.4.4	Bottom Ash Sluice	
		4.4.5	Unit 8 Overall	
		4.4.6	Flue Gas Mixing	
		4.4.7		
		4.4.1	AFGD System Overall	4-20
5.0	SAM	PLE ANALY	yses	5-1
	5.1	Solids .		5-1
	5.2	Liquids	***************************************	. 5-3
	5.3	Gases ,		5-3
6.0	ANAI	LYTICAL RE	ESULTS	6-1
	6.1	Boiler ar	nd Electrostatic Precipitator	6-1
	•••	6.1.1	Solids	
		*****	6.1.1.1 Coal	
			6.1.1.2 Bottom Ash and ESP Ash	
		6.1.2	Water Streams	
		6.1.3	Gas Streams	
		0.1.0	6.1.3.1 Metals	
			6.1.3.2 Acid Gases	
			6.1.3.3 Ammonia and Hydrogen Cyanide	
			6.1.3.4 Carbonyl Compounds	
		•	6.1.3.5 Volatile Organic Compounds	
			6.1.3.6 Semi-Volatile Organic Compounds	
			6.1.3.7 Dioxins and Furans	. 6-60

TABLE OF CONTENTS (Concluded)

	6.2	Scrubbe	ff	6-63
		6.2.1	Solids	6-63
		6.2.2	Water Streams	6-69
	6.3	Stack G	as Stream	6-79
		6.3.1	Metals	6-79
		6.3.2	Anions and Acid Gases	
		6.3.3	Ammonia and Hydrogen Cyanide	
		6.3.4	Organic Compounds	
7.0	DATA		S AND INTERPRETATION	
	7.1	Material	Balances	
		7.1.1	Major Element Balances	
		7.1.2	Trace Metal Balances	7-2
	7.2	Efficienc	les of Removal of Trace Species	7-95
		7.2.1	Metals	
		7.2.2	Anions and Acid Gases	7-100
		7.2.3	Organic Compounds	7-101
	7.3		n Factors	7-101
		Ц.шоою		
8.0	SPEC	IAL TOPIC	×	8-1
	8.1	Particula	ate and Vapor Phase Partitioning	8-1
	8.2		imulation Dilution Sampling	
		8.2.1	SRI Condensibles Air Dilution Train	
		8.2.2	Plume Simulation Dilution Sampling at Bailly	
		8.2.3	Analytical Results for Diluter Samples	
		<u>_</u>	8.2.3.1 Trace metals	
			8.2,3.2 Acid gases	
			8.2.3.3 Organic compounds	
	8.3	Particle :	Size	
	4.4	8.3.1	Particle Mass versus Particle Size	
		8.3.2	Concentrations of Trace Metals versus	Q -10
		0.5.2	Particle Size	8-20
	8.4	Campai	ison of Method 29 and Carbon Traps for	0-20
	0.4			9.27
		Mercury	Measurments	8-27
9.0	REFE	RENCES		9-1
10.0				
10.0	OLOU	ΘΠΙΙΙ	, , , , , , , , , , , , , , , , , , , ,	
APPE	NDICES	3		
A.				A-1
В.			col	
Ċ.			odology and Quality Assurance/Quality Control	
D.			Organics	
E.			ances Example Calculation	
F,			alyses of Emission Factors	
G.			Sheets	
G.	Odilih.	mid narg	WIODS	

٧i

LIST OF TABLES

1-1	Closures, %, in Unit 8 Subsystems	1-14
1-2	Closures, %, in Overall Systems	1-15
1-3	Emission Factors Calculated from Stack Concentrations (Uncertainty, 95% confidence limits)	1-17
2-1	ESP Output Stream of the Ballly Station Unit No. 7 Categorized by Physical State	2-6
2-2	Input and Output Streams of the Bailty Station Unit No. B Categorized by Physical State	2-7
2-3	Input and Output Streams of the AFGD Demonstration Project Categorized by Physical State	2-8
2-4	Classes of Substances to be Collected at the Bailly Station Unit No. 7 and Unit No. 8, and the AFGD Demonstration Project	2-9
2-5	Analytes for Toxic Assessment of the Balliy Station Unit No. 7 and No. 8, and the AFGD Demonstration Project	2-10
2-6	Required Solid Stream Samples and Analyses for Bailly Station Unit No. 7 and No. 8 and the AFGD Demonstration Project Categorized by Physical State	2-11
3-1	Solids, Liquids, and Slumes Collected at Bailly	3-6
3-2	Unit 7 Operating Data	3-17
3-3	Unit 8 Operating Data	3-25
3-4	AFGD Operating Data	3-33
3-5	Average Voltages and Currents in Unit 7 and 8 ESPs	3-45
3-6	Record of Flows for Ammonia Injection Systems	3-46
4-1	Flue Gas Sampling Methods	4-3
4-2	Samples Collected for Analysis from Solid, Liquid, and Sturry Streams	4-14
4-3	Samples Collected for Analysis from Flue Gas Streams (sum of all test days)	4-15

4 -4	Bailly Measured Gas Flow Rates	4-25
4-5	Orsat Results: Flue Gas O ₂ and CO ₂ as Volume Percentages	4-26
4-6	Percentages of Water Vapor in Flue Gases	4-27
4-7	Particulate Concentrations, g/Nm³	4-28
4-8	Bailfy Mass Balance for Total Plows Data for September 3, 1993	4-29
4- 9	Bailty Mass Balance for Total Flows Data for September 4, 1993	4-30
4-10	Baility Mass Balance for Total Flows Data for September 5, 1993	4-31
4-11	Ballly Mass Balance for Total Flows Average of 9/3, 9/4, 9/5/93	4-32
4-11A	Sailty Mass Balance for Total Flows Std. Dev. of 9/3, 9/4, 9/5/93	4-34
5-1	Analyses of Solids	5-5
5-2	Analyses of Water	5-6
5-3	Analyses of Gases (including entrained solids)	5-7
6-1	Proximate and Ultimate Analyses of the Coal	6-4
6-2	Calculated Combustion Products from the Coal	6-5
6-3	Metal Concentrations in the Coal	6-6
6-4	Activities of Radionuclides in the Coal	6-7
6-5	Concentrations of Metals Extracted from the Coal by the TCLP Procedure	6-8
6-6	Metal Concentrations in Bottom Ash	6-12
6-7	Metal Concentrations in ESP Ash	6-13

6-8	and ESP Ash	6-14
6-9	Activities of Radionuclides in the ESP Ash	6-15
6-10	Anion Concentrations in Bottom Ash and ESP Ash	6-16
6-11	Carbon/Hydrogen/Nitrogen Analysis of Bottom Ash and ESP Ash	6-17
6-12	Daily Metal and Anion Concentrations in Condenser Inlet Water	6-21
6 -13	Daily Metal and Anion Concentrations in Condenser Outlet Water	6-22
6-14	Daily Metal and Anion Concentrations in Makeup Water for Boiler Streams	6-23
6 -15	Daily Metal and Anion Concentrations in Supply Water for Bottom Ash Sluice	6-24
6-16	Daily Metal and Anion Concentrations in Liquid Phase of Bottom Ash Sluice	6-25
6-17	Average Metal and Anion Concentrations in Water Streams Associated with the Boiler	6-26
6-18	Carbonyl Compounds in Water Streams Associated with the Boiler (September 6, 1993)	6-27
6-19	Target Volatile Organic Compounds and Their Detection Limits ,	6-28
6-20	Target Semi-Volatile Compounds and Their Detection Limits	6-29
6-21	Metal Concentrations in the Gas Stream at the Inlet of the Unit 6 ESP (September 3, 1993)	6-34
6-22	Metal Concentrations in the Gas Stream at the Inlet of the Unit 8 ESP (September 4, 1993)	6-35
6-23	Metal Concentrations in the Gas Stream at the inlet of the Unit 8 ESP (September 5, 1993)	6-36
6-24	Average Metal Concentrations in the Gas Streams at the Inlet of Unit 8 ESP	6-37
6-25	Ratios of Metal Concentrations in the Gas Stream at the Inlet of the Unit 6 ESP to the Total Concentration of Entrained Solids	6-38

6-26	Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 3, 1993)	6-39
6 -27	Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 4, 1993)	6-4 0
6-28	Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 5, 1993)	6-41
6-29	Average Metal Concentrations in the Gas Stream at the Outlet of Unit 8 ESP	6-42
6-30	Ratios of Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP to the Total Concentration of Entrained Solids	6-43
6-31	Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 3, 1993)	6-44
6-32	Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 4, 1993)	6-45
6-33	Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 5, 1993)	6-46
6-34	Average Metal Concentrations in the Gas Stream at the Outlet of Unit 7 ESP	6-47
6-35	Ratios of Metal Concentrations in the Gas Stream at the Outlet of Unit 7 ESP to the Total Concentration of Entrained Solids	6-48
6-36	Concentrations of Mercury Vapor Based on Sampling with Solld Sorbents at Locations Adjacent to the ESPs	6-49
6-37	Comparison of Metal Concentrations in the Different Gas Streams Adjacent to the ESPs	6-50
6-38	Anion Concentrations in Ducts Adjacent to the ESPs	6-53
6-39	Acid Gas Concentrations in Ducts Adjacent to the ESPs	6-54
6-40	Ammonta and Sulfate Concentrations in Fly Ash in Ducts Adjacent to the ESPs	6-5 6
6-4 1	Concentrations of Ammonia and Hydrogen Cyanide in Ducts Adjacent to the ESPs	6-57
6-42	Concentrations of Carbonyl Compounds in Ducts Adjacent to the ESPs .	6-59

6-43	Dioxins and Furans Identified as Vapor-Phase Fractions at the Outlet of the Unit 7 ESP	6-62
6-44	Metal and Anion Concentrations in the Limestone	6-65
6-45	Metal and Anion Concentrations in the Gypsum	6-66
6-46	Carbon/Hydrogen/Nitrogen Analyses of Limestone and Gypsum	6-67
6-47	Activities of Radionuclides in the Limestone and Gypsum	6-68
6-48	Daily Metal and Concentrations in Scrubber Makeup Water	6-70
6-49	Daily Metal and Anion Concentrations in the Liquid Phase of the Absorber Recirculating Pump Slurry	6-71
6-50	Daily Metal and Anion Concentrations in the Liquid Phase of the Bleed Pump Sturry	6-72
6-51	Daily Metal and Anion Concentrations in the Scrubber Waste Water	6-73
6-52	Average Metal and Anion Concentrations in Water Streams Associated with the Scrubber	6-74
6-53	Metal and Anion Concentrations in Solids from the Absorber Recirculating Pump Slurry	6-75
6-54	Metal and Anion Concentrations in Solids from the Bleed Pump Slurry	6-76
6-55	Composite Concentrations of Metals and Anions in the Absorber Recirculating Pump and Bleed Pump Slurries	6-77
6-56	Carbonyl Compounds in Water Streams Associated with the Scrubber (September 6, 1993)	6-78
6-57	Metal Concentrations in the Gas Stream at the Stack (September 3, 1993)	6-85
6-58	Metal Concentrations in the Gas Stream at the Stack (September 4, 1993)	6-86
6-59	Metal Concentrations in the Gas Stream at the Stack (September 5, 1993)	6-87

6-60	Average Metal Concentrations in the Gas Stream at the Stack	6-88
6-61	Ratios of Metal Concentrations in the Gas Stream at the Stack to the Total Concentration of Entrained Solid	6-89
6-62	Concentrations of Mercury Vapor Based on Sampling with Solid Sorbents at the Stack	6-90
6-63	Acid Gas Concentrations at the Stack	6-91
6-64	Carbonyl Compounds in the Stack	6-92
7-1	Balify Mass Balance for Iron - Average	7-4
7-1A	Bailly Mass Balance for Iron - Std.Dev	7-6
7-2	Bailly Mass Balance for Aluminum - Average	7-8
7-2A	Bailly Mass Balance for Aluminum - Std.Dev	7-10
7-3	Ballity Mass Balance for Titanium - Average	7-12
7-3A	Bailly Mass Balance for Titanium - Std.Dev	7-14
7-4	Bailly Mass Balance for Calcium - Average	7-16
7-4A	Bailly Mass Balance for Calcium - Std.Dev	7-18
7-5	Bailly Mass Balance for Magnesium - Average	7-20
7-5A	Bailly Mass Balance for Magnesium - Std.Dev	7- 2 2
7-6	Bailly Mass Balance for Antimony - Average	7-24
7-6A	Bailly Mass Balance for Antimony - Std.Dev	7-26
7-7	Bailly Mass Balance for Arsenic - Average	7-28
7-7A	Bailly Mass Balance for Arsenic - Std.Dev	7-30
7-8	Bailly Mass Balance for Barium - Average	7-32
7-8A	Bailfy Mass Balance for Barium - Std.Dev	7-34
7-9	Bailly Mass Balance for Beryllium - Average	7-36

7-9A	Ballity Mass Balance for Beryllium - Std.Dev	7-38
7-10	Bailly Mass Balance for Boron - Average	7-40
7-10A	Ballly Mass Balance for Boron - Std.Dev	7-42
7-11	Baility Mass Balance for Cadmium - Average	7-44
7-11A	Sailly Mass Balance for Cadmium - Std.Dev	7-46
7-12	Bailly Mass Balance for Chromium - Average	7-48
7-12A	Bailly Mass Balance for Chromium - Std.Dev	7-50
7-13	Baility Mass Balance for Cobalt - Average	7-52
7-13A	Balliy Mass Balance for Cobalt - Std.Dev	7-54
7-14	Bailly Mass Balance for Copper - Average	7-68
7-14A	Bailly Mass Balance for Copper - Std.Dev	7-58
7-15	Balify Mass Balance for Lead - Average	7-60
7-15A	Ballly Mass Balance for Lead - Std.Dev	7-62
7-16	Bailly Mass Balance for Manganese - Average	7-64
7-16A	Bailly Mass Balance for Manganese - Std.Dev	7-66
7-17	Bailly Mass Balance for Mercury - Average	7-68
7-17A	Bailly Mass Balance for Mercury - Std.Dev	7-70
7-18	Bailly Mass Balance for Mercury (B-R) - Average	7-72
7-1 8 A	Bailly Mass Balance for Mercury (B-R) - Std.Dev	7-74
7-19	Bailly Mass Balance for Molybdenum - Average	7-76
7-19A	Bailly Mass Balance for Molybdenum - Std.Dev	7-78
7-20	Baility Mass Balance for Nickel - Average	7-80
7-20A	Ballly Mass Balance for Nickel - Std.Dev	7-82

7-21	Bailly Mass Balance for Selenium - Average	7-84
7-21A	Bailly Mass Balance for Selenium - Std.Dev	7 -8 6
7-22	Bailly Mass Balance for Vanadium - Average	7-88
7-22A	Bailly Mass Balance for Vanadium - Std.Dev	7-90
7-23	Bailly Average Mass Balance Closures	7-92
7-23A	Bailly Std.Dev. of Daily Mass Balance Closures	7-93
7-23B	AFGD Closures from Two Data Sources	7-94
7-24	Efficiencies of Metal Removal in the Unit 8 ESP	7-96
7-25	Efficiencies of Metal Removal in the Unit 7 ESP	7-97
7-26	Efficiencies of Metal Removal in the Scrubber	7-98
7-27	Emission Factors Calculated from Stack Concentrations	7-103
8-1	Metal Concentrations at the Outlet of the Unit 7 ESP from Dilution Sampling (September 3, 1993)	8-9
8-2	Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP from Dilution Sampling (September 4, 1993)	8-10
8-3	Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP from Dilution Sampling (September 5, 1993)	8-11
8-4	Anion and Corresponding Acid Gas Concentrations at the Outlet of the Unit 7 ESP from Dilution Sampling	8-12
8-5	Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 3, 1993	8-21
8-6	Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 4, 1993	8-22
8-7	Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 5, 1993	8-23
8-8	Metal Concentrations in Cyclone Fractions at the Unit 8 ESP Outlet on September 6, 1993	8-24

UST OF TABLES (Concluded)

8-9	Metal Concentrations in Cyclone Fractions at the Unit 7 ESP Outlet on September 5, 1993	8-25
8-10	Comparison of Metal Concentrations at the Inlet of the Unit 8 ESP in Samples from the Method 29 Filter and the Series Cyclones	8-26
8-11	Comparison of Mercury Concentrations from Two Sampling Trains	8-28

UST OF FIGURES

2-1	Sampling Team Organization	2-20
2-2	Analytical Team Organization	2-21
3-1	Process Flow Diagram and Sampling Locations for Ballly Generating Station Units 7 & 8	3-2
3-2	AFGD Process Diagram	3-4
3-3	Gross Generating Loads for Units 7 & 8 During Test Periods	3-9
3-4	Hourly Averages of Readings of Opacity from the Outlets of Units 7 & 8 ESPs	3-10
3-5	Hourly Averages of SO ₂ Concentrations at the inlet and	
3-6	Hourly Averages of Concentrations of Carbonate and Sulfite in the AFGD Scrubber Slurry	3-12
3-7	Hourly Averages of the Pressure Drops Across the AFGD Absorber and the Entire Scrubber	3-13
3-8	Layout of the Electrical Sections in the Unit 7 and 8 Electrostatic Precipitator	3-14
3-9	Calibration Plots for the Unit 7 Ammonia Feed System	3-15
3-10	Calibration Plots for the Unit 8 Ammonia Feed System	3-16
4-1	Stack Sampling Platform at 109-m Elevation	4-2
4-2	Typical Sampling Schedule for Inorganics	4-5
4-3	Typical Sampling Schedule for Organics	4-6
4-4	Actual Schedule for Sampling on September 3, 1993	4-7
4-5	Actual Schedule for Sampling on September 4, 1993	4-8
4-6	Actual Schedule for Sampling on September 5, 1993	4-9
4-7	Actual Schedule for Sampling on September 6, 1993	4-10

LIST OF FIGURES (Concluded)

8-1	Schematic of Condensibles Air Dilution Train	8-3
8-2	Particle Size Distribution of Fly Ash Entering the Unit 8 ESP as Measured by Series Cyclones	8-14
8-3	Particle Size Distribution of Fly Ash at the Unit 8 ESP Outlet as Measured by Cascade Impactor	8-15
8-4	Particle Size Distribution of Fly Ash at the Unit 7 ESP Outlet as Measured by Cascade Impactor	8-16
8-5	Particle Size Distribution of Fly Ash in the Stack as Measured by Cascade Impactor	8-17
8-6	Fractional Collection Efficiency of the Unit 8 ESP	8-18
8-7	Ratio of Outlet to Inlet Mass Across the AFGD System and the Unit 8 ESP	8-19

1.0 EXECUTIVE SUMMARY

1.1 Background

This work is in response to the mandates of the 1990 Clean Air Act Amendments which require the U.S. Environmental Protection Agency to determine emission factors and assess risks associated with emissions of hazardous air pollutants (HAPs) from electric power stations. The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Utility Air Regulatory Group (UARG) are participants in a committee for coordinating research activities that influence EPA's ultimate response to the Congress. There are questions such as 1) how are some of the HAPs to be measured correctly when they appear as power-plant emissions, 2) what are the concentrations that appear, 3) how well are the concentrations reduced by existing control technologies, and 4) what advanced control technologies can be introduced to exert control where little or none now exists.

The DOE's Pittsburgh Energy Technology Center issued a solicitation in February 1992 for Comprehensive Assessment of Air Toxic Emissions to gather data on the presence, control, and emission of potential HAPs at eight different coal-burning electric power stations representing a cross-section of the coals, boiler designs, and emissions control technologies in the United States. Southern Research Institute was awarded a contract in April 1993 to assess two of the eight power stations in 1993, with an option to evaluate two more power stations in 1994.

This report describes the results of the assessment at one of the electric power stations, Ballly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process. This station represents the configuration of no NO_x reduction, particulate control with electrostatic precipitators, and SO₂ control with a wet scrubber. The test was conducted from September 3 through September 6, 1993.

1.2 Bailly Station

1.2.1 Power Plant Description

Bailly Station is owned and operated by the Northern Indiana Public Service Company (NIPSCO). The plant is located on the shores of Lake Michigan near Chesterton, Indiana. This project involved the two coal-fired units of Bailly Station with a combined capacity of 528 MWe; Unit No. 7 has a gross capacity of 183 MWe (160 MW net) and Unit No. 8 has a gross capacity of 345 MWe (320 MW net). Each unit is equipped with a Babcock & Wilcox cyclone boiler and a steam turbine generator. Both units burn an Illinois/Indiana basin high-sulfur bituminous coal (2.5% to 4.5% sulfur). Both units use Lake Michigan water as a once-through cooling medium.

There is no control technology for NO_x emissions. Electrostatic precipitators (ESPs) are used on both units for particulate control. There are two ESPs on Unit 8 and one ESP on Unit 7. The two ESPs of Unit No. 8 are identical to the Unit No. 7

ESP. Ammonia is injected upstream of the ESPs for the control of SO_3 to prevent acid mist emissions. The flue gas streams from the two units join to form a single stream.

1.2.2 Scrubber Description

Sulfur dioxide in the combined flue gas stream from the two units of the Bally Station is treated by the Advanced Flue Gas Desulfurization (AFGD) demonstration project managed by Pure Air of Allentown, Pennsylvania (a joint venture of Air Products, Inc. and Mitsubishi Heavy Industries, Ltd.) under the Department of Energy's Clean Coal Technology program. Pure Air's AFGD is using innovative wet timestone flue gas desulfurization (FGD) technology to achieve a high level of SO₂ removal (90 to 95+ percent capability) on high sulfur U.S. coals.

A feature of the AFGD process is the purchase and direct injection of powdered limestone in lieu of on-site limestone milling operations. This project includes an in-situ oxidation absorber module that produces high-quality gypsum from a range of high sulfur coals. High-quality, by-product gypsum (93+ percent purity) is being produced and sold to a wallboard manufacturer.

The flue gas stream from the AFGD process is vented to the atmosphere through a 480-foot stack exclusive to the project.

1.2.3 Plant Operation

The plant operated at an average load of 511 MWe during our sampling. There were two occasions during the testing when the fire in one cyclone burner went out because of a plugging of the coal feeder to the cyclone. Since we were still over 90% of the combined full load capacity of the two units we continued sampling. There were three conditions that affected the plant performance;

- One of the outlet electrical sections on the Unit 7 ESP was out of service during our testing. Furthermore, another outlet field operated at a very low voltage compared to other fields. These problems caused much higher emissions for the Unit 7 ESP than the Unit 8 ESP.
- 2) There was a virtual loss of ammonia supply to Unit 7 from 9/3 to 9/4. The supply to Unit 8 ran out on the evening of 9/4. Therefore, on 9/3 we had nominally 15 ppm ammonia to both Unit 7 and Unit 8 ESPs. On 9/4 we had nominally 15 ppm ammonia to Unit 8 ESP, but less than 3 ppm ammonia to Unit 7 ESP. On 9/5 we had no ammonia to either Units 7 or 8 ESPs. This reduction in ammonia feed may have affected the particulate emissions, and certainly affected SO₃ carryover through the ESPs.
- 3) The major plant upset that truncated our testing was supply of coal to the boilers. There were problems in getting coal from the Captain Mine to the plant site, and

problems at the plant site with the coal unloading and conveying system that delayed, interrupted, and finally prevented sampling.

The following summary lists selected plant data and operating results.

Summary Plant Data					
Unit 7	345 MWe (8 B&W cyclone burners)				
Coal	11,100 Btu/lb 3,2%				
Unit 8 ESP Inlet Fly Ash Concentration Unit 8 ESP Outlet Fly Ash Concentration Unit 8 ESP Particulate Removal Efficiency	0.009 g/Nm ³				
Unit 7 ESP Outlet Fly Ash Concentration	0.07 g/Nm³				
Unit 8 Gas Volume Flow Rate					
AFGD Inlet SO ₂ Concentration	1.04				
Stack Particulate Emissions	0.05 g/Nm ³				
See Section 10.0 Glossary for reference cor	nditions on flue gas volume in Nm³.				

1.3 Sampling

1.3.1 Locations

Samples were collected from Bailly Station Units No. 7 & 8 and the AFGD Demonstration Plant. Material balance for the Bailly Station was limited to Unit 8. A separate material balance was conducted around the AFGD scrubber. The process components which were sampled in order to perform material balances were:

Unit 8 Boiler — The input streams for this subsystem are the coal and the combustion air. Output streams are the flue gas and bottom ash.

- Bottom Ash Sluice The input streams to this system are the bottom ash, sluice return water, and makeup water. The output stream is the bottom ash sluice.
- Condenser The condenser is a once-through system using Lake Michigan water as input. The output stream is returned to the lake.
- Unit 8 ESP The input stream to the ESP is flue gas. The output streams are the hopper ash, and the cleaned flue gas.
- AFGD System The input streams to this system are the combined flue gases from Units 7 and 8, the limestone, and service water. Output streams are the stack flue gas, gypsum, and waste water.

There were five locations from which flue gas samples were collected. We sampled the inlet ducts on both the east and west ESPs on Unit 8, the outlet ducts on Units 7 and 8, and the stack. In addition, we also measured the diluted stack gas by sampling through the SRI Condensibles Air Dilution Train at the Unit 7 outlet sampling location.

The Inlet to the ESP of Unit 7 was not sampled; it was not included in DOE's work specifications, and the outlet was included only because it provided part of the input to the scrubber. The gas at the outlet of the Unit 7 ESP was sampled with a simulator of plume dilution and cooling to obtain an estimate of the changes that would have been brought about if the gas had been discharged through a stack without the intervention of the scrubber.

The locations at which samples were collected, in both the generating plant and the AFGD system, are illustrated later in Figures 3-1 and 3-2. Later sections of this report refer to samples from ducts adjacent to the ESPs; Figure 3-1 makes clear that these locations are the inlet to the Unit 8 ESP and the outlets to the Units 7 and 8 ESPs before the gas streams merge and enter the AFGD system.

1.3.2 Sample Collection

We sampled for a total of four days. Triplicate samples were collected for all inorganic analytes during the first three days of sampling. Because of the problems in coal supply, we were only able to collect one sample of the organic analytes from each location. We used extended sampling times for most of the flue gas trains in order to increase the sample volume and thereby make possible the determination of tower analyte concentrations. The following list shows the analytes and the methods we used to collect flue gas samples:

	· —····	Traverse/		D	uration	
Constituent	<u>Method</u>	Single Point		m	inutes	
			<u>8 In</u>	8 Out	7 Qut	Stack
Semi-votatile organics	MM5/SW846-0010	Т	240	280	280	360
Volatile organics	VOST	S	10,20,40	10,20,40	10,20,40	10,20,40
Aldehydes	Impingers	8	30	30	30	30
Ammonia and Cyanide	Impingers	\$	30	30	30	30
Simulated plume	SRI diluter	T	•	•	360	-
Gas flows	M2	1	-	-	-	1
Metels	M29	Т	192	240	240	360
Mercury	Carbon trap	S	60	6 0	60	60
Acid gases	M5	1	48	60	60	48
Radionuclides	M17	Т	72	144	144	360
Particle size	Impactor/cyclone	Ţ₽	60	600	600	480
Size fractionated metals	Dual cyclones	ΤÞ	-	1020	1020	
Bulk ges composition	Orset	T۴	1	-	•	

Notes: a, U of W Mk V Impactor at the stack and ESP outlets, 5 Series Oyclone at the ESP Intel

- Samples from 5 Series Cyclone train for particle size measurement used for the 8 Intet size-fractionated samples for trace metals analysis.
- c. Integrated sample taken in conjunction with M5 type sampling.
- Methods not requiring a specific sampling duration.

Solid and liquid grab samples were typically collected five times per day and then combined to yield daily composites for analyses.

1.4 Quality Assurance and Quality Control

1.4.1 Internal QA/QC

Internal quality control auditing was performed by SRI in the collection of samples from the Bailly site and in the analysis of samples in the SRI laboratories at Birmingham. Additionally, quality control analysis of analytical results from subcontractor laboratories, namely Brooks Rand, Commercial Testing and Engineering, and Core Laboratories, was required since no formal auditing of these subcontractors was planned.

The QA Auditor was present during collection of the samples at the Bally site. The impinger preparation crew was audited in the mixing of solutions and setup of the Method 5 type trains. No substantial discrepancies were found. All of the sampling teams were monitored by the QA Auditor for correct and consistent adherence to the sampling methods. Each sampling crew was observed running the gas sampling equipment, from initial leak checks to operation of the train to recovery of the sample, including insuring that the required custody chain was maintained. None of the sampling runs was aborted or voided.

No formal internal audits of the analytical process were conducted. We relied upon the normal duplicate analyses, matrix spike and matrix spike duplicates, lab QC samples, and our mass balance results to assess the quality of the analytical data.

1.4.2 RTI

Shirley J. Wasson and Lori Pearce of Research Triangle Institute visited the Bailly Station on September 5 and 6 while we were sampling. They conducted an audit of the sampling. The scheduling of their visit permitted them to observe one day of organics sampling and one day of inorganics sampling. There were four facets of the audit: 1) observe the sampling and laboratory procedures, 2) spike some laboratory blanks for Quality Assurance evaluation, 3) spike two VOST samples using a cylinder of audit gas, and 4) check calibration of the sampling trains. In addition, we provided them with our calibration documentation and preliminary data from our testing. We did not receive a formal report of their audit.

1.4.3 Round Robin Coal Analyses

SRI participated in a round robin analysis of coal samples administered by CONSOL, Inc. for DOE. We analyzed 17 coal samples in duplicate under the round robin. There were two samples from each of the eight plants being tested in the DOE air toxics assessment program, plus one reference coal. Analyses specified included proximate and ultimate, 10 major ash constituents, the 16 trace elements in the DOE program scope of work, and fluorine. Results of the round robin analyses do not suggest any general deficiencies in our protocols when SRI's data are compared to the range of results among the other participants. One specific improvement suggested by these results is the use of the method of standard additions for analyzing antimony and arsenic. Because of this finding we altered our analytical protocols accordingly prior to analyzing the samples from Bailly.

1.5 Analytical Results

1.5.1 Trace Metals

Sixteen trace metals were determined in a variety of samples. These metals are listed below:

Antimony Copper Arsenic Lead Barium Manganese Beryllium Mercury Boron Molybdenum Cadmium Nicke1 Chromium Selenium Cobalt Vanadium

Five major metals were also determined:

Aluminum Magnesium Calcium Titanium

Not all of the 16 trace elements listed above satisfy all of the classical criteria of metals. Arsenic, boron, and selenium may be considered non-metallic in some of their properties (certainly not, however, to the degree that four elements discussed on page 1-9 are considered non-metallic). Nevertheless, the classification of all 16 trace elements as metals is retained in this report, which is consistent with the usage in DOE's solicitation for this research program.

Grab samples of the process solids were analyzed by procedures that consisted of two essential steps: 1) preparation for analysis in an aqueous solution and 2) analysis of the solution. Most of the metals were placed in solution by digestion with mineral acids, including hydrofluoric acid, at elevated temperature and pressure in a microwave oven. A different procedure was necessarily followed with boron because boric acid is included in the microwave digestion procedure; boron was extracted in a hot mixture of nitric and hydrochloric acids in an open vessel. Also, initially, a distinct procedure was used for mercury — extraction with aqua regia in a heated open vessel. Ultimately, however, samples digested by the microwave procedure, especially samples of coal, were found to yield more complete recovery of mercury than the aqua regia procedure.

Inductively coupled argon plasma emission spectroscopy (ICP) was used for the determination of a majority of the metals. Exceptions were 1) hydride generation atomic absorption spectroscopy (HGAAS) for antimony, arsenic, and selenium; 2) graphite furnace atomic absorption spectroscopy (GFAAS) for cadmium and lead, mainly when the concentrations were low and added sensitivity was required; and 3) cold vapor atomic absorption or atomic fluorescence spectroscopy (CVAAS or CVAFS) for mercury. The procedures employed were those described in the EPA manual for the analysis of solid wastes, referred to commonly as SW-846 (1).

Liquid samples (all aqueous) were digested with added nitric acid in a microwave oven. The individual metals were then determined by the procedures described above.

Samples of metals from the gas streams were collected according to EPA's so-called Method 29. This is a method in tentative wording that will ultimately be published in 40 Code of Federal Regulations Part 60; the sampling apparatus, sometimes called the Multiple Metals Train, and the related procedures are now described in 40 CFR Part 266. The samples from Method 29 were processed in three parts: 1) solids deposited on a filter, 2) vapors absorbed in a peroxide impinger solution, and 3) the vapor of mercury absorbed in a permanganate impinger solution. All 16 trace metals and all 5 major metals were determined in the first two components of the train; only mercury was determined in the permanganate.

Mercury was also collected in an entirely different sampling train, in which sorption tubes are packed with solid traps, as described by Bloom (2). The first type of trap traversed by the gas stream consists of soda time, which selectively adsorbs exidized forms of mercury vapor, such as HgCl₂. The second type of trap, in a back-up location, collects elemental mercury vapor. Mercury in these traps was analyzed by CVAFS by a subcontractor, Brooks Rand, Ltd., of Seattle, Washington.

The data on metals were of Interest to answer several questions. The key questions were as follows:

- What are the concentrations of metals contributed by the coal and by the limestone used in the wet scrubber? Although the 16 metals of main concern in this project are referred to as trace metals, their concentrations in the two main feed materials to the plant varied widely. In the raw coal, boron was the most concentrated trace metal, at about 200 µg/g; mercury was present at the lowest concentration, approximately 0.1 µg/g or a value three orders of magnitude lower. In the limestone, boron was again the most concentrated, at a concentrations of about 130 µg/g; mercury once more may have been present at the lowest level, below 0.002 µg/g, although beryllium, cadmium, lead, and selenium were also undetected (albeit at somewhat higher limits).
- How are the metals partitioned between bottom ash and fly ash? A factor having a major bearing on this issue is the partitioning between the two ashes on the basis of mass. Approximately 37% of the mass of coal ash was recovered from the flue gas at the inlet of the Unit 8 ESP. Thus, the split between bottom ash and fly ash within the boiler is assumed to be about 63 parts of the former to 37 parts of the latter. Few of the metals follow this ratio on the basis of concentration. That is, most of the metals are at higher specific concentrations in the fly ash than in the bottom ash. Thus, more than 40% of the mass of most elements from the coal was found in the fly ash. For some of the metals, the difference was not remarkable. For arsenic, however, the difference was large enough to be significant, suggesting that in the high temperatures of the boiler arsenic was in the vapor state, although it condensed before reaching the ESP.
- To what degree is the emission of each metal reduced by the ESP? Metals that occur predominantly in the fly ash, rather than in the vapor state, were removed in the Unit 8 ESP to roughly the same degree as the total ash. The effect of this ESP is seen most clearly from the point of view of its ineffectiveness for removing boron, mercury, and selenium, which occur predominantly as vapors. Comparison of ESP outlet concentrations suggests that the Unit 7 ESP was much less efficient than the Unit 8 ESP. The reason for this difference is presumably the deficient electrical energization of the Unit 7 ESP.
- To what degree is the emission of each metal further reduced in the scrubber? There is some degree of removal of each metal.
 The greatest effects, however, occur with the three volatile metals named above. Boron occurs in the flue gas most likely as boric acid, which is subject to dissolution with the alkaline

scrubber medium. Mercury is removed to the extent it occurs in the oxidized state; HgCl₂, the presumed dominant oxidized vapor, is water soluble. Selenium in the vapor state is probably SeO₂, which is an addic oxide that the alkaline scrubber is likely to convert to a dissolved selenite salt.

- What is the fate of the metals in waste streams? The streams that carry away most of the metals are the bottom ash and the fly ash collected in the ESPs. The relative masses of the metals in the stack and wastes from the scrubber (gypsum and waste water) are quite small.
- The fate of mercury, because of its volatility, is quite different. First of all, it must be acknowledged that roughly one-third of the mercury in the coal was not recovered or otherwise accounted for. Of the two-thirds found in the combustion gas, about one-half was lost to the scrubber and the remaining one-half was emitted through the stack. The ultimate disposition of the mercury removed in the scrubber was mainly as a contaminant in the gypsum.
- How are the metals partitioned between the particulate and vapor states? As indicated by the preceding discussion, boron, mercury, and selenium were present as vapors at high relative concentrations.
- What influence does the cooling and dilution of the plume have on metal concentrations emitted from the stack? This question was not addressed directly. The procedure followed was to sample flue gas at the outlet of the Unit 7 ESP with an apparatus designed to simulate the cooling and dilution of flue gas in the plume. The cooling and humidification that actually occur in the scrubber make the simulation academic insofar as emissions at Bailty per se are concerned. The principal findings with the cooling/dilution device are that significant transformations from vapor to particulate matter occur with all three metals that occur predominantly as vapors at the ESP outlet (that is, boron, mercury, and selenium).
- How are metal concentrations in the suspended solids affected by particle size? The concentrations of essentially all of the metals increase as particle size decreases. This trend is shown most directly by concentrations in ash fractions of different size ranges that were collected in series cyclones. This trend is also revealed indirectly by the fact that concentrations on a specific basis (as weight fractions of the ash) increase across the ESPs. The argument for the conclusion that specific concentrations increase as particle size decreases stems from knowledge that the finer particles have a higher penetration in the ESPs.

• What is the comparison between the concentrations of mercury vapor determined by absorption in the impingers of Method 29 and by adsorption on soda lime and located carbon traps? The impingers of Method 29 measured lower total mercury concentrations than the traps and showed an inverse ratio of oxidized mercury to elemental mercury. The latter part of this statement means that the mercury catch in the peroxide impingers of Method 29 (that is, oxidized mercury) was a lower fraction of the total than the catch in the soda lime traps. The choice between the conflicting results, based on other experience by SRI, is to favor the traps over the impingers.

Material balance of the trace metals was an issue of major importance, not so much as a technical issue itself but a criterion of success in achieving credible analytical data on the metals. The matter of material balance of the metals is taken up subsequently in Section 1.6 of this Executive Summary.

1.5.2 Other Inorganic Substances

The coal contained the non-metallic elements fluorine, chlorine, and sulfur at levels capable of producing the acidic gases HF, HCl, and SO₂ at concentrations of approximately 15, 70, and 2800 ppmv, respectively. These gases were captured during sampling in an alkaline solution of peroxide, and the associated concentrations of fluoride, chloride, and sulfate ions were determined. Fluoride was determined with an ion-specific electrode, and chloride and sulfate were determined by ion chromatography. These anions were measured more or less directly in water streams and in solids after the solids were made water-soluble by fusion with sodium hydroxide.

The amount of SO₂ recovered from the gas phase (after exidation to sulfate in the sampling train) was in good agreement with the expected concentration of SO₂ at the inlet to the scrubber, based on the assumption that all of the sulfur in the coal is converted to SO₂. Fluoride and chloride were recovered at the scrubber inlet at levels reasonably commensurate with the expected HF and HCl concentrations. A fourth non-metallic element, phosphorus, was accounted for not as a component of the flue gas but as a component of the fly ash.

Ammonia and hydrogen cyanide were measured as minor components of the flue gas as presumed contributions from the incomplete oxidation of fuel nitrogen. Some but not all of the ammonia came from the external source used to reduce stack concentrations of sulfuric acid mist.

The acid gases (HF, HCl, and SO₂) penetrate the ESPs with no measurable loss but undergo nearly complete removal in the scrubber. The fourth non-metal of Interest, phosphorus, is effectively removed in the ESPs as a component of the fly ash.

1.5.3 Organic Compounds

<u>Carbonyl compounds (aldehydes and ketones)</u>. These compounds were determined in various water streams and in the flue gas. Quantitation was based on

the formation of stable reaction products with 2,4-dinitrophenylhydrazine (DNPH) and the measurement of each reaction product by high performance liquid chromatography. The reliability of all the results on aldehydes is in doubt. One reason was the lack of success in clean-up of the DNPH reagent. The concentrations in both water streams and in the flue gas varied widely; also, certain aldehyde compounds appeared erratically and, thus, their association with the source materials sampled is in doubt.

Volatite hydrocarbons. Volatite organic compounds (generally, those boiling below 100 °C) were collected in the so-called VOST train and determined by gas chromatography/mass spectroscopy (GC/MS). The results are believed to be defective because of a problem encountered during sampling. This problem is described in Appendix D; it has to do with false indications of the presence of some of the analytes of interest.

<u>Semi-votatile organic compounds</u>. These compounds were collected along with dioxins and furans in the Modified Method 5 train. The samples collected were divided during work-up, prior to compound identification, between 1) compounds commonly referred to as semi-volatiles (which include the important toxic PAH compounds) and 2) the even more toxic dioxins and furans. The first group of compounds were analyzed by low resolution GC/MS and the second group by high resolution GC/MS.

None of the group of PAHs appeared consistently in the analyses. Likewise, negligible concentrations of dioxins and furans seemed to be present but the undependable detection of the PAH compounds in spiked sampling media detracts from the conclusion that they were absent from the gas streams.

The organic substances seemed unaffected by either the ESP or the scrubber; the results on these compounds, however, are not definitive.

1.6 Material Balances

Material balances in the sense they were tested in this report pertain only to trace metals and major metals as defined earlier in this Summary. They do not include the non-metallic elements such as fluorine, chlorine, and sulfur, although in principle they could have included these elements. In any event, the recovery of these elements is discussed in an earlier section of this Summary.

The material balance of a metal is tested by comparing two sums, one for streams flowing into the overall system or some selected subsystem and another for streams leaving the same system or subsystem. Each component of either sum is the products of a stream flow rate and the concentration of the metal being considered. The term "closure" is used to designate how successfully the calculated sums agree. If the sums agree exactly, the closure is 100%. If the sum for outgoing streams is less than the sum for incoming streams, the closure is less than 100%. Conversely, if the sum for outgoing streams is the larger of the two sums, the closure is larger than 100%. (Mathematically, closure is the percentage of all incoming material that is found in the outgoing streams.)

The data for stream flow rates are given in Section 4. Tables 4-8, 4-9, and 4-10 give stream flow rates in terms of total mass for each day of the metal analyses. Tables 4-11 and 4-11A give the averages for the three days and the standard deviations for the three days. Obviously, there should be, ideally, a closure of 100% for stream flow rates pertinent to the entire system or each selected subsystem. Table 4-11 shows that for the Unit 8 boiler the average of daily closures based on mass is 100%, and for the AFGD system the average is again 100%.

The data on concentrations of individual metals in the dally samples of the several streams are given in tables in Section 6. The crucial data, of course, are daily concentrations, either on a mass/mass basis (μ g/g) or on a mass/volume basis (μ g/Nm³). (The reference conditions for expressing gas volume in the units Nm³ are: temperature, 293.15 K; pressure, 1 atm, O_2 concentration, 3% by volume under dry conditions. The temperature and pressure are those defined as standard conditions for performance evaluations of stationary sources; see 40 CFR Part 60, Subpart A, page 15 in the 7/1/93 edition. Constant O_2 in dry gas is employed to facilitate comparisons of concentrations without perturbations due to inleakage of air or dilution with water vapor.)

There are three main systems for which overall material balances are presented in Section 7. One of these is termed the Unit 8 boiler; another is the condenser for the Unit 8 boiler; and the third is the scrubber. The individual main systems and subsystems for which material balances are presented are listed below:

Unit 8 boller -

the boiler proper — Input streams are the coal and air, and the output streams are the bottom ash and flue gas;

the ESP — the input stream is the flue gas, and the output streams are the relatively clean flue gas and the hopper ash;

the bottom ash sluice - incoming water and ash, and outgoing slurry.

Unit 8 condenser — this is considered separately from the boiler because there is one cooling stream of water incoming and one heated water stream outgoing, with no exchange whatsoever with streams that otherwise comprise the boiler.

AFGD scrubber — the incoming streams consisting of a) the relatively particle-free gas from the Unit 7 and Unit 8 ESPs, b) the limestone, and c) the slurry makeup water; the outgoing streams consist of a) stack gas, b) waste water, and c) gypsum byproduct. (Although there is an option exercised in calling the Unit 8 condenser a separate system, it is necessary to consider the scrubber separately because it deals with the ESP exit gas from two boilers, not just one.)

Table 1-1 following shows the material balances of elements in the subsystems of the boiler. Table 1-2 following presents the results of calculations for the three main systems that are considered distinct, for reasons indicated above.

The outside ranges for the boiler subsystems (if the preferred result for mercury, on the line denoted BR is used) are 55-256% for the boiler itself, 59-375% for the ESP, and 100-158% for the bottom ash sluice. Both of the first of these two ranges would be sharpened considerable if the concentration of antimony entering the ESP were increased and the concentration of selenium entering the ESP were reduced. Specifically, reanalysis of the suspended fly ash entering the ESP might substantially improve both closures. Rational explanations for the poorest closures cannot, in general, be provided; however, comments on some of the poorest examples are given in Section 7.1.2. Even at best the closure for mercury in the boiler proper signifies that just 55% of the mercury in the coal was accounted for. The median closure values for the three subsystems are 93% for the boiler proper, 111% for the ESP, and 102% for the bottom ash sluice.

The data for the overall Unit 8 boiler system are superior to those in the boiler proper and ESP subsystems, for the outside range of closures is 65-165%. One reason for the improvement is that the errors in antimony and selenium in the boiler and ESP cancel when the overall system is considered. The poorest closures in the three overall systems is for the AFGD, where errors in the analysis of gypsum are believed the main cause of imbalance in inlet and outlet mass flow rates.

.

Element	Symbol	Unit 8 bo ile r	Unit 8 ESP	Bottom ash sluice
Antimony	Sb	67	375	107
Arsenic	As	70	132	158
Barium	Ba	97	136	100
Beryffium	Be	77	107	100
Boron	В	65	122	100
Cadmium	Cd	64	115	100
Chromium	Cr	79	105	100
Cobalt	Co	116	127	100
Copper	Cu_	107	122	100
Lead	Pb	141	110	100
Manganese	Mn	105	111	100
Mercury	Hg	29	116	102*
Mercury (BR)	Hg	55	120	102*
Molybdenum	Mo	79	108	102*
Nickel	Ni	72	106	100
Selenium	Se	256	59	115
Vanadium	V	86	120	100
Aluminum	Al	96	101	100
Calcium	Ca	105	118	100
fron_	Fe	93	101	100
Magnesium	Mg	99	110	100
Titanium	π	100	101	100

Table 1-2 Closures, %, in Overall Systems

Element	Symbol	US Boiler overall	Condenser	AFGD overall
Antimony	Sb	169	100*	103
Arsenic	As	92	100*	436
Barium	Ba	108	103	82
Beryllium	Be	80	100*	1260
Boron	В	76	0+	126
Cadmium	Cq	71	567*	24
Chromium	Cr	81	100*	2750
Cobalt	Co	130	73*	94*
Copper	Çu	120	130	26
Lead	Pb	151	100*	57*
Manganese	Mn	108	34*	96
Mercury	Hg	31	119	182
Mercury (BR)	Hg	65	119	100
Molybdenum	Mo	85	100*	795
Nickel	Ni	75	128*	750
Selenium	Se	149	100*	161
Vanadium	ν	94	100*	6 5
Aluminum	Al	97	70*	197
Calcium	Ca	109	137	101
fron	Fe	94	100*	101
Magnesium	Mg	102	100	90
Titanium	π	100	100*	163

BR=Brooks Rand Laboratory.

^{*}Closures heavily influenced by non-detectable concentrations.

1.7 Emission Factors

The emission factors for the inorganic substances are presented in Table 1-3. These factors are based on three parameters: 1) the stackconcentration of each substance, 2) the calculated volume of gas per unit weight of coal, and 3) the laboratory result on the calculated value of the coal. The results thus calculated are in very good agreement with alternate results based on the measured gas flow rate in the stack, the recorded firing rate of the coal, and the calculate, again from the coal analysis.

The range of emission factors is, of course, very wide. The maximum is for SO₂: 395,000 lb/10¹² Btu. The minimum is for beryllium or cobalt: <0.07 lb/10¹² Btu.

The Clean Air Act Amendments of 1990 suggest that control of emissions may be required if a single substance is emitted at a rate exceeding 10 tons/yr or if any combinations of substances is emitted at a rate exceeding 20 tons/yr. Units 7 and 8 at Bailly consume 5.03×10^9 Btu/hr of thermal energy from the coal when operating at full load. If the operation at this level occurs 70% of the time in one year, the consumption of energy will be 3.08×10^{13} Btu. Thus, a substance with an emission factor of t 10^{10} Btu will be emitted at the rate of 0.0154 tons/yr. Based on this factor, annual emissions of some of the substances fisted in the concluding table of this summary are as follows:

Substance emitted	Rate, tons/yr	
SO ₂	6090	
Chloride	15.7	
Selenium	2.97	
Mercury	0.040	
Beryllium	< 0.0002	

Emission Factors* Calculated from Stack Concentrations (Uncertainty, 95% confidence limits)		
•	g/10 ¹² J	Ib/10 ²² Btu
Antimony	0.121 ± 0.442	0.281 ± 1.03
Arsenic	0.455 ± 1.41	1.06 ± 3.28
Barium	0.544 ± 0.309	1.26 ± 0.716
Beryllium	<0.03	<0.07
Boron	391 ± 269	909 ± 625
Cadmium	0.181 ± 0.166	0.421 ± 0.386
Chromium	1.18 ± 0.48	2.73 ± 1.11
Cobalt	<0.03	< 0.07
Соррег	0.741 ± 1.20	1.72 ± 2.79
Lead	0.677 ± 0.956	1.57 ± 2.22
Manganese	1.32 ± 0.18	3.07 ± 0.42
Мегсигу ^ь	0.890 ± 0.334 1.12 ± 0.07	2.07 ± 0.78 2.60 ± 0.16
Molybdenum	1.47 ± 0.28	3.41 ± 0.65
Nickel	0.928 ± 0.483	2.16 ± 1.07
Selenium	83.0 ± 106	193 ± 246
Vanadium	1.21 ± 0.71	2.81 ± 1.65
Aluminum	43.6 ± 15.9	101 ± 37
Calcium	196 ± 33	454 ± 76
Iron	89.6 ± 60.1	208 ± 140
Magnesium	36.9 ± 6.5	85.7 ± 15.0
Titanium	6.68 ± 2.62	15.5 ± 6.08
Fluoride	<180	<420
Chloride	440 ± 112	1020 ± 260
SO ₂	170000 ± 74000	395000 ± 172000

Table 1-3

The second is based on sampling with solid traps.

^aBased on stack concentration of analyte (μg/Nm³), calculated volume of flue gas from unit mass of coal (Nm³/g), and calorific value of coal (J/g).

^bThe first value for mercury is based on samples from Method 29.

2.0 INTRODUCTION

2.1 Background

Air toxics is a term designating certain hazardous poliutants that are addressed by the 1990 amendments to the Clean Air Act. Title III of the 1990 legislation establishes a list of 189 toxic chemicals and classes of substances whose effects are to be evaluated and regulated as determined necessary by the U.S. Environmental Protection Agency.

Regulating air toxics will occur in two phases. During the first phase, the EPA must publish a flist of source categories emitting 10 tons annually of any one toxic or 25 tons annually of a combination of toxics. The agency must then issue Maximum Achievable Control Technology (MACT) standards based on the best demonstrated control technology or practices in the industry to be regulated. Within two years, EPA is required to issue MACT standards for 40 source categories and set in motion plans to ensure that all controls will be adhered to within 10 years. The second phase of regulation will take effect 8 years after the first-phase MACT standards. Standards based on health risks will be set in place if a facility's emissions present a cancer risk of more than one per million.

Approximately 90% of the hazardous substances listed in the 1990 act are specific organic compounds, which are made up of the elements carbon, hydrogen, oxygen, nitrogen, and chlorine or another halogen. Most of the remainder of the hazardous elements listed are described more generally as compounds of specific metallic elements:

Antimony (Sb)
Arsenic (As)
Beryllium (Be)
Cadmlum (Cd)
Chromium (Cr)
Cobaft (Co)
Lead (Pb)
Manganese (Mn)
Mercury (Hg)
Nickel (Ni)
Selenium (Se)

Most of the compounds of these metals are likely to occur as inorganic compounds, specifically including the oxides. Some, however, may occur in organic compounds; Hg is one such example. Certain other metals that may be cause for concern are:

Barium (Ba) Boron (B) Copper (Cu) Molybdenum (Mo) Vanadium (V) Other potentially hazardous pollutants are acidic inorganic gases derived from certain key nonmetallic elements. These include hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur oxides (SO₂), and phosphates such as P₂O₅ and H₃PO₄.

There is not now available a sampling and analytical protocol that would cover all of the compounds listed in the 1990 Clean Air Act Amendments. There are, however, procedures generally recognized to be appropriate for selected representatives of the classes of compounds that are of concern, including specific compounds from the 1990 act. These procedures are largely based upon analytical developments by the EPA.

The EPA is charged with the responsibility of identifying potential sources of these 189 hazardous substances and has already listed electric power stations as having that potential. Power stations that emit as much as 10 tons/yr of any single HAP or that emit as much as 25 tons/yr of any combination of HAPs may be subject to regulation, but there is uncertainty in many areas before regulation can be commenced. There are questions such as 1) how are some of the HAPs to be measured correctly when they appear as power-plant emissions, 2) what are the concentrations that appear, 3) how well are the concentrations reduced by existing control technologies, and 4) what advanced control technologies can be introduced to exert control where little or none now exists.

The U. S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and the Utility Air Regulatory Group (UARG) are assisting EPA in developing satisfactory responses to the mandates of the 1990 clean air legislation. The four organizations are participants in a committee for coordinating research activities that influence EPA's ultimate response to the Congress. To date, perhaps the greatest impact on development of the required data base has come from EPRI, which for several years has been developing the program known as PISCES (Power Plant Integrated Systems: Chemical Emission Studies) (3).

DOE's Pittsburgh Energy Technology Center issued a solicitation in February 1992 for Comprehensive Assessment of Air Toxic Emissions to gather data on the presence, control, and emission of HAPs at eight different coal-burning electric power stations representing a cross-section of the coals, boiler designs, and emissions control technologies in the United States. Southern Research Institute was awarded a contract in April 1993 to assess two of the eight power stations in 1993, with an option to evaluate two more power stations in 1994. This report describes the results of the assessment at one of the electric power stations, Bailly Station.

The research described in this report addresses several questions that apply directly to the comprehensive assessment of air toxic emissions from coal-burning electric power stations. The several questions of general concern are expressed and discussed in the following paragraphs.

What levels of trace elements (herein usually referred to simply as "metals") occur in different bituminous and subbituminous coals? Certainly there is a large body of data now in existence on this matter, especially in the unpublished PISCES collection, but new information may be useful either because it fills in gaps in what is known or because it clarifies or corrects older data. This information will be vitally

important within this project for defining the maximum rates of emissions that can be expected.

How is the discharge of these elements partitioned between the main streams emerging from a coal-fired boiler, up to whatever control devices are employed? The discharge streams from the boiler itself are the bottom ash and the flue gas. On the basis of overall mass, boilers that fire pulverized coal discharge roughly 20% of the coal mineral matter as bottom ash and 80% as fly ash. In boilers that have a cyclone design, the partitioning may be more nearly the opposite, 70% as bottom ash and 30% as fly ash. Specific elements that are relatively volatile do not partition between bottom ash and fly ash as overall mass does but instead are preferentially emitted with fly ash. The truth of this statement has been borne out by direct measurements as in this investigation. Still, however, because of the difficulty of direct measurements on flue gas, it is sometimes useful to compare specific concentrations of elements in the coal and in the bottom ash. If an element occurs, for example, at 5 μ g/g in coal ash but at a substantially lower specific concentration in bottom ash, its emission from the furnace as a vapor may be reasonably interred.

What can be said in response to analogous questions that concern the fate of halogens and phosphorus in the coals, rather than the trace metals? These halogens are most likely to occur in coal in the reduced states, as fluoride ion and chloride ion and, despite the oxidizing environment in the furnace, are most likely to leave the furnace still in these reduced states. The most probable forms of the halogens are the acid gases HF and HCl. Such evidence as we have seen indicates that very little of the halogens appears in bottom ash or fly ash, even fly ash at 150 °C. Phosphorus, on the other hand, appears likely, on the basis of analyses we have seen, to partition very much the same way as overall mass partitions, maintaining approximately the same specific concentration in the bottom ash and the fly ash. Phosphorus in the stable form of phosphate, however, is potentially volatile as P₂O₅ or H₃PO₄ and must be searched for in these forms.

What organic substances emerge from the boiler, either because specific substances occur in coal themselves and are not burned completely, or because they are products of chemical alterations or combinations of naturally occurring organics? Distillation of coal with limited air is noted for producing emissions of polycyclic aromatic hydrocarbons (PAHs) or, more generally, polycyclic organic matter (POMs), which include elements other than carbon and hydrogen, such as oxygen, sulfur, and nitrogen.

What is the effect of control devices on the emissions of inorganic or organic substances? Conventional devices for controlling particulate matter do very well at controlling the trace metals of present concern, especially the majority that occur in the particulate state (4,5). Baghouses are reported to perform somewhat more efficiently in removing volatile metals than electrostatic precipitators (ESPs), perhaps because the gas passes through a filter cake that adsorbs vapor with reasonable effectiveness.

What happens to alter the partition of emitted substances between the particulate and gas phases as flue gas enters the atmosphere and undergoes simultaneous dilution and cooling? Surely extensive condensation occurs, as has

been observed for a few metals of present interest. The thermodynamic driving forces to promote condensation are powerful for all of the metals and the organics of higher molecular weight. We can certainly expect, however, that the organics of relatively low molecular weights, such as benzene and formaldehyde, will remain above their dew points in the plume and their appearance in the particulate phase will have to depend entirely on chemical transformation to some other compounds (unlikely for benzene) or adsorption onto fine fly ash particles that penetrate the control devices.

The matter of material balances is important also, not as a fundamental issue itself, but as a discipline for evaluating data and determining whether the fundamental questions above are answered adequately by the data obtained. Material balance considerations apply to elements as such — metals or non-metals (halogens, sulfur, or phosphorus) — at any intersecting streams in the system. Elements are not subject to creation or destruction within the system; if they enter at any point, they must depart somewhere. Material balance considerations apply to organic compounds in a more restricted way. At some point in the system, perhaps at the exit of the air heater, those organic compounds that have their origin exclusively in the coal will reach stability insofar as the gas environment itself is concerned and thus may be justifiably examined with respect to material balance. A complexity arises, however, if a compound enters in a control process (for example, barium as a contaminant in limestone) or if a compound is synthesized from control chemicals (for example, HCN from NH₂ as a NO₂-controlling chemical).

2.2 Objectives

2.2.1 DOE Objectives

The objective of the contract under which the Bailly work was done was phrased as follows:

The overall objective of this project is to conduct comprehensive assessments of toxic emissions from up to four (4) selected coal-fired electric utility power plants. One of these assessments shall be conducted at a plant demonstrating an innovative Clean Coal Technology (ICCT) Project. The assessment of toxic emissions from two (2) power plants will be conducted in two phases. Phase I shall consist of assessing the Bailly Station of Northern Indiana Public Service Company (NIPSCO), which includes the ICCT Advanced Flue Gas Desulfurization (AFGO) demonstration project, the Springerville Unit No. 2 of Tucson Electric Power Company, and the Blacksville 2 coal preparation plant of CONSOL Inc. for toxic emissions by the end of calendar year 1993. An optional Phase II could include assessing an additional two (2) power plants and a coal preparation plant.

This report is specific to the assessment of toxic emissions from Units 7 & 8 of the Bailly Station, and the associated AFGD Demonstration Project. Specific objectives of the project that pertain to this plant were as follows:

- to collect and subsequently analyze representative solid, liquid, and gas samples of all specified input and output streams for selected hazardous air pollutants contained in Title III of the 1990 Clean Air Act Amendments and to assess the potential level (concentration) of release of these pollutants,
- to determine the removal efficiencies of specified pollution-control subsystems for selected pollutants,
- 3) to determine material balances for selected pollutants in specified input and output streams of Unit 8 of the Bailly Station and input and output streams of the AFGD Demonstration Project (which includes the output of Unit 7 of the Bailly Station),
- 4) to determine the concentration of the trace metals associated with the particulate fraction of the flue gas stream as a function of particle size,
- 5) to determine the concentration of the respective pollutants associated with the particulate and vapor phase fractions of the specified flue gas streams, while assessing the potential level (concentration) of release of these pollutants, and
- to determine the concentration of the respective pollutants associated with the particulate and vapor phase fractions under simulated plume conditions.

2.2.2 Analytes to be Determined

Table 2-1 indicates the classes of substances collected and the sampling locations for Bailly Station Unit No. 7. Tables 2-2 and 2-3 provide the same information for Unit No. 8, and the AFGD Demonstration Project, respectively. Table 2-4 lists the types of streams sampled and the components analyzed. Table 2-6 indicates the specific analytes measured for all respective solid, liquid, and gas samples collected. In addition, Table 2-6 indicates the respective solid stream constituents/samples and the required component analyses for the Bailly Station and the AFGD Demonstration Project.

ESP OUTPUT STREAM OF THE BAILLY STATION UNIT NO. 7 CATEGORIZED BY PHYSICAL STATE

Physical State	Sampling Points
SOUDS— Entrained Fly Ash	ESP Outlet Before Combining with Unit No. 6 Flue Gas Stream (with and without dilution, cooling)
GASES— Low Dust Gas	ESP Outlet Before Combining with Unit No. 8 Flue Gas Stream (with and without dilution, cooling)

INPUT AND OUTPUT STREAMS OF THE BAILLY STATION UNIT NO. 8 CATEGORIZED BY PHYSICAL STATE

Physical State

Sampling Points

SOLIDS-

Boiler Feed Coal Inlet to Each Cyclone Burner
Bottom Ash Bottom Ash Outlet Sluice Line

Collected Fly Ash ESP Hoppers

Entrained Fly Ash¹ ESP Inlet After Ammonia Injection

ESP Outlet Before Combining with Unit

No. 7 Flue Gas Stream

LIQUIDS-

Makeup Water Service Water at Tap, Each Distinct Source

Bottom Ash Return Pond Water Return Water (to Sluice)
Sluice Water (Slurry) Bottom Ash Outlet Sluice

Once Through Condenser Water Inlet & Outlet of the Condenser

GASES--

High Dust Gas ESP¹ Inlet After Ammonia Injection
Low Dust Gas ESP¹ Outlet Before Combining with Unit

No. 7 Flue Gas Stream

¹The flue gases at the inlet of the west ESP on Unit 8 and the combined outlet from the two Unit 8 ESPs were sampled for all of the components listed in Table 2-4. We also measured the mass concentration of fly esh by Method 17 in the inlet flue gas to the east ESP on Unit 8.

INPUT AND OUTPUT STREAMS OF THE AFGD DEMONSTRATION PROJECT CATEGORIZED BY PHYSICAL STATE

Physical State	Sampling Points
SOLIDS	
Entrained Fly Ash ¹	AFGD Outlet/Stack After Mist Eliminator
Limestone	Limestone Delivery Trucks
Gypsum	Gypsum From Outlet of Basket Centrifuge
Gypsum Slurry ²	Absorber Recirculation Line
Other Suspended Solids In Liquid	
Samples ²	Outlet of Thickener to Water Treatment Plant
LIQUIDS -	
Makeup Water	Service Water at Tap, Reservoir For All
	AFGD Process Makeup
Waste Water ²	Outlet of Thickener Overflow Tank to Waste
	Water Treatment Plant
Gypsum Slurry ²	Absorber Recirculation Line
GASES	

¹The composition of the entrained particles and flue gases at the inlet of the AFGD were characterized by the combination of the results measured at the Units 7 and 8 outlet ducts. The composition of the entrained particles and flue gases at the outlet of the AFGD were measured by samples collected in the stack. We sampled for all of the components listed in Table 2-4.

AFGD Outlet/Stack After Mist Eliminator

Low Dust Gas

²The slurry samples were analyzed for the substances in Tables 2-4, 2-5, and 2-6.

CLASSES OF SUBSTANCES TO BE COLLECTED AT THE BAILLY STATION UNIT NO. 7 AND UNIT NO. 8. AND THE AFGD DEMONSTRATION PROJECT

Stream Type

Component Analyzed

Gas Stream¹

Volatile Organics Semivolatile Organics Acid Gases and Aldehydes Vapor-Phase Elements² Entrained Particulate Particle Loading (Bulk and Size

Fractionated^a)

Liquid Streams (Including Sturries)

Volatile Organics Semivolatile Organics Ionic Species and Aldehydes Elements Dissolved - Filtrate Total - Unfiltered

Solid Streams (Including Filter Cake from Slurries)

All Substances in Table 2-6.

'Vapor phase and condensable organic and inorganic samples and particulate phase samples from the Unit No. 7 ESP outlet five gas stream were collected using two methods; (1) that (typical) flue gas sampling and (2) diluted, cooled five gas sampling. The samples collected under these two conditions were analyzed to determine the differences in the chemical composition of the vapor phase constituents and of the particles collected under both hot flue gas and the diluted, cooled flue gas conditions. A source dilution sampler that simulates plume conditions at the outlet of a utility stack was used to collect vapor phase constituents and fly ash particles under diluted, cooled flue cas conditions.

²SRI collected sufficient quantities of particulate (bulk on sample train filters) and vapor phase (impingers from sampling trains) semples from all the indicated five gas streams enabling the particulate and impinger solutions to be analyzed separately for the components in Table 2-4, enalytes in Tables 2-5, and the samples in Table 2-6. These samples were used to make comparisons between the concentrations of vapor phase and particulate-based target analytes and additional analytes that are present in the samples collected from the indicated flue gas streams. SRI used charcoal sorption tubes for the sampling of mercury in all the indicated five gas streams as a back-up to the EPA Multi-Metals Train.

 3 Size fraction specifications: >10 μ m, 5 to 10 μ m, and <5 μ m.

ANALYTES FOR TOXIC ASSESSMENT OF THE BAILLY STATION UNIT NO. 7 and NO. 8, AND THE AFGD DEMONSTRATION PROJECT

Trace Elements

Antimony Arsenic Barlum Bervillum

Boron Cadmium Chromium¹ Cobalt Copper

Lead Manganese Mercury Molybdenum

Nickel Selenium Vanadium

lons

Phosphate (PO.4) Sulfate (SO,*) Cvanide (CN)

Inorganics

Ammonta

Hydrogen Chloride Hydrogen Fluoride

Organics

Benzene³ Toluene³ Formaldehyde

Polycyclic Organic Matter⁴

Dioxins⁵ Furans⁵

Redionuclides²

¹Reported as total Chromium.

²Atoms that undergo spontaneous radioactive decay. The measurements were limited to certain heavy nuclides that are primary alpha emitters: lead 210; polonium 210; radium 226 and 228; thorium 228, 230, and 232; and uranium 234, 235, and 238.

³Plus other voletile compounds associated with proposed analytical method.

All organic compounds with more than one aromatic ring that are associated with proposed analytical method.

All polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzoturans (PCDFs) associated with proposed analytical method. SRI analyzed separately the entrained fly ash samples (bulk) and vapor phase samples (impingers) collected from the Unit No. 7 ESP outlet under both hot gas and diluted, cooled gas conditions for PCDDs and PCDFs. SRI also analyzed separately the entrained fly ash samples (bulk, which could include scrubber carryover) and vapor phase samples (impingers) collected at the AFGD outlet/stack after the mist eliminator for PCDOs and PCDFs. No other samples were analyzed for PCDDs and PCDFs.

REQUIRED SOLID STREAM SAMPLES AND ANALYSES FOR BAILLY STATION UNIT NO. 7 AND NO. 8 AND THE AFGD DEMONSTRATION PROJECT CATEGORIZED BY PHYSICAL STATE

Solid Samples and Components To Be Analyzed

Boiler Feed Coal (After Crusher)

Trace Elements
Moisture Content
Heating Value

Ultimate/Proximate Analysis

Fluoride Chtoride Phosphate Radionuclides Limestone

Trace Elements Moisture Content

Fluoride Chioride Phosphate Radionuclides

Bottom Ash, ESP Hopper Ash, and Entrained Fly Ash Including

the AFGD Project

FGD Solids (Sturry)

Trace Elements Semivolatile Organics

Size and Mass Distributions-(Entrained Fiv Ash

and Hopper Ash¹ Only)

Radionuclides

Carbon Fluoride Chloride Phosphate Sulfate Dloxins

Furans

Trace Elements

Semivolatile Organics

Sulfate Sulfite Fluoride Chloride Phosphate

Radionuclides-(Only Gypsum)

¹There are three rows of hoppers to collect fly ash from the twelve fields of the ESP. Each row of hoppers collect fly ash from four fields of the ESP. We used established techniques to provide the best information on mass particle size distributions of a composite bulk ash sample collected from each of the three rows of hoppers beneath the twelve fields of the ESP. Analytical determinations were not performed on the size fractionated hopper ash samples.

223 Detection Limits

One of the primary considerations in achieving the objectives in this program was to achieve the necessary detection limits. There were various options for achieving these goals, as will be discussed in the following paragraphs. It is important to realize, however, that the potential risks and the probable concentrations associated with various analytes of concern made the achievement of adequate detection limits far easier for some analytes than others. With the element chlorine occurring in the gas phase as HCl, the risk is relatively low, and the concentration is quite high on a comparative basis (of the order of 100 mg/Nm³ with coals of ordinary chlorine concentrations). For the chlorine compounds known as dioxins and furans, on the other hand, the risk is presumed to be high, and very low concentrations must be detected (of the order of 1 pg/Nm³, or levels roughly 11 orders of magnitude below that of chlorine).

Another primary factor was to retain an adequate degree of specificity. Achieving both specificity and sensitivity in analysis is often difficult, and certainly that is the case for the determination of the trace levels of some of the air toxics of greatest concern in this project. The conflict between these two objectives was faced at the outset of the project in regard to the determinations of semi-volatile organics, where the question was whether to retain specificity in a list of some 70 identifiable compounds at moderate levels of sensitivity or attempt to gain as much as three orders of improved sensitivity but risk the occurrence of numerous false positives due to a loss in specificity. The specific question was whether to use low-resolution mass spectroscopy to retain identification of a wide range of compounds, or to adopt high-resolution techniques with selected ion monitoring to achieve higher sensitivity for selected compounds but to risk a higher level of interference and loss of certainty in compound identification.

Still another factor to be considered simultaneously with sensitivity and specificity was the question of analytical costs. Inductively coupled argon plasma emission spectroscopy (ICP) was an attractive analytical tool from the point of view of applicability to most of the trace metals of concern, but favorable costs associated with this aspect of the method had to be sacrificed to achieve improved sensitivity for some metals or improved specificity for certain analytes. Thus, methods of atomic absorption spectroscopy based on hydride generation, graphite furnace, and cold vapor techniques were included in the analytical protocols. Similarly, atomic fluorescence with the cold vapor of mercury was used for enhanced sensitivity.

Once an analytical method with appropriate sensitivity has been selected with due consideration to the conflicting issues of specificity and cost, the analysts have certain ways to modify sensitivity in accord with the requirements of individual circumstances. Two of the options are illustrated by the following equation:

 $\lambda = Av/u$

in which

 $\lambda = \text{In-stack detection limit } (\mu g/\text{Nm}^3),$

 Λ = instrumental detection limit (μ g/mL), v = sample solution volume (mL), and

u = sample gas volume (Nm³)

Even though the instrumental detection limit is fixed by the choice of a method and a specific instrument, the analyst can improve the detection limit by limiting the volume of solution that contains the sample or by increasing the volume of flue gas sampled.

One of the ways that analytical sensitivity was adjusted to meet circumstances at Bailly was to vary the volume sampled in anticipation of concentrations that might be too high or too low for quantitation. Thus, for volatile organics, three samples with nominal volumes of 5, 10, and 20 L were always collected at each location. Compounds found in amounts that varied linearly or approximately linearly with sample volume could be reasonably concluded to be true components of the gas stream sampled, whereas other compounds found in relatively constant amounts could be regarded as contaminants or artifacts.

Another way in which analytical sensitivity was adjusted by varying sample volumes occurred as a consequence of variations in the composition of the gas streams that were known at the time of sampling. With metals, for example, which were expected to occur predominantly in the particulate phase, recognition was made of the variability of particulate concentrations in selecting sampling time and thus sampling volume. Sampling times were adjusted to yield sample volumes of about 2.2 Nm³ at the Unit 8 ESP inlet, 2.8 Nm³ at the Unit 8 ESP outlet, 2.5 Nm³ at the Unit 7 ESP outlet, and 8 Nm³ at the stack (where the data ultimately showed particulate concentrations of about 5, 0.01, 0.07, and 0.05 g/Nm³, respectively).

We also attempted to limit the dilution of samples in the recovery procedures for the trains. In particular, we adopted a modified recovery procedure for the permanganate impingers in the Method 29 train. We reduced the volumes of the rinses from 425 mL to 125 mL in an effort to improve sensitivity for mercury.

Limiting the volume of the dissolved sample to be analyzed proved more difficult an objective to accomplish. In the analysis of the trace metals, the difficulty of digesting the solids completely and getting the analytes in a relatively small volume of solution limited what could be done to keep the sample volume small. A practical target was 0.5 g of particulate matter digested and dissolved in 100 mL of solution. With solution detection limits for individual metals ranging from 0.0002 to 0.02 $\mu g/mL$, the concentrations of the metals in the total solid thus ranged from 0.04 to 10 $\mu g/g$ or, at the total particulate concentrations cited above, the following concentrations on the basis of flue-gas volume:

0.2 to 50 μ g/Nm³ at the ESP inlet, 0.0004 to 0.7 μ g/Nm³ at the ESP outlets, or 0.002 to 0.5 μ g/Nm³ at the stack A general assessment of how the quality of the results in this program was influenced by the detection limits of the methods and procedures adopted is as follows:

- Metals Obtaining definitive concentration in the stack on a numerical basis was significantly handicapped at the sample size selected because the detection limits imposed were higher than desired. Also, blank corrections limited the numerical validity of the results. Still, the emissions could be assigned limiting values that were low enough to permit the conclusion that a high level of emission control was being exercised by the plant. Demonstrating material balance for a few metals was not possible because of occurrence in the coal at undetectable levels.
- Non-metals that produce acidic gases or anions in condensed phases The principal limitation to establishing concentrations occurred with phosphate, which were low in any case because of low phosphorus concentrations in the coal.
- Aldehydes The detection limits for compounds in this class were not the most significant drawback to establishing concentrations unequivocally. The lack of success in removing contaminants from the reagent used for sampling was a more important constraint.
- Volatile organic compounds The arometic hydrocarbons on which much attention is being focused (benzene, for example) were detected in all gas streams of interest.
- Semi-volatile organic compounds The magnitudes of the detection limits were less of a deterrent to analytical success than the occurrence of unexpected contaminants. Contaminants to the toluene that was used as a solvent, especially for the purpose of making the determination of dioxins and furans possible with split samples, caused major interference in the determination of semi-volatiles in the range of lower molecular weights (or, more exactly, in the range of lesser gas chromatographic retention times). This interference, however, did not occur with the PAHs in a higher range of molecular weights.

23 Auditing

2.3.1 SRI

Internal quality control auditing was performed by SRI in the collection of samples from the Bailly site and in the analysis of samples in the SRI laboratories at Birmingham. QC audits performed during this project are presented in Appendix A. QA procedures followed during sampling and recovery operations are described in Appendices B and C. Additionally, quality control analysis of analytical results from subcontractor laboratories, namely Brooks Rand, Commercial Testing and Engineering

Company, and Core Laboratories, was required since no formal auditing of these subcontractors was planned due to funding limitations.

2.3.1.1 Field Sampling Auditing

The QA Auditor was present during collection of the samples at the Bailly site. All of the sampling teams were monitored by the QA Auditor for correct and consistent adherence to the sampling methods. Initially, before sampling, all of the sampling equipment locations were verified to prevent cross-calibration errors.

In turn, each sampling crew was observed running the gas sampling equipment, from initial leak checks to operation of the train to recovery of the sample, including insuring that the required custody chain was maintained. The operation of the Method 5 type trains was videotaped for reference. No major problems were observed during the gas sampling efforts. Minor operational problems were corrected on the spot. None of the sampling runs was aborted or voided. One run, an acid gases train on the Unit 8 ESP inlet, suffered a cracked filter housing at the conclusion to the run and after the train had been removed from the duct and sampling ceased. The measured water content from the run was consistent with other runs and this run was retained even though the train failed the post-test leak check. See Section 4.2.2 for further details about sampling.

The particulate sampling crew was also observed making velocity traverses, Method 17 runs, cascade impactor, and cyclone runs. As with the other crews, the particulate sampling was videotaped for documentation.

The process sampling team was observed for several rounds of sample collection. No problems were observed with the sampling procedures. Custody labels were applied every day. The process sampling was also videotaped for reference.

The impinger preparation crew was audited in the mixing of solutions and setup of the Method 5 type trains. No substantial discrepancies were found.

The calibration of all of our meter and pump systems were spot-checked with RTI's critical critice. Although the meter coefficient was not known, the meter boxes showed consistent results for all of the boxes. The meter boxes were allowed to warm up to a steady state temperature and a ten minute flow test was recorded.

2.3.1.2 Analytical Laboratory Auditing

Due to funding limitations, no formal internal audits of the analytical process were conducted. We relied upon the normal duplicate analyses, matrix spike and matrix spike duplicates, lab QC samples, and our mass balance results to assess the quality of the analytical data.

Analyses of the volatile organics, semi-volatile organics, aldehydes, and dioxin/furans are routine for our laboratory, and the normal QA/QC procedures called for by the methods were deemed to be adequate.

Suites of analytical methods were developed for the metals analyses and the anion/acid gases analyses. Because there are no validated methods for these analyses, internal auditing of exploratory procedures is not appropriate. Again, duplicates and spiking provide a reliable check of analytical methodology.

Appendix C contains the QA/QC information, and the reader is referred to it for more information.

<u>232 RTI</u>

Shirley J. Wasson and Lori Pearce of Research Triangle Institute visited the Bailly Station on September 5 and 6 while we were sampling. They conducted an audit of the sampling. The scheduling of their visit permitted them to observe one day of organics sampling and one day of inorganics sampling. There were four facets of the audit: 1) observe the sampling and laboratory procedures, 2) spike some laboratory blanks for Quality Assurance evaluation, 3) spike two VOST samples using a cylinder of audit gas, and 4) check calibration of the sampling trains. In addition, we provided them with our calibration documentation and preliminary data from our testing. We did not receive a formal report of their audit.

We did receive from DOE the values reported by RTI as the true values for the spikes they applied in the field. Results of these audit spikes are given in Appendix A.

2.3.3 Round Robin Coal Analyses

SRI participated in a round robin analysis of coal samples administered by CONSOL, Inc. for DOE. We analyzed 17 coal samples in duplicate under the round robin. There were two samples from each of the eight plants being tested in the DOE air toxics assessment program, plus one reference coal. Analyses specified included proximate and ultimate, 10 major ash constituents, the 16 trace elements in the DOE program scope of work, and fluorine. Results of the analyses are presented in Appendix A. Results of the round robin analyses do not suggest any general deficiencies in our protocols when SRI's data are compared to the range of results among the other participants. One specific improvement suggested by these results is the use of the method of standard additions for analyzing antimony and arsenic. Because of this finding we altered our analytical protocols accordingly.

2.4 Contractor Organization

We used the staff and resources of three organizational units at Southern Research Institute to do the work of this project: the Environmental Sciences Research Department, the Analytical Chemistry Department, and the Contracting Office. Subcontracting was limited to a small portion of the work under this project. We arranged for the services of seven field sampling crew members from Guardian Systems, Inc., to supplement SAI staff during the tests at the Bailly Station. Commercial Testing & Engineering Company was contracted to do the proximate, ultimate, chlorine, and fluorine analyses on the coal samples from Bailly. Core

Laboratories, Inc., was contracted to analyze samples for radionuclides. Brooks Rand, Ltd., analyzed solids and sorbent traps for mercury. Galbraith Laboratories performed analyses in limestone and gypsum. All other analytical work was performed at SRI.

Five individuals were classified as key personnel for this project:

P. Vann Bush, Program Manager Edward B. Dismukes, Principal Investigator Joseph D. McCain, Sampling Coordinator John M. Coyne, Analytical Coordinator Larry S. Monroe, QA Auditor

The following paragraphs describe the roles of the key personnel.

<u>Program Manager</u> The Program Manager had the duties of liaison with the DOE Contracting Officer's Representative, liaison with other participants of the project including the host site representatives and other DOE contractors where needed, scheduling the activities of project personnel, and monitoring and reporting the project performance relative to the schedule and budget. The Program Manager scheduled and conducted pre-test site evaluations required for the preparation of site-specific sampling and analytical plans. The Program Manager was on site during the field sampling, participated in review of the analytical results, and directed the preparation of the project reports.

<u>Principal Investigator</u> The Principal Investigator directed the sampling and analytical work. This effort included preparation of site-specific plans. The Principal Investigator was on site during part of the field sampling, assumed custody of the samples collected upon their delivery to the laboratory in Birmingham, and supervised the disposition and analyses of all samples. The Principal Investigator was responsible for reduction of data from the sampling trains, and interpretation of analytical results including mass balance determinations.

<u>Sampling Coordinator</u> The Sampling Coordinator participated in the pre-test site survey and the preparation of the site-specific sampling and QA plans. The Sampling Coordinator supervised the preparation of sampling equipment, the on-site sampling, and delivery of samples for post-test analyses. The Sampling Coordinator assisted the Principal Investigator in the reduction of data from the sampling trains.

Analytical Coordinator The Analytical Coordinator assisted in the preparation of site-specific analytical plans. The Analytical Coordinator directed analyses of trace metals and all organics from the samples collected in Bailly. The Analytical Coordinator was responsible to summarize the analytical results, and to assist the Principal Investigator in the interpretation of results.

Quality Assurance Auditor The Quality Assurance Auditor reviewed the standard operating procedures (SOPs) for each of the sampling trains and analytical instruments. The Auditor monitored the sampling at the power plant and conducted independent checks of procedures against the SOPs and test objectives. The Auditor compiled the quality assurance documentation from pre-test and post-test calibrations of test equipment, and the quality control data records from the analytical work.

2.4.1 Sampling Team

SRI had 24 people on site for the test program, plus 7 subcontracted sampling team members from Guardian Systems, Inc. The staff was divided as follows:

- 4 in the mobile laboratory,
- 3 at the Unit 8 inlet sampling location,
- 3 at the Unit 8 outlet sampling location.
- 3 at the Unit 7 outlet sampling location,
- 1 to make VOST and Hg measurements at Unit 8 inlet and stack,
- 1 to make VOST and Hg measurements at Units 7 and 8 outlets,
- 2 to run cyclones and Method 17 at the Unit 8 East ESP inlet.
- 1 to run Orsat samples,
- 2 to run the dilution sampling system at Unit 7 outlet,
- 5 at the stack sampling location.
- 3 collecting plant samples,
- 1 flue gas sampling coordinator,
- 1 QA auditor, and
- 1 test supervisor.

The organization of the sampling team is shown in Figure 2-1. Tom Sarkus, Earl Evans, and Dick Tischer of DOE/PETC took turns at the test site during the time we were on site. Beth Wrobel and Sid Smith of NIPSCO served as liaison with the Salliy Station, and John Cheater and John Henderson served as liaison with the AFGD Demonstration Plant.

2.4.2 Analytical Team

The analytical team for this project was organized as shown in Figure 2-2. As indicated in the figure, Dr. Dismukes personally directed the analyses of anions, and submitted the samples to and reviewed the results from the subcontracted analytical laboratories. Mr. John Coyne supervised all other analytical work.

2.5 Report Organization

This report is organized into ten sections, including this introductory section and the preceding Executive Summary. Section 3 provides a description of the Bailly Station and the AFGD Demonstration Plant. Section 3 also includes tabulated and plotted plant operating data collected during our test. Section 4 describes the methods we used to collect all samples from solid, liquid, slurry, and gas streams. In addition, Section 4 includes the sampling schedule, and the mass flow rates we measured or otherwise determined for inlet and outlet streams for plant subsystems and the overall plant. Section 5 lists the analytical methods used on all of the collected samples. Section 6 contains all of the analytical results. Section 7, Data Analysis and Interpretation, includes the material balances we calculated from the analytical results, the trace species removal efficiencies across the Bailly Station ESPs and across the AFGD Demonstration Plant, and emissions factors. Section 8 of the report contains four subsections dealing with special topics: 1) particulate and vapor

phase partitioning, 2) plume simulation dilution sampling, 3) distribution of trace metals by size, and 4) comparison of Method 29 and carbon traps for mercury measurements. Section 9 lists references used in the report, and Section 10 is a glossary of terms and abbreviations used in the report.

There are seven appendices to the report. They contain descriptions of auditing exercises, supporting information on sampling and analytical protocols, quality assurance and quality control procedures and results, example calculations, description of uncertainty analyses performed, and comprehensive documentation of sampling runs. The reader is referred to the Table of Contents which lists the appendices.

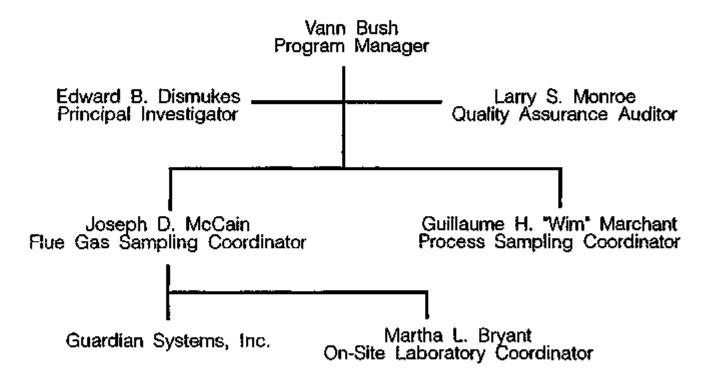


Figure 2-1. Sampling Team Organization

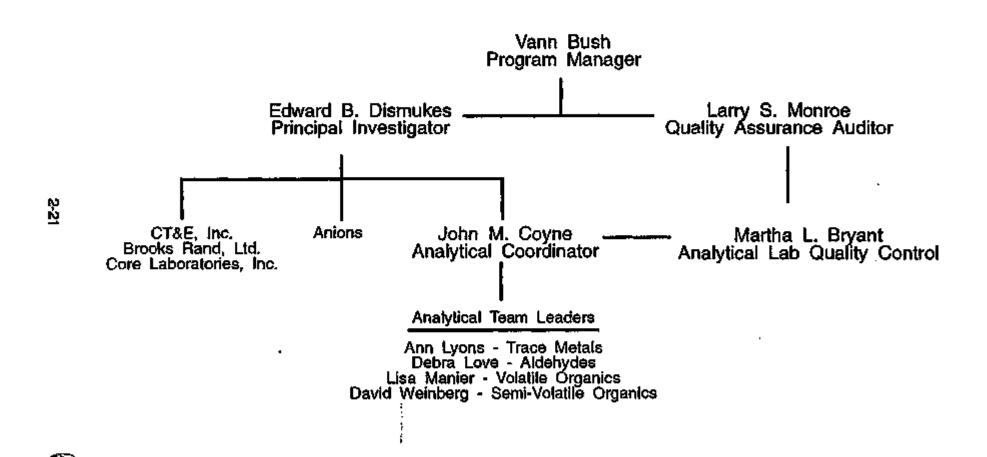


Figure 2-2. Analytical Team Organization

3.0 SITE DESCRIPTION

3.1 Power Plant and Scrubber Design Features

3.1.1 Power Plant

Bailly Generating Statlon is owned and operated by the Northern Indiana Public Service Company (NIPSCO). The plant is located on the shores of Lake Michigan near Chesterton, Indiana. This project involved the two coal-fired units of Bailly Generating Station with a combined capacity of 528 MWe; Unit No. 7 has a gross capacity of 183 MWe (160 MW net) and Unit No. 8 has a gross capacity of 345 MWe (320 MW net). Figure 3-1 is a schematic illustration of the layout of the Bailly Station Units 7 and 8.

Each unit is equipped with a Babcock & Wilcox cyclone boiler and a steam turbine generator. Both units burn an Illinois/Indiana basin high-sulfur bituminous coal (2.5% to 4.5% sulfur). Unit 7 has four cyclone burners, and Unit 8 has eight cyclone burners. Full load on each unit usually varies by \pm 8 MW. There is no control technology for NO $_{\rm c}$ emissions.

Electrostatic precipitators (ESPs) are used on both units for particulate control. There are two ESPs on Unit 8 and one ESP on Unit 7. The two ESPs of Unit No. 8 are identical to the Unit No. 7 ESP. Each ESP is two shells wide and has twelve electrical fields. In addition, there are three rows of hoppers to collect fly ash from the twelve fields of each ESP. Thus, there are three hoppers in the direction of gas flow along any given tane of the ESP.

Ammonia is injected at a rate to yield 15 ppm concentration prior to the Unit No. 7 ESP and prior to each of the two Unit No. 8 ESPs for the control of SO_3 to prevent acid mist emissions. There are separate ammonia injection systems for the two units.

The Bailly Station Unit No. 7 flue gas flows through a single duct into the ESP. The flue gas stream exits the ESP and subsequently connects downstream of the ESP with the flue gas duct from the combined outlets of the two ESPs of Unit No. 8. These two flue gas streams then join to form a single stream.

There are various ash disposal systems for Units No. 7 and No. 8 at the Bailly Station. Based on four years of records of waste disposal from the plant, nominally 63% of the ash in the coal is collected as bottom ash and the remaining 37% is fly ash. Wet bottom ash is transferred to a stag tank where the ash is sluiced to an ash settling pond. The stag tank is dumped every six hours. The water from the settling pond is recycled back for the sluicing of the bottom ash. Economizer ash is not accumulated or evacuated in sufficient quantity or frequency to be considered as a separate waste stream. Makeup water is obtained from on-site facilities. Fly ash from the precipitators from both units is conveyed dry to an ash silo where it is trucked away to a landfill or sold.

Both units use Lake Michigan water as a once-through cooling medium.

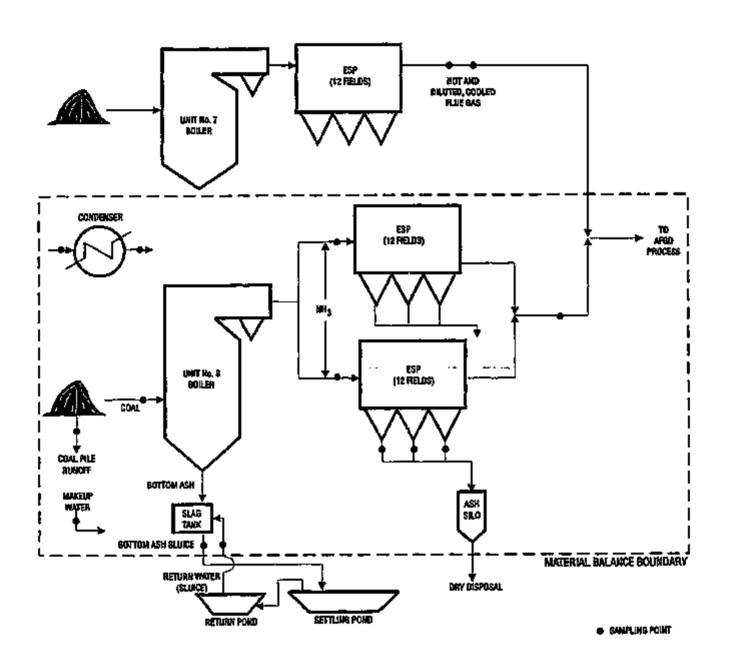


Figure 3-1. Process Flow Diagram and Sampling Locations for Bailly Generating Station Units 7 & 8

3.1.2 Scrubber

Sulfur dioxide in the combined flue gas stream from the two units of the Bailly Generating Station is treated by the Advanced Flue Gas Desulfurization (AFGD) demonstration project managed by Pure Air of Allentown, Pennsylvania (a joint venture of Air Products, Inc. and Mitsubishi Heavy Industries, Ltd.) under the Department of Energy's Clean Coal Technology program. The scrubber is operated by Pure Air on the Lake, a subsidiary of Pure Air. Figure 3-2 is a schematic drawing of the Pure Air AFGD process. Pure Air's AFGD system is using innovative wet timestone flue gas desulfurization (FGD) technology to achieve a high level of SO₂ removal (90 to 95+ percent capability) on high sulfur U.S. coals.

A feature of the AFGD process is the purchase and direct injection of powdered timestone in fieu of on-site timestone milling operations. This project includes an in-situ oxidation absorber module that produces high-quality gypsum from a range of high sulfur coals. These features serve to decrease facility size, and costs for both installation and operation of the process. High-quality, by-product gypsum (93+ percent purity) is being produced and sold to a wallboard manufacturer. This by-product utilization eliminates the problem of solid waste disposal, and also contributes to the cost-effectiveness of the technology.

The flue gas stream from the AFGD process is vented to the atmosphere through a 480-foot stack exclusive to the project.

3.2 Plant Systems Included in This Evaluation

The samples to be collected and their respective sampling points for the Bailly Station Units No. 7 & 8 and the AFGD process are identified in Figures 3-1 and 3-2. Material balance for the Bailly Station was Ilmited to Unit 8, as shown in Figure 3-1. A separate material balance was conducted around the AFGD scrubber. The process components included in the material balances were:

- Unit 8 Boiler The input streams for this subsystem are the coal, makeup water, and combustion air. Output streams are the flue gas and bottom ash.
- Unit 8 ESP The input stream to the ESP is flue gas. The output streams are the hopper ash and the cleaned flue gas.
- Condenser The condenser is a once-through system using Lake Michigan water as input. The output stream is returned to the lake.
- Bottom Ash Stuice The input streams to this system are the bottom ash and sluice return water (that is, make-up water supplied from the settling pond). The output stream is the bottom ash sluice (discharged to the settling pond).
- Unit 8 Boiler Overall The input streams are the coal, combustion air, makeup water, and sluice water return. Output streams are the stack flue gas, gypsum, and water to waste water treatment.

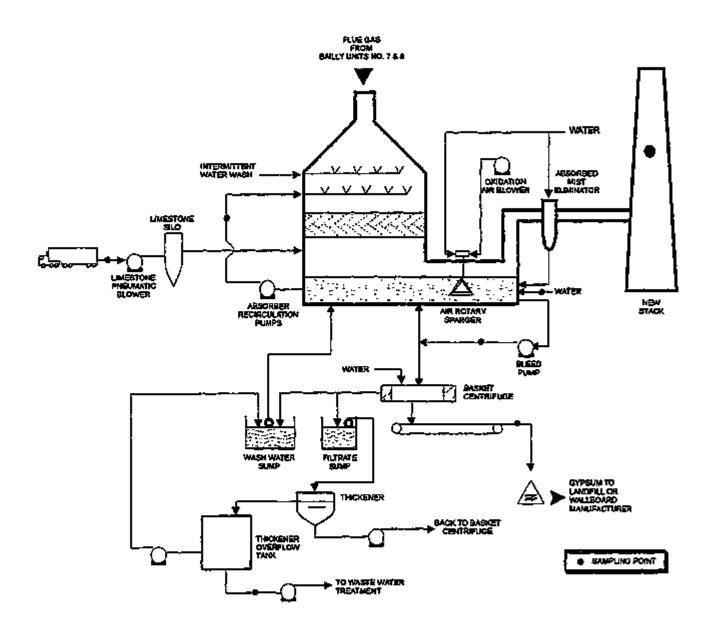


Figure 3-2. AFGD Process Diagram

- Flue Gas Mixing Flue gas from the Unit 7 ESP and the Unit 8 ESP are input streams; the mixed product is output.
- AFGD System The input streams to this system are the combined flue gases from Units 7 and 8, timestone, and service water. Output streams are the stack flue gas, gypsum, and waste water.

3.2.1 Flue Gas Streams

The flue gas streams sampled for the toxic emissions assessment were:

- the Unit No. 7 ESP outlet before combining with the Unit No. 8 gas stream (with and without dilution cooling),
- 2) the Unit No. 8 west ESP Inlet after ammonia injection,
- 3) the Unit No. 8 ESP outlet before combining with Unit No. 7 flue gas stream, and
- the AFGD outlet/stack after mist eliminator.

The flue gas streams sampled for mass particle size distributions and total mass concentrations of entrained fly ash were:

- the Unit No. 7 ESP outlet before combining with the Unit No. 8 flue gas stream (with and without dilution cooling),
- 2) the Unit No. 8 west ESP inlet after ammonia injection.
- the Unit No. 8 east ESP inlet after ammonia injection (only total mass concentration),
- the Unit No. 8 ESP outlet before combining with Unit No. 7 flue gas stream, and
- the AFGD outlet/stack after mist eliminator (total mass and size distribution).

The flue gas streams sampled for size-fractionated entrained fly ash for subsequent determinations of trace metals were:

- 1) the Unit No. 7 ESP outlet before combining with the Unit No. 8 flue gas stream
- 2) the Unit No. 8 west ESP inlet after ammonia injection, and
- 3) the Unit No. 8 ESP outlet before combining with Unit No. 7 flue gas stream.

A complete discussion of the flue gas sampling approach is given in Section 4.0.

3.2.2 Solids, Liquids, and Sturies

Solids, liquids, and slurries sampled are listed in Table 3-1. Descriptions of the sampling methods for each of these samples are given in Section 4.3.

Table 3-1
Solids, Liquids, and Sturries Collected at Bailly

SAMPLE	LOCATION	
SOLIDS -	· 	
Boiler Feed Coal	augers above cyclone burners	
ESP Hopper Ash	hoppers beneath Unit 8 West ESP	
Bottom Ash	sluice discharge at pond	
Umestone	sampled from supply trucks	
Gypsum	automatic sampler on conveyer belt	
LIQUIDS -		
Unit 8 Cöndenser Inlet	intake from Lake Michigan	
Unit 8 Condenser Outlet	discharge into Lake Michigan	
Sluice Return Water	low pressure water line tap at boller	
Condenser Makeup Water	tap at makeup water tanks	
Service Water	water tap in AFGD building	
AFGD Waste Water	tap in line to waste water treatment	
SLURRIES -		
Bottom Ash Sluice	discharge pipe into pond	
Absorber Recirculation Slurry	sample tap at recirculation pump	
Bleed Pump Slurry	sample tap at slurry bleed pump	

3.3 Plant Operating Conditions

3.3.1 Typical Operating Conditions

Bailly Station Units 7 and 8 operate on load demand, with full load usually between 7 AM and 9 to 10 PM. At full load, Unit 8 generates about 345 gross megawatts, and Unit 7 generates about 183 gross megawatts. The two units are usually run at equivalent percentages of their full load rating.

The primary coal for the plant is from the Illinois/Indiana Basin, and has a 3.0 to 3.5% sulfur content. The main source of coal for the plant is the Captain Mine. Because of parametric evaluation of the AFGD scrubber, several other coals and blends have been burned at the Bailly Station. During 1993, the plant had burned a blend of Illinois/Indiana Basin coal and Powder River Basin coal in a ratio of 4:1 to give a coal sulfur content of about 2.8%.

The water supply for the plant is Lake Michigan, as mentioned earlier. The Pure Air AFGD scrubber uses a pre-crushed limestone supplied by Huber, Inc.

There are three separate computerized plant monitoring and data acquisition systems; one each for Unit 7, Unit 8, and the Pure Air AFGD. Some of the data are redundant on the Pure Air system, but we obtained records from all three systems covering the period of our testing. We recorded manually readings of voltages and currents in the Units 7 & 8 electrostatic precipitators, and flows (indicated as static pressures and percentages of orifice differential pressures) of ammonia to both units. We also obtained historical records for the previous four years that fisted amounts of bottom ash and fly ash disposed of and Units 7 and 8 power generation.

3.3.2 Operating Conditions During Sampling

Tables 3-2 through 3-6 are records of plant operation during the periods we were sampling. Tables 3-2, 3-3, and 3-4 are excerpts from operating logs recorded by computer data acquisition systems. We selected key parameters that describe the major process streams, and can be used to quantify variables required to make material balance calculations or to show system stability. Each data entry in these logs is an hourly average. Table 3-2 presents a subset of the operating data we collected from the Unit 7 data acquisition system. Table 3-3 presents data from the Unit 8 data acquisition system. Table 3-4 presents data from the Pure Air AFGD data acquisition system.

Some of the plant operating data are plotted in Figures 3-3 through 3-7. Figure 3-3 shows the megawatt output of Units 7 and 8 during the intervals of time we were sampling. Figure 3-4 shows the average opacity values recorded in the Unit 7 and Unit 8 ducts at the outlets of the electrostatic precipitators. Figure 3-5 shows the concentrations of SO₂ at the inlet and outlet of the AFGD scrubber. Figure 3-6 shows the measured carbonate and sulfite contents in the scrubber slurry. Figure 3-7 shows the differential pressure across the AFGD plant and the absorber.

Table 3-5 is a record of the operating voltages and currents on the Unit 7 and 8 electrostatic precipitators (ESPs). We recorded these values at two-hour intervals each test day. The table shows the daily average values on each electrical section. Figure 3-8 shows the layout of the ESP electrical sections. The most significant feature of these data is the fact that one of the outlet electrical sections on the Unit 7 ESP (Section 7AT5) was out of service during our testing. Furthermore, another outlet field, 7AT6, operated at a very low voltage compared to other fields. These problems explain the much higher emissions, seen in the opacity numbers in Tables 3-2 and 3-3, for the Unit 7 ESP than the Unit 8 ESP.

Table 3-6 is a record of the flows of ammonia from the two separate systems supplying Units 7 and 8. Figures 3-9 and 3-10 show the ammonia system calibration charts for the two units. The main indicator of ammonia feed rate is the parameter called system output, given as a percentage. As the figures show, a system output setting of 50% is supposed to supply ammonia at a rate equivalent to 15 ppm in the flue gas at full load. The logs show a virtual loss of ammonia supply to Unit 7 from 9/3 to 9/4. The supply to Unit 8 ran out on the evening of 9/4. Therefore, on 9/3 we had nominally 15 ppm ammonia to both Unit 7 and Unit 8 ESPs. On 9/4 we had nominally 15 ppm ammonia to Unit 8 ESP, but less than 3 ppm ammonia to Unit 7 ESP. On 9/5 we had no ammonia to either Unit 7 or 8 ESP. This reduction in ammonia feed may have affected the particulate emissions, and certainly affected SO₃ carry-over through the ESPs.

There were two occasions during the testing when the fire in one cyclone burner went out because of a plugging of the coal feeder to the cyclone. The first of these was at 0900 to 1045 on 9/3/93 when one burner on Unit 7 lost fire. The Unit 7 load dropped from 175 to 145 MW. Since we were still over 90% of the combined full load capacity of the two units we continued sampling. The second occasion for a burner to lose fire was also on 9/3/93 at about 1700 to 1800; this time the burner was on Unit 8. We again continued sampling.

The major plant upset that truncated our testing was supply of coal to the bollers. There were problems in getting coal from the Captain Mine to the plant site, and problems at the plant site with the coal unloading and conveying system that detayed, interrupted, and finally prevented sampling. Because of the strike by the United Mine Workers, the plant had a variety of coals layered on the plant coal stockpile. Therefore, testing white the plant reclaimed coal from the pile was not practical because of the likelihood that variations in coal would render the flue gas samples equivocal.

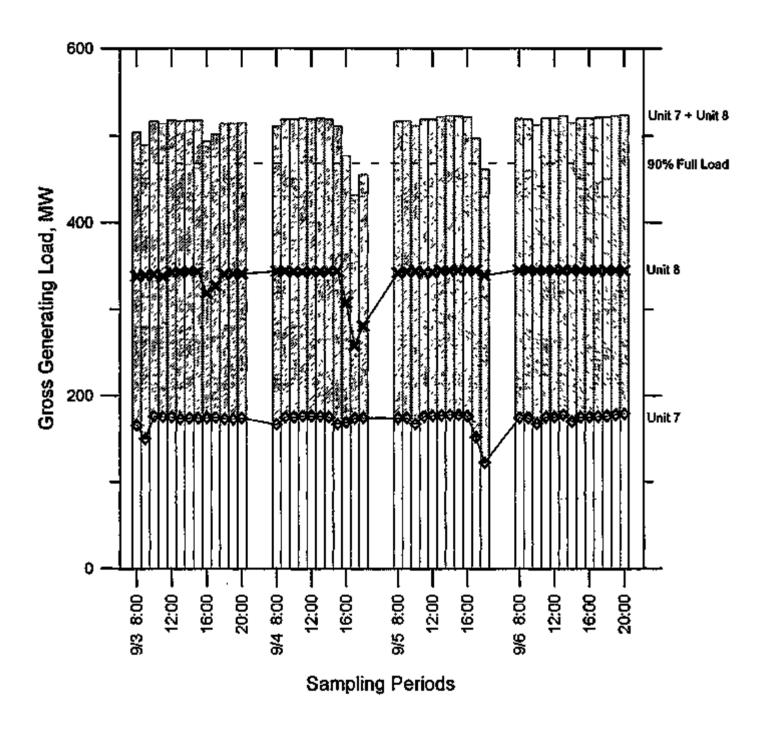


Figure 3-3. Gross Generating Loads for Units 7 & 8 During Test Periods.

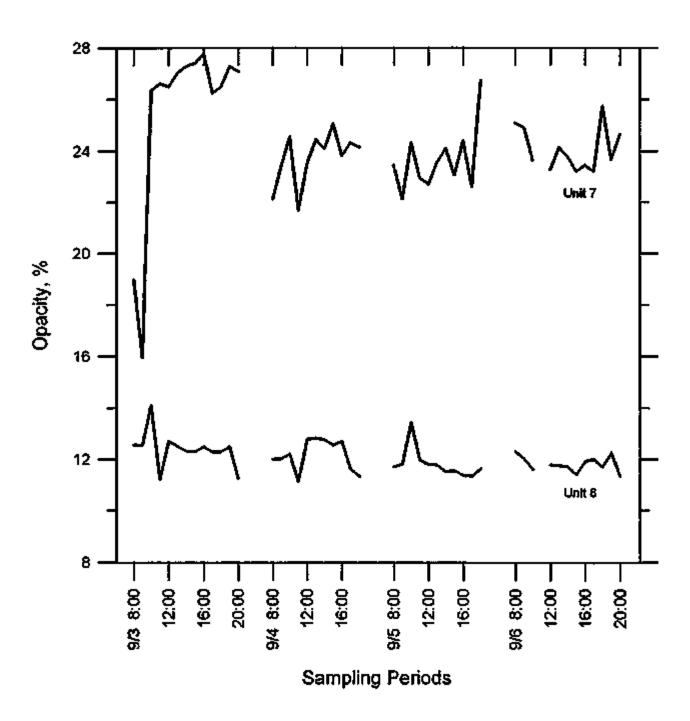


Figure 3-4. Hourly Averages of Readings of Opacity from the Outlets of Units 7 & 8 ESPs.

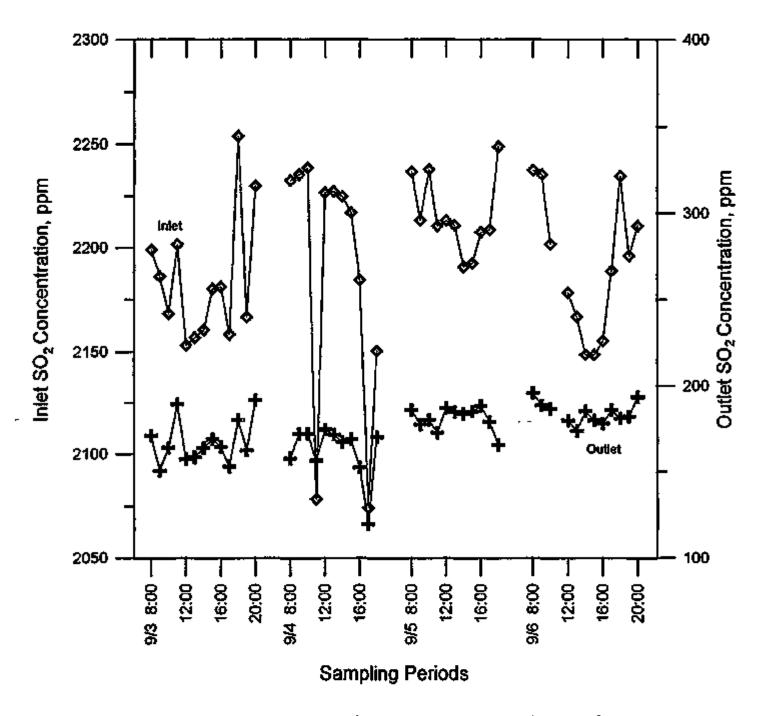


Figure 3-5. Hourly Averages of SO₂ Concentrations at the Inlet and Outlet of the AFGD Scrubber.

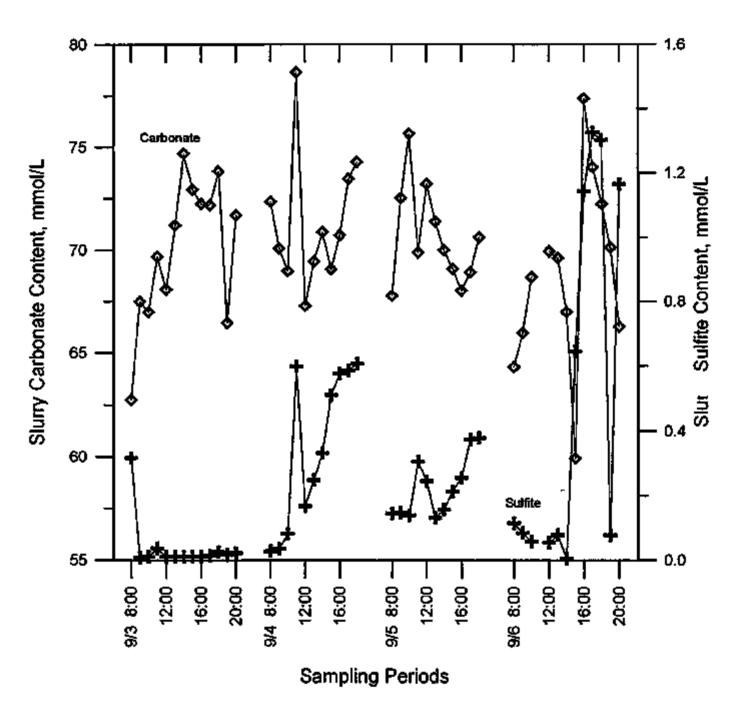


Figure 3-6. Hourly Averages of Concentrations of Carbonate and Sulfite in the AFGD Scrubber Slurry.

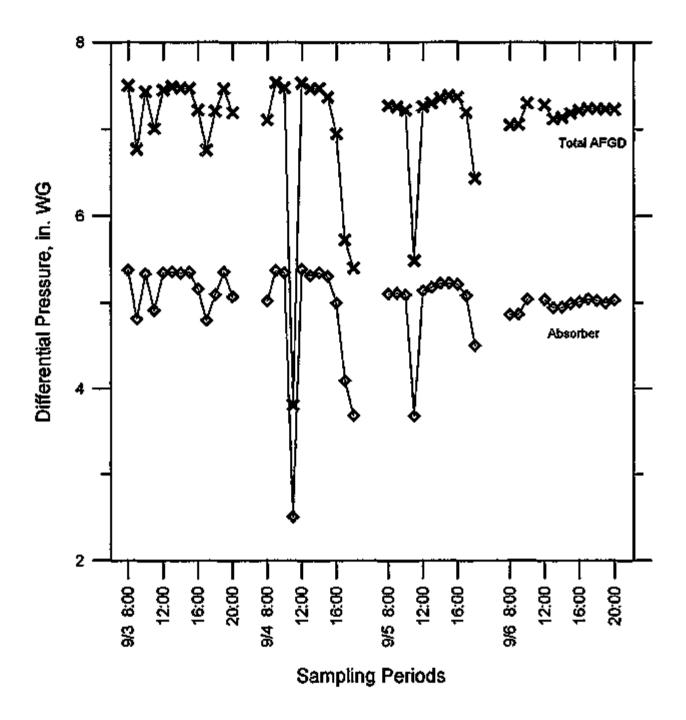
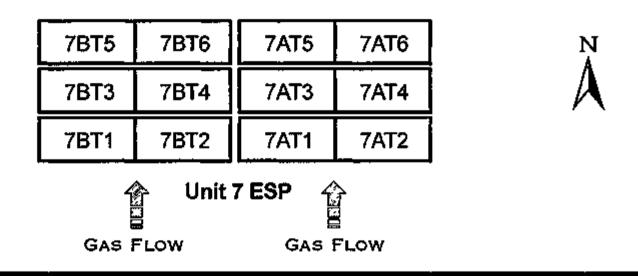



Figure 3-7. Hourly Averages of the Pressure Drops Across the AFGD Absorber and the Entire Scrubber.

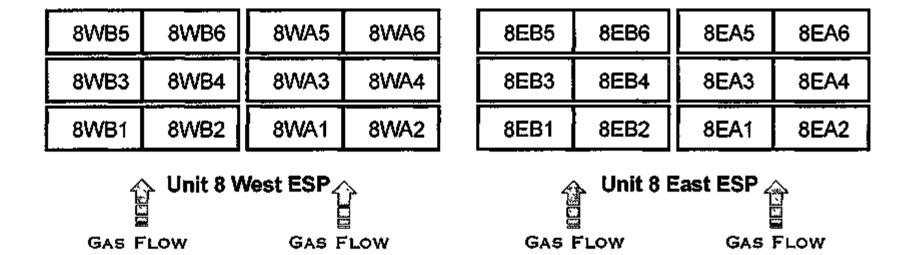
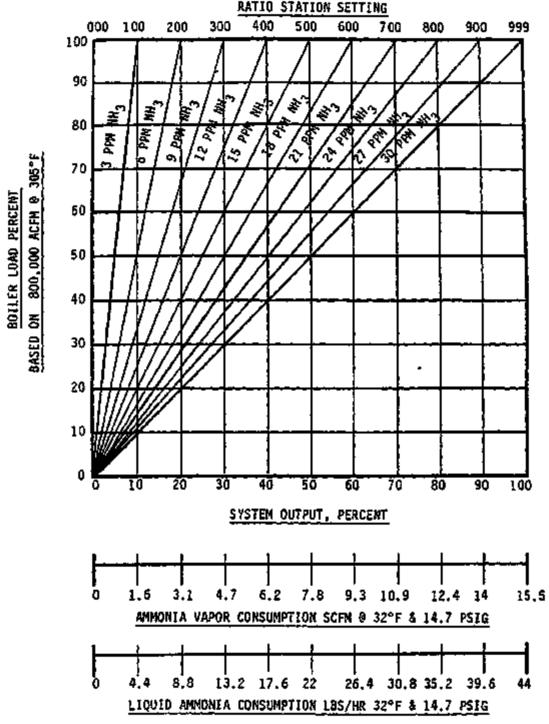
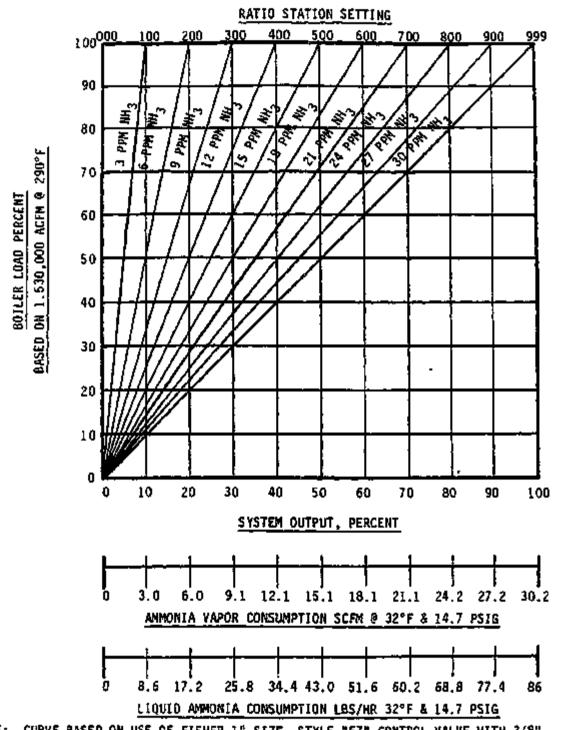



Figure 3-8. Layout of the electrical sections in the Unit 7 and 8 electrostatic precipitators.

WAHLCO AMMONIA GAS CONDITIONER

INPUT/OUTPUT CHART

MORTHERN INDIANA PUBLIC SERVICE COMPANY BAILLY GENERATING STATION UNIT 7



NOTE: CURVE BASED ON USE OF FISHER 3" SIZE, STYLE "EZ" CONTROL VALVE WITH 1/4" MICRO-FORM TRIM AND A .376" ORIFICE PLATE DIAMETER.

Figure 3-9. Calibration Plots for the Unit 7 Ammonia Feed System

WAHLOO AMMONIA GAS CONDITIONER INPUT/OUTPUT CHART

NORTHERN INDIANA PUBLIC SERVICE COMPANY BAILLY GENERATING STATION UNIT 8

NOTE: CURVE BASED ON USE OF FISHER 1" SIZE, STYLE "EZ" COMTROL VALVE WITH 3/8" MICRO-FORM TRIM AND A .515" ORIFICE PLATE DIAMETER

Figure 3-10. Calibration Plots for the Unit 8 Ammonia Feed System

Table 3-2 Unit 7 Operating Data (Sheet 1 of 8)

		Generator Gross Load	Feed H ₂ O Flow	Condensate Flow	Heater Drain Flow	Total Boiler Air Flow	Hi Temp O ₂ Avg	Ambient Temp	West Lower Hi Temp O₂
DATE	TIME	MW	k/b/hr	klb/hr	klibihr	*	%		*
3-Sep	8:00:00	165.9	1163.5	906.9	205.1	74.1	2.429	68.1	2,588
	9:00:00	149,9	1064.5	814.1	190.6	68.6	2.484	68.3	2,614
	10:00:00	176.4	1203.6	934.1	213.5	78.7	2.559	68,5	2,698
	11:00:00	175.7	1177.1	905.2	211.1	77.4	2.548	68,4	2,681
	12:00:00	175.1	1175.2	901.4	211.1	77,3	2,497	68.1	2.622
	13:00:00	173.8	1159.7	893,0	210,2	76.9	2,546	67.8	2.708
	14:00:00	174.0	1157.6	692.D	209.9	77.3	2,485	67.6	2,619
	15:00:00	174.2	1159.6	893.0	210.1	77.2	2.542	87.8	2.637
	16:00:00	174.4	1158.8	894.2	209.6	77.4	2.537	67,7	2.621
	17:00:00	174.6	1160,1	900,0	210.5	77,3	2,539	67.1	2.677
	18:00:00	173.1	1160.2	893.0	208.9	76.3	2.516	66.4	2,630
	19:00:00	173,0	1158.8	689,5	209.0	76.2	2.535	66.2	2.670
	20:00:00	174.1	1159.9	894.5	209,6	76.9	2.487	65.6	2.607
	AVG	171,9	1157.6	893.1	208.4	76.3	2.516	67.5	2.644
	SD	6.79	32,23	25.41			0.036	0,88	0,037
						<u> </u>		<u>.</u>	
4-Sep		166.6	1115,6	653,3		75,6	2.976	77	2.642
	9:00:00	176.0	1158.7	898,0		70.2	2.618	76.9	2.678
	10:00:00	175,3	1169,3	900.9		78,3	2.965	77.5	2.744
	11:00:00	176.3	1171.4	*904.9		78.4	2.756	77.6,	
	12:00:00	178.2	11724	906.7	212.4	78.4	2.753	74	2.802
	13:00:00	176.2	1171.1	905.6		77.9	2.771	74 <u>.4</u> 1	2.81 ₄
	14:00:00	175.2	1171.2	903.3		77.5	2.818	73,9	2.783
	15:00:00	167.00	1120.1	868.5		73.6	2.762	73.6	2.751
	16:00:00	169.0	1129.1	867.9		76.4	2.850	73,2	2.827
	17;00:00	173.6	1158.6	892.5		77.9		72.1	2.862
	18:00:00	174.4	1159.6	901,2	210.3	78,2	2.767	70.9	2.83
	AVG	173.2	1154.1	891.2		77.3	2.825	74.6	2.774
	SD	3.54	20.82	17.88	3.16	1,45	0,079	2.18	0.064
	I		l	l	l				

Table 3-2 Unit 7 Operating Data (Sheet 2 of 8)

		Boiler Feed Water Make-Up	Circulating H ₂ O Out 7 East	7 West	Throttle Stm Press	Atemperating Flow to 7 East Superheater	Atemperating Flow to 7 West Superheater	Coal Flow to Cyclone 7-1
DATE	TIME	gal/min_	* F	<u> </u>	psig	klishr	klb/hr	Klip/lar
3-Sep	8:00:00	76.4	84.1	84.7	2147	34.04	28.03	23.26
	9:00:00		82.8	63.4	2141	18.33	25.73	15.74
	10:00:00	58.21	64.8	85.3	2161	32.75	58.45	37.06
	11:00:00	13.54	84.6	85.2	2151	24.38	54.23	38.10
	12;00:00	13.62	84.4	84.8	2150	20.50	56.16	35.95
	13:00:00	13,71	84.0	84.5	2126	25.25	66,80	36.92
	14:00:00	13.80	83,9	64.3	2121	33,13	65.70	37.44
	15:00:00	13.86	84.1	84.5	2122	32.83	62.91	37.35
	16:00:00	13.B4	84.8	65.3	2121	29.01	67.40	37,40
	17:00:00	13,80	85.4	85,8	2122	24.90	69,80	37.08
	18:00:00	13.79	85.2	85.5	2122	8.38	51.94	36,72
	19:00:00	13.81	84.5	84.9	2121	6,275	50.18	
	20:00:00	13.78	84.7	£5,1	2121	14,38	58.17	37.02
	AVG	26,79		84.9	2132	23.40	55.04	34.21
	SD	24.15	0.64	0.59	12.93	9.02	13,39	6.45
4-Sep			83.1	83.8	2124	23.58	62,96	35.9
<u></u>	9:00:00		83.8	84.4	2197	20,84	68.7	38.86
	10:00:00		83,5	84.2	2387	13,03	45.91	36.19
	11:00:00		83,4	84.1	2388	10.4	52.32	36.63
	12:00:00		83,2		238B	9.15	49.34	36.67
	13:00:00		83.7	84,5	2388	19,9	45.01	36.94
	14:00:00			84.4	2389	28.31	50.25	36,79
	15:00:00			84.6	2280	16.97	49.93	37.08
	16:00:00			84.8	2309	13.52	54,68	35.52
	17:00:00		84.3		2359		67.70	36.01
	18:00:00	13.26	84.6	65.2	2358	13.75	55,01	36.11
	AVG	13.08	83.6	84.4	2324	16.57	53.62	36.43
	&D	0.13			85.9	5.67	6.45	0.48
							_	

Table 3-2 Unit 7 Operating Data (Sheet 3 of 6)

		Coal Flow to Cyclone 7-2	Coal Flow to Cyclone 7-3	Coal Flow to Cyclone 7-4	7-1 Ah/Fuel	7-2 Air/Fuel	7-3 Air/Fuel	7-4 Alr/Fuel	Gas to Economizer 7 East	Gas to Economizer 7 West
DATE	TIME	ktit/hr	kibytur	klb/hr	Ratio	Ratio	Ratio	Retio	*F	*F
3- S ep	8:00:00	39.55	42.92	37.15	9,44	8,77	8.89	8.87	795.7	624.1
- · · - E	9:00:00	37.29	41.21	35.42		6.6	8,67	8,92	775.8	605.2
	10:00:00	37.27	41.28	35.59	9.04	8,99	9.14	9.16	796	
	11:00:00	36.33	40.27	34.75	9.09	9.03	9.17	9.19		634,5
	12:00:00	36.16		34,65	9.11	9,05	9,24	9,21	798.7	830.5
	13:00:00	37.05	41,02	35,45	8,62	8,8	8,95	B.9\$	806.1	836.2
	14:00:00	37.54	41.51	35.89	8.77	8,76	8,92	8.93	801	838.9
	15;00:00	37.56	41.6	35.94	8.81	8.75	8.91	8.9	800.6	839.8
	16:00:00	37.65	41.68	35,95	8,62	9,76	8.9	8,94	800.3	841.2
	17:00:00	37.31	41.39	35,68	8.65	8.8	6,95	0.98	803.8	843,2
	18:00:00	36.97	41.05	35.34	8.83	8.77	8.91	8.94	796,9	835,2
	19:00;00	36.96	41.07	35.33	8.84	8.79	8.91	8.96	797,5	834,1
	20;00;00	37.31	41.36	35.62	8.63	6.78	8.93	6.97	798,8	830.
					"]		<u></u>			
	AVG	37.31	41.25	35,60	8.94	8.83	8.96	9.00	797,5	833.7
	\$D	0.77	0.68	0.59	0.19	0.105	0.117	0.109	6,93	9.89
4-Sep	8:00:00	36.2	38.72	34.50	9.01	6.96	9.11	9.12	804,9	827,1
	9:00;00		40.1	36.16	9.02	8.92	9.10	9.08	813,8	
	10:00:00	36.56		37.29	9.04	6.97	9.02	9.01	802,5	832.4
	11:00:00	36.93	41.16	37.25	8.98	8,90	9.02	8.96	801,7	837.
	12:00:00	36.96	41.35	37.23	8.99	8.92	9.00	9,02	797.2	831.3
	13:00:00	37.23	41.88	37.54	8.68	6.62	6.85	8.90		
	14:00:00		41.82	37.40	9.85	, 8.82	8.82	8,87	806.0	822.6
<u></u> -	15:00:00	37.68	30.49	37.51	8.84	8.76	10.79	8.75		821.0
	16:00:00		40.69	38.14	9.13	9.05	6.99	8,77	794.0	
	17:00:00			36.66	9.11	9.06	9.01	8,92		836.1
	18:00:00			36.71	9.12	9.07	9.04	8,98	803.8	835.2
	AVG	36,77	39.96	36.76	9,00		9,18	8.94	801.2	831.
	sD	0,52		0.86	0.10	0,09	0.52	0.11	6,38	

Table 3-2 Unit 7 Operating Data (Sheet 4 of 8)

DATE	TIME	Exit Gas Temp 7 East • F	Exit Gas Temp 7 West * F	East Air Heater Gas Side AP in wo	West Air Heater Gas S(de ΔP in wo
3-Sep	8:00:00	284,8	294.5	4.922	7.087
{	9:00:00	273.3	286.6	4.344	6.26
	10:00:00	292.3	293.2	5.471	7.88
f	11:00:00	296,3	297.9	5,32	7.676
	12:00:00	298.3	299.4	5.274	7.61
	13:00:00	295	296,3	5,339	7.687
 {	14:00:00	293.3	294.3	5,33	7.664
	15:00:00	294.4	296.3	5.333	7.698
	16:00:00	294.2	295,3	5.329	7,66
	17:00:00	293.6	295,1	5.305	7.846
	18:00:00	290.6	293.5	5.213	7.515
	19:00:00	292.1	294.5	5.224	7.509
	20:00:00	292.1	293,2	5.315	7.648
	AVG	291.6	294.6	5.209	7.500
	<u>SD</u>	8.10	2.90	0.277	0.399
					
4-Sep	B:00:00	301.5	298.5	5.168	7.437
	9:00:00	294.6	293.2	5.461	7,864
	10:00:00	292.5	292,2	5,521	7.925
	11:00:00	294,4	292.8	5.512	7.916
	12:00:00	295.4	292.2	5.560	8.000
	13:00:00	293.5	291.2	5.501	7,914
	14:00:00	293,8	291.3	5,408	7.790
Ţ	15:00:00	288.6	293.4	4.986	7.185
·—-	16:00:00	290.7	268.8	5.243}	7.558
i	17:00:00	293.9	291.7	5.436	7,827
	18:00:00	293.7	292.2	<u>5,</u> 456	7,854
	AVG	293.9	292.5	5.388	7.752
	SD	3.03	2.24	0.170	0.240

Table 3-2 Unit 7 Operating Data (Sheet 5 of 8)

		Generator Gross	Feed H ₂ O Flow	Condensate Flow	Heater Drain Flow	Total Boller Air Flow	Hi Yamp O₂ Avg 7 West	Ambient Temp	West Lower Hi Temp O ₂
DATE	TIME	MW	kib/hr i	kib/hy	kib/hy	%	%	* F	%
		. :	!						
5-Sep	8:00:00	173.8	1171.1	898.2		77.7	3,325	81.7	
	9:00:00	173.9	1176.5			77.6		84.5	
	10:00:00	167.4	1131.0	873.6		74,4	3.367	84.0	
	11:00:00	176.0		909.2		77.9	2.967	76.3	
	12:00:00	176.8	1197.6	913,8		77.9	2,835	70.6	
	13:00:00	177,1	1198.0	915.6		78.4	3.138	70,3	
	14:00:00	177,6		923.2		78.0		70,0	
	15:00:00	177,5	1188.4	914.3	212.8	78.9		68.8	2.718
	16:00:00	176.0	1179.5			78.2	2,595	67.9	2.736
	17:00:00	152,0	1024,9	793.1		67.0	2.600	67,1	2.649
	18:00:00	122.2	826,9	642.2	162.3	55.52	2,592	85.3	2.596
	AVG	168.2	1134.8	672.4	205.2	74.68	2.902	73.3	3,466
	SD	16,2				6.87	0.293	6,73	
		1 -,-						411-	1
		4514	-100.5	224.7	2004	70.0			
6-Sep	8:00:00	174.3				78.6		60.59	
	9:00:00	173.9				<u>78.7</u>	2,872	60.29	
	10:00:00	167.8		673,6		76.5	3.021	59.58	
<u> </u>	11:00:00	175				79.3	2.977	59,84	
	12:00:00	174.9				78.9		60,71	2,993
	13,00:00	177.9				80		62,68	3.015
	14:00:00	170		678.6		76.2	2,923	69.36	
	15:00:00	174.9		913.9		77.4	2.646	63.61	2,744
	18:00:00	175.1	1193.1	912.7		78		64.2	2.772
	17:00:00	176				78.7	2.688	65.5	
<u> </u>	18.00.00	176,4	1194,2	913,8		79		64.1	2.796
	19:00:00	177.9				80.1	2.689	63.09	
	20:00:00	178.9	1198.2	923.3	214.5	80.1	2.889	62.67	2.751
	AVG	174.9		905.3		78.6		52.48	2.910
	SD	3,11	22.11	14.6	2,54	1.26	0.128	1.85	
				<u> </u>					!

Table 3-2 Unit 7 Operating Data (Sheet 6 of 8)

		Boller Feed Water Make-Up	Circulating HyD Out 7 East	Circulating H ₂ O Out 7 West	Throttle Strn Press	Atemperating Flow to 7 East Superheater	Atemperating Flow to 7 West Superheater	Coal Flow to Cyclone 7-1
DATE	TIME	gal/min	° f	· F	psig	klb/fra	klis/tur	(db/hr
5-Sep	8:00:00	13,60	84.3	85.Q	2375	7.743	22,65	36,65
	9:00:00	13,56	84,3	85,0	2382	6.612	60,56	36.6
	10:00:00	13.53	83.6	84.8	2389	9,13		37.6
	11:00:00	t3.18	80.9	83.6	2390	16.8	25.98	35.6
	12:00:00	13.37	81.1	82.4	2390	21,38	34.26	38.3
	13:00:00	13.33	82.7	84.7	2389	18.55	34.26	37.2
	14:00:00	13.00	80,3	B1 <u>.1</u>	2393	23.8	28.02	37.0
	15;00;00	13.05	80.4	61.0	2394	24.63	42.49	36,3
	16:00:00	13.13	80.1	80.8	2378	19,06	46,65	35.9
	17:00:00	13.19	79.2	79.8	2081	5.509	43.99	30,7
	18:00:00	13.31	77.0	77.6	1691.1	2.983	35.2	5.7
	AVG	13.30	81.3	82.3	2295.6	14.382	38.40	33.3
	SD	0,196	2.17	2.37	210,3	7.64	6,42	8.69
		<u> </u>					·	
6-Sep	8:00;00	20	83.2	78.1	2430	11.21	43.45	36.33
	9:00;00	t6.07		63.7	2424	3,436	34,34	36.0
	10:00:00	15,99	82,9	83,6	2306	5.84	26.73	40.6
	11:00:00	15,98	83.2	83,9	2401	3.398	27.8	38.90
	12:00:00	15,93	103.7	83,9	2397	3.422	30.91	36.80
	13;00;00	16,03	63	83.8	2404	3,425	35.55	38.40
	14:00:00	16,02	82.7	83.5	2307	5.111	29.35	37.6
	15:00:00	15,99	83.1	83,8	2395	3.141	29.77	37.5
	18:00:00	18	83.1	β3.9	2382	3,189	42.39	37.96
	17:00:00		82.8	83.6	2383	3.182	46.19	38.16
	18:00:00	15.99	82.8	83.5	2382	3.193	44,98	37.96
	19:00:00	15.94	83	63.9	2381	3.193	46.05	38.86
	20:00:00	15.94	83.4	84.2	2983	3.178	46,18	39.3
	AVG	15,99	83.0	83.8	2379	3,642	36.77	38.0
	SD	0.038	0.200	_0.214	34.50	0.840	7,92	1.10
							•	

Table 3-2 Unit 7 Operating Data (Sheet 7 of 8)

		Coal Flow to Cyclone 7-2	Coaf Flow to Cyclone 7-3	Coal Flow to Cyclone 7-4	7-1 Air/Fuel	7-2 Altr/Fuel	7-3 Air/Fuet	7-4 AidFuel	Gas to Economizer 7 East	Ges to Economizer West
DATE	TIME	klb/m	klb/mr	kib/hr	Ratio	Ratio	Ratio	Ratio	'F	*F
5-Sep	8:00:00	37.07	40,58	36,32	8,90	9.01	8.85	9.04	814.4	835.
3-3epi	9:00:00	36,95	41,02	36,33	8.91	9.00	8.89	9:04		832
	10:00:00	38.16	30.06	37,68	8.69	8,73	9.63	8.68		822
	11:00:00	36.39	42.43	36.13	6.91	8,99	9,10	8		828.
	12:00:00	36.63	43,09	36.62	6.84	8.91	8.93	8.65		832.
	13:00:00	37,5	43.4	37.18	8.73	8.8	8.69	8.79		830.
	14:00:00	37.37	43.84	37.22	8.7	8.77	8.66	8.77		825,
	15:00:00	138.66		37.68	9.00	9.11	8.96	8.88		831.
	16:00:00	36.26		37.34	9.00	9.13	8.97	8.68		633
	17:00:00	31	35.91	32.15	8.94	9,081	8.76	8.75		810
	18:00:00	35.2 9 ,		33.5	16.63	8.58	8.61	8.48	755.5	785
	ĀVG	36,30	39.76	36,20	9,59	6.92	8,95	6.83	805.2	624
	SD	1.82			2.29	0.17	0.25	0.15		14,
6-Sep	8:00:00	38,98	39,98	36,01	0		0		836.2	856
•-сер	9:00:00	39.27	39.27	38.15	8.66	8.94	8.84	6.64	816,3	846
	10:00:00	42.37	42.37	37.9	8.86	8.67	14.08	14.06		832
	11;00:00	39.6	39.6	35.55	8.92	8.98	9.15	9,15		845
	12:00:00	39.48	39.48	35.58	8.91	9	8.89	8,89		846
	13:00:00	40.86	40.86	35.73	8.92	8.95	9.18	9,18		839
	14:00:00	38.36	38.36	35.71	8.82	6.91	9.67	9,67	793,2	819
-	15:00:00	37,47	37.47	36.62	8.93	6.99	8.98	8,98	791.7	813
	16:00:00	37,91	37,91	35,8	8.97	9	9,03	9.03		815
	17:00:00	36,02	38.02	35.66	8	9,03	9.13	9.13	795.6	81
	18:00:00	37.8	37.8	35.64	9.05	9.09	9.19	9.19	795,8	819
	19:00:00	38.74	38.74	35.92	9.04	9.09	9.28	9,26		819
	20:00:00	39,32	39,32	35,98	8.99	9,01	9,21	9.21	797.5	621.
	AVG	39.10	38.80	38.05	8.94	9.00	9,57	9,57	802.2	82B
	SD	1,35	0,98	0,62	0.07	0.05	1,38(1,38		12,4

Table 3-2 Unit 7 Operating Data (Sheel 8 of 8)

		Exit Gas Temp 7 East	Exit Gas Temp 7 West	East Air Heater Gas Side AP	West Air Heater Gas Side ΔP
DATE	TIME	¹ F	* F	in we	in we
	8,00,00	297	296.5		7.756
5-Sep	8:00;00\ 9:00:00	299,9	296.6	5.427 5.47	7.736
	10:00:00	287.5	301.2	5.094	7.31
	11:00:00	297.4	294,B	5.428	7.808
	12:00:00	298,2	297.9	5.415	7.8
	13:00:00	297.7	299,5	5.525	7,965
	14:00:00	298.1	298.3	5.449	7.827
	15:00:00	299.6	299.1	5.544	7.95
	16:00:00	298,7	298.1	5,455	7.84
		280.7			
	17:00:00		299.3 303.2	4.271	6.142
	18:00:00	285.1	303.2	3,103	4.446
	AVG	294.5	298.6	5.107	7.9
	SD	8.41	2.20		1
	 -				
	···		·· ···		
6-Sep	8:00:00	314,2	311.8	5,589	7,964
	9:00:00	9,806	307.8	5.583	7,981
	10:00:00	297	305,3	5,348	7.662
	11:00:00	298.7	301	5.6559	6.09
	12:00:00	299.6	301.9	5.597	7,984
	13:00:00	301,4	300.8	5.766	6.23
	14:00:00	291.6	298.5	5.324	7,56
	15:00:00	295.3	296.7	5.498	7,866
	16:00:00	297.1	297.4	5. 5 07	7,865
	17:00:00	298.6	2 9 7.8	5.548	7,941
	18:00:00	299.2	297.7	5.591	7,982
	19:00:00	299.1	297.3	5.756	8.23
	20:00:00	298.3	297	5.715	8.16
	AVG	296.8	299.9	5.574	7.963
	SD	3.84	3.42	0.136	0.195
		3/04	5.42	0.130	V. (45)

Table 3-3 Unit 8 Operating Data (Sheet 1 of 8)

		Generator Gross Power	Uncorrected Gross Turbine	Total Feed H₂O Flow	Condensate Flow	Heater Drain Pump Flow	Economizer Outlet Temp	Cold Reheat Atemperating H ₂ O Flow
DATE	TIME	_11//	Btu/kWh	klb/hw	klib/hr	ldb/hr	• F	klib/hr
3-Sep	8:00:00	338,3	9483,0	2449	2245	311	614	96.9
	9:00:00	339.7	9750.2	2514	2277	302	618	89.4
	10;00:00	340.5	9580.3	2472	2216	306	605	62.6
	11:00:00	338,3	8686.7	2375	2045	320	617	80
	12:00:00	343.0	8684.7	2412	2082	334	615	76.3
	13:00:00	343.6	8720.4	2420	2064	334	614	69.6
	14:00:00	343,6	B792,9)	2424	2085	335	614	
	15:00:00	343.6	8812.0	. 2419	2060	329	815	69.2
	16:00:00	319.0	8767.4	2237	1904	263	614	75.4
	17:00:00	327.2	6698.0	2321	1992	294	811	67.2
	18:00:00	340.8	9676.41	2420	2067	329	810	50.0
	19:00:00	340.9	6680.6(2416	2063	327	611	51.4
	20:00:00	341.0	8675.3	2413	2064	325	811	57.
	AVG	338.4	8924.2	2407	2093	316	613	69.3
	ŠD	6,98	380,1	<u>55,4</u>	97.2	19,9	3,26	13.4
	\vdash	·	 					
4-Зер	8:00:00	344.2	8687.0	24,31	2065	328	609	50
	9:00:00	344,2	9687,01	24.21	2084	325	610	69.1
	10:00:00	343.9	8687.0	24.21	2065	329	611	68.7
	11:00:00	343.8	8687.0	24.22	2075	336		60.9
	12:00:00	343.5	8687.0	24.28	2077	333	610	55.1
	13:00:00	344.0	B687.0	24.19	2079	335	812	67.2
	14:00:00	343.7	8687,0	24,14	2083	330	813	73.9
	15:00:00	343,9	8687.0	2416	2060	330	613	68.1
	16:00:00	308.1	8687.0	2171	1661	255	813	54.4
	17:00:00	258.1	8687.0	1835	1541	124	606	27.3
	18:00:00	280.9	6687.0	1996	1670	174	598	29.
	AVG	327.1	8687.0	780.9	1975	291	609.6	57.
	SD	29.41	0.0	1009.3	186.9	71.1	4.18	14,

Table 3-3 Unit 8 Operating Data (Sheet 2 of 8)

		Boller Feed Water Flow from Boller Feed Pump 8W	Boiler Feed Water Flow from Boiler Feed Pump 8E	Total Air Flow	8 West Flue Ges O ₂	8 East Flue Gas O ₂	Amblent Temp	Air Healer Air Inlet Temp	Air Heater Air Outlet Temp
DATE	TIME	klb/hr	klb/kir	kfb/hr	%	*	*F	. Ł	*F
3-Sep	8:00:00	1211	1212	2951	2,6	2.45	71	127	531
- 2-2-2	9:00:00	1243	1244	2965	2.64	2.45		124.3	535
	10:00:00	1222	1224	2968	2.62	2.45	71	123,4	531
	11:00:00	1173	1174	2922	2.72	2,47	70		
	12:00:00	1192		2962	2.70	2.45	70		
	13;00;00	1197	1197	2971	2.74	2.46	70		
	14:00:00	1198		2976	2.74	2.47	70		
	15:00:00	1196		2966	2.72	2.46	71		537
	16:00;00	1103	1105	2766	2.84	2.58	72	122.7	535
	17:00:00	1145	1146	2823	2.67	244	72	131,1	532
	18:00:00	1197	1198	2924	2.73	2.45	69	126.5	633
	19:00:00	1194	1195	2914	2.66	2.47	6.9	125.2	533
	20:00:00	1192	1194	2899	2.62	2.44	68	124.9	533
		· · · · · · · · · · · · · · · · · · ·						1	
	AVG	1169		2924	2.69	2.46	70,3	124,1	535
	8D	33,3	33.2	61.0	0,064	0.035	1,14	2.94	244
						-			
4-Зер	8;00;00	1202	1204	2930	2.66	2.45	67	127.2	532
	9:00:00	1197	1198	2934	2.68	2,46	69	126.8	532 531
	10:00:00	1197	1198	2943	2.67	2.46	70	126.7	532
	11:00:00	1198	1199	2931	2.67	2.45	71	127.5	533
	12:00:00	1200		2936	2.72	2.46	73		
	13:00:00	1196		2944	2.6	2.44	74		533
	14:00:00	1193,		2958	2.59	2.45	75		
	15:00:00	1194	1195	2957	2.7	2.44	76		533
	16:00;00	1070	1070	2692	2,83	<u>2</u> 81	76		531
	17:00:00	899	899	2.87	2.87	2.75	75		522
	18:00:00	961	982	2.9	2.9	2.55	73	158,4	520
•	AVG	1139	1222	2385	2,72	2.52	72.6	131.4	530
	SD SD	102.0		1125.0	0.099	0.127	2.87	9.65	
								1	:

Table 3-3 Unit 8 Operating Data (Sheet 3 of 8)

		Flue Gas Temp to Economizer	Air Heater Gos Inlet Temp	Total Average Air Heater Gas Outlet Temp	Air Heater Gas Outlet Temp	West ESP Outlet Average Yemp	East ESP Outlet Average Temp	8 West Air Heater Het AP
DATE	TIME	* F	*F (*F		F	· · · · · · · · · · · · · · · · · · ·	in we
		<u> </u>		"	·			.
3-Sep	8:00:00	948	662	310.9	300.6	334	269	4.78
	9:00:00	951	670	312.1	301.4	335	290	4,8
	10:00:00	947	662	309.4	299.2	333	288	4.6
	11:00:00	950	669	3 <u>1</u> 1.7	301.5		290	4.77
	12:00:00	953	671	312	301.3	336	290	4.63
	13:00:00	955	671	311,4	300,6	336	289	4.84
	14:00:00	953	672	310.6	300.3	336	288	4.65
	16:00:00	951	671	310.5	300.5	335	288	4,63
	16:00:00	936	660	308.6	297,6	334	287	4,63 4.37
	17:00:00	934	657	311	300.1	335	288	4,51
	18:00:00	S41	683	312	301	338	290	4.73
	19:00:00	942	665	311.2	300,4	335	289	4.73
	20:00:00	941	667	310,8	300,2	335	288	4.7
		<u>- </u>						
	AVG	946	666	310.9	300,4	335	289	4.74
•	SD	6.58	4.77	0.988	0,995	0,829	0.973	0,137
	· • • • • • • • • • • • • • • • • • • •						·	
4-Sep	8:00:00	830	663	311.7	300	335	290	4.76
	9:00:00	932	661	311	300.4	334	290	4,76
	10:00:00	937	682	311.3	301.4	334	289	4.77
	11:00:00	936	663	312.5	300.9	336	290	4.7
	12:00:00	937	664	312.1	300,9	336	290	4.79
	13:00:00	941	664	312,1	300,9	335	290	4.76
	14:00:00	941	664	312.1	300.8	335	290	4,81
	15:00:00	943	665	312	300.7	338	290	4.61
	16:00:00	926	657	308.8	296.6	334	288	4.16
	17:00:00	898	637	306.5	294.7	330	285	3.2
	18:00:00	504	634	314.7	302.7	335	293	3.46
	AVG	930	658	311.3	300.0	335	290	4.4
	SO	14,34	10,65	2,021	2.197	1.616	1.827	0,554
								· · · · · · · · · · · · · · · · · · ·

Table 3-3 Unit 8 Operating Data (Sheet 4 of 8)

DATE TUNE Codd aP East Week Week Week Hope Town Flow 3-Sep 6-000 5-63 2-4 2-41 2-63 2-67 62-4 30.6 1-Sep 9-0000 5-63 2-46 2-36 2-66 2-77 47 30.6 1-10000 5-67 2-46 2-46 2-46 2-66 2-77 47 30.6 1-10000 5-67 2-46 2-46 2-46 2-46 2-77 47 30.6 1-10000 5-67 2-46 2-47 2-66 2-77 47 30.6 1-10000 5-67 2-46 2-47 2-66 2-77 47 30.6 1-10000 5-68 2-46 2-47 2-66 2-77 47 30.6 1-10000 5-68 2-46 2-47 2-66 2-77 47 30.4 1-10000 5-68 2-76 2-77 47 30.4 30.4			8 West Air Heater	O ₂ Probe 1	O ₂ Probe 2	O ₂ Probe 1	O ₂ Probe 2	Condenser Make	Total Cost
TiME h we % % % % % % % % h we galimin MM			Cold ∆P	East	East	West	West	Up Flow	Plow
BCOLOD 5.881 2.48 2.41 2.69 2.67 62.4 9.00.00 5.87 2.49 2.39 2.56 2.67 47.2 11.00.00 5.87 2.49 2.39 2.56 2.69 3.77 43.2 11.00.00 5.87 2.49 2.49 2.49 2.49 2.79 68.9 11.00.00 5.89 2.48 2.42 2.68 2.79 68.9 13.00.00 5.89 2.48 2.47 2.68 2.79 68.8 14.00.00 5.89 2.48 2.42 2.68 2.77 68.8 14.00.00 5.89 2.48 2.47 2.68 2.77 68.8 14.00.00 5.89 2.48 2.47 2.68 2.77 68.8 15.00.00 5.81 2.49 2.29 2.68 2.72 68.8 15.00.00 5.81 2.49 2.42 2.68 2.73 61.8 5.73 2.49	DATE	TIME	in wc	*	*	9%	×	gathrein	klbfr
BOOLOO 5,657 2,48 2,41 2,69 2,67 2,67 2,41 2,59 2,56 2,67 3,27 47 11,00,000 5,644 2,48 2,48 2,48 2,49 2,59 2,56 2,77 43,2 11,00,000 5,64 2,48 2,41 2,63 2,74 2,63 2,77 43,2 13,00,00 5,69 2,48 2,47 2,63 2,72 2,78 68,8 14,00,00 5,89 2,48 2,74 2,68 2,77 64,8 15,00,00 5,48 2,46 2,47 2,68 2,77 64,8 15,00,00 5,48 2,48 2,48 2,59 2,77 64,8 15,00,00 5,49 2,49 2,47 2,69 2,77 64,8 15,00,00 5,49 2,49 2,42 2,69 2,77 64,8 15,00,00 5,41 2,49 2,44 2,49 2,44 2,49 2,44 <th></th> <th> </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
900000 5.87 2.48 2.39 2.56 2.77 47 10:00:00 5.64 2.48 2.39 2.56 2.77 43.5 11:00:00 5.87 2.48 2.41 2.63 2.77 43.5 13:00:00 5.89 2.48 2.41 2.63 2.77 45.8 14:00:00 5.89 2.48 2.42 2.68 2.77 64.8 15:00:00 5.89 2.48 2.41 2.76 2.79 64.8 16:00:00 5.84 2.48 2.42 2.66 2.77 64.8 16:00:00 5.74 2.49 2.39 2.65 2.77 61.5 20:00:00 5.74 2.49 2.36 2.72 66.9 66.9 20:00:00 5.74 2.49 2.36 2.74 2.69 66.9 20:00:00 5.74 2.49 2.41 2.65 2.74 66.9 5.00 6.74 2.49 2.41	3-Sep					I	``' 	62.4	
100000 6.64 2.46 2.39 2.56 2.66 91.6 11,0000 5.87 2.48 2.43 2.65 2.77 63.2 12,0000 5.87 2.48 2.43 2.62 2.77 63.5 12,0000 5.89 2.48 2.42 2.68 2.77 63.5 14,0000 5.89 2.48 2.41 2.66 2.77 63.8 15,0000 6.48 2.46 2.44 2.45 2.47 2.6 2.77 64.8 16,0000 6.78 2.46 2.44 2.65 2.77 64.8 16,0000 6.78 2.49 2.39 2.66 2.77 64.8 16,0000 6.78 2.49 2.36 2.44 2.65 2.72 66.9 Av.G 6.76 2.49 2.34 2.42 2.64 2.73 66.9 5D 2.41 2.42 2.42 2.42 2.42 2.44 2.44 2.45 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
11:00:00 5.78 2.48 2.45 2.45 2.77 43.2 12:00:00 5.87 2.46 2.41 2.63 2.73 65.9 13:00:00 5.89 2.42 2.63 2.79 63.9 14:00:00 5.89 2.64 2.42 2.66 2.77 66.8 16:00:00 5.81 2.62 2.24 2.66 2.77 66.8 16:00:00 5.81 2.62 2.4 2.66 2.77 66.8 16:00:00 5.82 2.46 2.42 2.66 2.77 66.8 16:00:00 5.8 2.46 2.42 2.66 2.72 61.5 16:00:00 5.7 2.49 2.42 2.66 2.72 66.9 Ave 5.7 2.49 2.42 2.69 2.64 12.76 5.0 6.78 2.42 2.62 2.72 66.9 5.0 6.7 2.42 2.62 2.72 66.9 <		10:00:00							
12,00,00 5,67 2,46 2,41 2,63 2,79 65,5 13,00,00 5,69 2,48 2,42 2,68 2,79 65,8 13,00,00 5,69 2,23 2,48 2,73 2,68 2,77 64,8 15,00,00 5,81 2,46 2,46 2,46 2,47 2,46 2,78 2,79 66,8 17,00,00 5,84 2,46 2,42 2,56 2,79 66,8 66,8 67,8		11:00:00							
13:00:00 5.89 2.49 2.42 2.69 2.79 72 14:00:00 5.89 2.87 2.51 2.77 64.8 14:00:00 6.21 2.85 2.77 68.9 16:00:00 6.21 2.86 2.77 69 16:00:00 6.78 2.46 2.39 2.65 2.79 6.8 17:00:00 6.78 2.49 2.39 2.65 2.79 6.8 18:00:00 6.78 2.49 2.39 2.65 2.79 70.3 4VG 6.76 2.49 2.39 2.65 2.79 70.3 AVG 6.76 2.49 2.39 2.69 2.72 61.5 AVG 6.76 2.69 2.42 2.69 2.75 66.8 SUC 6.78 2.44 2.42 2.6 2.73 66.8 BCOCC 6.87 2.43 2.42 2.6 2.73 66.9 14:00:00 6.89		12:00:00							
14COCOO 5.8 2.62 2.39 2.68 2.77 64.8 15COCOO 5.89 2.5 2.4 2.65 2.77 64.8 15COCOO 5.84 2.46 2.45 2.46 2.7 60.8 15COCOO 5.8 2.49 2.39 2.65 2.72 60.5 19COCOO 6.78 2.49 2.39 2.65 2.72 60.5 20.00.00 6.78 2.49 2.35 2.66 2.72 61.5 4VG 5.7 2.49 2.35 2.64 2.72 61.5 AVG 5.7 2.49 2.35 2.64 2.75 65.8 5.0 6.76 2.40 2.42 2.56 2.75 65.8 5.0 6.79 2.44 2.42 2.64 2.75 65.8 5.0 6.79 2.44 2.42 2.64 2.73 67.5 5.0 6.87 2.42 2.62 2.74 60.8		13:00:00							
15:00:00 5.89 2.5 2.4 2.65 2.77 64.9 16:00:00 5.21 2.63 2.51 2.76 2.9 51.5 17:00:00 5.78 2.49 2.39 2.65 2.72 69.5 18:00:00 5.78 2.49 2.39 2.64 2.72 61.5 20:00:00 5.78 2.49 2.35 2.64 2.69 2.72 61.5 20:00:00 5.74 2.49 2.35 2.84 2.72 61.5 AVG 5.76 2.50 2.41 2.62 2.75 65.8 SD 0.193 0.041 0.035 0.084 0.064 12.76 SD 2.40 2.42 2.61 2.73 67.5 SD 2.43 2.42 2.61 2.74 69.8 10:00:00 5.81 2.42 2.61 2.73 67.5 11:00:00 5.82 2.42 2.61 2.73 67.4 <t< td=""><td></td><td>14:00:00</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>		14:00:00							
16:00:00 5.21 2.63 2.51 2.76 2.9 51.5 17:00:00 5.46 2.46 2.4 2.6 2.73 69 18:00:00 6.78 2.49 2.39 2.65 2.72 61.5 20:00:00 6.76 2.49 2.36 2.54 2.69 68.5 20:00:00 6.76 2.50 2.41 2.62 2.54 2.69 66.9 AVG 6.76 2.50 2.41 2.62 2.75 66.9 67.5 SD 6.193 0.041 0.035 0.094 0.064 12.75 67.5 SD 6.193 0.041 0.035 0.094 0.064 12.75 67.5 SD 2.49 2.42 2.6 2.73 67.5 67.5 SD 2.49 2.42 2.6 2.73 67.5 67.5 11:00:00 5.81 2.48 2.42 2.6 2.73 67.5 14:00:00		15:00:00							
18:00:00 5.46 2.46 2.46 2.46 2.47 2.65 2.79 70.3 18:00:00 5.74 2.49 2.39 2.65 2.79 70.3 19:00:00 5.74 2.49 2.36 2.54 2.75 61.5 20:00:00 5.74 2.49 2.36 2.54 2.68 68.5 AVG 6.76 2.50 2.41 2.62 2.75 66.8 SD 0.193 0.044 0.035 0.064 0.064 12.76 SD 0.193 0.044 0.035 0.064 0.064 12.76 SD 0.194 0.035 0.064 0.064 12.76 66.8 SD 2.48 2.42 2.61 2.73 66.8 12.74 SD 2.49 2.36 2.64 2.73 66.8 1.4 SD 2.49 2.39 2.64 2.73 66.1 6.91 SD 2.49 2.78		16:00:00			<u> </u>	2,76			
18:00:00 5.8 2.49 2.39 2.65 2.79 70.3 18:00:00 6.78 2.49 2.35 2.54 2.72 61.5 20:00:00 6.76 2.49 2.35 2.41 2.62 2.75 65.9 AVG 6.76 2.50 2.41 2.62 2.75 65.9 SD 0.199 0.041 0.035 0.064 0.064 12.76 SD 0.126 0.241 2.42 2.64 2.73 67.3 11:00:00 5.81 2.41 2.86 2.74 71.8 12:00:00 5.91 2.42 2.86		17:00:00				2.6			
19:00:00 6.78 2.49 2.42 2.58 2.72 61.5 20:00:00 5.74 2.49 2.35 2.54 2.59 6.54 66.8 AVG 6.76 2.50 2.41 2.62 2.75 66.8 SD 6.75 0.041 0.035 0.094 0.064 12.76 SD 6.77 6.75 6.75 66.8 66.8 66.8 SD 6.87 2.42 2.61 2.73 67.5 67.3 10.00:00 5.87 2.48 2.42 2.6 2.73 67.5 12:00:00 5.81 2.42 2.6 2.73 67.5 12:00:00 5.81 2.42 2.6 2.73 67.3 12:00:00 5.81 2.42 2.6 2.73 67.3 14:00:00 5.81 2.42 2.6 2.73 67.3 15:00:00 5.82 2.47 2.8 2.64 2.73 67.3		18:00:00				2,65	279		
20:00:00 5.74 2.49 2.36 2.54 2.69 2.64 2.69 66.8 AVG 6.76 6.76 2.50 2.41 2.62 2.75 65.8 SD 0.193 0.044 0.035 0.064 0.064 12.75 65.8 SD 5.88 2.48 2.42 2.6 2.73 67.5 8:00:00 5.87 2.48 2.42 2.6 2.73 67.5 10:00:00 5.81 2.43 2.42 2.6 2.73 68.8 11:00:00 5.81 2.42 2.6 2.73 68.1 14:00:00 5.81 2.42 2.8 2.64 2.74 71.8 15:00:00 5.91 2.49 2.39 2.64 2.74 71.8 15:00:00 5.94 2.47 2.39 2.63 2.49 69.7 18:00:00 4.2 2.83 2.75 2.83 5.1.2 18:00:00 4.2 2.		19:00:00				2.58	2.72		İ
AVG 5.76 2.50 2.41 2.62 2.75 65.9 SD 0.193 0.041 0.035 0.064 0.064 12.75 SD 6.193 0.041 0.035 0.064 0.064 12.75 SD 6.193 0.041 0.035 0.064 0.064 12.75 SD 6.193 2.48 2.44 2.61 2.73 67.5 SOCCO 5.89 2.49 2.49 2.49 2.41 2.64 2.73 12:00:00 5.91 2.42 2.64 2.73 69.3 14:00:00 5.94 2.47 2.39 2.64 2.74 71.8 15:00:00 5.94 2.47 2.39 2.63 2.73 69.3 16:00:00 5.94 2.47 2.39 2.63 2.63 2.73 69.3 16:00:00 5.94 2.47 2.39 2.63 2.73 6.23 6.46 AVG 5.47 2.		20:00:00				2,54	2.68		
AVG 6.76 2.50 2.41 2.62 2.75 66.9 SD 0.193 0.041 0.035 0.084 0.064 12.75 SD 0.193 0.041 0.035 0.084 0.064 12.75 SCOCCO 5.82 2.43 2.4 2.61 2.73 67.5 9c0cco 5.87 2.43 2.42 2.6 2.74 60.8 10c0co 5.87 2.43 2.42 2.6 2.73 67.3 11c0co 5.81 2.43 2.42 2.6 2.73 67.3 12c0co 5.81 2.43 2.36 2.64 2.73 67.3 12c0co 5.82 2.47 2.39 2.54 2.74 71.8 15:00:00 5.96 2.47 2.39 2.64 2.73 68.3 15:00:00 5.91 2.43 2.76 2.73 68.3 15:00:00 5.92 2.47 2.73 2.63 2.64<		_							
SD 0.041 0.035 0.064 0.064 12.75 8:00:02 5.88 2.48 2.4 2.6 2.73 67.5 9:00:02 5.87 2.48 2.42 2.6 2.74 60.8 10:00:00 5.87 2.48 2.42 2.6 2.73 67.3 11:00:00 5.81 2.48 2.38 2.6 2.73 67.3 12:00:00 5.81 2.49 2.38 2.64 2.73 67.3 13:00:00 5.81 2.42 2.6 2.73 67.3 14:00:00 5.81 2.49 2.38 2.64 2.74 60.8 14:00:00 5.81 2.47 2.39 2.64 2.74 71.8 15:00:00 5.91 2.49 2.75 2.49 2.75 2.89 51.4 15:00:00 5.91 2.83 2.64 2.75 2.89 51.2 4VG 5.47 2.89 2.75 2.89 <t< td=""><td></td><td>AVG</td><td>92.9</td><td></td><td>2.41</td><td>2.62</td><td>2.75</td><td></td><td>308.5</td></t<>		AVG	92.9		2.41	2.62	2.75		308.5
8:00:00 5:88 2:48 2:4 2:61 2:73 67.5 9:00:00 5:87 2:48 2:42 2:6 2:74 60.8 10:00:00 5:87 2:48 2:42 2:6 2:73 66.8 10:00:00 5:87 2:49 2:49 2:39 2:6 2:73 66.8 12:00:00 5:81 2:47 2:39 2:64 2:78 69.1 13:00:00 5:92 2:47 2:39 2:64 2:78 69.1 14:00:00 5:96 2:47 2:39 2:64 274 71.8 15:00:00 5:96 2:47 2:39 2:63 2:73 69.3 16:00:00 5:96 2:47 2:39 2:63 2:73 68.3 16:00:00 5:96 2:47 2:39 2:63 2:63 2:63 2:63 17:00:00 4:2 2:47 2:89 2:75 2:95 64.6 AVG 5:47 <		SD	0,199		0.035	0.064	0.064		6.25
8:00:00 5.88 2.48 2.4 2.61 2.73 67.5 9:00:00 5.87 2.48 2.42 2.6 2.74 60.8 10:00:00 5.89 2.49 2.42 2.6 2.73 67.3 11:00:00 5.81 2.49 2.38 2.64 2.73 67.3 12:00:00 5.81 2.52 2.39 2.64 2.78 67.1 13:00:00 5.89 2.47 2.39 2.63 2.64 67.1 16:00:00 5.98 2.47 2.39 2.63 2.74 71.8 16:00:00 5.98 2.47 2.39 2.63 2.75 2.89 69.3 16:00:00 5.01 2.83 2.64 2.75 2.83 51.2 AVG 5.47 2.85 2.47 2.85 2.47 2.85 64.6 SD 0.096 0.096 0.096 0.096 0.096 0.096 0.096								•	
8:00:C0 5.88 2.48 2.4 2.61 2.73 67.5 9:00:00 5.87 2.48 2.42 2.6 2.74 60.8 10:00:00 5.89 2.49 2.41 2.6 2.73 67.3 11:00:00 5.81 2.49 2.39 2.64 2.73 67.1 12:00:00 5.81 2.62 2.78 2.78 67.1 13:00:00 5.82 2.47 2.39 2.64 2.74 71.8 15:00:00 5.98 2.47 2.39 2.63 2.74 71.8 16:00:00 5.98 2.47 2.39 2.63 2.75 2.89 51.4 16:00:00 5.01 2.83 2.64 2.75 2.83 51.2 4VG 5.47 2.84 2.47 2.85 2.63 2.75 69.7 AVG 5.47 2.85 2.47 2.85 64.6 67.6 5D 5D 5D 5D									
LOCKOO 5,87 2,48 2,42 2,6 2,74 60,8 LOCKOO 5,89 2,5 2,41 2,6 2,73 68,8 67,3 COCKOO 5,81 2,42 2,38 2,6 2,73 66,8 67,3 COCKOO 5,81 2,62 2,78 2,78 67,1 67,1 COCKOO 5,98 2,47 2,39 2,63 2,64 2,74 71,8 COCKOO 5,01 2,88 2,47 2,39 2,63 2,74 71,8 COCKOO 5,01 2,88 2,47 2,39 2,63 2,74 71,8 COCKOO 5,01 2,83 2,63 2,75 2,83 51,4 71,4 COCKOO 3,7 2,83 2,64 2,75 2,83 51,2 69,7 COCKOO 4,2 2,53 2,47 2,83 2,63 5,64 67,6 COCKOO 5,47 2,63 2,75 2,83	4-8ep		5.88		2.4	2.61	2.73		
(OCCOO 5,69 2.5 2.41 2.6 2.73 68.8 (OCCOO 5,9 2.49 2.38 2.64 2.73 67.3 (OCCOO 5,91 2.62 2.39 2.64 2.76 69.1 (OCCO) 5,92 2.47 2.39 2.63 2.64 67 (OCCO) 5,98 2.40 2.39 2.63 2.74 71.8 (OCCO) 5,98 2.47 2.39 2.63 2.74 71.8 (OCCO) 5,01 2.83 2.76 2.75 2.89 51.4 (OCCO) 3,7 2.83 2.63 2.75 2.83 51.2 (OCCO) 4,2 2.53 2.64 2.75 2.85 64.6 (OCCO) 5,47 2.85 2.47 2.86 2.78 6.76 (OCCO) 4,2 2.55 2.47 2.85 64.6 67.6 (OCCO) 5,47 2.64 2.78 6.78		9:00:00							
:00:00 5.9 2.49 2.38 2.64 2.73 67.3 :00:00 5.91 2.62 2.39 2.64 2.76 69.1 :00:00 5.96 2.47 2.39 2.69 2.64 67 :00:00 5.96 2.49 2.39 2.63 2.74 71.8 :00:00 5.91 2.47 2.39 2.63 2.73 68.3 :00:00 5.01 2.83 2.76 2.75 2.89 51.4 :00:00 4.2 2.8 2.64 2.75 2.83 51.2 :00:00 4.2 2.53 2.64 2.75 2.85 69.7 :00:00 6.770 0.126 0.127 0.086 0.084 6.78		10:00:00				İ			
1.00,00 5.81 2.52 2.39 2.64 2.76 69.1 1.00,00 5.92 2.47 2.39 2.65 2.64 67 1.00,00 6.96 2.49 2.39 2.63 2.73 68.3 1.00,00 5.01 2.83 2.76 2.75 2.89 61.4 1.00,00 4.2 2.83 2.64 2.75 2.83 61.4 1.00,00 4.2 2.83 2.64 2.83 51.2 1.00,00 4.2 2.53 2.64 2.83 69.7 1.00,00 6.97 2.85 2.47 2.86 2.78 64.6 1.00,00 0.770 0.126 0.127 0.086 0.084 6.78 1.00,00 0.770 0.126 0.127 0.086 0.084 6.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.126 0.127 0.086 0.084 0.78 1.00,00 0.770 0.786 0.787 0.086 0.084 0.78 1.00,00 0.770 0.786 0.787 0.086 0.085 0.78 0.78 1.00,00 0.770 0.786 0.787 0.786 0.787 0.785		11:00:00							
1,00,00 5,92 2,47 2,39 2,55 2,64 67 1,00,00 6,96 2,49 2,39 2,64 2,74 71,8 1,00,00 5,91 2,47 2,39 2,63 2,73 68.3 1,00,00 3,7 2,83 2,76 2,75 2,89 61,4 1,00,00 4,2 2,53 2,64 2,83 2,83 69.7 1,00,00 4,2 2,53 2,47 2,66 2,78 64,6 5,47 2,56 2,47 2,66 2,78 64,6 0,770 0,126 0,127 0,086 0,084 6,78		12:00:00		j				-	
100.00 5,96 2,49 2,39 2,64 2,74 71,8 71,8 1,00.00 5,98 2,47 2,39 2,63 2,75 68,3 68,3 1,00.00 5,01 2,83 2,78 2,83 51,2 1,00.00 4,2 2,53 2,54 2,83 2,85 69,7 2,65 2,47 2,85 2,47 2,85 6,46 2,78 6,48 2,78 6,48 2,78 6,48 2,78 6,48 2,78 6,48 2,78 2,85 2,47 2,85 2,47 2,85 2,47 2,85 2,47 2,85 2,47 2,85 2,47 2,85 2,47 2,85 2,48		13:00:00							
(100:00 5.98 2.47 2.99 2.63 2.73 68.3 (100:00 5.01 2.83 2.76 2.75 2.89 61.4 (100:00 4.2 2.83 2.68 2.79 2.83 61.2 (100:00 4.2 2.53 2.64 2.83 2.85 69.7 5.47 2.55 2.47 2.66 2.78 64.6 7.70 0.126 0.127 0.086 0.084 6.78		14:00:00							
100:00 5.01 2.83 2.76 2.75 2.89 61.4 100:00 3.7 2.8 2.68 2.79 2.83 51.2 100:00 4.2 2.53 2.64 2.83 2.85 69.7 5.47 2.55 2.47 2.66 2.78 64.6 0.770 0.126 0.127 0.086 0.084 6.78		15:00:00							
100:00 3.7 2.8 2.68 2.79 2.63 51.2 1:00:00 4.2 2.53 2.64 2.83 2.95 69.7 5.47 2.55 2.47 2.86 2.78 64.8 0.770 0.126 0.127 0.086 0.084 6.78		18:00:00							
1.00.00		17:00:00							
5.47 2.55 2.47 2.65 2.78 64.6 0.770 0.126 0.127 0.096 0.034 6.78		(8:00:00	•						
5.47 2.55 2.47 2.65 2.78 64.6 0.770 0.126 0.127 0.096 0.034 6.78									ļ
0,770 0,126 0,127 0,086 0,094 6,78		AVG	5.47			2.08	2.78		
		SD	0.770			0.096	0.094		
						İ			

Table 3-3 Unit 8 Operating Data (Sheet 5 of 8)

		Generator Gross Power	Uncorrected Gross Turbine	Total Feed H ₂ O Flow	Condensate Flow	Heater Drain Pump Flow	Economizer Outlet Temp	Cold Reheat Atemperating H ₂ O Flow
DATE	TIME	MWV	BlukWh)div/hr	klb/hr	klb/hr .	*F	klb/hr
6-Sep	8:00:00	342.3	8687.0	2417	2068	330	611	
	9:00:00)	343.2	8687.0	2430	2072	332	610	50 .
	10:00:001	344.5	8687.0	2029	2084	335	611	67.
{	11:00:00	342.9	6687,0	2014	2073	332	613	76.
	12:00:00	342.7	6687.0	2025	2064	330	<u>. </u>	54.
	13:00:00	344.7	6687.0	2039	2080	333	612	51.
	14:00:00	345,2	8687.0	2035	2091	336	613	
	15:00:00	344.9	8687.0	2437	2084	335	613	54.
	16:00:00	345.1	8687.0	2439	2065	333	613	52.
	17:00:00	345.3	8687.0	2435	2093	335	614	64.
	18:00:00	339.4	8687.0	23 85	2053	327	615	71.
	AVG	343.7	8687.0	2244.1	2077	333	6125	60
	SD	1.71	0.0	197.5	11,6	2.6	1.37	Ø
						· • • • • • • • • • • • • • • • • • • •		· — — —
6-Sep	8:00:00	345.4	8687.0	2430	2092	338	613	67.
	9:00:00(345.3	9687.0	2419	2092	339	615	77.
	10:00:00	345.1	8687.0	2416	2091	337	616	81 .
	11;00:00	345.1	8687.0	2413	2091	338	616	82
	12:00:00	345.0	8687.0	2412	2089	336	61 <u>7</u>	60.
	13:00:00	345.1	8687.0	2412	2089	339	616	80.
	14:00:00	345.1	8687.0	2407	2089	338	617	95 .
	15:00:00	345.1	8687.0	2407	2090	339	618	87,
	16:00:00	345.3		2404	2088	338	618	96.
	17:00:00	344.9	8687,0	2414	2075	334	616	66.
}	18:00:00	345.0		2429	2082	337	<u> </u>	56.
	19:00:00	345.2	8687.0	2430	2087	336	612	61.
	20:00:00	344.9	8687.0	2437	2082	334	812	49.
-	AVG	345.1	8687.0	2417.7	2087	337	615.4	, 74.
	SD	0.15	0.0	10.1	4.8	1.7	1,98	12

Table 3-3 Unit 6 Operating Data (Sheet 6 of 8)

DATE	TIME	Boiler Feed Water Flow from Boiler Feed Pump 8W kb/hr	Boiler Feed Water Flow from Boiler Feed Pump 8E kilofur	Total Air Flow	8 West Flue Gas O ₂	8 East Flue Gas O ₂	Ambient Temp	Air Heater Air Inlet Temp	Air Heater Air Outlet Temp
DAIL	* * * * * * * * * * * * * * * * * * * *	range a	NEATO.	POLON II	-		•	•	<u> </u>
5-Sep	8:00:00	1195	1195	2922	2.69	2.47	72	127	532
	9:00:00	1201	1203	2939	2.64	2.47	72	125,6	532
	10:00:00	1199	1200	2960	2.56	2,44	72	124.8	537 532
	11:00:00	1188	1189	2943	2,65	2,46	72	125.7	531 532 532 531 531
	12:00:00	1194	1196	2931	2.64	2.46	72	125,2	532
	13:00:00	1204	1205	2944	2.64	2,43	71	125.2	532
	14:00:00	1201	1203	2963	2.75	2.45	71	125.5	531
	15:00:00	1204	1206	2960	2.73	2.46)	70	124,9	532
	16:00:00	1206	1207	2948	2.77	2.44			533
	17:00:00	1204	1205	2963	2.77	2.45	69	124.1	534
	18:00:00	1157	1202	2904	2.65	2.48	68	123.2	535
	AVG	1196	1201	2943	2.68	2.45	70.8	125.1	532
	SD	13,3	5,2	17.9	0.064	0.012	1,34	0.92	1.15
						<u> </u>			
6-Sep	8:00:00	1202	1203	2957	2.58	2.45	63	123.4	534
	9:00:00	1197	1198	2960	2.66	2.45	62	121.1	534 535
	10:00:00	1195	1196	29 68	2.72	2.48	61	120.4	\$36
	11:00:00	1194	1195	2973	2.73	2.45	63	120.2	537
	12:00:00	1193	1194	2976	2.82	2.47	66	120.2	536 537 536 538
	13:00:00	1193	1195	2967	2.77	2.48	68	119.3	536
	14;00;00	1190	1192	2948	2.69	2,45	68	118.3	539
i	15:00:00	1191	1192	2952	2,69	2.46	66	117.5	540 540 536 536
	16:00:00	1189	1190	2951	2.70	2.47	67	117.0	540
	17:00:00	1194	1195	2925	2.85	2.45	68	116.7	538
	18:00:00	1202	1203	2941	2.67	2.46	66	118,9	536
	19:00:00	1202	1203	2937	2.65	2.44		119.7	536
	20:00:00	1206	1207	2952	2.77	2.48	68	119.9	535
	AVG	1198	1197	2954	2.71	2.48	85.1	119,4	537
	\$D	5,2	5.0	14,0	0.052	0.012	2.02	1.75	1.85

Table 3-3 Unit 8 Operating Data (Sheet 7 of 8)

		Flue Gas Temp to	Air Heater Gas	Total Average Air Heater	Air Heater Gas	West ESP Outlet	East ESP Outlet	8 West Air Heater
	l {L	Economiter	Inlet Temp	Ges Outlet Temp	Outlet Temp	Average Temp	Average Temp	Hot AP
DATE	TIME	*F	*F	* F	F	- F	• #	in, Was
5-8ep	6:00:00	936	664	312.5	301.3	337	292	4.7
	9:00:00	938	665	311.4	300.5	336	289	4.7
	10:00:00	936		311	300,4	336	289	4.8
	11:00:00	938	684	\$10,3	299,9	335	288	4,7
_	12:00:00	939	665	311	300.4	336	289	4.7
	13:00:00	939	685	310.8	300.1	336	289	
	14:00:00	839	685	311	300.3	336	289	4.8
	15:00:00	942	666	311,6	300.6	3371	289	4.8
	16:00:00	943	687	911,3	300.3	337	288	4.
	17:00:00	\$46	869	311,4	300.6	237	288	
	18:00:00	948	688	310.5	299.7	336	287	4,6
	ĀVĢ	941	666	311.2	300.4	336	289	4.7
	SD	4.05		0.586	0,398	0,617	1,192	
							<u>-</u> .	· · · -
6-Sep	8;60:00	947	670.	311.3	300,5	334	293	4.6
	9:00:00	949		310.6	300.3	334	292	4.8
	10:00:00	952	871	310,7	300,5	335	292	4.8
	11:00:00	953	672	311.0	300,9	335	29 2	4.6
	12:00:00	954	673	311.7	301.3	336	293	4,8
	13;00:00)	954	874,	, 311,3	301,0	336	293	4.8
	14:00:00	957	674	311,0	300,8	336	292	4.8
	16:00:00	958	676	311,1	300,8	336	292	4.8
	16:00:00	955	678	311.2	300.9	336	292	4.8
	17:00:00	952	674	309.8	299.1	336	292	4.7
	18;00:00	953	674	309.5	299.2	335	291	4.7
	19:00:00	948	673	310,5	300,2	335	292	4.6
	20:00:00	946	672	310.3	300.2	335	292	4.8
	AVG	952	673	310,8	300,4	335	292	4.6
	SD	3,57	2.16		0.633	0.722	0.533	0.03

Table 3-3 Unit 8 Operating Data (Sheet 8 of 8)

۴	\dagger	ADMIT ADMIT	648	68.2 311.6	65.7 313.2					62.6 312.5		68.7 310.8	Ì	65.0 310,9	4.65 2.03	685 3140	59.9 314.0	ļ		65.6 315.9		66.3 317.1			66.5 347.1		67.5 317.9			2466
₩ 2•		VILLIAND &	974	2.69	2.6	2.69	2.69	269	2,8	2.77	2.82	2,83	2.7	2.73	0.067	274	271	277	279	2.36	2.82	2.75	2.74	2.75	2.72	2.74	272	2.83		2.78
=	West	*	2 63	258	2.5	2,58	2.58	2,58	268	2.68	2.7	2.7	2.59	2.62	0.062	2.58	259	2.65	266	276	2,69	2.61	2.63	2.63	2.57	2.58	257	269		88
9.2	1564	*	2.44	241	2.38	2.38	2.38	2,35	2,38	2.38	2.37	239	2.42	239	0.024	237	240	241	2.38	2.41	242	2.41	2.41	2.38	2.41	239	2.39	2.42		245
Ξ	1582	*	2 48	2.54	2.46	2.52	2.53	2,49	2.49	2.53	2.49	2.49	2.49	2,50	0.018	2.64	2.48	2.48	2.49	2.50	2.62	2.47	2.47	2.54	2.47	2.50	2.47	2.51		240
3404	2000	da we		888		!						6.04		5.89	0000	90.9									8.02					6.30
	ļ	TIME	⊥	00:00-6	10:00:00	11:00:00	12:00:00	13:00:00	14:00:00	15:00:00	\$6:00:00	17:00:00	18:00:00	AVG	SD	1	3.00.00	10:00:00	11:00:00	12:00:00	13:00:00	14:00:00	15:00:00	16:00:00	17:00:00	18:00:00	19:00:00	20:00:00	į	80
	1	DATE	S.San													8.8en										:				

Tab. --4
AFGD Operating Data (Sheet 1 of 12)

DATE	TIME	Unit #7 Air Flow ib/hr	Unit #8 Air Flow Ib/hr	Unit #7 Load	Unit #8 Load	Unit #7 Opacity %	Unit #8 Opacity %	#7 Duct Pressure in H ₂ O	#8 Duct Pressure In H ₂ O	Pressure Before Mist Eliminator in H ₂ O	Pressure After Mist Eliminator In H ₂ O	#8 Air Heater Outlet Duct Temp
3-Sep	8:00	1002.16	2958,72	163,17	342,81	18.98	12.55	8.261	7,678	2.644	0.713	372.64
3-3 - 0	9:00	832.57	2974.82	134.80		15.97	12.57	7.231	8.725		0.447	374,34
	10.00	983.55	2971.88	160.26	345.04	26.37	14.09	7.936	7.368	2,647	0.561	379.98
	11:00	978,50		163.15	334.29	26.62	11.24	7.904	7.381	2,999	0,904	372.12
	12:00		2971.40	163.92	346.10	26.51	12.71	8.027	7.476		0.669	375.27
	13:00			182,99	348,20	27.02	12.51	8,295	7.753	2.936	0.792	375.14
	14:00			162.56	348.14	27.29	12.32	8.204	7.654	2.823	0.692	374,79
	15:00			162.99		27.41	12.30	8.163	7.692	2,792	0,672	374,78
	16:00	980.56	2909.48	162.89		27.79	12.49	7,968	7.425	2,782	0,872	373.84
	17:00		2744.25	163.40		26.26	12.28	7.475	6.967	2.681	0.713	
	18:00			162.22	346.00	26.50	12.29	8.065	7.521	2.965	0.851	371,20 374,56
	19:00	966.84		164.77	343.44	27.28	12.49	8.006	7,429	2.703	0.607	373.14
	20:00	974.66		162.20		27.11	11.27	8,114	7.566	3.037	0.998	372.60
	20.00	817,00	2021.04	10220	340.40	27.11		<u> 9,117</u>	7.500	3,031	0.000	31 2.00
	AVG	970.46	2940.781	160,87	342,11	25,47	12,39	7,973	7,426	2,798	0.711	373,69
	SD	40.40	71.22	7.53		3.49	0.68	0.293	0.276		0.126	
_	<u> </u>	1,77					5.00	0.200	VILLY			
4-Sep	8:00	902.25	2955.91	143.01	348.60	22.13	12.00	7.916	7.407	2.903	0.831	373.91
	9,00	994.79		161.24	348.82	23.43	12.03	8.399	7.834	3.050	0.883	379.18
	10:00	988.88	2967.41	160.03	348.56	24.58	12.21	8.304	7.721	2.921	0.804	371.77
	11:00	693,58	2322.92	107,99	254,51	21,69	11.13	3,649	3.515	1.355	0.018	368.60
	12:00		2962.30	162.04	348.68	23,52	12.78	8.418	7.867	3.059	0.919	373,85
	13:00	992.52	2970.43	161.62	349.07	24.46	12.63	8.337	7.803	2.973	0.826	374.02
	14:00		2982.05	160.96	349.08	24.10	12.77	8,220	7.700	2,876	0.774	373.45
	15:00		2983.82	160.42	348.79	25.06	12.56	8.151	7.627	2.795	0.723	373,66
	16:00	930.50		148.12	338,58	23,84	12.70	7,452	6.971	2.449	0.531	373.18
	17:00	991,06		158.87	266.29	24.33	11.63	6.020	5,600	1.985	0.353	367.14
	18:00			159,67	276,19	24,17	11.35	5,981	5.614	2.275	0.553	371.68
	1		<u> </u>							·		,
	AVG	848.97	2906.61	153.07	325.02	23.75	12,18	7,368	6,869	2.604	0.656	371,98
	SD	65.76		15.45	36.80	0.98	0.58	1,406	1,341	0,515	0.260	2.77
	<u> </u>			' '	i i					The state of the s		

Table 3-4
AFGD Operating Data (Sheet 2 of 12)

DATE	TIME	AFGO Inlet Flue Gas Temp	Infet SO ₂ Concentration ppm	Five Gas Flow msc/m	Limestone Feed tons/hr	Limestone Feed tons/hr	Lime Feed	Outlet 80 ₂ Concentration ppm	Absorber Makeup Flow gpm	Absorber Level ft	Absorber Level
								-			
3-Sep	8:00	319,05	2199,18	1908,00	0,022	16,007	0.013	170,774	302,070	20,388	20,376
	9:00	318.71	2186.15	1908.45	0.023	15,905	0.014	150,326	267,698	20.425	20.42
	10;00	318.73	2168.48	1908.39	0.022	14.714	0.014	163,700	238.141	20,436	20.45
•	11:00	318,38	2201.66	1909,70	0.021	15,002	0.013	189,237	253.017	20.335	20,37
	12:00	319.84	2153.29	1907.14	0.025	16,000	0.014	156,961	220.101	20.470	20.49
	13:00	320.32	2157.01	1906.43	0.023	16.011	0.013		144,847	20.428	20.44
	14:00	319.84	2160.70	1906.96	0.024	14.745		163,560	133,227	20.323	20,35
	25;00	319.51	2180.15	1907.38	0.023	15.317	0.013.	168.537	203.567	20.265	20,31
	16:00	318,94	2181,26	1908.201	0.023	15,783	0.013	164.058	357.853	20.339	20,356
	17:00	314.60	2158.53	1913.50	0.023	16.000	0.014	152.739	283,738	20.397	20.42
	18;00	320.09	2253.91	1906.74	0.024	15.263	0.013	179.869	291.537	20.503	20,51
	19;00	318.15	2166.74	1909.08	0.024	15.999	0.014	162.047	276.539	20.436	20,43
	20:00	318.88	2229.97	1908.10	0.024	14.999	0.013	191.587	198.535	20.366	20,38
	AVG	318,65	2184.39	1908.24	0.023	15.519	0.013	167.042	243.905	20.393	20,45
	SO	1,39)	29,05	1,71	0.001	0,603	0.000	12,396	60,941	Q,083(0.050
4-Sep	8:00	320.15	2232.57	1704.45	16,121	0.310	0.013	157.548	262.451	20.428	20,430
4-0EP	9:00	320,07	2235.39	1706.12	15,571	0.310		171.634	240,583	20,435	20,42
	10:00	316,81	2238.63	1614.52	15,777	0,310		171,933	244.883	20,439	20.46
-	11:00	310.33	2078,44	1382.81	13,088	0,310		158,096	192,209	20,674	20.69
	12:00	320,38	2226,80	1576.92	16,214	0,310	0.013	174.294	212.354	20,393	20.40
	13:00	320.83	2227.45	1513.14	16.636	0.310	0.013	171.310	279.508	20,403	20.451
	14:00	320.85	2224.98	1462.70	16.759	0.310	0.013	167.139	301.202	20.458	20,500
	15:00	321,12	2217.02	1457.76	15.589	0.310	0.013	168.642	271.635	20.469	20,501
	16:00	319.38	2184.52	1542.01	16.067	0.310		152,201	157.307	20,466	20.50
	17:00	311,03	2074.22	1542.57	15,731	0,310	0.013	119,689	197.308	20,379	20.42
	18:00	313,46	2150,52	1492,46	14.013	0.310		169.878	197.488	20.479	20.50
	AVG	317.86	2190.05	1545.22	15.596	0.310	0.013	161.851	231.539	20.456	20,48
	SD	3.94	59.07	96.47	1.052	0.000	0.000	15,083	43.296	0.075	0.077

é

٠,

Tab. 4 AFGD Operating Data (Sheet 3 of 12)

		Centritings FD Tank	Stury	Slury pH	Stury pH	Sturry Suffile	Slurry	"A" Header Pressure	*B* Header	Filtrate Sump Level	Fiftrate Sump	Fitrate Sump
DATE	TIME	*	g/mL			mmoNL.	mmcU.	psig	6ļ9d	*		
3-Sep	80	BD:547	1.145	5.704	5.654	0.316	62.754	16,857	17.258			7,707
	00'6	61.130	1.129	5.694							1963	7.701
	10:00	60.461	1.129	5.684			66,972					7,703
	11:00		1,132	5,752,								7,697
	12:00		1.127	5.704		0.010	ļ !	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֡֓֓֡֓֓֡֓֡֡֡֡				7,701
	13:00	986'09	1,124	5,729								7,703
	14:00		1.123	5.760							֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֝֡֓֓֓֡֝֡֝֡֓֓֓֡֝֡֡֡֝֡	7.721
	15:00		1,129	5,742	5.782		72,936	16.715	17.276			. 7.734
	16:00		1.129	5.744								7.742
	12,00		1.129	5.789				16,744				1,728
	00'81		1,130	5.767		•		16.747				7.715
	19:00		t.128	5.702		9100	P\$2434	16,632				7.699
	00/0Z	825'08	1,13	5,752	5.804	0.022		16.720		50.010	6.957	7.701
	AVG	60.669	1.129	5,731	5.763	0.038	'-	16.607		49.979	'	7.712
-	80	0.675	0.005	0.029	0.054		3.328	0.045	0.374	D.098		0,014
										!		
_			1	!								
ð	88	81.629	1.128	5.769	6.813			16.673		50.139	6,975	7,726
-	9:00		1.127	5.742	5,809			18,718	17,390	49.977	6.968	7.723
_	10:00		1.127	5,732	5.60e		69.969	16.688	[50.137		7,716
	11:00	61.960	1.135	5,856	6.902							7,729
	1200		1.128	5.717	5,799	0.166		!			868.9	7.709
	13:00		1.130	5.739	5.799			16.701				7.712
	14:00		1.130	5.739	5.802							7.713
	15:00	122.69	1,129	5,738	5.796	0.510						7.704
	16:00		1.129	5,753	5.612				17.412		6,534	7,705
_	17:00		1,135	5,797	5.848	986'0		16,728			6.923	7,711
	19:00	81.225	1.135	5.777	5.851			15.487		50.107	6.843	7.724
	AVG	60.618		5.760	5.822	0.342	71.382			50.032	776'8	
	20	0.770	0.ඊඊම	0.037	0.031		-	0.578	0.684	0,00		0,008
				İ								
1												

Table 3-4 AFGD Operating Data (Sheet 4 of 12)

DATE	TIME	Thickener Overflow Tank Level %	Waste H ₂ O Flow to Wastewater gpm	Thickener Underflow to Wastewater gpm	Absorber Somp Level %	Absorber Hold Tenk Sump %	Thickener Sump Level	Total H ₂ O to Facility	Totalized H ₂ O gal	Air to Fixed Air Sparger scim
3-Sep	8:00		97,937	65,544	36,381	27.664	34.551	1394.452	48374.769	7248.57
	9;00	49.968	98.015	66.267	32.346	27.814	34,669	1412.076	48481.083	7414.71
	10.00	50.093	91,459	65,428	36,446	27.911	34,745	1322,326	48543,000	7399.2
	11:00	49,984	90.031	65,162	32,098	27.885	34.874	1315,615	49437.167	7169.3
	12:00	49.979	89,682	65,902	35,016	27,935	34,744	1366,680	487 <u>11.50</u> 0	7475.6
	13:00		89.981	69,765	33,794	27.860		1273.039	48791.333	7393.10
	14:00	50.097	89,899	64,897	33,688	27,971	34.877	1259,302	48967.167	7196,3
	15:00		90.097	64,474	34,609	27,851	34,838	1301,684	48945,333	7177.00
	16:00		89.970	66.136	32,064	27.976	34.847	1396,516	49027.667	7163.5
	17:00	50.026	89.848	95,889	35,793	27.881	34.841	1322,703	49113.417	7113.1
	1B:00		89.969	64,953	31,218	27.870	34.838	1413,435	49197.687	7185.4
	19:00		90,108		32,410	27.886	34.737	1414.974	46627,750	7366.1
	20:00	50.026	89.829	65.631	31.858	27.999	34.866	1359.808	49356.167	7184.3
	AVG	50,024	91.309	65.482	33,679	27,900	34.785	1350,215	48881,001	7266.2
-	80	0.059	2.671	0.502	1.782	0.063	0.092	52,476	323,686	117.4
4-Sep.	8.00	50.033	70.196	65.197	34.373	27.976	35.000	1488.024	50272,154	7155.8
4-2-ch	9;00		69.932	85,481	31,599	27.609	34,969	1527,268	50354.917	7161.2
	10:00		71.340	65,056	33,988	27.900	35,003	1487,690	50438.083	7112.8
	11:00			65,813	33,698,	28.035	35,121	1297,414	51334.667	7163.2
	12:00		74.298	65.333	33.035	28.093	35,000	1252,438	50600,333	7146.3
- - }	13,00	50.010	74.945	65,946	34.001	27.941	35.048	1415.940	50681.833	7159.9
	14:00	49.965	79,569	65.302	31.845	27.992	35.048	1404.969	50766.250	7206.9
	15:00	49.942	79.839	65,161	35.251	27.975	35.049	1405.490	508\$1.500	7134.8
	16:00	49.884	79.914	65.587	30.777	27.824	35,086	1294,156	50934,083	7207,1
	17:00		80.051	64,875	35,681	27.988	35,109	1302.076	51011.867	7155.9
	18:00	50.043	80.154	65.733	30.806	27.967	35.129	1467.073	51092.333	7126.2
	AVG	49.987	78.385	65.408	33.184	27,954	35,049	1394,778	50757.984	7157.3
	SD	0,056	4,125	0.320	1.631	0.080		90.067	313,342	27,9

Table 3-4
AFGD Operating Data (Sheet 5 of 12)

		Air to Rotary Sparger	Gypsum Wt	Gypsum Total Wt	Limestone Transfer "A"	Limestone Transfer "B"	Absorber ΔP	Total AFGD System AP	Mist Eliminator AP	Recirculation Header "A" Pressure
DATE .	TIME	scim	tons	ktons	psig	peig	in H₂O	in H₂O	in H ₂ O	psig
3-Sep	8:00	7993,356	50.026	221.1581	0.985	19,471	5.379	7.504	2,131	16,654
	9:00	8000.885	23,136	221,197	0,991	19.677	4,813	6,767	1,948	16,658
	10:00	7999,250	20,828	221,231	0,984	19.272	5.335	7.438	2,101	16,632
	11:00	8011.385	29,478	221.675	0,978	, 19,152	4.917	7.007	2,092	16,713
	12:00	8002.583	33,670	221.306	0.984	19,768	5.347	7.453	2.107	16,638
	13:00	8017,188	37,376	221.343	0.982	19,898	5.360	7,493	2.134	16.68
	14:00	7986,104	14,989	221,373	0.987	19.250	5,344	7,478		16,688
	15:00	8001.825	7.287	221.393	0.986	19,628	5.355	7.469	2.113	
	16:00	8018,313	25,630	221.414	0.986	19.145	5.161	7.220	2.056	
	17;00	7978.958	42.109	221.444	0.984	19,832	4.796	6.756	1,954	16.744
	18:00	7976.781	44.003	221.477	0.987	19.730	5.097	7.211	2.113	16.757
	t9;00	7987,292	48,143	221,267	0.982	19,610	5.356	7,465	2.111	16.660
	20:00	7984.510	31,946	221,542	0,981	19,323	5,071	7,193	2,131	16.723
	AVG	7996,787	31.431	221.363	0.984	19,520	5,179	7.265	2,056	16,693
	ŠD	13,177	12.438	0.124	0.003	0.255	0.212	0.261	0.061	0.045
4.5-4	4.00	8000.856	39,270	221.899	19.965	0.960	5.021	7.108	2,094	16.667
4-Sep	8:00 9:00	8031.479		221.930	19.950	0.359	5.376	7.106	2,084	16.721
	10:00	8010,688	43.371	221.984	20.132	0.358	5.349	7.536 7.477	2.127	16.702
	11:00	8004,469	28.344	222,311	19.060	0.361	2.503	3.812	1.305	15.026
		7993,344	30.671	222,030	20.330	0.359	5.390	7.528	2,133	
	12:00 13:00	7979,344	31.704	222.059	20.334	0.366	5.314	7.468	2,133	16,718 16,704
	14:00	8003.521	29,492	222.088	20.181	0.362	5.348	7.470	2,135	16.777
	15:00	6005.479	28.492	222,122	19,773	0.362	5.346	7.470	2.067	16.778
	16:00	7982,083	28,525	222.159	20.057	0.371	4.996	6.943	1,944	16.754
	17:00	7969.729	27,960	222,190	19.556	0.363	4.092	5.725	1,641	16.722
	18:00	8016,250	33,609	222.217	19.123	0.348	3.690	5.406	1.712	16,500
	AVG	7999.749	30,492	222.088	19,860	0.362	4.762	6.713	1.949	16.461
	SD	16.895	6,901	0.122	0,423	0.007	0.898	1.180	0.265	0.574

Table 3-4
AFGD Operating Data (Sheet 6 of 12)

DATE	TIME	Recirculation Header "A" Pressure psig	Oxidation Air Pressure paig	# of Pumps Running	SO ₂ Removal Efficiency In/mmStu	Feed to Thickener gpm	AFGD System Outlet Temp "F	Absorber Tank pH	Westewater Outlet pH	A São Level %	B São Level
3-Sep	8:00		10.207	10.000	0.432	623.46 2	132,336	7,084	6.848	62.877	63.619
	9:00	17.253	10.192	10.000	0.382	728.915	132.018	7.084	6,855	62,497	63.504
	10:00	17.251	10.203	10.000	0.413	688,041	131,693	7.084	6.857	62,059	61.187
	11:00	16.359	10.204	9.000	0.476	672.497	131.350	7.088	6.827	70.549	63.654
i	12:00	17.241	10.199	10.000	0.395	795,679	131.831	7.085	6,953	64,512	59.791
	13:00	17.268	10,217	10,000	0,398	681,611	131.822	7.090	6,862	65.426	<u>59,634</u>
	14:00	17,239	10.182	10.000	0.414	499.211	131,745	7.090	6.856	68.886	60.313
	15:00	17.278	10.195	10.000	0.425	462,910	131,740	7.089	6.848	66.902	60,606
	16:00	17.306	10.200	10.000	0.414	570.092	131.455	7.089	6.842	68.641	60.383
	17:00	17.072	10.225	9.750	0.389	670.138	131.131	7.090	6.834	68,761	60.822
	18:00	16.358	10,208	9,000	0,819	666,171	131.315	7.090	6,833	66,845	59,914
	19:00	17.257	10.202	10.000	0,406	833,020	131.736	7.082	6,856	62.883	61.057
	20:00	16.347	10.198	9,000	0,481	670.025	131.544	7.089	6.827	70.509	69,339
	AVG	17.038	10.202	9.750	0.449	673.982	131.688	7.087	6.846	65.780	61.372
	SD	0.378	0.010	0.416	0.110	108.026	0.311	0.003	0.011	2.700	1.504
4-Sep		17.344	10.202	10.000	0.396	600.611	131.225	7.083	6.828	71.029	68.964
	9;00	17.398	10.184	10.000	0.432	663.891	131.248	7.085	6,820	70,623	69.913
	10:00	17.384	10.210	10.000	0,432	701.308	131.014	7.086	6.820	71,036	70.954
	11;00	15.184	10.194	6.667	0.416	666.117	129.709	7.091	6.861	56,451	67.386
	12:00	17.422	10.204	10.000	0.438	615.352	131.086	7.069	6.851	71.069	71.705
	13:00	17.465	10.223	10.000	0.430	571,151	130.995	7.068	6,851	68,392	71,689
	_14:00	17.464	10,181	10,000	0.418	665,349	130.848	7.092	6,851	65.744	69,087
	15:00		10,199	10,000	0.423	696,649	130.770	7.091	6.860	63.017	66,958
	ŧ6:00	17.438	10.193	10,000	0.386	731,479	130.642	7.092	6.863	62.151	66.793
	17:00	17.314	10.215	9.917	0.312	545.728	130.440	7.092	6.881	62.823	67.620
	18:00	16.353	10.221	8.000	0.758	633.961	130.216	7.093	6,860	66,404	71.718
	AVG .	17.113	10.202	9.508	0.440	648.327	130.745)	7.089	6,848	66.249	69,345
	SD	0.682	0.D13	1,064	D,108	56.457	0.447	0.003	0.016	4.552	1.879

Ta. 3-4 AFGD Operating Data (Sheet 7 of 12)

DATE	TWAE	Unit #7 Air Flow	Unit #8 Air Flow Byter	Unit #7 Load	Unit #9 Load MW	Unit #7 Opacity	Unit #8 Opacity	#7 Duct Pressure	#8 Duct Pressure	Pressure Sefore Mist Eliminator	Pressure After Mist Eliminator	#8 Air Heater Outlet Duct Temp
DAVE	I WANTE	(D)PP		WAA	WAA	76	. 70	in H₂O	in H ₂ O	in H ₂ O	in H₂O	- · · · · · · · · · · · · · · · · · · ·
5-\$ep	8:00	973,91	2974.61	156,69	348.23	23.45	11.71	8.222	7.679	3.117	0.945	375.35
	9:00	986.55	2954.69	169.57	347,20	22.13	11,82	8.223	7,676	3,125	0.973	373.60
	10:00	987.56	2985.25	157.62	349.00	24.33	13.43	6.193	7.667	3.098	0.965	373.02
	11:00	661.00	2925,41	100.49	343,45	22.95	11,96	8,174	5.759		0.664	372.80
	12.00	988.33	2956.92	1 6 3.17	347.86	22.71	11.91	8.163			0,927	372,40
	13:00	992,89	2984.22	163.92	348,67	23.57	11.78	8.213	7,701	3,084	0,959	
	14:00	987.39	2987.13	183.57	349.99	24.11	11.52	6.272			0.950	
$\neg \neg$	15:00	897.21	2992.41	163,38	349.74	23.08	11.57	8.321	7.784	3.105	0.952	371.98
	16:00	997.97	2973.69	162.63	349.76	24.41	11.37	8.272	7.713	3.087	0,934	372.59
	17:00	850,47	2999,88	155,17	349,60	22.61	11,34	8,079	7,537	2.993	0.871	372.44
i	18:00	778.29	2951.29	126,98	345.98	28.73	11.63	7.088	6.634	2,603)	0.679	
	·		<u>:</u> :		· .						•	i
	AVG	934,51	2969,32	152.11	348,15	23,64	11,81	7,929		2,985	0.894	372.76
	\$0	105.17	18,97	19.17	1.91	1,20	0.54	0.645	0.607	0.209	0.104	0.97
										i		
6-Sep	8:00	997.20	2973.44	180.25	349.28	25.09	12.31	7.798	7.251	2.943	0.770	372.95
	9,00	964.63	2987.36	153.90	349.57	24.92	12.03	7.852			0.791	372.40
	10:00	1012,82	2990,32	161,94	349.29	23,66	11,62	8,193	7,623	3,168	0,912	
		missing date		missing data	missing deta	missing data		missing date		missing date	missing date	missing data
	12;00	1008,44	3002,61	163,03	349.23	23.29	11,79	B,117	7.544	3,095	0.859	
	13:00	979.40	2998.95	158.58	349.41	24.15	11.77	7.856	7.244	2,878	0.712	373,48
	14:00	973,99	2978,21	160,86	349.55	23.80	11,72	7.939	7.352	2,996	0.814	373.24
	15:00	984.44	2981,64	161,23	349.36	23.22	11,42	9,086	7,514	3,104	0,896	373.14
	16:00	894,95	2983.02	161.63	348.56	23.46	11.93	8.123	7.559		0.923	373.00
	17:00	1005.97	2959,71	162,30	349.16	23.22	12,00	8,105	7,518		0,897	372.80
	18:00	1010.61	2961.47	163.29	349.12	25.75	11.71	8.151	7.572	3,129	0.927	371.10
	19;00	995.90	3000.44	160.93	348.99	23,68	12.26	8.145	7.676	3.147	0.900	
	20:00	1012.61	2971.27	164.84	349.67	24.65	11.36	8.095	7,551	3.127	0,908	371.71
	41.45			44								
	AVG	895,08	2982,37	161,08	349.35	24,07	11,83	8.038	7.466	3,065	0.959	
	 	15.54	13.76	2.65	0.20	0,81	0.28	0,131	0.134	0.089	0.067	0.67

Table 3-4 AFGD Operating Data (Sheet 8 of 12)

DATE	TIME	AFGD Inlet Flue Gas Temp * F	tniet SO ₂ Concentration ppm	Plue Gas Flow medim	Limestone Feed tons/hr	Limestone Feed tons/hr	Lime Feed toneAvr	Outlet SO ₂ Concentration ppm	Absorber Makeup Flow gpm	Absorber Level ft	Absorber Level ft
5-Sep	8:00	322.62	2236.73	0.00	0.029	18.502	0.014	185.781	104.934	20.344	20.374
	9:00	321,33	2213.37	0.00	0.033	17,112		177,309	163,395	20.218	
	10:00	321,20	2237,81	0.00	0.029	16,173	0.014	179,818	510,540		
	11:00	317,99	2210,59		15.011	0.310		172,536	177.868	20.505	
	12:00	320,59	2213,16		0.029	15.497	0.014	186,943	227.694	20.445	
	13:00	320.50	2210.86		0,029	15.504	0.014	184,644	324,148		
	14:00	320,16	2190.87	0.00	0.027	15,499	0.013	183,284	257.043		
	15:00	320.56	2192.48	0.00	0.033	15.493	0.014	184,673	150.025	20.520	
	16:00	320.58	2207.42		0.028	15.665	0.014	188.264	458.713	20.628	
	17:00	320,33	2208.73		0.033	16.783	0.015	178.761	323.443		20.753
	18:00	319,69	2248,76		0.029	15.000	0.014	165,251	168,788	20,720	
								,,	,,		
	AVG	320.50	2215.53	0.00	1.392	14.502	0.014	180.678	260,235	20.487	20.520
	SD	1.08	17.47	0.00	4.307	4.530	0.000	6.627	124.887	0.162	
	.——									<u> </u>	
6-\$ a p	8;00	316,87	2237,51	0.00	4.315	13.363	0,016	195,922	323,262	20.314	20.367
	9;00	316,59	2235,56	0,00	0.038	16.438	0.016	188,582	\$10,886	20,456	20,516
	10:00	316,91	2201.79		0.038	16.297	0.016	186,620	163,076	20.576	20,624
	11:00	missing deta	missing data	missing data	missing data	missing data	missing data	missing data	missing data	ssing date	missing date
	12:00	319.01	2178.34	0.00	0.038	15.491	0.018	179.488	77.006	20.452	20.492
	13:00	318.97	2166.91	0.00	14,648	1.575	0.016	173,419	187.208	20.377	20.419
	14:00	319,13	2148.70	0.00	16.408	0.310	0.016	185.146	250.609	20.453	20.491
	15:00	319,21	2148.71	0.00	17,434	1.926	0.016	179,639	196,552	20,598	20.634
	16:00	319.41	2155.49	0.00	16,053	0.310	0.016	177,827	169.695	20,608	20.627
	17:00	319.17	2188.79	0,00	15.430	0.310	0.016	185,834	136.177	20.624	20.658
	18:00	318.10	2234.71	0.00	16,810	0.310	0.016	180.738	129.740	20.622	20.639
	19:00	317.74	2196.01	0.00	0.038	15,497	0.018	181.813	81.958	20.519	20.585
	20:00	318.55	2210.50	1908.56	16.493	0.310	0.016	193.324	184.271	20.642	20.683
	AVG	318,30	2191.92	159.05	9.812	6,845	0,016	164,030	183.370	20.520	20.569
	SD	0.99	31,83		7,648	7,297	0,000	6.235	75.488	0.104	0.097

340

Ta. 3-4 AFGD Operating Data (Sheet 9 of 12)

DATE	TIME	Centrifuge FD Tank	Sturry Density g/mL	Shurry p.H	Sturry рН	Siumy Sulfite mineful	Skurry Carbonate mmol/L	"A" Header Pressura psig	*8* Header Pressure psig	Filtrate Sump Level	Filtrate Sump	Fütrate Sump pH
6-Sep	8;00	61,279	1,126	5.742	5.801	0.144	67,773	16.724	16.251	49.800	6.956	7.720
4-256	9:00	63,447	1.131	5.750	5.810	0.147	72.513	16.740	18.327	50,044	6,969	7.724
	10:00	59.893	1,134	5,758	5,609	0.139		16.782		50.081	6.954	- 7.729
	11:00	60,779	1.136	5.748	5.824	0.304		15.506	18.265	49.995	6,956	7.673
	12:00	59.938	1.132	5,746	5,810	0.245		16,610	16,349		6.927	7.691
	13:00	60,849	1.133	5.735	5.802	0.131	71.379	16.798	16.357	50.015	6.901	7.679
i	14,00	60,188	1,132	5.748	5,606	0.157	70,005	16,799	16.346	49.811		7.678
	15:00	59.806	1.133	5.721	5.795	0.212		16.805	16.360	50,050	6,904	7.679
	16:00	60.881	1.133	5.713	5.796	0.254		16.802	16,350	50.050	6.899	7,676
	17:00	60,778	1.132	5,743	5.801	0.373		16,797	16,334	49.907	6.900	
	18:00	60.334	1.132	5,739	5,815	0.378	70.619	16.753	16,290	50.018	6.884	7,686
						•						
	AVG	60.743	1.132	5,740	5.807	0.226		16,665	18.325	49.979	6.923	7.692
	ŝo	0.970	0.002	0.012	0.006	0.089	2.276	0.368	0.037	D.093	0.029	0.020
				:	·							
6-Sep	8:00	58.550	1.132	5.723	5.765	0.115	64,309	15,457	17,167	50.115	6,689	7,651
	9:00	61.288	1,129	5,734	5,779	0.084	65,954	15.470	17,198	49,618	6,906	7,660
	10:00	82.245	1.129	5.748	5.786	0.058		15.476	17,192		6.789	7,720
	11:00	missing data	issing data		issing data	missing date		missing data	missing date	missing date	missing data	missing date
	12:00	60,284	1.132	5,743	5,788	0.055		15,513	17,230	50,282	8.779	7,731
·	13:00	60.004	1.132	5.752	5.802	0.078	69.614	15,509	17,204	49.859	6.777	7.717
	14:00	61,034	1,130	5.722	5,791	0.005		15.500	17,208	50,020	6.749	7,711
	15:00	60.781	1.128	5.761	5.812	0.644	_ 59.917	15.544	17.251	49.732	6.842	7.731
	18:00	61.687	1.131	5.766	5,813	1.143		15.552	17.286	50,209	6.802	7.749
	17:00	60,134	1.131,	5,741	5.798	1.326		15,567	17,250	49,951	6.792	
	18:00	59,439	1.132	5.735	5.801	1.303		15,558	17.264	50.022	<u>6.7</u> 63	
	19:00	60.929	1.132	5,740	5,790	0.078		15.481	17.248	50.012		
	20:00	57.768	1.133	5.700	5.762	1.165	66.250	15.517	17.318	49.692	6.832	7.751
 	AVG	69.345	1,131	5.738	5.791	0.504	68,766	15,512	17,235	49.981	6.781	7.721
	5D	1.230	0.002	0.016		0.542		0.035	0.041	0.171	0.039	: 0,032
												`

Table 3-4 AFGD Operating Data (Sheet 10 of 12)

DATE	TIME	Thickener Overflow Tenk Level %	Waste H ₂ O Flow to Wastewater gpm	Thickener Underflow to Wastewater	Absorber Sump Level	Absorber Hold Tank Sump	Thickener Sump Level	Total H ₂ O to Facility gpm	Totalized H₂O gal	Air to Fixed Air Spanger scion
	4,444,1									
5-Sep	8:00	49,817	80.068	64,661	34,516	28.078	35,290	1162,154	52133.848	7204.44
_	9:00	50,002	79.937	65,136	30,497	28,049		1291.854	52207.917	7208.619
-	10:00	49,968	80.023	64.914	35,598	28.181	35,243	1637,060	52293.917	7164.99
	11:00	50.064	79.889	64.926	35,534	26.186	35.452	1300.008	53218.187	7210,63
	12:00	49.943	79.936	65.424	35,658	28.237	35,281	1321.083	52468.417	7189.06
	13:00	50.068	80.114	65,641	30,719	26.191	35,307	1375,393	52552.167	7218,09
- 1	14:00	49,626	79,963	68,014	36,022	28,077	35,280	1369,589	52840.833	7190,57
	15:00		79,948	66.664	30,648	28.278	35,301	1328.373	52721.833	7207.510
	16:00	49,991		85,432	35,255	28,241	35.292	1544,930	52807.250	7165,57
	17:00	50.018	79.941	65,481	30,588	<u>26.27</u> 0	35,352	1423,989	52900,250	7121,74
	18:00	50.090	80,009	65,503	31,061	28.251	25,357	1228.381	52983,083	7181.56
	<u> </u>			<u> </u>		<u> </u>		Í <u></u> -		
	AVG	49,981	79.992	65,438	33,281	26,185	35,310	1382,073	52629,789	7185,70
	SD	0.096	0.067	0,532	2,383	0.079	0.056	128.826	323,764	27.41
	,									
6-Sep	8:00	49.958	80.090	65,987	33,325	36.108	35,727	1523,173	54038,077	7125.01
	9:00	49.904	80.228	65.889	34,836	36.1 <u>6</u> 3-	35.785	1526.911	54127.417	7210.59
	10:00	49,976	79.920	65,794	34,387	36.392	35.815			7164.53
	11:00	missing data	missing date	missing data	missing date	missing date:	missing data	missing data	missing data	missing data
	12:00	49,928	80,108	65,427	35,475	38,562	35,771	1268,089	54377,167	7112,58
	13:00	48.971	80.027	65,588	36.2081	36.677	35.807	1440.643	54460.500	7151.88
	14:00	49,869	79.969	85,652	36.733	36.576			54549.417	7098.41
	15:00	49.987	80,601	66.454	34.285	36,563	35.934	1454,745	54639,750	7146.28
	16:00	50,146	79,964	68,530	36.683	36.568	36,254	1447.084	54724.917	7178.63
	17:00	49.951	80.092	66.042	33.030	38,640	36,581	1383,438	54808,417	7164,88
	18:00	50,149	79,972	84,528	32.818	36.568	38,617	1448.060		7180.19
	19:00	50.171	60,080		35.223	36,619	35.844	1267.380	54297.083	7189,71
	20:00	49.987	79,537	64,493	28,033	36.551	36.632	1502,667	55028.333	7130.75
	ı I	l								
	AVG	50.000	79,999	65,62 1	34,249	36.499	36,049	1423,265	54513,238	7154,37

Table 3-4
AFGD Operating Data (Sheet 11 of 12)

DATE	TIME	Air to Rotary Spanger scim	Gypsten Wt tons	Gypsum Total Wt klons	Limestone Transfer "A" psig	Limestone Transfer "B" psig	Absorber ΔP in H ₂ O	Total AFGD System ∆P in H₂O	Mist Eliminator &P in H ₂ O	Recirculation Header "A" Pressure psig
5-Sap	8:00	7985.077	19.386	222,606	0.617	19.616	5.104	7.274	2.170	16.710
	9:00	7973,333	13.858	222.624	0.811	19.852	5.110	7.259	2.153	16.735
	10,00	8040.677	13,839	222.644	0.810	19,434	5,092	7.222	2.135	16.795
	11:00	7975.760	34,585	222,999	19,687	0.483	3,679	5,491	t .812	15.496
	1200	8011.313	33,143	222.703	0.801	19,149	5,142	7,263	2,119	16,601
	13:00	7984,813	27.181	222,735	0,600	19,356	5.180	7,303	2.121	16.833
	14:00	7989,573	48,066	222.768	0.797	19,246	5,226	7.360	2.138	16,793
	15:00	8014,583	12,611	222,800	0.799	19,442	5,232	7,369	2.159	16.777
	16:00	7972.021	26,691	222,833	0.603,	19,477,	5,216	7,370	2,152	18,773
	17:00	8008,833	33,906	222.868	0.807	20,087	6,085	7.196	2113	18,786
	18:00	7981,313	25,686	222,895	0.809	19,329	4,502	6,428	1.920	16,762
	AVG	7994.299	26.268	222,770	2,540	17.770	4.961	7.050	2.090	16.659
	SD	20,690	10.417	0.117	5.486	5.473	0.449	0.555	0.109	0.389
6-Sep	8:00	7994,500	35,181	723,306	5.442	15,293	4,861	7.048	2.185	15.460
	9:00	7974.948	37.840	223,346	0,279	19.200	4.865	7.055	2,163	15.468
i "	10:00	8097.552	36.212	223.375	0.270	19.854	5.040	7.200	2.285	15.462
	11:00	missing data	missing date	missing data	missing data	missing data	missing date	missing date	lesing data	missing data
	12:00	8019.365	26. <u>2</u> 91	223,432	0,261	19.230	5.037	7.282	2,244	15.523
	13:00	7988.365	48.127	223,469	17.002	1.938	4.944	7.118	2.182	15.508
	14:00	7995.771	33,250	223,510	19.726	0.332	4.949	7.137	2.182	15.487
	15:00	8010.594	44.463	223.545	20.829	5.684	4.988	7.185	2.197	15.545
	16:00	7999.677	26.451	223,571	19.765	2.670	5.010	7.218	2.207	15.552
	17:00	7998.938	32,605	223,599	19.776	2,655	5.046	7.242	2.191	15,559
	18:00	8037.729	22.237	223.631	20.141	2.551	5.028	7.236	2.198	15,555
	19:00	7 9 78.271	27.806	223,400	0.268	19.261	4.995	7.235	2.241	15,500
	20:00	8054.625	23.642	223.684	18.985	2.503	5.031	7.230	2.196	16,567
	AVG	8007.530		223.489	11,695	9,263	4,883	7,191	2,206	15.517
	SD	23, 9 94	7.730	0.116	9,091	8.D15	0.082	0.080	0.027	0.038

Table 3-4 AFGD Operating Data (Sheet 12 of 12)

DATE	TIME	Recirculation Header "A" Pressure paig	Oxidation Air Pressure peig	# of Pumps Running	SO ₂ Removal Efficiency lb/mmStu	Feed to Thickener gpm	AFGD System Outlet Temp	Absorber Tank pH	Wastewater Outlet pH	A Silo Level	B Glic Level
5-Sep	8:00	16.273	10.203	9.000	0.457	404,581	131.698	7.093,	6.861	54.228	56.53
	9.00	15.340	10,194	9.000	0.440	411,874	131,662	7.094	6,656	54.189	54.82
	10:00	16.357	10.169	9.000	0.445	534,770	131.387	7.084	8.655	54.602	55.38
	11:00	16.276	10.186	8.000	0.445	699.689	130.233	7.090	6.849	53,654	44.63
	12:00	16.344	10.188	9.000	0.459	863,549	131.603	7.097	6.863	58,721	69.86
	13:00	15.367	10,197	9.000	0,45B	665,000	131,694	7.097	6,864	58,721	55,09
	14:00	18.370	10.188	9.000	0.455	652,619	131.442	7.097	8,964	58.791	53.87
	15:00	16.343	10.186	9,000	0.459	664.417	131.494	7.096	6.865	55.640	49.83
	16:00	16.383	10,221	9.000	0.468	686.085	131.173	7.096	6.885	54.169	46.615
	17:00	16.340	10.208		0.446	626.277	130.871	7.095	6.663	54.055	45.04
	18:00	16.303	10.218	9.000	0.688	650,121	130.686	7.094	6.858	54,149	44.76
					· · · · · · · · · · · · · · · · · · ·			·			
	AVG	16.334	10,196		0.474	603.453	131.304	7.095	6.860	55,538	51.22
	SD	0.033	0.014	0.287	0.068	100,088	0.483	0.002)	0.005	2.019	4.854
	<u> </u>			:							<u> </u>
6-Sep	8:00	17.180	10.208	9.000	0.487	929,846	131.201	7.083	6.837	43.765	44.587
	9:00	17.162	10.196	9.000	0.471	704,600	131.191	7.083	6,638	43.762	42.990
	10:00	17.214	10.167	9.000	0.463	681,720	131.318	7.082	8.837	43.757	39,411
	11:00	missing data	missing data	missing data	missing data	missing data	missing deta	missing dela	missing dela	ssing data	
	12;00	17,210	10.193	9.000	0.443	839.986	131,572	7.082	6.837	43.487	37.909
	13:00	17,244	10,215	9.000	0.430	963,371	191,163	7.083	6.841	43.592	36,102
	14:00	17,209	10.225	9,000	0.458	871.655	131.051	7.083	6.835	44.489	36,993
	15:00	17,250	10,196	9,000	0.443	694,983	131,049	7.084	6,834	42.718	37.818
	18:00	17.264	10.186	9,000	0.437	680,308	131,216	7.085	6.836	40.598	36,490
	17:00	17.260	10.211	9.000	0,467	782.447	131.271	7,088	6.837	37.841	38.378
	18:00	17.291	10.175		0.736	773.249	130.928	7.091	6.640	36.356	38.238
	19:00	17.236	10.207	9.000	0.450	766.698	131.583	7.082	6.837	43.519	39.227
	20;00	17,301	10.200	9.000	0.476	717.688	130,918	7.097	6.841	38.134	38,005
	AVG	17.295	10.200	9.000	0.479	781.379	t31.205	7.085	6.837	41.658	39.021
	SD	0.040	0.013		0.079	93.738	0.205	0.004	0.002	2.990	2316

Table 3-5 Average Voltages and Currents in Unit 7 and 6 ESPs

UNIT 7	_											Unit 7	ESP	T/R SE	T No.										
	(7A	T1	7A	.T2	7A	T3	7A	T4	78	.TS	7Α	T6	7B	πı	78	T2	7B	T3	7B	T4	7B	T5	78	ТВ
DATE	[kV.	mĄ	.₩	mΑ	_kv	mΑ	KV_	mΑ	kV	mΑ	_kv	mΑ	k∨_	mΑ	kV	mΑ	KV.	mA	kV :	mΑ	W	πΑ	kV	mΑ
9	V3/93	38	75	_50	500	49	200	50	950	*	#_	24	750	47	100	46	200	46	350	44	200	46		46	1250
8	V4/93	39	150	\$ 0	700	60	200	50	1000	*	*	25	750	48	100	46	260	46	300	46	300	49	500	48	1300
	V5/93	38	150	50	700	48	250	50	1000	*	*	25	700	48	200	44	300	48	500	46	400	47	450	_50	1500
8	V6/93	37	200	49	_700	50	300	_50	1000	_*	*	25	720	46	200	44	350	46	550	45	450	48:	500	48	1400

UNIT 8											Un	<u> 8 °€/</u>	AST" E	SP T/R	SET	No.									
	ı	<u>8</u> E	A1	8E	A2	8E	Ä3	_8E	A4 .	_ 8E	A5	65	Αθ	8E	Bt.	ee	B2	8E	83	_ 8€	B4	8E	65	85	B6
DATE		<u>kV</u>	mΑ	kV	mΑ	≷	mA	K/	Ě	≥	Ř	칟	mΑ	kV	mA	kV	싵	k∨_	mΑ	k۷	mA	KV.	ĒΑ	ķν	mΑ
	8/3/93	55	550	59	250	50	950	54	750	48	1200	36	500	50	20	45	300	:	850	55	8	39	700	60	1050
	9/4/93	54	700	*	#	49	950	55	350	46	1150	37	500	50	5 50	45	200	.53	850	55	65 0	38	700	47	1000
	9/5/93	52	700	56	_250	47	950	55.	750	46	1150	37	500	50.	750	47	600	49	850	52	1250.	40	700	48	1000
	9AE/93	52	700	64	250	47	950	53	850	46	1150	36	500	51	700	47	550	48	850	5 2	1250	40	700	47	1050

	_										Uni	<u> 187W</u>	<u> EST* E</u>	SP TA	₹ <u>9</u> ET	No.									
		8//	/A1	6W	/A2	81/	/A3	81/4	AA	BVA	IĀŠ	84/	iA6	81/	/61	BVA	/62	81/4	/B3	- 6/	/84	81/4	B5 T	BW	86
DATE		kV	mA	k۷	mΑ	**	mΑ	#V	mΑ	kV	mΑ	, kV	mΑ	kv.	mΑ	W	m <u>A</u>	.kv	mΑ.	_kv_	mA_	#V	mΑ	₩.	mΑ
	9/3/93	50	600	48	800	45	650	47	750	38	1100	49	1000	44	760	38	300	42	700	31	400	36	500	. 42	400
	9/4/93	50	. 550	47	650	43	450	44	600	35	1050	49	1000	_42	550	38	300	42	700	36	600	45	5 50	43	500
	9/5/93	50	600	48	750	46	700	46	700	38	1200	51	1050	44	750	37	250	43	700	37	600	42	600	43	500
	9/6/93	_50	550	48	650	46	600	46	600	37	1200	45	650	. 44	750	38	250	43	650	_ 35	400	40	500	43	450

[#] transformer/rectifier set out of service

Table 3-6. Record of Flows for Ammonia Injection Systems

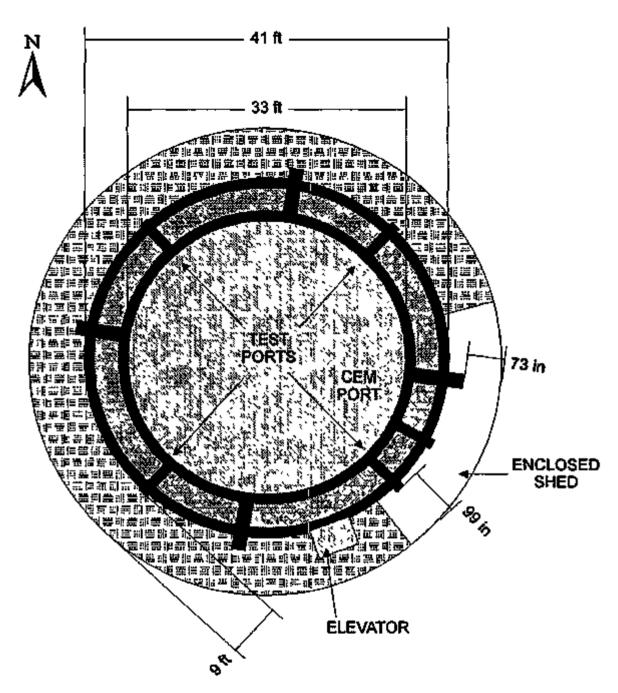
			Pressure,	System
Ĺ	DATE	TIME	psig	Output, %
				}
UNIT 7	9/3/93	0907	10	52
	9/3/93	1047	10	48
	9/3/93	1226	10	50
	9/3/93	1450	9.8	50
	9/3/93	1624	9.9	52
	9/3/93	1835	9.8	51
	9/3/93	2011	9.8	50
	AVERAGE		9,9	50
		••		
	9/4/93	0826	10.1	10
	9/4/93	1105	10	10
	9/4/93	1310	9.5	8
l	9/4/93	1522	8	8
i	9/4/93	1722	6.8	8
	AVERAGE	·	8,9	9
ľ				
UNIT 8	9/3/93	0936_	10.4	50
l	9/3/93	1105	10.4	51
i	9/3/93	1240	10,4	50
[9/3/93	1400	10.25	50
ľ	9/3/93	1627	10.2	51
j	9/3/93	1829	10.3	50
İ	AVERAGE		10.3	50
[
ľ	9/4/93	0829	10.2	51
ļ	9/4/93	1118	9.6	51
[9/4/93	1329	8.8	51
	9/4/93	1508	7.8	51
	9/4/93	1702	6.7	51
	AVERAGE		8.6	51

(There were no flows from either system on 9/5 or 9/6)

4.0 FLUE GAS SAMPLING

4.1 Ducting Arrangements

Five potential sampling locations were called out for this program which were as follows:


- the inlet to the Unit 8 ESP,
- the outlet of the Unit 8 ESP.
- 3) the outlet of the Unit 7 ESP.
- 4) the combined inlet to the scrubber.
- and the stack.

Sampling at the combined inlet duct to the scrubber was eliminated in our plan. This was done for two principal reasons. First, the sampling location was very close to the point at which the two exit ducts from the ESPs combine and the gases were unlikely to be mixed well. This fact would make the results from any of the single-point sampling methods (VOST, Hg, aldehydes, and ammonia/HCN) unlikely to be representative. Second, the results from the two ESP outlet ducts could be summed to provide the needed information regarding the flue gas input to the scrubber. Thus it would not have been cost effective to carry out sampling on the combined gas stream as well as the two ESP exit streams.

The Unit 8 ESP is fed by two ducts from the air heaters which divide into four ducts at the ESP Inlet. Ammonia injection takes place in the upstream portions of the two ducts from the air heaters and the ESP Inlet sampling ports are located in these ducts. Sampling at the Unit 8 Inlet was concentrated on one of the two ducts (the west duct), but a Method 17 sample was obtained on the other (the east duct) so that the gas and particulate flows to the ESP would be known.

The stack had four ports at 90° to one another at the 358-foot level which could be used for sampling with those methods that required traversing the duct. (All particulate sampling methods have this requirement.) Additional ports were available that were used for the sampling methods that did not require a traverse. The layout of the ports at the stack sampling location is shown in Figure 4-1.

The types of samples to be collected in the flue gas streams were summarized in Section 2.2.2 above. Details of the sampling activities are provided in the following discussion.

NOTE: All test ports are 42 in above the grating.

Figure 4-1. Stack Sampling Platform at 109-m Elevation

4.2 Sampling Schedule

Table 4-1 below lists the manual fluis gas sampling methods employed in this test program.

Table 4-1. Flue Gas Sampling Methods

Constituent	Method	Traverse Single Po	_	uration anutes -		
Inameric Day			b)	Out	Stack	_
Inorganic Day:						
Stack, Unit 8 Inlet,						
Unit 7 & 8 Outlets;				A		
Metals	M29	Ţ	1920	240 ⁰	360	
Mercury	Carbon trap	8	60	60	60	
Acid gases	M5	Ţ	48	60	4B	
Particle size distribution	Impactor/cyclor	ne Ta	60	600	480	
Size fractionated composition	Dual cyclones	TC	60	1020	••	
<u>Unit 7 Outlet:</u> Simulated plume (Metals, Hg, acid gases)	SAI dikuter	s	_	360		
Organic Day:						
Stack, Unit 8 Inlet,						
Unit 7 & 8 Outlets:		_				
SVOCs & PCDOs/PCDFs	MM5/SW846-0010	Ţ	240	280	360	
Volatile organics	VOST	8 T*	10,20,40	10,20,40		
Radionuclides	M17		72	144	360	
Aldehydes	Impingers	S	30	30	30	
Ammonia and Cyanide	Impingers	S	30	30	30	
Unit 7 Outlet:						
Simulated plume (SVOCs)	SRI diluter	8	-	360	-	
Inorganic & Organic Days: Bulk gas composition	Orsat	Тþ	,	,	1	

- Notes: a, impactor at the stack and ESP outlets, series cyclone at the Unit 8 inlet.
 - b. Integrated sample taken in conjunction with M5 type sampling.
 - c, ESP outlets and stack only. Samples from 5 Series Cyclone train for particle size measurement were used for the Unit 8 inlet size-fractionated samples for trace metals analysis.
 - d. Required greater than normal amounts of H₂O₂ in impingers because of high SO₂ concentrations.
 - e. Semple taken on sest ESP intel duct so that the total gas and particulate flow rates to the Unit B ESP would be measured. This sample was also used for radionuclide analysis.
 - Denotes sample not requiring a specific sampling time.

The number of sampling methods and trains required in utilizing all of these methods precluded doing them all simultaneously. In fact, it was not possible to do them all on any one sampling day at the stack because of limits in the numbers of ports, people, and equipment available for the tests. Therefore we planned to take three sets of samples of all types shown in Table 4-1 over a six-day period. The first three days were to be nominal inorganic sampling days during which the methods in the upper part of Table 4-1 were to be employed. The last three days were to be nominal organic sampling days during which the methods shown in the lower part of Table 4-1 were to be employed.

4.2.1 Sampling Details

Figures 4-2 and 4-3 show our planned sampling schedule for each of the four flue gas sampling locations - Unit 8 inlet, Units 7 and 8 outlets, and the stack. Spreading the sampling out over a two-day period for each set of samples also permitted greater sample volumes to be obtained than would otherwise have been the case. Thus the sensitivity of the methods, especially for metals and semivolatile organics, could be increased by sampling substantially greater than the minimum volumes called for by the methods.

A UMW strike, in progress at the time the tests had to be conducted, created difficulties in obtaining the correct coal needed for the tests. Therefore the DOE requested that the three replicate days of inorganic sampling be carried out before commencing the organic sampling. This was done in order to insure that a full set of the inorganic samples, to which the DOE gave a greater priority than the organic samples, was taken. A combination of coal supply difficulties and mechanical problems with parts of the plant's coal handling system forced a cessation of sampling after four test days, so only one of the three planned sets of organic samples was obtained.

Figures 4-4 through 4-7 present the actual schedule for flue gas sampling over the four test days. These charts show the time intervals over which flue gas sampling actually took place for each sampling method each day. The indicated intervals include the time required for port-to-port movement during traversing, so they represent the total elapsed time required to acquire the samples. Sampling of solids, liquids, and slurries is not indicated in Figures 4-4 through 4-7. Collection of these samples began as soon as flue gas sampling was underway. For those nine types of samples that were taken four or five times each test day, the sample collection was made at approximately two-hour intervals to span the flue gas testing period. The four samples that were taken once per day were collected in the late afternoon so that the sample represented material accumulated during the flue gas sampling period. One sample, the limestone, was obtained from Pure Air who had a plastic jar (-1 L) set aside for us from each of the trucks that delivered the limestone from Huber, Inc. (about 20 trucks per day).

We attempted to arrange the sampling schedules given in Figures 4-2 and 4-3 so that quantitative measures of particulate loading would be made each day at each location. On the nominal organics day we made Method 17 measurements, and on the nominal inorganic days the Method 29 and acid gases trains provided mass loading data.

INORGANIC DAY

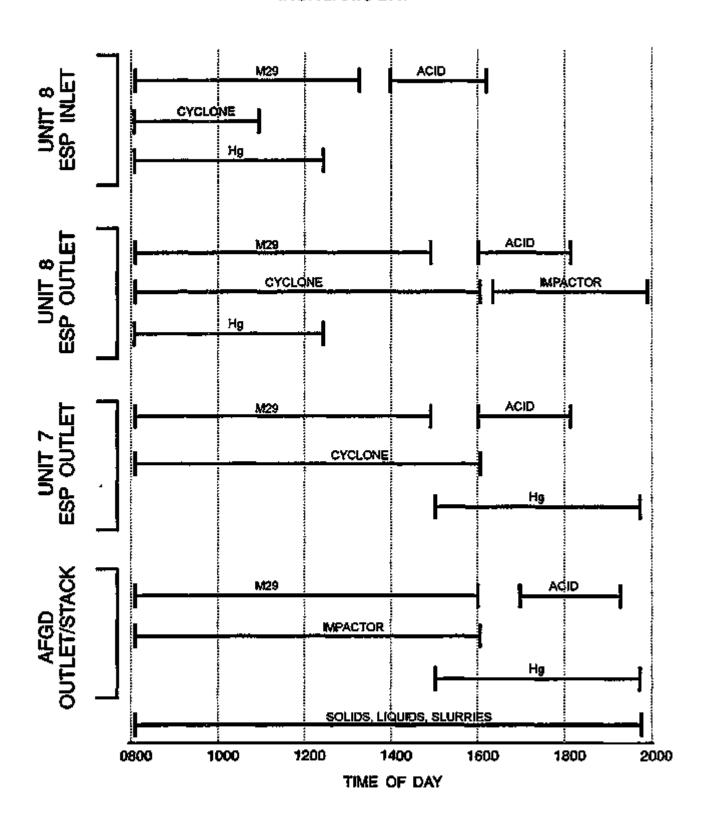


Figure 4-2 Typical Sampling Schedule for Inorganics

ORGANIC DAY

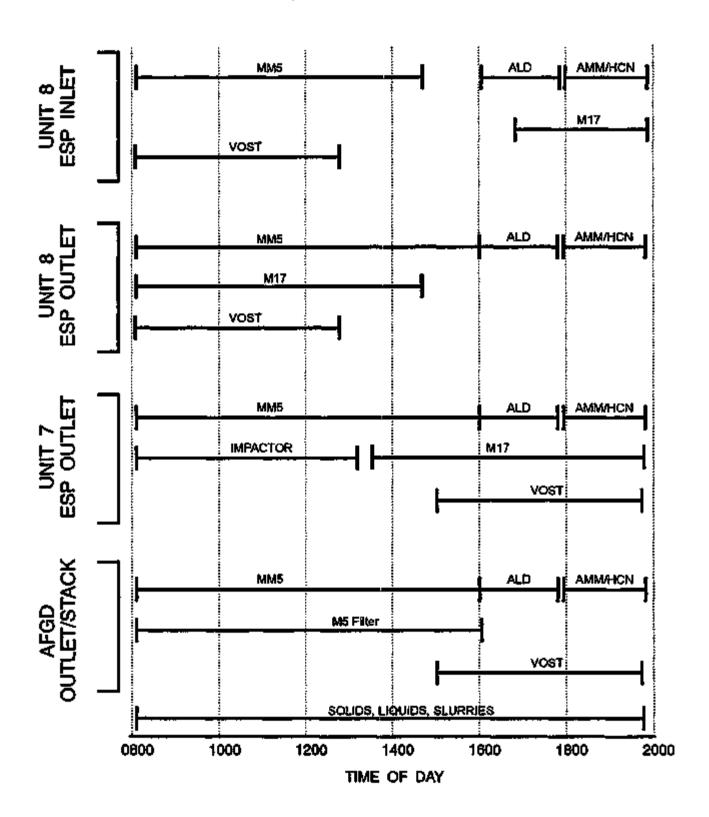


Figure 4-3 Typical Sampling Schedule for Organics

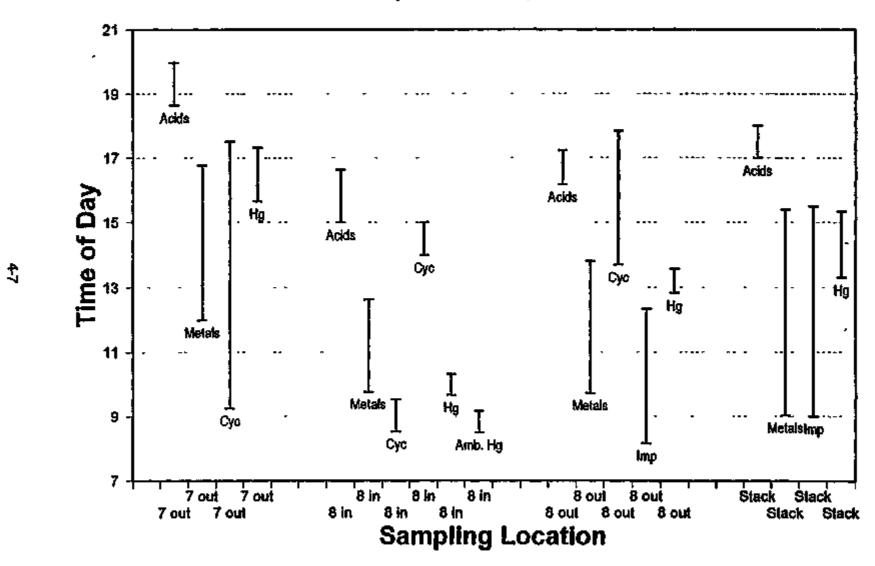


Figure 4-4. Actual Schedule of Sampling on September 3, 1993.

Figure 4-5. Actual Schedule for Sampling on September 4, 1993.

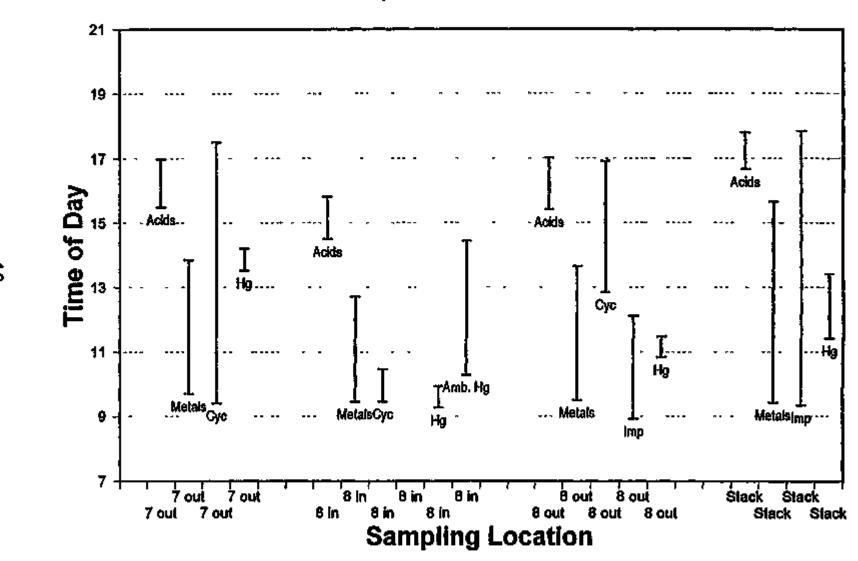


Figure 4-6. Actual Schedule for Sampling on September 5, 1993.

September 6, 1993

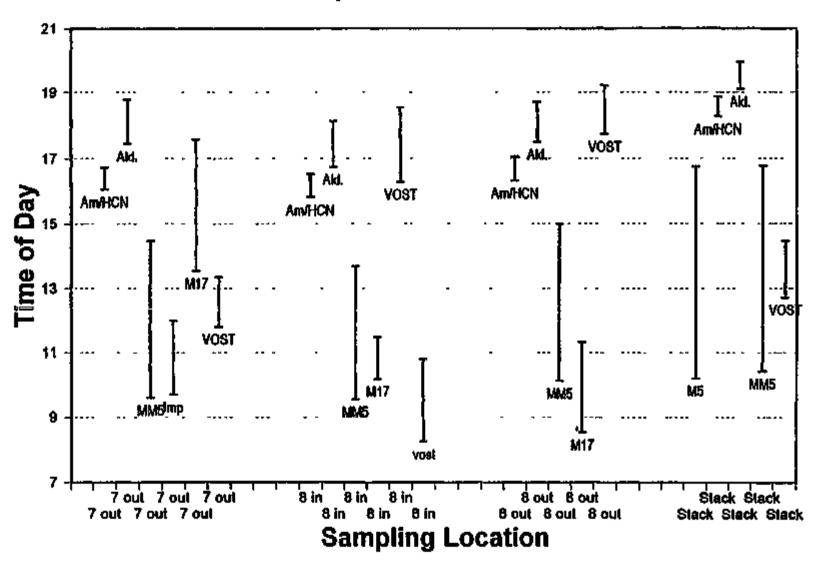


Figure 4-7. Actual Schedule for Sampling on September 6, 1993.

4.2.2 Deviations from Standard Techniques

The Method 5 type traversing samples were obtained using Pyrex plass and/or quartz-lined nozzles and probes in all cases. An in situ thimble type particulate collector was used for the Method 17 sampling at the Unit 8 inlet and 63 mm flat quartz fiber filters were used at the ESP outlet. A conventional Method 5 probe and oven was used at the stack for the radionuclide sampling because of the high moisture content and entrained water. The Method 5 type sampling at all locations was done using a small oven to contain the filter mounted at the external end of the probe. A flexible teflon umbilical line was used to convey the filtered sample gases to the condenser/implager portions of the trains. The impingers were positioned at some convenient location adjacent to the sampling ports. Materials deposited in these umbilicals was recovered as part of the "back half" catches. All glass-to-glass connections were sealed with DuPont KryTox* sealant, a liquid fluorocarbon of the teflon family. SRI has used KryTox* on several tests of the type being done here, and it has proven satisfactory (non-interfering and low blank levels) for Method 29. Method 5, Method 23, and SW846 Method 0010 and offers superior performance in obtaining leak-free sampling systems.

Sampling at the stack posed three special problems. First, the in situ samplers had to contend with a saturated gas stream containing entrained water. Therefore, the impactor and its precollector used for particle size measurement were heated using an externally-mounted heating jacket and tape to collect the samples in a dry state. Second, the very long nipples (66 inches) through which the probes had to be inserted, together with the large stack diameter (33 feet), made it impractical to use the standard 12-point traverse pattern. Probes with working lengths in excess of 15 feet (overall lengths in excess of 161/2 feet) would have been required - an impractical length for the glass-lined probes required for the acid gases, metals and semi-volatile organics trains. Consequently, the sampling was done with 12-foot working length probes and sampling at the innermost sampling point that could be reached was repeated to make up for the point that could not be reached. Finally, a permanent shelter on the sampling platform restricted access to the ports in one quadrant of the stack (see Figure 4-1). At that location, probe assemblies with overall lengths greater than about 61/2 feet could not be used. Method 5 assemblies of that size would have barely been long enough to reach through the nipple into the flue gas. Therefore only three of the four ports to be used for traverse-type sampling were suitable for much of the sampling to be done here. One of the accessible ports was traversed a second time by each train to make up for the port that could not be used.

Similarly, the Unit 8 ESP outlet duct was so deep and the port nipples were so long that glass-lined probes longer than 16 feet would have been required to do the full, standard traverse. Again, 12-foot working length probes were used, with the consequence that the farthest point of the traverse at each port could not be reached. During our preliminary measurements a temporary extension was added to a pitot tube from which we found that the velocity at the point that could not be reached was about the same as that at the last point that could be reached with the 12-foot working length probe. Hence, the farthest point was omitted during the sampling and the second farthest was sampled twice to compensate.

The particulate concentration at the outlet of the Unit 8 ESP was so low that insufficient material could be collected with the cascade impactor in a single day of sampling to obtain useful results. Therefore, the measurement of particle size distribution at the Unit 8 ESP outlet was made using a single sample taken over three successive tests days rather than with three samples taken one per day for three days as was done at the Unit 8 ESP inlet, the Unit 7 ESP outlet, and the stack.

Sampling for ESP outlet and stack samples was four to six hours in duration, permitting gas volumes of about 5 to 8 m³ of stack gas to be sampled with the Modified Method 5 and Method 29 trains. Because of the high SO₂, substantially smaller sample volumes were obtained with the acid trains. Sampling at the Unit 8 inlet for M29 (metals) trains was about three hours duration and for MM5 trains was about four hours duration, permitting volumes of 3 to 5 m³ of gas to be sampled with these Method 5 type trains. VOST samples of 20, 10, and 5 liters were taken at all locations. Aldehyde and ammonia/cyanide gas sample volumes were about 0.5 m³ at all locations. Sampling times for acid gases and anions were about one hour at all locations. This train was traversed to ensure representative collection of anions in the particulate phase. Radionuclide sampling times were about 1 to 6 hours, depending on location, and were set to provide particulate catches of 150 mg or more.

Because of the greater than normal gas volumes being sampled in order to reduce detection limits in the M29 trains, we feared that the $\rm H_2O_2$ would be depleted by the $\rm SO_2$ in the flue gas. Consequently, an additional 40 mL of the peroxide solution was added to the impingers on the first day of sampling (9/3/93). Thereafter, the impinger solutions were made up with the liquid volumes specified by the method but the peroxide concentrations in the solutions were increased from 10% to 15%. Similarly, because the permanganate impingers lost most of their color during the first day of sampling, we concluded that the amount of permanganate called for by the method was marginal for our sampling circumstances and an additional 50 mL, a 50% increase, was used thereafter.

Further, we concluded that the sample recovery protocol for the M29 permanganate impingers resulted in unnecessary dilution and consequent loss of sensitivity for Hg. The volumes of rinse solutions used were reduced so that a total of 125 mL of solutions were used as compared to 425 mL called for by the method protocol.

On 9/3/93 the primary circuit providing power to the Unit 7 outlet location was overloaded, causing a loss of power to all trains in use at the time at that location. The cyclone sampler was without power for about 2 minutes and the diluter lost power for several minutes white a new power source was located and a new drop cord was strung to avoid a recurrence of the problem.

Also on 9/3/93, when the probe for the diluter was withdrawn the sampling nozzle was found to have rotated about 65 degrees from its proper orientation. A combination of glass tape and wire was used to secure it more firmly for all subsequent runs.

All sampling trains passed the required pre-test and post-test leak checks throughout the test program with one exception. One acid gases train at the Unit 8 inlet was accidentally dropped after the sampling had been completed and before the post-test leak check could be made. Inspection revealed that a ball-joint connector on the filter holder had been cracked, almost certainly when the train was dropped. The moisture content calculated from the data from this run was consistent with that from previous and subsequent runs; therefore, the data from the run were retained as being valid.

4.3 Samples Collected

4.3,1 Lists of Samples

The types of samples collected for analysis from solid and liquid streams are listed in Table 4-2. Three of the streams listed under liquids were slurries; both the liquid and solid phases of these slurries were included in the analysis (as separate materials). Although typically five daily samples of the solids and liquids were collected (with the exception of the bottom ash sluice which was collected only one time per day), composites were prepared so that only one sample representing the daily set had to be analyzed. The methods of preparing composites are described later in this section.

The types of samples collected from the gas streams for the purpose of analysis are listed in Table 4-3. For all analyses except particulate mass loading, only the west ESP inlet duct to Unit 8 was sampled to represent the entirety of the boiler flue gases entering the ESPs. The samples listed in Table 4-3 were in no case composited. In fact, some samples listed individually consisted of several components that were analyzed separately. One example was the sample of trace metals, which consisted of 1) the filter and solids rinsed from the probe, 2) the peroxide impingers, and 3) the permanganate impingers.

4.3.2 Sampling Methods

4.3.2.1 Bulk Solids

<u>Coal Pile Runoff</u> — Boller feed coal was used to determine the leaching characteristics of the coal. The collection of boiler feed coal is described below. SRI split the boiler feed samples to produce a composite to be used for the Toxicity Characteristic Leaching Procedure, commonly referred to as TCLP (6). Four daily composite samples, one for each day of testing, were riffled together to yield a single composite sample for TCLP analysis to represent the boiler feed coal during the test period.

<u>Boiler Feed Coal</u> — Samples of the coal being burned in Unit No. 8 were taken with augers installed at the base of the coal silos feeding each of the eight cyclone burners. Only five of the eight augers were operational, so the samples collected were

Table 4-2
Samples Collected for Analysis from Solid, Liquid, and Slurry Streams

	Number of Samples Daily
SOUDS	
Coal	5
ESP Hopper Ash	3
Limestone "	~20
Bottom Ash	1
i Gypsum ^b	1
LIQUIDS	
Unit 8 Condenser Inlet	5
Unit 8 Condenser Outlet	5
Bottom Ash Sluice Water Supply	5
Bottom Ash Sluice Water °	t
Condenser Makeup Water ^d	10
AFGD Service Makeup Water	5
AFGD Waste Water	5
SLURRIES	
Bleed Pump Sturry	5
Absorber Recirculation Pump	5

NOTES:

- Sample from each truck of pulverized limestone delivered during the test day.
 Sample taken by Huber, Inc.
- b. Composite automatically taken with a sampler maintained by Pure Air.
- c. Liquid phase of the bottom ash sluice.
- d. Five samples were taken each day from each of two storage tanks in use.

Table 4-3
Samples Collected for Analysis from Flue Gas Streams (sum of all test days)

Type of Sample	Unit 8 ESP Inlet	Unit 8 ESP Outlet	Unit 7 ESP Outlet	Unit 7 Outlet /Diluter	Stack	Ambient
Trace Metals	3	8	3	3	3	
Mercury *	3	3	3	3	3	2
Acid Gases	3	3	3	.3 .	3	
Ammonia/HCN	1	1	1 1		1	 -
Aldehydes ^b	1	1	1 1		1	1
Volatile Organics °	3	3	3		3	3
Semivolatile	1	1	1 -	1_	1	
Organics					l	
Cyclone Solids	3	1 .	1	·	-	
Impactor Solids		· з	3		3	

NOTES:

- a. Two of the three flue gas samples and one ambient sample were for speciation of mercury using soda lime and carbon traps. The third flue gas sample and one ambient sample were for total mercury using only carbon traps.
- b. The *ambient* aldehyde sample was a sample of ~2 m² of air from inside the trailer being used for DNPH reagent preparation and recovery.
- c. Three sample volumes were collected on one test day.

from these augers. Each day we collected one sample every two hours for a 10-hour period concurrent with the flue gas sampling. We collected each two-hour sample in a single 5-gallon bucket that was itself a composite of the feed to the five cyclones with operational augers. We sealed and labeled each bucket. Before analysis these five buckets per day were combined by riffling the coal into a single composite sample for each test day.

<u>Bottom Ash</u> — Bottom ash is collected in a wet storage hopper beneath the boiler, passes through a clinker grinder, and is then discharged as a sluice stream at about eight-hour intervals. Bottom ash is approximately 63% of the ash from the coal. The only accessible sampling location for bottom ash was at the sluice discharge into the settling pond. Therefore the sampling of bottom ash was coordinated with the bottom ash discharge. A type 316 stainless steel bucket was used to collect a sample of the sluice as it was discharged into the pond. One sample of bottom ash sluice was collected per test day. These were stored in glass jars with tellon-lined lids, sealed and tabeled appropriately.

ESP Hopper Ash — There are three rows of hoppers in the direction of gas flow in each of the ESPs. The ESP hoppers are evacuated twice per shift each day. To collect a representative sample of the distribution of ash collected in the ESP, we attempted to collect samples from one hopper in each of the three rows before the hoppers were evacuated. On the first day of sampling we were unable to get any ash from the last row of hoppers. On the subsequent days we obtained samples from a hopper in all three rows. Grab samples were collected before the hoppers were emptted through poke holes at the base of the hoppers with a type 304 stainless steel ladle, and placed in sealed and labeled 500 mL glass jars with teflon-lined lids. The samples from the three hoppers were subsequently combined in proportions based on the collection efficiency of the ESP and the exponential nature of mass collection in ESPs to make daily composite samples.

<u>Limestone</u> — Finely ground limestone is delivered to the AFGD plant daily from the nearby supplier (Huber). The limestone is pneumatically transported into the storage hopper which is sealed and pressurized. Huber takes grab samples of the limestone delivered in each truck, and provided us with a sample collected from each truck. About 20 truckloads per day are required to operate the unit at full load. We later combined the samples provided by Huber into a daily composite sample.

Gypsum — An automatic sampler collects samples of the gypsum from the centrifugal dryer off of the conveyer belt that delivers the gypsum to the storage building. The sampler has a programmable frequency, and normally collects a sample every 48 minutes. SRI obtained a daily composite sample of gypsum from this sampler that is operated by Pure Air.

4.3.2.2 Liquid Streams

In the collection of all liquid streams, we allowed residue to clear the sample source (water or slurry tap or pipe outlet) by discharging some of the sample stream before collecting the sample to be analyzed. We collected five samples per day at two-hour intervals, except for the bottom ash slurry described above, in glass jars with

teflon-lined lids. We also collected two samples per day from each stream in Volatile Organic Analysis vials (40 ml). None of the streams were sampled through rubber hoses or plastic pipes.

<u>Condenser Inlet Water</u> — Circulating water is not treated. We collected samples of condenser inlet water from the intake from Lake Michigan.

<u>Condenser Outlet Water</u> — Condenser outlet water samples were taken at the point of discharge into Lake Michigan.

<u>Bottom Ash Sluice</u> — Bottom ash sluice was sampled at the discharge into the settling pond (see Section 4.3.2.1).

Sluice Return Water — The supply of water for the bottom ash sluice is a return pond containing clarified water from the bottom ash sluice. We sampled the sluice return water from a tap on the low pressure side of the bottom ash sluice pump located in the basement of Unit 8.

<u>Makeup Water</u> — Treated water is used for makeup water to the condensers. We sampled from the two storage tanks for Unit 8 makeup water.

<u>Service Water</u> — Service water is used for makeup water throughout the AFGD process. We sampled the service water from a tap in the AFGD scrubber building.

AFGD Waste Water — Waste water from the AFGD process was sampled at the outlet of the thickener overflow tank.

<u>Bleed Pump Slurry</u> — This slurry was collected from the bleed pump on the forced oxidation side of the scrubber slurry collection system in the AFGD process. It was collected at the outlet of the bleed pump.

<u>Absorber Recirculation Pump Slurry</u> — This slurry was collected from the recycle side of the scrubber slurry collection system in the AFGD process. It was collected at the outlet of the absorber recirculation pump that feeds the slurry spray system.

4.3.2.3 Flue Gases

Tables 4-1 and 4-3 list the manual flue gas sampling methods employed in this test program. All glassware and probes, etc., were cleaned per EPA specification prior to use. Pallilex QAST 2500 pure quartz filters were used as the collection medium for all particulate sampling. The Method 5 type traversing samples were obtained using Pyrex glass and/or quartz lined nozzles and probes in all cases. An *in situ* thimble type particulate collector was used for the Method 17 sampling at the East inlet to the Unit 6 ESP. For the Method 5 sampling variants at all locations a small oven was mounted at the external end of the probe to contain the filter. A flexible teflon umbilical line was then used to convey the filtered sample gases to the condenser/impinger portions of the train. The latter were positioned at some convenient fixed location adjacent to the sampling ports. Materials deposited in these umbilicals was recovered as part of the "back halt" catches. All glass-to-glass

connections except those in the high temperature parts of the trains were sealed with DuPont KryTox* sealant, a liquid fluorocarbon of the teflon family. SRI has used KryTox* on several tests of the type done here, including RCRA Trial Burns, and it has proven satisfactory (non-interfering and low blank levels) for Method 29, Method 5, Method 23, and SW846 Method 0010 and offers superior performance in obtaining leak-free sampling systems.

Three of the sampling methods listed in Table 4-3 were carried out as described in EPA publications, which are identified in one of the footnotes of the table:

- Method 29, proposed for eventual incorporation in Code of Federal Regulations, for sampling trace metals in both particulate and vapor forms (based on a filter for collecting solids, peroxide-based impingers for vapors of all metals, and permanganate-based impingers for mercury vapor alone that penetrates the peroxide impingers).
- Method 0030, Volatile Organic Sampling Train (VOST), which is described in SW-846, Test Methods for Evaluating Solid Waste. This train collects vapors only, first in a sorption tube of the resin Tenax and then in a second sorption tube containing Tenax in the leading section and charcoal in the back section. The train also collects the condensate of water vapor, which is set aside for analysis along with the two sorption tubes.
- Method 0010, Modified Method 5 train, which is also an SW-846 method. This
 train collects semi-volatile organic compounds (including dioxins and furans) in a
 three-component sampling section; 1) a filter for solids, 2) an XAD-2 resin
 cartridge, and 3) water-containing impingers.

Several of the sampling methods are not incorporated in the EPA methods published in CFR or SW-846. These methods are described briefly in the paragraphs that follow:

- Mercury was included in the samples collected by Method 29. It was also collected as the single analyte by a sorption method described by Bloom (2). Two iodated carbon tubes purchased from Mine Safety Appliances were arranged in a tandem fashion to adsorb mercury from the vapor state. The gas is not sampled isokinetically in this method, but particulate matter is kept out of the sorption tubes by use of a quartz wool plug. The particulate matter from the gas stream that is retained in the quartz wool may be analyzed or may be discarded. When it is analyzed, it is included with the sorption tubes and usually contains a negligible quantity of mercury. The particulate matter was discarded in this project; only the vapor collected on the sorption tubes was analyzed.
- The acid gases were sampled by use of the Method 5 train in which each of two
 impingers are filled with a solution 2.5 g of sodium carbonate, 2.5 g of sodium
 bicarbonate, and 10 mL of 30% hydrogen peroxide. The solids on the filter were
 retained for analysis as well as the impinger solutions.

- The gases ammonia and hydrogen cyanide were collected in a separate sampling train of the Method 5 type in which the first two impingers each contained 100 mL of the mixture of carbonate and bicarbonate described above, but no peroxide, and the second two impingers each contained 100 mL of 0.1 N sulfuric acid. Both of the gases to be collected are highly soluble in water, and both may be retained to a high degree even in plain water with no added acid of base, especially at the low partial pressures of the gases expected. The purpose of the carbonate and bicarbonate, then, were to add insurance for the retention of HCN (a weak acid), and the purpose of the sulfuric acid was to retain any NH₃ that might penetrate the first alkaline impingers.
- Aldehydes were collected with a Method 5 train in which two impingers containing 100 mL of 0.025% 2,4-dinitrophenythydrazine were used as the collection medium.
 The filter of the train was not retained. The operation of the aldehyde sampling train was similar to the aldehyde collection procedures in EPA Method T05 for ambient air and EPA tentative SW-846 Method 0011.

Cilution Sampling

The custom SRI diluter was operated to collect simulated plume samples each day. The dilution air was ambient air that has conditioned by being dried by passing it over silica gel, chilled by passage through an ice bath chiller, scrubbed by passing it through activated charcoal, and finally filtered through an absolute filter. The sample gas stream was withdrawn through a glass nozzle and glass-lined probe to the diluter. The interior surfaces of the diluter were tellon coated. On the "inorganics" sampling days the following samplers were used with the dilution system: two M29 impinger trains (to be pooled for analysis), an iodated charcoal trap for total mercury in the vapor phase, and an acid gas impinger train. On the "organics" test days two MM5 condenser/sorbent trap/impinger trains were run on the diluted gas stream. The MM5 condensers and traps were chilled as they are for conventional stack sampling. The catches of the two trains were pooled for analysis to increase sensitivity. No VOST sampling was done from the diluter. First, because there would be no conventional stack sampling methods to which dilution samples might be compared and, second, the solvents used in the recovery of the particulate samples from the front half of the dilution train for particulate phase metals and semivolatile organics would result in severe contamination problems for VOST samples. A flue gas sampling rate of about 0.5 dscfm was used. At one point during the test program a blank run was made as a QA/QC measure in which only dilution air was sampled with one of each of the impinger trains for the same duration as in the actual tests.

Particle Size Distribution Measurements

The combination of high gas velocity and high particulate loading at the Unit 8 inlet made the use of cascade impactors for particle size measurement at that location impractical. High particulate concentration gas streams require low flow rate impactors in order to provide reasonably long sampling times with a minimum of several minutes being needed. However, the gas velocities in the duct, 24 m/s, would

have resulted in sub-millimeter nozzle tip sizes being required for Isokinetic sampling with low flow rate impactors. Obtaining accurate and/or representative samples with such small tip sizes is problematical. Therefore, instead of impactors, we used the SRI/EPA Five Series Cyclone sampler for the Unit 8 inlet particle size distribution measurements. The series cyclone system provides data in six size fractions with cuts at about 10 um, 6.5 um, 4.5 um, 2 um, and 1 um - comparable to those obtained with most impactors. The cyclones have very large holding capacities and thus avoid the rapid overloading problems encountered with impactors and they do not suffer from particle bounce problems. Consequently they can be operated at higher flow rates than impactors, thus avoiding the problem of small nozzle tip sizes. The same samples obtained for size distribution purposes at the Unit 8 inlet were also used for the purpose of trace element analysis by size for that location. The catches of the three cyclones with cuts smaller than 54m and the filter were combined after weighing to form a single sample for the $<5\mu m$ fraction, while the catches of the first two cyclones were retained intact. The sampling at the ESP outlets for trace metal. composition versus size was done using the first two cyclones of the SRI/EPA set followed by a filter.

More complete descriptions of sampling methods and trains are given in Appendix B.

4.3.3 Compositing of Solids and Liquids

The procedures used to obtain daily composites of four types of solids (coal, ESP hopper ash, limestone, and gypsum) were described in Section 4.3.2.1. More complete information in regard to blending of ash from different rows of the ESP is presented in Section 6.1.1.2.

As for samples of plain water and slurries, composite were prepared from five daily samples of each. Composites of plain water consisted of equal volumes (approximately 100 mL) of each of the five available samples. Composites of the liquid phase of the absorber recirculating slurry and bleed pump slurry were prepared similarly; that is, a selected volume of the clear supernatant aqueous phase was decanted from each of five daily samples, and the five portions were combined. Composites of the wet, compacted solids from the slurries were similarly prepared after the supernatant had been decanted; 50 g portions of the wet solid matter from daily samples were combined and mixed. In addition, the percentage of solids in each daily sample of these two types of slurries was determined. For the bottom ash sluice, in contrast to the two types of slurries from the scrubber, there was only a single daily sample, and thus compositing was not performed. The liquid samples were prepared and analyzed without the addition of preservatives.

4.4 Mass Flow Rates

Mass flow rates for the process streams at Bailly Station Units 7 and 8 and the Pure Air AFGD were either measured by SRI, recorded with the plant control/data acquisition systems, calculated from mass and energy balances, or estimated. The test periods are taken as stable operating periods, and a single flow rate for each

process stream, representing the pseudo-steady-state conditions, is calculated for each day of inorganic element testing. The data supplied by the plant system were averaged for the test period.

Table 4-4 lists measured flow rates of flue gases at the sampling locations. These data are normalized to a constant oxygen level (3% by volume). Measured oxygen and carbon dioxide values (dry basis) are given in Table 4-5. Data from Tables 4-4 and 4-5 should be considered together to account for air leaks into the flue gas stream. Also important to the calculation of mass flows is the water measured in the flue gases. Table 4-6 gives the water as a percentage of the flue gas volumes at the sampling locations for all of the sampling trains. These results suggest that there were no significant leaks in any of the sampling trains.

Particulate concentrations in the flue gas streams are shown in Table 4-7. These data and the flow rates in Table 4-4 yield, in combination, the mass flow rate of solids in the flue gases at the sampling locations, and are therefore used in material balance calculations for solid phase pollutants. There is a large discrepancy between the mass loadings determined at Unit 8 outlet with the Method 29 metals train and the acid gases train. We were unsuccessful in resolving this discrepancy. Output from the opacity monitor at the Unit 8 outlet does not show any difference in emissions from the ESP during the two sampling times. We obtained opacity data with a sixminute resolution to evaluate this difference. There are two potential explanations. however. First and most likely, we were obtaining grab samples from the ESP. hoppers during the time when the acid gases train was sampling at the ESP outlet. Because of the suction caused by the static pressure in the ESP, we may have entrained ash from the hoppers into the outlet duct by opening an access port on a hopper. Another but unlikely possibility is that the timing of the acid gases train coincided more with the rapping of the last field in the ESP than did the metals train sampling. We were told that the rapping interval on the last ESP field was one hour. We used the mass concentrations measured by the Method 29 metals trains for the mass flows of particulate matter.

The power plant can be broken into six sub-systems: the Unit 8 boiler, the Unit 8 ESPs, the Unit 8 condenser, the bottom ash removal, flue gas mixing, and the AFGD scrubber system. In the following section, the main infet and outlet flows for each of these areas are discussed.

Mass flows for the plant for each of the three inorganic test days are presented in Tables 4-8 through 4-10 (these tables are presented beginning on page 4-29). Appendix E is a step-by-step example that shows how the mass flows were calculated, using September 3, 1993 as the example. Table 4-11 lists the average mass flows for the plant over the three test days; Table 4-11A lists the sample standard deviations.

Table 4-11 shows the mass balance closure (out/in) as an average of the closures for the three days and as a closure of the average flows. Each day is considered to be an independent measurement, so that the average of the daily closures is valid. If there is a change in conditions or coal from day to day, the

average of the closures would show no effect, whereas the closure of the average flows could be disturbed.

4.4.1 Unit 8 Boller

The boiler is taken as the cyclone barrels, the slag quenching system, the economizers, and the air heaters. Thus the input streams are the crushed coal and the combustion air. The output streams are the flue gas and particulate flows into the electrostatic precipitators and the bottom ash (or slag) from the cyclone barrels. According to the plant and consistent with cyclone firing, the economizer hoppers do not collect any ash of note, and are ignored for the boiler balance.

The coal is gravimetrically fed to the cyclone barrels via weigh-belt feeders, and the total flow rate for all eight cyclone barrels is recorded in the Unit 8 control computer. The combustion air flow rate is calculated by a stoichiometric combustion calculation with the measured amount of excess air added. The flue gas flow rate is measured at the ESP inlet, and the particulate flow taken from the measurements in the Method 29 metals train operation. The bottom ash flow is calculated from an ash balance, the coal ash input minus the fly ash flow rate at the ESP inlet. This approach yields a fly ash to bottom ash ratio of 33/67, which is close to the historical average of 37/63 for Units 7 and 8 combined for 1992, 1991, and 1990.

The average closure for the boiler is 114%, which represents the imbalance between the calculated combustion air and the flue gas flow.

4.4.2 Unit 8 Electrostatic Precipitators

The Unit 8 particulate control is achieved through the use of parallel ESPs. The western ESP was sampled by SRI using the Method 29 metals train, and the eastern ESP was sampled for particulate flows by EPA Method 17. The data, reported in Table 4-7, show similar fly ash loadings in each ESP inlet, so the Method 29 values of particulate loading were used for both ESPs. The actual flow rate of flue gas through each side was taken to be the measured value. Outlet measurements of the Unit 8 ESPs were performed on the duct after the flow through both ESPs was mixed. Therefore, the values of flue gas flows and particulate loadings were measured directly by Method 29. The flow rate of ash collected in the ESP hoppers is calculated by the difference in the particulate flow rate into and out of the ESPs.

The Unit 8 ESP average closure is 109%, which indicates the differences in the measured inlet flow and the outlet flow.

4.4.3 Unit 8 Condensers

The condensers for Unit 8 use a once-through cooling water flow obtained from Lake Michigan. The cooling water inlet and outlet temperatures were recorded by the plant data acquisition system. The actual flow rate of cooling water was not obtained from the plant, but was estimated from the condensate flow rate. The condensers operate mainly to condense the steam exiting the turbines to be recycled to the boiler feed pumps. By calculating the latent heat required to condense the

amount of water making up the condensate flow and the cooling water temperature change, the cooling water flow rate was estimated. This calculated flow was checked by using a 33% plant efficiency, assuming the rejected heat was all taken by the cooling water. This estimate was about 10% higher than the flow calculated by the condensate flow.

The condenser average closure is assumed to be 100%.

4.4.4 Bottom Ash Sluice

The flows in the bottom ash sluice are estimated. The bottom ash flow rate into the sluicing system is determined in the boiler balance. From the two-phase samples taken and observations of the sluicing operation, it is estimated that the water mass used to remove the slag is 10 times the mass of the bottom ash. The slag is assumed not to dissolve in the water, except for very trace amounts. Therefore, the bottom ash in equals the bottom ash out.

The average closure for the bottom ash sluice is assumed to be 100%.

4.4.5 Unit 8 Overall

The boiler system is a summation of the boiler, the ESP, and the bottom ash sluice. The condenser loop is not included in the overall balance. The condenser flows are 20 times larger than any other flow, and tend to dampen out any other result, especially since the condenser system is assumed to balance perfectly. The input streams are the coal, combustion air, makeup water, and sluice return water. The output streams are the bottom ash sluice, the ESP hopper ash, and the flue gas to the Pure Air AFGD system.

The overall average closure for Unit 8 is 101%.

4.4.6 Flue Gas Mixing

The flue gas from the Unit 8 ESPs is mixed with the Unit 7 ESP output before going to the AFGD system. A perfect flue gas and particulate balance is assumed in this sub-system. The measurements of the ESP outlets are algebraically combined to give the output.

The average closure for the flue gas mixing is assumed to be 100%.

4.4.7 AFGD System Overall

The Pure Air Advanced Flue Gas Desulfurization (AFGD) system material balance is drawn around the entire process. The inputs are the combined flue gas streams from Units 7 and 8 electrostatic precipitators, limestone, compressed air, and service water. The output streams are the flue gas to the stack, gypsum, and waste water. The flue gas input and output were measured by Method 29, and the SO₂ concentrations were measured by calibrated continuous monitors. The SO₂ removed from the flue gas was assumed to exit the system as sulfate in gypsum, and the

gypsum flow rate was calculated on that basis using the measured sulfate concentration of the gypsum. A calcium balance around the AFGD system determined the limestone flow rate. The compressed air flow rate was taken from the AFGD process data, as was the flow rate of waste water to wastewater treatment. The service water supplied to the AFGD system was calculated by a water balance around the system. As can be seen in Table 4-11, the overall balance of the flow rates is quite good, at 101 percent closure, based on these assumptions.

The average closure for the AFGD system is 101%.

Table 4-4. Bailly Measured Gas Flow Rates

(Reference conditions: dry, 3% O2, 293.15 K, 1 atm)

Flows in	kdscfm		LOCATIONS				
		Unit 8	Unit 8	Unit 7	Combined		
DATE		Inlet	Outlet	Outlet	Outlet	Stack	
9/3	M29	592	655	366	1021	1026	
<u>'</u>	Acid	596	681	366	1047	965	
9/4	M29	575	646	349	995	1014	
	Add	582	583	334	917	1009	
9/5	M29	567	65B	352	1010	993	
	Acid	541	704	350	1054	1006	
9/6	MM5	586	_651	348	999	1075	
	M17	638	665	330.	995	973	
AVERAGE		585	655	349	1005	1008	

RATIOS					
Unit 8	Stack/				
Out/In	7+8 Out				
1.11	1.00				
1.14	0.92				
1.12	1.02				
1.00	1.10				
<u>1.16</u>	0.98				
1.30	0.95				
1.11	1.08				
1.04	0.98				
1.12	1.00				

Flows in I	Nm3/s	LOCATIONS				
		Unit 8	Unit 8	Unit 7	Combined	
DATE	_	Inlet	Outlet	Outlet	Outlet	Stack
9/3	M29	279	309	173	482	484
	Acid	261	321	173	494	455
9/4	M29	271	305	165	470	479
	Acidi	275	275	158	433	476
9/5	M2 9	268	310	166	476	469
	Acid	255	332	165	497	475
9/6	MM5	277	307	164	471	507
	M17	301	314	155	470	459
AVE	RAGE	276	309	165	474	476

42 83

Table 4-5. Orsat Results; Flue Gas O₂ and CO₂ as Volume Percentages

Date		Unit 8 Inlet	Unit 7 Outlet	Unit 8 Outlet	Stack
9/3	O₂	5.5	6.2	5.7	6.3
	CO₂	13.4	12.8	13.3	12.8
	O₂	5.3			
	CO₂	13.7			
9/4	O ₂	5.2	6.8	6.4	6.6
	೦೦₂	14.0	12.6	12.8	12.8
	O₂	4.9	7.2	7.4	6.7
<u> </u>	CO2	14.3	12.4	12.8	12.8
9/5	O ₂	5.0	6.4	6.2	6.5
1	CO2	14.0	13.0	12.8	12.9
					-
	O₂	5.0	6.6	5.4	
	CO₂	14.2	12.8	14.0	
9/6	್ತ	4.6	6.6	6,6	6.4
	co²	14.4	12.8	10.2	13.0
{	O ₂	4.6	6.6	6.4	6.6
	CO₂	14.6	12.8	12.8	12.8

Table 4-6. Percentages of Water Vapor in Flue Gases

-		Date	9	
Location & Train	3	4	5	6
7 Outlet: Acid Metals Cyclone Ammonia Aldehyde MM5 Impactor M17	8.2 9.4 	8.4 8.9 8.6	8.2 9.6 —->	7.8 9.3 8.1 8.1 9.6
8 Inlet: Acid Metals Cyclone Ammonia Aldehyde MM5	10.0 10.5 8.8	9.3 9.7 9.7	9.5 10.0 10.0	10.6 9.4 9.2 9.0
8 Outlet: Acid Metais Cyclone Ammonia Aldehyde MM5 Impactor M17	9.3 9.4 <	8.1 8.8 9.6	8.6 9.3 >	9.9 9.3 8.9 8.9
Stack: Acid Metals Radio. Ammonia Aldehyde MM5	15.1 16.0 15.4	14.4 15.3 15.9	14.0 15.8 15.7	15.8 13.5 15.7 15.0

Table 4-7. Particulate Concentrations, g/Nm³ (Reference conditions: dry, 293.15 K, 1 atm, actual O₂ concentration)

		i			
		3	4	5	6
8 Inlet					
	Metals	4.556	5.243	5.404	
	Acid	4.455	4.706	4.738	
	M17	ľ			4,316
	Imp.	ľ			
	Cyc.	3.93	4.48	4.48	
7 Qutlet					
	Metais	0.0698	0.0527	0.0827	
	Acid	0.0679	0.0761	0.0831	
	M17	ľ			0.0434
	lmp.				0.0457
	Cyc.	◀	- 0.0407	→	
8 Outlet					
	Metals	0.0145	0.00778	0.00511	
	Acid	0.0789	0.0444	0.0096	
	M17	ļ			0.00645
	lmp.	 ◀	- 0.00503	→	
	Cyc.	 ◀	- 0.00442	→	
Stack					
	Metals	0.027	0.0543	0.0815	
	Acid	0.045	0.0574	0.1021	
	lmp.	0.0231	0.0386	0.00672	
		<u> </u>			

Metals: EPA Method 29

Acid; EPA Method 5-type train for anions

M17: EPA Method 17

Imp.: University of Washington Mark III/V cascade impactor

Cyc.: SRI/EPA Five Series Cyclone

Table 4-8
Bailly Mass Balance for Total Flows
Data for September 3, 1993

	Process	Solid,	Liquid,	Gas,	Total,
. .	Stream .	kg/s	kg/s	kg/s	kg/s
UNIT 8 BC	ILER				
ln	Coal	38.9	<u> </u>	[38.9
	Combustion Air		1 -	430	430
	Makeup Water	İ	4.16	[4.16
Out	Flue Gas	1.46		438	439
	Bottom Ash	2.59]	· · · ·	2.59
Closure, %					93.4
UNIT 8 ES			·· •	•	
In	Flue Gas	1.46	1	438	439
Out	ESP Hopper Ash	1.44		[1.44
	Flue Gas to AFGD	0.0173		499	499
Ciosure, %					114
CONDENS				•	·
in '	Inlet Water		11600		11600
Out	Outlet Water		11600	 	11600
Closure, %			-		100
	ASH SLUICE		'		·
În	Bottom Ash	2.59	<u> </u>	 	2.59
	Sluice Return		.25.9	l . <u>.</u>	25.9
Out	Bottom Ash Sluice	2.59	25.9		28,4
Closure, %			20.0	 	100
	VERALL BALANCE	· · · · · ·	'	'	1,00
ln l	Coal	38.9	 	<u>, </u>	38,9
	Combustion Air		[430	430
	Makeup Water	·	4.16	1	4.16
	Stuice Return		25.9	j	25.9
Out	Bottom Ash Sluice	2.59	25.9		28.4
	ESP Hopper Ash	1.44	!	Į.	1,44
ŀ	Flue Gas to AFGD	0,0173		489	499
Closure, %	Ti-		 	100	106
FLUE GAS		L. -	r	!	
In	Unit 7 Flue Gas	0.0145		281	281
<u> </u>	Unit 8 Flue Gas	0.0173	!	499	499
Out	Flue Gas to AFGO	0.0318	 	780	780
Closure, %			 - 	 	100.0
	AFGD SYSTEM BAL	ANCE	'	'	, , , , , , ,
In	Flue Gas	0.0318	 - 	. 780	780
I ""	Limestone	6.81		[6,81
	Service Water)	84.7	}	84.7
	Compressed Air	!	57.1	8.69	8.69
Out	Stack Flue Gas	0.0207	 	806	806
]	Gypsum	9.11	İ		9.11
!	Wastewater	3.11	9.90		9.90
Closure, %		 	3.30	 	93.7
CICEDIA' 3	·	<u> </u>	J		30.1

Table 4-9
Bailly Mass Balance for Total Flows
Data for September 4, 1993

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	kg/a	kg/s	kg/s	kg/s
UNIT 8 BO	OILER				
Jn	Coal	39.2			39.2
	Combustion Air			417	417
	Makeup Water		4.16		4.16
Out	Filue Gas	1,53		416	418
	Bottom Ash	2.90			2.90
Closure, 9	•		<u></u>		91.3
UNIT 8 ES	3P				_
În	Flue Gas	1.53		416	418
Out	ESP Hopper Ash	1.52			1.52
	Flue Gas to AFGD	0.00967	1	. 495	495
Closure, 9	<u>, </u>				119
CONDEN			<u> </u>		
ln	Inlet Water		11400		11400
Out	Outlet Water	<u> </u>	11400	··	11400
Closure, 9		 	1		100
	ASH SLUICE		<u> </u>	<u></u>	
ดไ	Bottom Ash	2.90		<u> </u>	2.90
	Sluice Return		29.0	}	29.0
Out	Bottom Ash Sluice	2.90	29.0		31.9
Closure, 9					100
	VERALL BALANCE	<u> </u>	'	<u></u>	
In.	Coal	39.2	Т		39.2
•	Combustion Air		i	417	417
	Makeup Water	[4.16	7"	4.16
	Sluice Return	•	29.0		29.0
Out	Bottom Ash Stuice	2.90	29.0		31.9
	ESP Happer Ash	1.52	}		1.52
	Flue Gas to AFGD	0.00967	j	495	495
Ciosure, 9		0.00307	}	495	108
	S MIXING	·	<u>, </u>		1 100
	Unit 7 Five Gas	0.0404		1 2	
In	•	0.0134]	277	2//
	Unit 8 Flue Gas	0.00967	 -	495	495
Out	Flue Gas to AFGD	0.0230	 	771	771
Closure, 9		1	<u> </u>	!	100.0
	AFGD SYSTEM BAL			,	 :
1D	Flue Gas	0.0230		771	771
	Limestone	6,65			6.65
	Service Water	1	47.7		47.7
	Compressed Air		<u> </u>	8.63	8.63
Out	Stack Flue Gas	0.0335		835	835
	Gypsum	8.99			8.99
<u> </u>	Wastewater	<u> </u>	8.89	<u> </u>	8.89
Ctosure, 9	6	<u> </u>		<u> </u>	102

Table 4-10 Sailly Mass Salance for Total Flows Data for September 5, 1993

	Process	Solid,	Liquid,	Gas.	Total,
ĺ	Stream	kg/s	kg/s	kg/s	kg/s
UNIT 8 BC	XLEA				
Ín	Coal	39.3			39.3
	Combustion Air		!	423	423
	Makeup Water		4.16		4.16
Out	Flue Gas	1.49		398	399
	Bottom Ash	2.70	[1	270
Closure, %					86.2
UNIT 8 ES					
ln	Flue Gas	1.49		398	399
Out	ESP Hopper Ash	1.49		-	1.49
	Flue Gas to AFGD	0.00280		511	511
Closure, %					128
CONDEN		<u> </u>	l		·
In	inlet Water	_	11300	l	11300
Out	Outlet Water	· · · · · · · ·	11300	· · · · · ·	11300
Closure, %				 - · · · - · - · - · - · - · - · - · - 	100
	ASH SLUICE	<u> </u>	<u> </u>	<u> </u>	, ,,,,,
ln !	Bottom Ash	2.70			2.70
	Sluice Return		27.0		27.0
Out	Bottom Ash Sluice	270	27.0	<u> </u>	29.7
Closure, %			· - =1.'-		100
	VERALL BALANCE		<u> </u>	·	
In	Coal	8,93	T	 	39.3
•	Combustion Air			423	423
	Makeup Water .		4.16		4.16
	Sluice Return		27.0		27.0
Out	Bottom Ash Sluice	2.70	27.0		29.7
""	ESP Hopper Ash	1.49] -		1,49
	Flue Gas to AFGD	0.00280		511	511
Closure, %		2.00200			110
FLUE GAS		L	<u> </u>	<u> </u>	
In	Unit 7 Flue Gas	0.0171	 -	276	276
l '''	Unit 8 Flue Gas	0.00280		511	511
Out	Flue Gas to AFGD	0.0199	 	786	786
Closure, %		0.0133	 	1 100	100.0
	AFGD SYSTEM BAL	ANCE			,,,,,,
la	Flue Gas	0.0199		786	786
Į "	Limestone	6.89			6.89
l	Service Water	0.55	43.9		43.9
ł	Compressed Air		~~~~	8.65	8.65
Out	Stack Flue Gas	0.0538		817	817
I ~	Gypsum	9.08		l *''	9.08
	Wastewater	5.40	9.17		9.17
Closure, %		 		 	98.7
O10344E, 7	· · · · · · · · · · · · · · · · · · ·		<u> </u>	L	94.1

Table 4-11 Bailly Mass Balance for Total Flows Average of 9/3, 9/4, 9/5/90

	Process	Solid,	Liquid,	Gas,	Total,
Ì	Stream	kg/s	kg/s	kg/s	kg/s
UNIT 8 BOILER					
ın	Coal	39.1			39.1
	Combustion Air		• 1	424	424
	Makeup Water		4.16		4.16
Out	Flue Gas	1.50		417	419
	Bottom Ash	2.73			2.73
	f Daily Closures, %		- .		90.3
	Average Flows, %				90.3
UNIT 8 ES					_
ln	Flue Gas	1.50		417	419
Out	ESP Hopper Ash	1.49			1.49
	Flue Gas to AFGD	0.00994		501	501
	f Daily Closures, %				120
_	Average Flows, %				120
CONDEN			<u>-</u>		
ln	inlet Water		11500		11500
Out	Outlet Water	·	11500		11500
	f Daily Closures, %				100
	Average Flows, %				100
BOTTOM	ASH SLUICE			<u>.</u>	
tr	Bottom Ash	2.73		1	2.73
<u> </u>	Sluice Return		27.3		27.3
Out	Bottom Ash Sluice	2.73	27.3		30.0
Average of Daily Closures, %					100
Closure of Average Flows, % 100					
BOILER OVERALL BALANCE					
In	Coal	39.1			39.1
	Combustion Air			424	424
	Makeup Water		4.16		4.16
	Sluice Return		27.3		27.3
Out	Bottom Ash Sluice	2.73	27.3		30.0
	ESP Hopper Ash	1.49			1.49
	Flue Gas to AFGD	0.00994	<u> </u>	501	501
Average of Daily Closures, %					100
Closure of Average Flows, %					100

Table 4-11 (Continued)
Bailly Mass Balance for Total Flows
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	kg/s	kg/s	kg/s	kg/s
FLUE GA	FLUE GAS MIXING				
и	Unit 7 Flue Gas	0.0150		278	278
	Unit 8 Flue Gas	0.00994		501	501
Out	Flue Gas to AFGD	0.0249		779	779
Average o	of Daily Closures, %				100.0
Closure o	f Average Flows, %				100.0
OVERAL	LAFGD SYSTEM BA	LANÇE			
ın	Flue Gas	0.0249		779	779
	Limestone	6.78			6.78
	Service Water		86.4	i	86.4
	Compressed Air			8.66	8.66
Out	Stack Flue Gas	0.0360	1	819	819
•	Gypsum	9.06	i		9.06
	Wastewater		9.32		9.32
Average of Daily Closures, %					95.1
Closure of Average Flows, %					95.1

Table 4-11A Bailly Mass Balance for Total Flows Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	kg/s	kg/s	kg/s	kg/s
UNIT 8 BOILER					
In	Coal	0.230			0.230
	Combustion Air	1		6.45	6.45
L	Makeup Water		1.32E-09		1.32E-09
O _T	Flue Gas	0.0376		20.1	20.1
	Bottom Ash	0.159	<u></u>		0.159
Std Dev of	Daily Closures, %			i	3.71
	<u> </u>				
UNIT 8 ES		······································	<u></u>		_
in	Flue Gas	0.0376		20.1	20.1
Out	ESP Hopper Ash	0.0416		į	0.0416
	Flue Gas to AFGD	0.00727		8.38	8.38
Std Dev of	Daily Closures, %	_	·		7.36
CONDEN					<u>, </u>
	inlet Water		163		163
Out	Outlet Water	. <u>-</u>	163		163
Std Dev of	Daily Closures, %			<u> </u>	0.00
					<u> </u>
	ASH SLUICE				
in i	Bottom Ash	0.159			0.159
	Stuice Return		1.59		1.59
Out	Bottom Ash Sluice	0.159	1.59		1.75
Std Dev of	Daily Closures, %				0.00
					-
BOILER OVERALL BALANCE					
ln:	Coal	0.230			0.230
Ì	Combustion Air		i	6.45	6.45
1	Makeup Water		1.32E-09		1.32E-09
	Sluice Return	,	1.59		1.59
Out	Bottom Ash Stuice	0.159	1.59		1.75
Į į	ESP Hopper Ash	0.0416			0.0416
[Flue Gas to AFGD	0.00727		8.38	8.38
Std Dev of Daily Closures, %					0.0834

Table 4-11A (Continued) Bailty Mass Balance for Total Flows Std Dev of 9/3, 9/4, 9/5/93

•	Process	Solid,	Liquid,	Gas,	Total,
	Stream	kg/s	kg/s	kg/s	kg/s
FLUE G	AS MIXING				
ln	Unit 7 Flue Gas	0.00190		2.85	2.85
	Unit 8 Flue Gas	0.00727		8.38	8.38
Out	Flue Gas to AFGD	0.00619		7,41	7.41
Std Dev o	of Dally Closures, %	•			0.00
	•				
OVERAL	L AFGD SYSTEM BAL	ANCE			
JL:	Flue Gas	0.00619	1	7.41	7.41
	Limestone	0.123	, i		0.123
	Service Water	ì	1.69		1.69
	Compressed Air		ŀ	0.0307	0.0307
Out	Stack Flue Gas	0.0167		14.6	14.7
	Gypsum	0.0604			0.0604
	Wastewater	1	0.523	1	0.523
Std Dev of Daily Closures, %					2.08

Bout 17L

5.0 SAMPLE ANALYSES

The kinds of analyses performed on different types of samples are listed in the next three tables:

Table 5-1 Solids

Table 5-2 Liquids

Table 5-3 Gases (including entrained solids)

Brief descriptions of published methods cited in these three tables are given in the following paragraphs. More detailed descriptions of methods are given in Appendix C.

5.1 Solids

<u>Metals</u>. The trace metals of concern in this project are fisted below, as are a lesser number of certain major metals (see page 1-6 for a qualification of the trace species as metals or non-metals):

Trace metals		Major metals
Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper	Copper Lead Manganese Mercury Molybdenum Nickel Selenium Vanadium	Aluminum Calcium Iron Magnesium Titanium

Samples of coal or ash to be analyzed for the metals listed above, except boron, were digested in a microwave oven by a procedure recommended by CEM Corporation, the manufacturer of the oven. For boron determination, the coal or ash was extracted with a mixture of 1 part of HNO₃ and 6 parts of HCl in the open atmosphere on a hotplate.

Limestone was digested with the same HNO₃-HCI mixture in the open environment on a hotplate. With this solid, the microwave procedure could be avoided, since this solid is easily dissolved in the acid without elevated pressure.

Gypsum and the very similar solids from the absorption recirculation slurry and the bleed pump slurry at the scrubber were digested by the same microwave procedure as that described above. The solutions thus prepared were analyzed for trace metals and also major metals. The concentrations of calcium thus found, however, were too low to be accepted and were believed to reflect the incomplete

dissolution of samples; as an atternative, then, digestion with a mixture of HNO₃, HF, and H₂SO₄ (ASTM Method D2795) in an open environment was followed as a substitute procedure.

Once solutions had been prepared from the coal, ash, limestone, or gypsum, analysis proceeded generally as described in SW-846 (1). Method 6010 was used for metals to be determined by inductively coupled argon plasma emission spectroscopy (ICP). Graphite furnace, hydride generation, or cold-vapor versions of AAS (GFAAS, HGAAS, and CVAAS) were used for other metals as needed.

- The metals determined by ICP were: barium, beryllium, boron, cadmium, chromium, cobatt, copper, lead, manganese, molybdenum, nickel, vanadium, aluminum, calcium, iron, magnesium, and titanium.
- The metals determined by GFAAS when not determined with the necessary sensitivity by ICP were cadmium and lead.
- The metals determined by HGAAS rather than by ICP were antimony, arsenic, and selenium.
- Mercury was determined by CVAAS. At very low concentration, when extra sensitivity was needed, mercury was determined by atomic fluorescence spectroscopy (CVAFS).

The major metals were on occasion determined by flame-injection AAS.

Anions. The non-metallic elements that produce anionic substances when combustion occurs were analyzed as follows:

Fluorine and chlorine — ASTM D3761, D4208

Sulfur - ASTM 3177

Phosphorus — Coal was ashed at 750 °C, the ash was digested in a mixture of mineral acids (ASTM Method D2795), and phosphorus was determined colorimetrically with molybdovanadate reagent (ASTM D2795).

Anions present in ash or lime were determined by making the solid mostly water soluble by fusing it with molten NaOH (ratio, 0.5 of solid to 6.7 g of NaOH). The solidified cake of NaOH was broken up in water; the aqueous solution was filtered and diluted to 1 L. Fluoride was determined by acidifying an aliquot and measuring the anion with a fluoride-specific electrode (SIE). Chloride and sulfate were determined in the original basic solution, diluted as necessary, by ion chromatography (iC). Phosphate was measured by iC.

<u>Carbon, hydrogen, and nitrogen</u>. These elements were determined as the elements in a Perkin-Elmer Model 2400 analyzer. The elements are converted to gases and measured as CO_2 , H_2O , and N_2 .

<u>Semi-volatile organic compounds</u>. These compounds were extracted from the solids with methylene chloride according to SW-846 Method 3540 and analyzed by gas chromatography (GC/MS) as described in SW-846 Method 8270B.

Radionuclides. These metals were measured by Core Laboratories, Casper, Wyoming. Total uranium was measured fluorimetrically. The individual isotopes of uranium (masses 234, 235, and 238), the isotopes of thorium (232), radium 226, and polonium 210 were measured by alpha-ray counting. Radium 228 and lead 210 were measured by counting beta emissions.

5.2 Liquids

The samples to be analyzed for metals were prepared for analysis according to SW-846 Method 3010A. Analysis then proceeded according to the ICP and AAS methods cited in connection with analysis of solids.

The samples to be analyzed for aldehydes were taken in the amount of 100 mL each. To each, 30 mL of a solution of 2,4-dinitrophenyi-hydrazine was added (the stock solution contained 0.5% DNPH and 6N HCl). The mixture was extracted with methylene chloride; the extracted material was then dried by evaporation and redissolved in methanol. The analysis was by HPLC with a UV detector, according to EPA Method 0011 (7).

The other organic constituents were determined by use of SW-846 Methods 5041 and 8240B for volatile compounds and Methods 3420 and 8270B for semi-volatile compounds. Both classes of compounds were measured by GC/MS.

5.3 Gases

The term "gases" here refers to the components of flue-gas-streams, both gaseous substances per se and entrained solids. When both particulate and vapor fractions of a given class of analytes were to be determined, the front half and the back half of the sampling train components were analyzed separately.

Samples of metals from the Multiple Metals Train (Method 29) were processed in preparation for analysis by the general guidelines of the published method. The digestion of solids from the front half of the train, however, was based on a modified microwave method recommended by CEM Corporation (see Appendix C). The Impingers were processed by the EPA protocol in the published method. The analysis by ICP and AAS methods ensued, as previously described for samples of solids.

Mercury from the lodated carbon sorption tubes was determined by Brooks Rand, Ltd., in Seattle, Washington, by use of the method described by Bloom (2). Mercury was extracted from the carbon in a mixture of sulfuric and nitric acids, fully oxidized with BrCl, then reduced to the element with SnCl₂, and vaporized as the element in a stream passing to the analyzer.

Portions of the solids from the Multiple Metals Train were analyzed for anions by the method already described for samples of process solids: fusion with NaOH and analysis of the resulting aqueous preparation by ion chromatography and use of a fluoride-responsive electrode. The impingers from the acid gases train were analyzed by the same techniques.

Ammonia from the impingers in the special train used for ammonia and hydrogen cyanide was ultimately determined with the phenol-hypochiorite colorimetric method described by Weatherburn (8) or by use of an ammonia-specific electrode. Cyanide was determined by use of a cyanide-specific electrode.

Aldehydes were collected during sampling in impingers containing DNPH. The contents of the impingers were extracted in the analytical laboratory with a hexane-methylene chloride mixture, temporarily isolated as the hydrazone solids by evaporation of the extraction solvent, and then redissolved in methanol for analysis by HPLC. The method is described in the literature as EPA Method 9011 (7).

The components of the VOST sample train — Tenax and Tenax/charcoal tubes and aqueous condensate — were analyzed by SW-846 Methods 5041 and 8240B (1). The volatile organics in each sampling matrix are quantitatively desorbed and transferred to an intermediate matrix in one step and then are desorbed from the intermediate matrix into the GC/MS analyzer.

The components of the Modified Method 5 sampling train (SW-846 Method 0010) — front half solids and back half vapors on XAD and in water-filled Impingers — were analyzed separately. Each half was processed to permit separate analyses of semi-volatile compounds (listed subsequently in Table 6-12) and dioxins and furans. The extract of each half of the train was separated into two fractions — one-tenth to be processed for semi-volatiles (SW-846 Method 8270B) and nine-tenths for dioxins and furans (SW-846 Method 8290).

Table 5-1 Analyses of Solids

Type of solid	Components determined	Analytical methods	
Coal (each type)	Ultimate, proximate Calorific value Chlorine Fluorine Phosphorus Trace metals Radionuclides Water-extractable metals	ASTM D3172, D3176 ASTM D2015 ASTM D4208 ASTM D3761 See note ^b See note ^c TCLP procedure	
Bottom 28h	Trace metals F-, Cl-, SO ₄ ² , PO ₄ ³ Semi-volatile organics Carbon, hydrogen, nitrogen (CHN) Radionuclides Semi-volatile organics Ammonia	See note ^b SIE, IC ^d SW-8270 Elemental analyzer See note ^c SW-846 3540, 8270 SIE ^d	
Economizer ash	Trace metals F-, Cl-, SO ₄ -2, PO ₄ -3 Semi-volatile organics Carbon, hydrogen, nitrogen (CHN) Radionuclides Semi-volatile organics Ammonia	See above	
Limestone and gypsum	Trace metals F-, Cl-, SO ₄ ² , PO ₄ ³ Carbon, hydrogen, nitrogen (CHN)	See above	
Solids from siurries	Trace metals F ⁻ , Cl ⁻ , SO ₄ ⁻² , PO ₄ ⁻³	See above	
ESP hopper ash	Trace metals F-, Cl-, SO ₄ ² , PO ₄ ³ Semi-volatile organics Carbon, hydrogen, nitrogen (CHN) Radionuclides Semi-volatile organics	See above	

^{*}Phosphorus. Ash digested in HNO₂, HF, and H₂SO₄ (ASTM Method D2795); phosphorus determined colorimetrically with molybdovanadate.

⁶Microwave digestion. ICP or AAS analysis by SW-846 methods or, for Hg on sorbents, by CVAFS. See text for further information.

^{*}Analysis by Core Laboratories (see text).

IC=Ion chromatography. SIE=ion selective electrode.

Table 5-2 Analyses of Water					
Types of samples					
Condenser inlet					
Condenser outlet					
Boiler makeup water					
Bottom ash sluice water supply					
Bottom ash sluice (supernatant	water)				
Condenser makeup water					
AFGD service makeup water					
Bleed pump slurry (supernatan	t water)				
Absorber recirculation pump sl	urry (supernatant water)				
AFGD waste water					
Components determined Analytical (all samples) methods					
Trace metals	See note*				
F-, CI-, SO ₄ -2, PO ₄ -3	IC/SIE				
Aklehydes HPLC/UV					
Volatile organics SW-846 5041					
Semivolatile organics SW-846 3420, 8270					
*Microwave digestion. ICP or AAS analysis by SW-846 method. See text for information. bOmitted cooling tower makeup water.					

Table 5-3 Analyses of Gases (including entrained solids)

Type of sample	Components determined	Analytical methods	
Entrained solids	Trace metals F-, Cl-, SO ₄ -2, PO ₄ -3 Semi-volatile organics Dioxins and furans Radionuclides	See note* IC/SIE SW-846 8270A SW-846 8290 Core Laboratories	
Gas phase	Trace metals Mercury HF, HCl, SO ₂ , H ₃ PO ₄ NH ₃ , HCN Aldehydes Volatile organics Semi-volatile organics Dioxins and furans	See note ⁴ CVAFS IC/SIE SIE/Colorimetry HPLC/UV SW-846 5041, 8240B SW-846 8270A SW-846 8290	

^{*}Sample digestion by microwave procedure. Sample analyses according to SW-846 methods. See text.

Buck of

6.0 ANALYTICAL RESULTS

6.1 Boiler and Electrostatic Precipitators

6.1.1 Solids

6.1.1.1 Coal

Tables 6-1 through 6-5 give the analytical properties for the coal fired at Bailly Units 7 and 8. All of these tables relate specifically to the coal as fired. The boilers in these two units are the cyclone type; there is no alteration in the composition as received due to drying, milling, or pyrite removal.

Table 6-1 gives the data from proximate and ultimate analyses of samples representing the three inorganic sampling days. The data indicate that the properties of the coal were within the ranges expected for an Eastern bituminous coal. The calorific value was approximately 11,000 Btu/lb; the moisture and ash levels were approximately 10% each, and the sulfur concentration was, on the average, 3.17%. Table 6-1 includes the concentrations of nonmetallic elements other than sulfur: the average values were fluorine, 0.0094%; chlorine, 0.10%; and phosphorus, 0.0119%. The variance of each parameter listed in this table was relatively small; thus, the constancy of the coal properties was adequate for replication of the emission measurements.

Table 6-2 presents the results of calculations on the expected composition of the flue gas, based on the ultimate analyses. The concentrations in this table are for the standard reference conditions used throughout this report: dry gas at 3% O₂, at 293.15 K and 1 atm. The average concentrations calculated for the four acidic gases measured in this program, assuming complete conversion of the corresponding elements to the gas phase of the combustion products, are as follows:

SO ₂	2900 ppmv
HCI	80.1 ppmv
HF	15.2 ppmv
H₃PO₄	11.2 ppmv

The average concentration of fly ash, assuming complete entrainment of the ash components of the coal (no rejection of bottom ash), is listed as 13.11 g/Nm³. This value is used for calculating the actual partitioning between bottom ash and fly ash, based on the measured concentration of the latter; it is a key factor in performing material balance calculations. The approximate mass ratio of bottom ash to fly ash is 63/37, as observed previously in Section 4. There is an approximation in the calculation of partitioning; the chemical combinations of each element (for example, iron as Fe₂O₃) are assumed to be the same in both the coal ash prepared by coal combustion in performing the laboratory proximate analysis and the ash produced from coal combustion in the boiler.

The tast line in Table 6-2 gives the volume of flue gas expected from 100 g of coal; the indicated average volume per gram of coal is 0.008204 Nm³.

The concentrations of metals in the coal are given in Table 6-3. For the hypothetical coal ash, the concentrations are those listed in this table divided by the fraction of ash in the coal. Thus, if the concentration of ash in the coal were precisely 10%, the concentration of each metal in the hypothetical coal ash would be 10 times that in the coal itself.

Several of the metals appear to have occurred at significantly higher levels on the third test day compared to the first two days. This should not be said for antimony, for which the third-day result can be discarded for statistical reasons. The possibility does exist, however, for arsenic, chromium, molybdenum, nickel, and setenium. The higher concentrations of the last four of these metals on the third test day coincides with higher concentrations in the flue gas stream at the inlet of the Unit 8 ESP on the third test day; thus, there is some confirmation for the differences found in the coal analyses.

Extended comments on the metals will be deferred until later sections of this report, when comparisons can be made with data on metals in other process samples. Further comments will be found, in particular, in Appendix A.3, where the results of analyses of the Bailly coal in the Round Robin involving the other four DOE contractors are presented. At this point, however, the data for mercury in the coal do require comment. The concentrations of mercury given in Table 6-3, which were determined in the SRI laboratory, have an average of 0.100 μ g/g, based on analyses of two of the samples (instrumental break-down preventing the analysis of the third from being completed). The average of earlier results in this laboratory was just 0.04 μ g/g, clearly too low to be correct. The difference in the two series of mercury determinations is that the earlier, which yielded the low result, was performed after the coal samples were leached with aqua regia, whereas the second was performed after the samples were digested, and more thoroughly dissolved, by the microwave acid procedure.

The individual daily samples listed in Table 6-3 were analyzed also in the Brooks Rand laboratory, and the following data resulted:

Date of sample	Conon, µa/q
September 3	0.117
September 4	0.0954
September 5	0.0865
Avg. ± std. dev.	0.0996 ± 0.0157

This average is in good agreement with the value from the SRI laboratory cited above and with the average of 0.094 µg/g in all laboratories in the Round Robin.

The activities of radionuclides in the coal, as determined by Core Laboratories, are listed in Table 6-4. The definitions of the three forms of data are presented in the

footnote. None of the radionuclides was present at a concentration high enough to be clearly significant. The measured activity of each radionuclide was close to the lowest level considered detectable; it was sometimes above and sometimes below that level. The 95% confidence interval for each activity level made the result in effect not distinguishable from the lowest level of detection.

It is of interest to translate the activity of uranium 238 (the most abundant isotope of this element) from a specific counting level to a weight-based concentration in the coal. Uranium has a half life of 4.51 x 10^9 y, or 1.42×10^{17} s. The maximum counting rate observed, 0.5 pCi/g, corresponds to a disintegration rate of 0.5 x 3.7 x 10^{12} s⁻¹ = 1.85×10^{12} s⁻¹. The number of radionuclei present in 1 gram of coal is then calculated as follows:

The mass of the radionuclei is the ratio of the number of radionuclei to Avogadro's number, multiplied by the atomic mass (238):

mass =
$$3.79 \times 10^{15} \times 238/(6.023 \times 10^{23})$$

mass = 1.50×10^{6} g

Thus, the calculated concentration of uranium 238 in the coal, and for all intents and purposes the concentration of total uranium as well, is 1.50 μ g/g.

The leachability of metals in the coal was examined by preparing a composite of the three daily samples and performing an extraction with acetic acid according to EPA's TCLP procedure (8). The procedure calls for use of 100 g of coal and 2 L of dilute acetic acid. Table 6-5 shows the average concentrations of leached metals in two determinations and shows how the amounts relate to the total concentrations of metals in the coal.

Table 6-1 Proximate and Ultimate Analyses of the Coal					
	Sept. 3	Sept. 4	Sept. 5	Average	Std.dev.
Proximate					
% moisture	10.40	9.99	10.48	10.25	0.21
% asb	10.41	11.11	10.68	10.73	0.29
% volatile	35.29	35.75	36.69	35.91	0.58
% fixed carbon	43.90	42.95	42.15	43.00	0.72
Btu/lb	11100	11101	11098	11103	5
J/g	25825	25804	25797	25809	12
Ultimate		!			
% carbon	61.78	60.81	61.97	61.52	0.51
% hydrogen	4.58	4.49	4.33	4.47	0.10
% nitrogen	1.08	1.06	1.05	1.06	0.01
% sulfur	3.19	3.07	3.26	3.17	0.08
% oxygen	8.56	11.31	8.23	9.37	1.38
% chlorine	0.10	0.09	0.10	0.10	0.00
% fluorine	0.0096	0.0095	0.0092	0.0094	0.0001
% phosphorus	0.0090	0.0144	0.0122	0.0119	0.0027

Table 6-2
Calculated Combustion Products from the Coal (Basis, 100 g of the coal; dry flue gas with 3% O_2 at 293 K)

Flue gas component	Sept. 3	Sept. 4	Sept. 5	Average	Strl.dev.
CO₂ % vol	15.0	15.0	15.1	15.0	, 0.0
SO₂ ppmv	2900	2830	2980	2900	10
HCl, ppmv	82.0	75.0	83.4	80.1	4.5
HF, ppmv	14.7	14.8	16.0	15.2	0.7
H ₃ PO ₄ , ppmv	8.4	13.7	11.5	11.2	2.7
Ash, g/Nm ³	12.60	13.67	13.05	13.11	0.54
Total gas, Nm3	0,8264	0.8127	0.8222	0.8204	0.0070

Metal Concentrations in the Coat* (Data are in μg/g)					
	Sept. 3	Sept. 4	Sept. 5	Average	Std.dev.
Trace metals					
Antimony	0.61	0.68	5.63 ^b	0.64	0.05
Arsenic	216	2.24	4.06	2.82	1.07
Barium	40.9	40.5	44.4	41.9	2.1
Beryllium	1.56	1.54	2.06	1.72	0.29
Boron	184	206	214	201	15.5
Cadmium	2.23	3.63	2.11	2.66	0.85
Chromium	38.2	31.5	56.0	41.9	12.7
Cobalt	2. 3 5	2.37	2.80	2.51	0.25
Copper	10.5	8.82	9.01	9.44	0.91
Lead	7.80	6.38	8.71	7.63	1.17
Manganese	28.9	29.0	28.4	28.8	0.32
Mercury	0.0893	0.112	-	0.100	
Molybdenum	5.33	5.07	11.3	7.24	3.54
Nickel	15.6	19.3	34.5	23.2	10.0
Selenium	0.861	0.810	2.26	1.31	0.82
Vanadium	51.0	38.2	53.3	47.5	8.16
Major metals					
Aluminum	10000	11000	10900	10600	600
Calcium	3210	2550	3930	3230	690
Iron	14000	14200	12000	13400	1200
Magnesium	624	737	741	700	66
Titanium	560	609	586	585	24

Table 6-3

^{*}The values given for the major metals are averages obtained by ashing the coal and analyzing the coal ash by AAS. The data from ICP were variable and of low accuracy.

Excluded as an outlier by Dixon's rules (9).
"See text for alternative data from Brooks Rand.

Table 6-4 Activities of Radionuclides in the Coal® (All data in pCl/g)

		9/3/93			9/4/93			9/5/93	
	Activity	Error	ITD	Activity	Error	П	Activity	Error	ПР
Lead 210	1.3	0.7	1.i	1.5	0.7	1.1	0.8	0.7	1.1
Polonium 210	0,2	0.2	0.5	0.3	0.2	0.4	0.3	0.2	0.3
Radium 226	8,0	0.5	0.6	0.7	0.5	0.6	0.7	0.5	0.6
228	1.1	1.7	2.8	4.0	1.9	2.8	0.7	1.7	2.8
Thorium 228	0.4	0.2	0.3	0.5	0.2	0.3	0.5	0.2	0.3
230	0.8	0.4	0.5	0.8	0.3	0.4	0.7	0.4	0.5
232	0.2	0.2	0.2	0.2	0.1	0.2	0.5	0.2	0.3
Uranium 234	1.5	1.0	0.5	0.2	0.4	0.9	1.3	0.8	0,9
235	0,1	0.3	0.9	ND	0.1	0.6	ND	0.1	0.4
238	0,5	0.6	1.1	0.3	0.4	0.8	0.5	0.5	0.8
Total	1.0	1		0.8		••	1.1	**	•

"The terms for which values are given are:

$$Activity = \frac{\$ + B}{2.22 \cdot V \cdot E}$$

(which may be an extrapolated value below the lower limit of detection)

$$Error = \frac{1.96 \cdot \sqrt{S/t + B/t}}{2.22 \cdot V \cdot E}$$

(the range above and below the activity, which corresponds to the 95% confidence interval);

$$LLD = \frac{4.65 \cdot \sqrt{B/t}}{2.22 \cdot V \cdot E}$$

(the lower limit of detection given the constraints of the measurements).

where S = sample counts per minute,

B = background counts per minute,

t = counting time,

V = sample volume, and

E = counter efficiency.

Table 6-5. Concentrations of Metals
Extracted from the Coal by the TCLP Procedure

	Avg. concn., µg/mL, in extract	Calc'd % of metal extracted
Antimony	0.0033	2.9
Arsenic	<0.002	<1.4
Barium	0.1165	5.6
Beryllium	<0.001	<1.2
Boron	0.623	6.2
Cadmium	0.01175	8.8
Chromium	< 0.01	<0.5
Cobalt	0.0635	50.7
Copper	0.0265	5.6
Lead	0.0395	10.4
Manganese	0.736	51.1
Mercury	0.000035	1.7
Molybdenum	<0.01	2.8
Nickel	0.201	17.4
Selenium	<0.002	<3.0
Vapadium	<0.01	<0.4
Aluminum	0.4395	0.1
Calcium	159.5	98.3
Iron	0.7725	0.1
Magnesium	3.54	10.0
Titanium	<0.05	<0.01

6.1.1.2 Bottom ash and ESP ash

Bottom ash was collected for analysis once daily. ESP ash was a composite of ash taken daily from the hoppers of the Unit 8 ESP. This ESP had three rows of hoppers progressing from the inlet toward the outlet, each collecting ash from one-third of the total plate area of the ESP but collecting progressively less on moving from the inlet row to the outlet row. The sample from each day of testing was blended from the samples from individual hopper rows, as indicated by the following example:

On September 3, the total penetration of fly ash through the ESP was, as a decimal fraction, 0.00318:

inlet concentration, 4.576 g/Nm³

Outlet concentration, 0.01457 g/Nm³

Penetration, 0.01457/4.576 = 0.00318

According to the Deutsch relationship for an ESP with three equal-area sections, the overall penetration is the cube of penetrations in each field:

Penetration = p^3

Thus, the relative concentration of entrained fly ash at the exit of each field can be calculated, and also the relative mass of ash collected in each field can be evaluated. For the overall penetration of 0.00318, the results are as follows:

<u>Field</u>	Penetration at exit	Relative mass collected
1	0.1471	0.8529
2	0.0216	0.1255
3	0.00318	0.0184
	т	otal 0.9968

Thus, the correct blending of ash from the three rows of hoppers would require the fraction 0.8529/0.9968 from the first, 0.1255/0.9968 from the second, and 0.0184/0.9968 from the third.

These were the proportions used for the composites on September 4 and September 5 when samples of ash from all three hopper rows were available. Only ash from the first and middle rows was available on September 3; thus, the composite for that day was a blend of samples from the first and second rows in the ratio 0.8529/0.1255. The absence of third-row ash from the September 3 composite was not expected to bias the composition significantly because the relative mass of that ash would have been low.

The metals data for the bottom ash and the ESP ash are presented in Tables 6-6 and 6-7. The data are for individual daily samples; they include the averages of concentrations in the daily samples and the standard deviations. Two metals were not consistently at measurable levels in the bottom ash: mercury and molybdenum. Mercury was near the detection limit in the ESP also, at an average concentration of just 0.006 μ g/g. The precision of the data is indicated by the comparison of averages and standard deviations. For selenium in the bottom ash, for example, the relative standard deviation is about 50%, whereas for aluminum it is about 3%. Generally, the precision of the daily concentrations was somewhat better for the ESP ash, where most of the metals were at higher concentrations and thus were more easily measured.

The metals data for the bottom ash and the ESP ash are compared with corresponding data for the hypothetical coal ash (discussed in Section 6.1.1) in Table 6-8. If there were no partitioning of metals between the bottom ash and the combustion gas leaving the boiler, the concentration of each metal should be about the same in each and the same as in the coal ash. Evidence for partitioning, however, was found for the majority of the metals, as indicated by the following statements:

Antimony, arsenic, beryllium, boron, cadmium, copper, lead, molybdenum, mercury, and selenium are present at higher concentrations in the ESP ash than in the bottom ash, as the presumed consequence of volatility at boiler temperatures, causing exit from the boiler in the gas phase but partial transfer to the particulate phase upstream from the ESP.

Boron, mercury, and selenium are poorly recovered in the ESP ash, as the presumed occurrence is in the gas phase even at the ESP temperature (about 150 °C).

The activities of the metal radionuclides in the ESP ash are listed in Table 6-9. Most of the radionuclides occurred at measurable levels in this ash. Lead 210, for example, had a measured activity near 25 pCi/g, which is more than 10 times the limit of detection. The uncertainty (range for 95% confidence limits) was only about one-tenth of the measured activity. Uranium 238 was also found at a statistically significant activity, corresponding to a weight-based concentration around 35 μ g/g. The amplification for uranium in the ash over that in the coal exceeds 10, the factor corresponding to recalculation of the value for coal to the value for coal ash. Thus, by implication, the process of combustion favored partitioning of uranium into the combustion gas and eventually the fly ash.

The concentrations of anions in the bottom ash and the ESP ash are presented in Table 6-10. Fluoride and chloride were near or below the detection limit in both materials. Phosphate was near the same level in both materials — around 4000 to 5000 μ g/g — or perhaps at a somewhat higher concentration in the ESP ash. A concentration of 3700 μ g/g of phosphate would account completely for all of the phosphorus reported for the coal (Table 6-1) if phosphate were present uniformly in all of the ash. Sulfate increased sharply, by an order of magnitude on going from the

bottom ash to the ESP ash. This change probably reflects the fact that, as the flue gas cools from the boiler temperature to the ESP temperature, SO₂ undergoes the transition to SO₃ or sulfuric acid vapor and is taken up, in part, by the fly ash, as sulfate salts. The sulfate concentration of about 0.2% in the bottom ash represents only about 0.4% of the sulfur in the coal; the sulfate concentration of 3% in the ESP ash represents about 1.2% of the sulfur in the coal. Thus, the data are consistent with other information yet to be presented, showing that most of the sulfur from the coal remained in the gas phase as SO₂ up to the point where removal occurred in the scrubber. (The estimates of the percentages of sulfur accounted for in the two ashes are based on the approximate 60/40 ratio of bottom ash to fly ash or ESP ash.)

Table 6-11 gives the results of CHN elemental analysis of the bottom ash and the ESP ash. Percent carbon is the focus of interest in this table. The data indicate that the carbon retained by the bottom ash was a negligible quantity, but the carbon in the ESP ash (unburned coal) was about 2.5% of the total mass. The concentrations of hydrogen are all essentially zero and, if they could be discerned, would most likely represent about one-tenth of the moisture present (hydrogen accounts for about 10% of the weight of water). The concentrations of nitrogen could only be indicative of a real constituent in the case of the ESP ash; the specific form of nitrogen representing about 0.4% of the ash conceivably was due to ammonia from the injection system that minimizes the penetration of sulfuric acid through the ESP.

Extraction of the ESP ash and determination of the extracted ammonia gave these results:

September 3	0.0173% NH ₃
-------------	-------------------------

September 4 0.0154% NH₃

September 5 <0.0054% NH₃

These concentrations are much less than those that would accord with 0.4% nitrogen in the ash, as indicated by information in the footnote of the table. The level of nitrogen in the ash thus remains largely unaccounted for. The concentrations of ammonia in the ash correspond to very low vapor-phase concentrations of ammonia, if all the ammonia in the ash were placed in the flue gas from which the ash was removed, the ammonia concentrations on the first two sampling days would be about 1.1 ppmv and that on the third day less than 0.4 ppmv. The relative concentrations are, however, in accord with what is known about the operation of the ammonia injection system: it operated during the first two days in Unit 8, but it did not operate the third day.

Table 6-6 Metal Concentrations in Bottom Ash (Data are in µg/g)

·	Sept. 3	Sept. 4	Sept. 5	Average	Std.dev.
Trace metals	-		-		
Antimony	1.75	1.70	2.40	1.95	0.39
Arsenic	0.189	0.418	0.429	0.345	0.136
Barium	381	372	435	396	34
Beryllium	10.1	8.45	8.03	8.86	1.10
Boron	159	169	135	154	17
Cadmium	1.59	9.04	10.5	7.04	4.78
Chromium	218	231	312	254	51
Cobalt	24.4	21.6	21.0	22.3	1.8
Copper	49.2	37.4	59.6	48.7	11.1
Lead	5.83	6.19	4.70	5.57	0.78
Manganese	313	319	313	315	4
Mercury	<0.002	0.002	<0.002	≤0.002	
Molybdenum	< 0.50	<0.50	0.733	≰ 0.7	**
Nickel	98	89	114	100	13
Selenium	0.140	0.406	0.337	0.294	0.138
Vanadjum	291	300	364	318	40
Major metals		_			
Aluminum	95600	99100	101000	98700	2920
Calcium	34500	37100	40400	37300	2920
Iron	122000	116000	108000	115000	7100
Magnesium	6370	6410	7640	6810	723
Tîtanium	4870	4730	4930	4840	103

Table 6-7
Metal Concentrations in ESP Ash
(Data are in µg/g)

		(Data are	ns hAtA)		
	Sept. 3	Sept. 4	Sept. 5	Average	Std.dev.
Trace metals		_	·		
Antimony	18.0	35.8	21.6	25.1	9.4
Arsenic	61.6	61.4	60.6	61.2	0.5
Barium	570	409	424	468	89
Beryllium	19.3	18.8	19.5	19.2	0,4
Boron	1120	870	952	· · 981 ·	128
Cadmium	29.1	29.4	'40.5'	33.0	6.5
Chromium	369	364	447	393 ·	46
Cobalt	40.8	39.1	53.1	44.3	7.7
Copper	214	191	220	208	15
Lead	293	294	270	286	13
Manganese	257	232	228	239	16
Mercury	0.008	0.005	0.005	0.006	0.002
Molybdenum	140	129	169	146	21
Nickel	223	210	272	235	33
Selenium	9.27	6.39	8.08	7.91	1.45
Vanadium	566	540	577	561	19
Major metals					
Aluminum	87800	95100	83800	88900	5760
Calcium	24400	19200	17700	20400	3530
Iron	121000	122000	110000	118000	6480
Magnesium	6590	6230	6170	6330	230
Titanium	6320	7000	6250	6520	419

Table 6-8. Comparison of Metal Concentrations
in Coal Ash, Bottom Ash, and ESP Ash
(Data in µg/g)

	,	20.01	
	Coal ash	Bottom ash	ESP ash ^b
Trace metals			
Antimony	5.96	1.95	25,1
Arsenic	26.3	0.345	61.2
Barium	390	396	468
Beryllium	16.0	8.86	19.2
Boron	1870	154	981
Cadmium	24.8	7.04	33.0
Chromium	390	754	393
Cobalt	23.4	22.3	44.3
Copper	88.0	48.7	208
Lead	71.1	5.57	286
Manganese	268	315	239
Mercury	0.37	≤0.002	0.006
Molybdenum	67.5	< 0.07	146
Nickel	216	100	235
Selenium	12.2	0.294	7.91
Vanadium	443	318	561
Major metals			·
Aluminum	98800	98700	88900
Calcium	30100	37300	20400
Iron	125,000	115,000	118,000
Magnesium	6520	6810	6330
Titaniom	5450	4840	6520

^{*}Data calculated from average metal concentrations in Table 6-3 and average % ash in Table 6-1.

^bData are averages from Tables 6-6 and 6-7.

Table 6-9. Activities of Redionuclides in the ESP Ash* (All data in pCi/g)

		9/3/93			9/4/93			9/5/93	
	Activity	Emor	ПЪ	Activity	Error	щ	Activity	Entor	ш
Lead 210	24.0	1.4	1.1	20.5	1.3	1.1	29.9	1.5	1.1
Polonium 210	16.5	3.1	0.6	20.2	2.8	0.4	30.6	4.5	0.5
Radium 226	13.7	1.4	0.6	12.9	1.4	0.6	14.9	1.5	0.6
228	4.4	1.9	2.8	3.2	1.8	2.8	4.8	1.9	2.8
Thorium 228	0.7	0.2	0.2	0.3	0.2	0.4	0.7	0.4	0.7
230	2.2	0.4	0.3	1.0	0.3	0.4	2.9	0.7	0.4
232	0.6	0.2	0.2	0.3	0.1	0.1	0.6	0.2	0.1
Uranium 234	11.6	1.8	0.3	8.4	1.4	0.1	13.4	2.9	0.2
235	0.3	0.2	0.2	0.3	0.2	0.1	2.7	0.9	0.4
238	11.9	1.8	0.3	8.0	1.4	0.1	16.7	3.5	0,4
Total	23.6	_		22.7			29.8		_

"See footnote in Table 6-4 on page 6-7, for definition of terms.

Table 6-10 Anion Concentrations in Bottom Ash and ESP Ash (Data in μg/g)

	9/3/93	9/4/93	9/5/93	Average	Std.dev.
Bottom ash					
Fluoride	<400	<400	<400	<400	ı
Chloride	<100	120	<100	<120	;
Sulfate	1740	1120	2240	1700	560
Phosphate	5480	2650	3060	3730	1530
ESP ash					
Fluoride	<400	<400	<400	<400	
Chloride	<100	<100	<100	<100	
Sulfate	30600	24000	30900	28500	3900
Phosphate	4920	3930	6130	4990	1100

Table 6-11 Carbon/Hydrogen/Nitrogen Analysis of Bottom Ash and ESP Ash

	9/3/93	9/4/93	9/5/93
Bottom ash			
Carbon %	0.01	6.05	0.48
Hydrogen %	0.01	-0.04	-0.05
Nitrogen %	0.12	0.10	0.12
ESP ash			
Carbon %	2.36	2.65	2.76
Hydrogen %	0.04	-0.04	-0.02
Nitrogen %"	0.44	0.47	0.32

^{*}Corresponds to an ammonia concentration in ash of 0.36, 0.39, or 0.26%.

6.1.2 Water Streams

There are five different streams of water associated with the boiler (others identified with the FGD system are discussed later in Section 6.2.2). They are listed below:

Condenser inlet water

Condenser outlet water

Makeup water

Supply water for sluiding bottom ash

Bottom ash sluice (two-phase stream, water and ash)

The results of analyses of the daily composites of each type of water are presented in Tables 6-12 through 6-16. Averages of the daily samples of all five types are listed for comparison in Table 6-17. The footnote of Table 6-17 indicates that the results are for two days, rather than three days, in some instances. This is due to inconsistent daily results illustrated by the following for calcium in the makeup water: September 3, 1.59 μ g/mL; September 4 and 5, <0.10 μ g/mL. The "average" listed in Table 6-17 is <0.10 μ g/mL.

The makeup water was certainly the purest. This is not evident from the concentration of trace metals; it is, however, apparent from the data for the major metals and the anions. The water into and out of the condenser is essentially the same, as expected; one anomaly that cannot be explained is an undetectable concentration of boron at the outlet, in contrast to 9.2 µg/mL at the inlet. The sluice water was not much affected, if affected at all, by the addition of bottom ash. There are differences for some metals in the supply and discharge streams, but it is not clear whether the differences are significant.

The weight proportions of water and solids in the bottom ash sluice are not known. The assumption was made, however, that there were 10 parts of water to 1 part of solids. Based on this assumption, the relative contribution of the liquid to the total amount of each analyte was calculated. For this purpose, the average liquid-phase concentration of each analyte in Table 6-17 was compared to the average solid-phase concentration in Table 6-6. The ratios of the mass in the liquid to that in the solid are listed below:

Antimony	0.21	Copper	0.0010
Arsenic	1.1	Lead	0.0035
Barium	0.00050	Manganese	0.000076
Beryllium	0.00019	Mercury	1.7
Boron	< 0.0040	Molybdenum	0.20
Cadmium	0.0010	Nickel	0.0016
Chromium	< 0.0024	Selenium	0.16
Cobalt	0.00094	Vanadium	< 0.000094

Aluminum Calcium Iron	<0.00001 0.00077 <0.00001	Magnesium Titanium	0.0154 <0.00021
Fluoride	Indeterminate	Sulfate	0.60
Chloride	310	Phosphate	<0.013

With rare exceptions, the contribution from the solid phase is dominant.

Table 6-18 summarizes the results of determinations of carbonyl compounds (aldehydes and ketones) in the water samples. Just a few of the positive results can be argued to be significant if a measurement in excess of the range for blanks is taken as the criterion of significance. Examples are 1) formaldehyde in the condenser inlet water and 2) acetone in the condenser inlet and outlet water and the make-up water. Samples on only one day (September 6) were available for analysis. The lack of logic in some of the results makes their significance questionable. For example, formaldehyde appeared to be present in the condenser inlet stream but not the outlet stream; how could this be?

Each of the composites of water samples (all from September 6) was analyzed for volatile organic compounds.

Each of the composites of water samples (all from September 6) was analyzed for volatile organic compounds. The analytical and computational procedure was programmed to identify and quantify the 37 compounds listed, along with detection limits, in Table 6-19. Only three of these analytes were detected in the entire set of samples: acetone, bromomethane, and methylene chloride. They were detected erratically, however, and never in all samples of a given type. The results are summarized below:

Type of water	No. samples	<u>Analyte</u>	Conon, ng/mL
Condenser, inlet	oue	methylene chloride	4.0
Condenser, outlet	two	methylene chloride	2.4 2.8
Makeup	one	acetone bromomethane	2.6 2.3
Sluice supply	one	bromomethane	5.3
Sluice discharge	none	none	-

Blanks were free of these analytes. Based on this criterion, the positive results for the samples cannot be rejected. Evaluated subjectively, however, they lack confirmation from replicate measurements and thus lack credibility.

Each of the water samples (again, all from September 6) was also analyzed for semivolatile organic compounds. The target list and detection limits for this set of compounds is given in Table 6-20. The only compounds detected were a few phthalate esters, which are believed to be contaminants inadvertently introduced in the laboratory. Although presumed not to be an authentic component of any of the water samples, di-n-butylphthalate was detected consistently. The concentrations were those listed below:

Stream	Concn, ng/mL
Condenser inlet water	2.98
Condenser outlet water	4.04
Makeup water	3,80
Supply water for sluicing	5.04
Liquid phase of sluice	2.38

Table 6-12 Daily Metal and Anion Concentrations In Condenser Inlet Water (Data in µg/mL)					
	9/3/93	9/4/93	9/5/93		
Trace metals					
Antimony	<0.0006	<0.0006	<0.0006		
Arsenic	<0.0003	<0.0003	< 0.0003		
Bariom	0.0182	0.0174	<0.006		
Beryllium	<0.0005	< 0.0005	< 0.0005		
Boron	Ī11. 1	9.02	7.53		
Cadmium	<0.0003	< 0.0003	<0.0003		
Chromium	<0.006	<0.006	<0.006		
Cobalt	<0.002	< 0.002	0.005		
Copper T	0.0056	0.0045	0.0055		
Lead	<0.005	<0.005	<0.005		
Manganese	<0.0125	<0.0125	< 0.0125		
Mercury	0,00009	0.00015	0.00017		
Molybdenum	<0.006	<0.006	<0.006		
Nickel	<0.010	<0.010	<0.010		
Selenium	<0.0006	-0.0007	.0.0006		
- Communi	<0.0000	<0.0006	<0.0006		
Vanadium	<0.003	<0.003	<0.003		
			···		
Vanadium			···		
Vanadium Major metals	<0.003	<0.003	<0.003		
Vanadium Major metals Aluminum	<0.003	<0.003	<0.003		
Vanadium Major metals Aluminum Calcium	<0.003 <0.10 19.7	<0.003 <0.10 20.7	<0.003 <0.10 19.8		
Vanadium Major metals Aluminum Calcium Iron	<0.003 <0.10 19.7 <0.10	<0.003 <0.10 20.7 <0.10	<0.003 <0.10 19.8 <0.10		
Vanadium Major metals Aluminum Calcium Iron Magnesium	<0.003 <0.10 19.7 <0.10	<0.003 <0.10 20.7 <0.10 11.7	<0.003 <0.10 19.8 <0.10		
Vanadium Major metals Aluminum Calcium Iron Magnesium Titanium	<0.003 <0.10 19.7 <0.10	<0.003 <0.10 20.7 <0.10 11.7	<0.003 <0.10 19.8 <0.10		
Vanadium Major metals Aluminum Calcium Iron Magnesium Titanium Anions	<0.003 <0.10 19.7 <0.10 11.1 <0.10	<0.003 <0.10 20.7 <0.10 11.7 <0.10	<0.003 <0.10 19.8 <0.10 10.9 <0.10		
Vanadium Major metals Aluminum Calcium Iron Magnesium Titanium Anions F	<0.003 <0.10 19.7 <0.10 11.1 <0.10 <0.4	<0.003 <0.10 20.7 <0.10 11.7 <0.10 <0.4	<0.003 <0.10 19.8 <0.10 10.9 <0.10 <0.4		

< 0.50

< 0.50

<0.50

PO₄-3

Table 6-13 Daily Metal and Anion Concentrations in Condenser Outlet Water (Data in μg/mL)					
	9/5/93				
Trace metals					
Antimony	<0.0006	<0.0006	<0.0006		
Arsenic	< 0.0003	<0.0003	<0.0003		
Barium	0.0174	0.0189	0.0186		
Beryllium	<0.0005	< 0.0005	<0.0005		
Boron	< 0.0625	< 0.0625	<0.0625		
Cadmium	< 0.0003	0.0008	0.0016		
Chromium	<0.006	<0.006	<0.006		
Cobalt	<0.002	<0.002	<0.002		
Соррег	<0.005	0.0089	0.0081		
Lead	<0.005	<0.005	<0.005		
Manganese	0.0028	0.0031	0.0023		
Mercury	0.00016	0.00025	< 0.00004		
Molybdenum	<0.006	<0.006	<0.006		
Nickel	0.0092	<0.010	<0.010		
Selenium	<0.0006	<0.0006	<0.0006		
Vanadium	< 0.003	< 0.003	< 0.003		
Major metals					
Aluminum	0.324	<0.10	<0.10		
Calcium	28.2	38.1	16.4		
Iron	<0.10	<0.10	<0.10		
Magnesium	10.84	10.93	11.74		
Titanium	<0.10	<0.10	<0.10		
Anions		···			
F-	<0.4	<0.4	<0.2		
Cl-	10.98	13.27	13.86		
SO4-2	23.60	24.94	25.00		
PO ₄ -3	< 0.50	<0.50	<0.50		

Table 6-14 Daily Metal and Anion Concentrations in Makeup Water for Boiler Streams (Data in µg/mL)							
9/3/93 9/4/93 9/5/93							
Trace metals							
Antimony	<0,0006	<0,0006	<0.0006				
Arsenic	<0.0003	< 0.0003	<0.0003				
Barium	<0.006	<0.006	0.0041				
Berylliam	<0.0005	< 0.0005	< 0.0005				
Boron	15.4	29.0	17.1				
Cadmium	<0.0003	<0.0003	<0.0003				
Chromium	<0.006	< 0.006	< 0.006				
Cobalt	<0.002	< 0.002	< 0.002				
Copper	0.0039	0.0025	0.0036				
Lead	<0.005	<0.005	<0.005				
Manganese	<0.0125	< 0.0125	< 0.0125				
Mercury	0.00013	0.00028	0.00019				
Molybdenum	<0.006	<0.006	<0.006				
Nickel	<0.010	< 0.010	< 0.010				
Selenium	0.0036	0.0063	<0.0006				
Vanadium	< 0.003	<0.003	< 0.003				
Major metals							
Aluminum	<0.10	<0.10	<0.10				
Calcium	1.59	<0.10	<0.10				
Iron	<0.1	<0.10	<0.10				
Magnesium	0.396	<0.10	<0.10				
Titanium	<0.10	<0.10	<0.10				
Anions			_				
F-	<0.4	<0.4	<0.4				
cı-	< 0.05	<0.05	< 0.05				
SO ₄ -2	<0.10	<0.10	<0.10				
PO ₄ -3	< 0.50	<0.50	<0.50				

Table 6-15 Daily Metal and Anion Concentrations in Supply Water for Bottom Ash Sluice (Data in µg/mL)					
	9/3/93	9/4/93	9/5/93		
Trace metals					
Antimony	0.0119	0.0095	0.0057		
Arsenic	0.0159	0.0125	0.0148		
Barium	0.0238	0.0266	0.0299		
Beryllium	<0.0005	< 0.0005	< 0.0005		
Boron	< 0.0625	< 0.0625	< 0.0625		
Cadmium	< 0.0003	0.0016	0.0008		
Chromium	<0.006	< 0.006	<0.006		
Cobalt	< 0.002	< 0.002	< 0.002		
Copper	0.0086	0.0069	0.0077		
Lead	< 0.005	< 0.005	< 0.005		
Manganese	< 0.0125	< 0.0125	0.0083		
Мессигу	0.00012	0.00015	0.00026		
Molybdenum	<0.006	<0.006	0.0087		
Nickel	< 0.010	<0.010	< 0.010		
Selenium	0.0051	0.0095	0.0058		
Vanadium	<0.003	< 0.003	< 0.003		
Major metals					
Aluminum	<0.10	<0.10	<0.10		
Calcium	23.3	30.0	28.5		
Iron	<0.10	<0.10	0.154		
Magnesium	10.08	10.33	10.49		
Titanium	<0.10	<0.10	<0.10		
Anions					
F-	<0.4	<0.4	<0.4		
CI-	13.36	16.46	14.38		
\$O ₄ -2	71.25	100.6	126.4		
PO ₄ ³	<0.50	<0.50	<0.50		

Table 6-16 Daily Metal and Anion Concentrations in Liquid Phase of Bottom Ash Stuice (Data in μg/mL)						
9/3/93 9/4/93 9/5/93						
Trace metals						
Antimony	0.0302	0.0210	0.0146			
Assenic	0.0566	0.0360	0.0222			
Barium	0.0231	0.0263	0.0114			
Beryllium	< 0.0005	0.00051	<0.0005			
Boron	< 0.0625	< 0.0625	< 0.0625			
Cadmium	0.0014	0.0006	<0.0003			
Chromium	<0.006	< 0.006	<0.006			
Cobalt	< 0.002	0.0062	<0.002			
Copper	0.0064	0.0084	<0.005			
Lead	0.0059	<0.005	<0.005 "			
Manganese	< 0.0125	0.0045	0.0028			
Мегсигу	0.00018	0.00016	0.00017			
Molybdenum	<0.006	<0.006	0.0147			
Nickel	. 0.0149	0.0151	0.0186			
Selenium	0.0149	0.0111	0.0026			
Vanadium	<0.003	< 0.003	<0.003			
Major metals						
Aluminum	0.258	<0.10	<0.10			
Calcium	27.7	32.1	26.8			
Iron	0.334	<0.10	<0.10			
Magnesium	10.21	10.71	10.56			
Titanium	<0.10	<0.10	<0.10			
Anions						
F	<0.4	<0.4	<0.4			
a-	12.28	12.98	12.80			
\$O ₄ -2	78,58	121.6	105.2			
PO ₄ -3	<0.50	< 0.50	<0.50			

Table 6-17 Average Metal and Anion Concentrations in Water Streams Associated with the Boller (Data in µg/mL) Bottom ash africe Condenser Condenser Make-Supply Discharge inlet outlet σp Trace metals < 0.0006 < 0.0006 0.011 0.022 < 0.0006 Antimony < 0.0003 < 0.0003 < 0.0003 0.014 0.038Arsenic Barium 0.0120.018<0.006* 0.025 0.020 < 0.0005 < 0.0005 <0.0005 < 0.0005 <0.0005* Beryllium 9.2 < 0.062 20.5 < 0.062 < 0.062 Boron < 0.0003 < 0.0003 Cadmium 0.0012* 0.00080.0010* < 0.006 < 0.006 <0.006 0.0012* < 0.006 Chromium <0.002* < 0.002 < 0.002 < 0.006 < 0.0021 Cobalt Copper 0.0052 0.0085 0.0033 0.0078 0.0074 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Lead Manganese < 0.012 0.0021 < 0.012 < 0.012 0.036* 0.000140.000140.00020 0.00014Метсигу 0.00017 <0.006 < 0.006 < 0.006 < 0.006 < 0.006° Molybdenum Nickel < 0.010 <0.010* < 0.010 <0.010 0.0162 < 0.0006 < 0.0006 0.0050* 0.0068 0.0095 Selenium < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 Vanadium Major metals < 0.10 Aluminum <0.10* < 0.10 < 0.10 < 0.10° Calcium 20.1 27.5 < 0.10* 26.6 28.9 < 0.10 < 0.10 <0.10 < 0.10 <0.10* Iron Magnesium 11.2 11.2 < 0.10° 10.2 10.5 Titanium < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 Anions < 0.40 F-< 0.40 < 0.40 < 0.40 < 0.40 a-12.7 10.6 < 0.05 14.9 12.7 \$Q/² 23.3 24.5 < 0.10 85.9 101.8 PO₄-1 < 0.50 < 0.50 <0.50 < 0.50 < 0.50

Based on two daily values, not three.

Table 6-18 Carbonyl Compounds In Water Streams Associated with the Boiler (September 6, 1993)

Stream	Conca, µg/L
Condenser inlet	`
Formaldehyde	122
Acetaldehyde	<5
Acetone	34
Condenser outlet	
Formaldehyde	14
Acetaldehyde	<5
Acetone	137
Make-up water	
Formaldehyde	38
Acetaldehyde	<5
Acetone	16
Stuice supply	
Formaldehyde	<5
Acetaldehyde	<5
Acetone	<5
Bottom ash shrice	
Formaldehyde	1.5
Acetaklehyde	<5
Acetone	<5
Blanks	
Formaldehyde	14-57*
Acetaldehyde	<5
Acetone	<5
*Range of values.	

Table 6-19 Target Volatile Organic Compounds and Their Detection Limits^a

		Detection	imits		Detection	عانمتا
	Compound	Fine gas* µg/Nm³	Water* μg/L	Compound	Fine gas' μg/Nm²	Water* µg/L
1	Chloromethane	0.12	0.48	1,2-Dichloropropane	0.12	0.48
¥	Vinyl chloride	0.16	0.64	Bromodichloromethane	0.12	0.50
1	Bromomethane	0.42	1.7	✓ cis-1,3-Dichloropropene	0.045	0.18
<u>~</u>	Chloroethane	1.9	7.6	2-Hexanone	0.17	0.70
	1,1-Dichloroethene	0.060	0.24	✓ Toluene	0.60	0.24
	Acetone	2.4	9.8	✓ trans-1,3-Dichloropropene	0.089	0.36
	Methyl iodide	-	-	✓ 1,1,2-Trichloroethane	0.11	0.44
7	Carbon disulfide	0.15	0.62	✓ Tetrachloroethene	0.060	0.24
1	Methylene chloride	0.30	1.2	4-Methyl-2-pentanone	0.030	1.2
	trans-1,2-dichloroethene	0.055	0.22	Dibromochloromethane	0.074	0.30
	1,1-Dichloroethane	0.089	0.36	✓ Chlorobenzene	0.030	0.12
	2-Butanone	1.3	5.1	✓ Ethylbenzene	0.074	0.30
7	Chloroform	0.11	0.46	✓ m-& p-Xylene	0.074	0.30
	1,1,1-Trichloroethane	0.42	1.7	✓ o-Xylene	0.030	0.12
7	Carbon tetrachloride	0.10	0.42	✓ Styrene	0.064	0.26
1	Benzene	0.064	0.26	✓ Bromoform	0.054	0.22
7	1,2-Dichloroethane	0.13	0.54	✓ 1,1,2,2-Tetrachloroethane	0.13	0.52
7	Trichloroethene	0.084	0.34	"		••••

 $^{^{4}}$ Compounds listed in Title III of the Clean Air Act Amendments of 1990 are designated by checkmarks. 4 Based on gas volume of 20 L.

Based on injection of 5 mL into the instrument.

Table 6-20
Target Semi-Volatile Compounds and Their Detection Limits**

		Detec	tion limit		Detec	tion limit
L	Compound	μg/L	μg/Nm³	Compound	μ g/L	μg/Nm³
1	Phenol	1.9	0.16	2-Nitroaniline	2.4	0.20
1/	Aniline	1.6	0.14	Acenaphthene	3.6	0.30
1	Bis(2-Chloroethyl) ether	1.1	0.09	✓ 2,4-Dinitrophenol	5.0	-
ĺ	2-Chlorophenol	2.1	0.18	✓ 4-Nitrophenol	2.6	0.22
l	1,3-Dichlorobenzene	1.6	0.14	✓ Dibenzofuran	1.5	0.13
1	1,4-Dichlorobenzene	1.5	0.13	✓ 2,4-Dinitrotoluene	1.0	0.08
1	Benzyl alcohol	-	-	Diethyl phthalate	1.2	0.09
1	1,2-Dichlorobenzene	1.8	0.15	4-Chlorophenyl pheny	l ether -	i •
1	2-Methylphenol	1.9	0.16	Fluorene	2.8	0.24
Í	Bis(2-Chloroisopropyl) ether	1.0	0.08	4-Nitroaniline	3.2	0.27
	4-Methylphenol	6.3	0.52	4,6-Dinitro-2-methylpl	henol -	<i>-</i> '
1	N-Nitroso-di-N-propylamine	9.0	¯0.75	N-Nitrosodiphenylami	ne ' 0.7	0.06
1	Hexachloroethane	1.2	0.10	4-Bromophenyl pheny	lether 0.5	0.04
1	Nitrobenzene	1.9	0.16	✓ Hexachlorobenzene	0.9	0.07
ί.	Isophorone	2.0	0.17	✓ Pentachlorophenol **	· -	l - '
	2,4-Dimethylphenol	7.0	1.8	Phenanthrene	1.4	0.12
ļ	2-Nitrophenol	1.0	0.08	Anthracene	1.6	0.14
l	Benzoic acid	5.8	0.48	Di-n-Butyl phthalate	3.6	0.63
	Bis(2-Chloroethoxy) methane	1.0	0.08	Fluoranthene	1.4	0.12
l	2,4-Dichlorophenol	8.4	0.70	✓ Benzidine	16.4	1.4
1	1,2,4-Trichlorobenzene	1.8	0.15	Pyrene	6.0	0.50
1	Naphthalene	4.0	0.34	Butyl benzyl phthalate	2.0	0.16
]	4-Chloroaniline	3.5	0.29	√ 3,3'-Dichlorobenzidine	4.8	0.41
1	Hexachlorobutadiene	2.0	0.17	Benzo(a)anthracene	1.0	0.08
l	4-Chloro-3-methylphenol	ļ - [:]	-	Bis(2-Ethylhexyl) phtl	ialate -	-
	2-Methylnaphthalene	1.6	0.14	Chrysene	21.2	0.14
	2,4,6-Trichlorophenol	10.8	0.90	Di-N-Octyl phthalate	-	- '
1	Hexachlorocyclopentadiene	2.4	0.20	Benzo(b)fluoranthene		1.0
	2,4,5-Trichlorophenol	15.1	. 1.3	Benzo(k)fluoranthene		1.7
	2-Chloronaphthalene	2.0	0.17	Benzo(a)pyrene	11.2	0.93
	3-Nitroaniline	0.9	0.07	Indeno(1,2,3-cd)pyren	e -	1 -
1	Dimethyl phthalate	1.5	0.13	Dibenz(a,h)anthracen	e] -	
	2,6-Dinitrotoluene	0.9	0.07	Benzo(g,b,i)perylene] -	
ĺ	Acenaphthylene	3.8	0.31		ļ	

^{*}Compounds listed in Title III of the 1990 Clean Air Act Amendments are designated by checkmarks. *Detection limits are given in the units $\mu g/L$ for 0.5 L of a water sample, or $\mu g/Nm^3$ for 3 Nm³ of a flue-gas ample.

6.1.3 Gas Streams

6.1.3.1 Metals

This section presents data on gas streams at three locations:

- Inlet of the Unit 8 ESP.
- Outlet of the Unit 8 ESP
- Outlet of the Unit 7 ESP.

The data on the gas stream in the stack are deferred for presentation in Section 6.3. Not all of the data pertinent to the three locations adjacent to the ESPs are presented here. The exceptions are 1) the metal concentrations in fly ash segregated by size with cyclones and 2) the metal concentrations in flue gas that had been sampled with the dilution device. The cyclone samples came from all three of the locations listed above; the analytical data for these samples appear in Section 8.3. The dilution sampling was performed at the outlet of the Unit 7 ESP; the results are presented in Section 8.2.

The data on metals in the three locations enumerated above appear in three sets of five tables each: Tables 6-21 through 25 for the Unit 8 ESP inlet, Tables 6-26 through 30 for the Unit 8 ESP outlet, and Tables 6-31 through 35 for the Unit 7 ESP outlet. All of the data presented are blank-corrected; that is, the results for samples were reduced by the corresponding results for a blank train.

The first three tables for each location give the concentrations measured in the particulate and vapor states and the sum in the two states on the five successive sampling days (September 3, 4, and 5). The units are micrograms per normal cubic meter (µg/Nm³). Each table lists the sample volume used to calculate concentrations from the total amounts of analytes found.

The fourth table for each location gives the averages, with standard deviations, for the three days, in the same units (µg/Nm³).

The fifth table for each location presents the averages for the three days, presented in the units micrograms per gram ($\mu g/g$). Data in these units were calculated by dividing each daily metal concentration by the corresponding total particulate concentration and computing the average for all three days. The daily total particulate concentrations are listed in the footnote of the table.

All of the data in these tables were obtained by analyzing samples from the Method 29 train by ICP and related AAS methods. There are additional data for mercury from the train with solid traps that were generated in the laboratory at Brooks Rand. On September 3, only the iodated carbon traps were used for sampling; thus, only data for total mercury in the vapor state were obtained. On September 4 and 5,

however, the combination of soda lime and iodated carbon was used, and data for both oxidized mercury and elemental mercury vapors were obtained. The data from samples in the traps are presented in detail in Table 6-36. A synopsis is given below:

- The average percentage of mercury found in the oxidized state was 67.0%. Presumably, the specific form of mercury in the oxidized state is the vapor HgCl₂. A factor that is presumed to be consistent with the finding of two-thirds of the mercury as the divalent chloride is the occurrence of chlorine in the coal at the concentration of 0.10% by weight. SRI investigators have seen lesser fractions of total mercury in the flue gas in the oxidized state when the coal contained less chlorine, and they have found a higher fraction oxidized when the coal contained more chlorine.
- The concentrations of total mercury were lower when the two
 types of traps permitting speciation were in use. This result may
 have been coincidental. There is evidence, however, from the
 mercury determinations in coal at Brooks Rand that the
 concentrations in the coal were lower on the second and third
 sampling dates, when the total concentrations of mercury in the
 gas streams were lower.
- It is appropriate to calculate the average mercury vapor concentration in all three duct locations since no removal of mercury from the vapor state should have occurred in either ESP. The average based on sampling with solid sorbents is 8.0 μg/Nm³ in the vapor state. The averages based on sampling by Method 29 (calculated from the data in Tables 6-24, 6-29, and 6-34) are 4.0 μg/Nm³ in the vapor state and 0.2 μg/Nm³ in the particulate state. This comparison suggests that using the solid sorbents led to only a negligible error from not collecting the particulate mercury but yielded, nevertheless, a substantially higher recovery of mercury vapor.

The comparison of total vapor concentrations by both methods can best be discussed in the context of the expected mercury concentrations based on analyses of the coal. The two sets of mercury determinations in the coal are in good agreement; both are essentially 0.100 μ g/g. The corresponding value for the flue gas is obtained by dividing this value by the expected volume of flue gas from the coal — 0.008204 Nm³/g, according to Table 6-2. Thus, the expected mercury concentration in the flue gas is 0.100/0.008204 \approx 12.2 μ g/Nm³. With this expected value for reference, the recovery of mercury with solid sorbents was 66%; that with Method 29 was just 33%.

It is appropriate to focus much of the discussion on mercury, as has been done above, because of the high degree of interest of this particular metal as a component of the emissions from coal combustion. Certain other highlights of the

data on metals in the gas streams merit attention, however, such as those listed below:

 Three metals occurred at higher concentrations as vapors than as components of the particulate matter. These are boron, mercury, and selenium. The following tabulation shows the percentages of the total of each found in the vapor phase at different locations:

	Inlet <u>Unit 8 ESP</u>	Outlet <u>Unit 8 ESP</u>	Outlet Unit 7 ESP
Baron	85	>99.9	99.6
Mercury	94	99	99
Selenium	57	99	79

The higher percentages at the outlet of the ESP of Unit 8 than at the inlet indicate the removal of the element in the particulate phase. The higher percentages at the outlet of the Unit 8 ESP than at the outlet of the Unit 7 ESP probably are the result of the greater removal of particulate matter in the Unit 8 ESP than in the Unit 7 ESP, as illustrated elsewhere in this report.

Generally, the metals that occurred predominantly in the
particulate phase ranked in relative concentrations as follows:
highest at the Unit 8 ESP intet, next highest at the Unit 7 ESP
outlet, and least at the Unit 8 ESP outlet. This order is illustrated
below for one trace metal (barium) and one major metal
(aluminum). The data are in µg/Nm³:

	Inlet <u>Unit 8 ESP</u>	Outlet <u>Unit 8 ESP</u>	Outlet <u>Unit 7 ESP</u>
Barium	1920	5.66	23.7
Aluminum	481000	606	4920

These data further illustrate the higher efficiency of the Unit 8 ESP for removing particulate matter.

On the issue of partitioning between the vapor and particulate states, a necessary qualification about the data is that the indicated partitioning is due in part to the performance characteristics of the sampling method. The filter in the Method 29 sampling train operates at 121 °C. This temperature is cooler than that of any of the gas ducts adjacent to the ESPs; thus, it may cause the fraction of a metal in the particulate matter to appear higher than the actual fraction in the duct. This means, of course, that the above percentages of boron, mercury, and selenium in the vapor

phase may be understated. A contrary observation is that a metal in the particulate matter may somehow penetrate or bypass the filter and appear as a vapor. Several of the metals of interest are not likely to have measurable vapor concentrations at the duct temperatures (much less at the filter temperature), and the apparent fractions in the vapor state may be spurious. One example is barium. The occurrence of this element at a concentration of 2.44 µg/Nm³ (as reported in Table 6-34) is problematical; such a concentration, although low, corresponds to a concentration of barium vapor of 4.27 x 10⁻¹⁰ atm, whereas the JANAF Tables (10) indicate that at 150 °C (the approximate duct temperature) the vapor pressure of this metal is just 3.09 x 10⁻¹⁷ atm. The possibility of erroneous high indications of vapor concentrations does not detract from the observations about boron, mercury, and selenium, because high vapor concentrations of these metals are consistent with their thermodynamic properties.

Table 6-37 compares the metal concentrations in the three gas streams adjacent to the ESPs on the basis of the ratio to total particulate. The data here are in the units $\mu g/g$; they were taken from the last columns of Tables 6-25, 6-30, and 6-35 which give totals (particulate plus vapor) in the three gas streams. The data columns are arranged in Table 6-37 in the order Unit 8 ESP inlet, Unit 7 ESP outlet, and Unit 8 ESP outlet because total particulate concentration decreased in that order. Generally, the data show very sharp increases as the total particulate concentration decreased, which suggests either that the metals are either significantly in the vapor state or that they occur primarily on the surfaces of particles, the smaller the particle size the greater the specific surface area and the specific metal concentration. The most notable trends are for boron, mercury, and selenium, which are predominantly vapors that are removed in the ESPs. The trends for some of the other metals, however, signify changes in particulate composition; examples are barium, cadmium, and chromium, among others.

The data in Table 6-37 for the inlet of the Unit 8 ESP should compare well in general with the corresponding data for the ash from the Unit 8 ESP hoppers (see Tables 6-8 and 6-9). Examples of metals that are more concentrated in the inlet (before collection) than in the hoppers (after collection) are the three that are significantly volatile: boron (3490 vs. 981 $\mu g/g$), mercury (0.850 vs. 0.006 $\mu g/g$), and selentum (81.1 vs. 7.91 $\mu g/g$). The most notable examples of other metals that differ in the two locations are believed to be spurious, resulting from analytical error (for example, antimony at 8.32 $\mu g/g$ in the gas stream and 25.1 in the hopper).

Table 6-21 Metal Concentrations in the Gas Stream at the Inlet of the Unit 8 ESP (September 3, 1993) (Data in µg/Nm³)

(All data here by Method 29; sample volume 2.329 Nm³)

	Particulate	Vapor	Total
Trace metals	_		
Antimony	25.8	<0.04	25.8
Arsenic	244	3.01	371
Barium	1630	2.49	1630
Beryllium	87.8	<0.02	87.8
Boron	3310	15600	18900
Cadmium	127	0.54	127
Chromium	1940	2.28	1940
Cobalt	167	<0.20	167
Copper	763	0.34	763
Lead	1290	<0.20	1290
Manganese	1030	<0.80	1030
Mercury ^a	0.30	1.12/4.09	5.51
Molybdenum	575	<0.40	575
Nickel	1070	0.39	1070
Selenium	201	171	372
Vanadium	2190	0.21	2190
Major metals			
Aluminum	470000	277	470000
Calcium	90100	2300	92400
Iron	647000	137	647000
Magnesium	29900	75.3	30,000
Titanium	33900	12.2	34000

⁴The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-22 Metal Concentrations in the Gas Stream at the Inlet of the Unit 8 ESP (September 4, 1993) (Data in μg/Nm³)

(All data here by Method 29; sample volume 2.173 Nm³)

	Particulate	Vapor	Total
Trace metals			
Antimony	33.1	0.89	34.0
Arsenic	262	1.14	394
Bacium	1850	3.80	1850
Beryllium	96.5	0.53	97.0
Boron	168	13700	13800
Cadmium	156	1,7	157
Chromium	1860	4.17	1870
Cobalt	189	<0.20	189
Copper	930	2.64	933
Lead	1690	1.88	1690
Manganese	1200	4.10	1200
Mercury*	0.25	0.93/2.50	3.68
Molybdenum	726	0.43	726
Nickel	1100	10.5	1100
Selenium	152	199	351
Vanadium	2600	2.58	2610
Major metals			
Aluminum	479000	689	480000
Calcium	90000	2400	92600
Iron	629000	580	630000
Magnesium	31200	103	31300
Titanium	35600	42.9	35600

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-23 Metal Concentrations in the Gas Stream at the Inlet of the Unit 8 ESP (September 5, 1993) (Data in μg/Nm³)

(All data here by Method 29; sample volume 2.123 Nm³)

	Particulate	Vapor	Total
Trace metals			
Antimony	67.6	1.72	69.3
Arsenic	253	3.33	256
Barium	2280	4.31	2290
Beryllium	110	2.15	112
Boron	4470	14900	19400
Cadmium	199	4.62	204
Chromium	2380	7.24	2390
Cobalt	218	0,45	219
Copper	1170	2.34	1180
Lead	1350	2.71	1350
Manganese	1340	<0.80	1340
Mercury*	0.25	1.08/2.02	3.36
Molybdenum	978	2.70	981
Nickel	1490	3.50	1490
Selenium	180	322	502
Vanadium	2960	5.97	2960
Major metals			
Aluminum	493000	1200	494000
Calcium	102000	2880	105000
Iron	638000	992	639000
Magnesium	33500	141	33700
Tîtanium	36400	81.7	36500

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-24 Average Metal Concentrations in the Gas Stream at the Inlet of Unit 8 ESP* (Data in µg/Nm³; with standard deviations)

	Particulate	Vapor	Total
Trace metals			<u> </u>
Antimony	42.2 ± 22.3	0.858 ± 0.701	43.0 ± 23.1
Arsenic	129 ± 5.17	2.49 ± 0.963	132 ± 5.19
Barium	1920 ± 311	3.53 ± 0.768	1920 ± 332
Beryllium	98.1 ± 11.1	0.895 ± 0.917	99.0 ± 12.3
Boron	2650 ± 2230	14700 ± 788	17400 ± 3080
Cadmium	160 ± 36.4	2.28 ± 1.72	163 ± 38.4
Chromium	2080 ± 282	4.57 ± 2.04	2080 ± 284
Cobalt	191 ± 25.7	0.132 ± 0.223	191 ± 25.9
Copper	956 ± 207	1.78 ± 1.02	958 ± 208
Lead	1440 ± 214	1.53 ± 1.14	1440 ± 215
Manganese	1200 ± 154	0.784 ± 2.4	1200 ± 154
Mercury	0.266 ± 0.0279	3.92 ± 0.926	4.2 ± 1.16
Molybdenum	759 ± 204	1.04 ± 1.18	760 ± 205
Nickel	1240 ± 237	5.14 ± 4.21	1240 ± 236
Selenium	177 ± 24.3	231 ± 65.6	408 ± 81.7
Vanadium	2580 ± 383	2.98 ± 2.37	2590 ± 386
Major metals			
Aluminum	481000 ± 11700	721 ± 376	481000 ± 12200
Calcium	94200 ± 7060	2530 ± 252	96700 ± 7370
Iron	638000 ± 8690	570 ± 349	638000 ± 8480
Magnesium	31500 ± 1870	107 ± 27.1	31600 ± 1900
Titanium	35300 ± 1250	45.6 ± 28.5	35400 ± 1280
*Data based on Tab	les 6-21, 6-22, and 6-23.		

Table 6-25 Ratios of Metal Concentrations in the Gas Stream at the inlet of the Unit 8 ESP to the Total Concentration of Entrained Solids* (Data in µg/g; averages of daily results)

	Particulate	Vapor	Total
Trace metals			
Antimony	8.16	0.164	8.32
Arsenic	50.1	0.504	50.6
Barium	378	0.698	378
Beryllium	19.3	0.171	19.5
Boron	529	2960	3490
Cadmium	31.4	0.441	31.9
Chromium	411	0.893	412
Cobalt	37.7	0.0251	37.7
Copper	187	0.342	188
Lead	285	0.292	285
Manganese	235	0.135	236
Мегсигу	0.0530	0.797	0.850
Molybdenum	148	0.199	149
Nickel	244	0.987	245
Selenium	35.4	45.0	80.4
Vanadium	508	0.571	509
Major metals			
Aluminum	95300	140	95400
Calcium	18600	504	19100
Iron	127000	110	127000
Magnesium	6240	21.1	6260
Titanium	6990	8.81	7000

^{*}Calculated by dividing the individual concentrations in Tables 6-21, 6-22, and 6-23 by the appropriate total particulate concentrations. The three daily concentrations of total particulate were, in succession, 4.556, 5.243, and 5.404 g/Nm³.

Table 6-26 Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 3, 1993) (Data in $\mu g/Nm^3$)

(All data here by Method 29; sample volume 2.870 Nm³)

	Particulate	Vapor	Total
Trace metals			
Antimony	<0.20	0.16	0.26
Arsenic	0.80	0.92	1.72
Barium	4.53	1.98	6.52
Beryllium	0.09	< 0.02	0.10
Boron	<0.2	11900	11900
Cadmium	4.42	2.18	6.60
Chromium	4.74	3.29	8.03
Cobalt	<0.20	0.08	0.18
Copper	1.33	0.81	2.14
Lead	6.81	0.53	7,34
Manganese	0.27	0.90	1.17
Mercury ^a	0.06	0.91/3.15	4.12
Molybdenum	4.27	<0.40	4.47
Nickel	2.10	6.91	9.01
Selenium	2.32	110	112
Vanadium	3.72	0.08	3.80
Major metals			
Aluminum	494	229	723
Calcium	613	174	2350
Iron	887	114	1000
Magnesium	29.3	54.5	83.7
Titanium	44.4	8.77	53.2

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-27 Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 4, 1993) (Data in μg/Nm³)

(All data here by Method 29; sample volume 2.826 Nm³)

	Particulate	Vapor	Total
Trace metals			
Antimony	<0.20	0.01	0.11
Arsenic	0.71	1.59	2.29
Barium	2.54	2.57	5.11
Beryllium	-0.12	< 0.02	0.13
Boron	<0.2	14500	14500
Cadmium	1.58	1.49	- 3.07
Chromium	5.24	2.87	8.11 -
Cobalt	< 0.20	<0.20	<0.20
Соррег	1.32	3.44	4.76
Lead	4.37	0.68	5.05
Manganese	0.62	<0.80	1.02
Mercury*	0.01	1.15/2.73	3.89
Molybdenum	4.60	<0.40	4.70
Nickel	2.33	2.47	4.80
Selenium	1.39	194	195
Vanadium	4.95	0.21	5.16
Major metals			
Aluminum	306	275	581
Calcium	103	2200	2300
Iron	532	82.2	614
Magnesium	29.7	71.6	101
Titanium	38.0	11.2	49.2

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-28 Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP (September 5, 1993) (Data in μg/Nm³)

(All data here by Method 29; sample volume 2.644 Nm3)

	Particulate	Vapor	Total
Trace metals			_
Antimony	< 0.20	0.24	0.34
Arsenic	0.58	1.71	2.29
Barium	2.31	3.03	5.34
Beryllium	<0.02	< 0.02	<0.02
Boron	<0.2	14300	14300
Cadmium	0.94	0.82	1.75
Chromium	3.80	3.30	7.10
Cobalt	<0.20	0.26	0.36
Copper	2.34	0.95	3.29
Lead	0.45	0.85	1.30
Manganese	1.24	<0.80	1,64
Mercury*	0.02	1.63/2.39	4,04
Molybdenum	4.83	<0.40	5.03
Nickel	3.23	1.57	4.80
Selenium	1.76	204	206
Vanadium	3.08	0.21	3.29
Major metals			
Aluminum	194	320	514
Calcium	56.9	2560	2620
Iron	357	152	509
Magnesium	20.1	87.1	107
Titanium	25.1	14.2	39.3

The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-29 Average Metal Concentrations in the Gas Stream at the Outlet of Unit 8 ESP* (Data are in µg/Nm³; with standard deviations)

	Particulate	Vapor	Total
Trace metals			
Antimony	<0.20	0.135 ± 0.0929	0.235
Arsenic	0.696 ± 0.0897	1.4 ± 0.347	2.10 ± 0.33
Barium	3.13 ± 0.998	2.53 ± 0.429	5.66 ± 0.753
Beryllium	≤0.07	<0.02	⊴0.09
Boron	< 0.20	13600 ± 1180	13600 ± 1180
Cadmium	2.31 ± 1.51	1.5 ± 0.558	3.81 ± 2.51
Chromium	4.59 ± 0.594	3.15 ± 0.2	7.75 ± 0.555
Cobalt	< 0.20	0.0582 ± 0.177	0.158
Соррег	1.67 ± 0.480	1.73 ± 1.21	3.40 ± 1.31
Lead	3.88 ± 2.62	0.688 ± 0.134	4.57 ± 3.05
Manganese	1.73 ± 0.380	0.00195 ± 0.681	1.73 ± 0.84
Mercury	0.0303 ± 0.0219	3.97 ± 0.0755	4.02 ± 0.110
Molybdenum	4.57 ± 0.228	<0.40	4.57
Nickel	2.56 ± 0.488	3.94 ± 2.33	6.50 ± 2.43
Selenium	1.82 ± 0.382	169 ± 42.3	171 ± 51.4
Vanadium	4.1 ± 0.774	0.215 ± 0.0614	4.32 ± 0.962
Major metals			
Aluminum	332 ± 124	275 ± 37.3	606 ± 107
Calcium	257 ± 252	2160 ± 337	2420 ± 171
Iron	592 ± 24	116 ± 28.6	708 ± 259
Magnesium	26.4 ± 4.42	71 ± 13.3	97.4 ± 12.2
Titanium	35.9 ± 8.02	11.4 ± 2.23	47.2 ± 7.11
Based on data in Ta	ables 6-26, 6-27, and 6-28.		

Table 6-30 Ratios of Metal Concentrations in the Gas Stream at the Outlet of the Unit 8 ESP to the Total Concentration of Entrained Solids*

(Data in µg/g; averages of daily results)

	Particulate	Vapor	Total
Trace metals			
Antimony	<26	19.6	<46
Arsenic	86.6	200	287
Barium	363	353	716
Beryllium	7.85	<2.6	<10.4
Boron	<26	1830000	1830000
Cadmium	230	167	397
Chromium	581	414	995
Cobalt	<26	23.1	<49
Соррег	240	228	468
Lead	372	97.1	469
Manganese	114	<64	<178
Мегсигу	3.06	520	523
Molybdenum	610	<52	<662
Nickel	359	366	725
Selenium	228	24100	24400
Vanadium	413	24.5	438
Major metals			
Aluminum	37100	37900	75000
Calcium	22100	265000	287000
Iron	66400	16000	82400
Magnesium	3260	4000	7250
Tîtanium	4280	1600	5890

^{*}Calculated by dividing the individual concentrations in Tables 6-26, 6-27, and 6-28 by the appropriate total particulate concentration. The three daily concentrations of total particulate were, in succession, 0.01456, 0.00778, and 0.00511 g/m³.

Table 6-31 Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 3, 1993) (Data in µg/Nm³)

(All data here by Method 29; sample volume 3.518 Nm³)

	Particulate	Vapor	Total
Trace metals	1		
Antimony	0.43	0.14	0.56
Arsenic	7.72	4.41	12.1
Barium	22.2	2.13	24.3
Beryllium	1.77	<0.02	1.78
Boron	62.3	10900	11000
Cadmium	8.84	3.64	12.5
Chromium	29.9	2.26	32.1
Cobalt	2.66	0.14	2.80
Copper	15.5	1.64	17.1
Lead	28.2	0.76	29.0
Manganese	10.2	<0.80	11.0
Mercury*	0.03	0.83/3.08	3.94
Molybdenum	16.3	< 0.40	16.5
Nickel	8.68	1.18	9,86
Selenium	11.5	135	146
Vanadium	43.2	0.45	43.7
Major metals			
Aluminum	7010	249	7260
Calcium	744	1640	2380
Iron	8120	166	8280
Magnesium	277	57.2	334
Titanium	425	11.3	436

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-32 Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 4, 1993) (Data in µg/Nm²)

(All data here by Method 29; sample volume 2.457 Nm³)

	Particulate	Vapor	Total
Trace metals			
Antimony	0.25	<0.04	0.27
Arsenic	3.07	0.88	3.95
Barium	17.0	2.57	19.5
Beryllium	1.08	<0.02	1.09
Boron	38.0	14900	14900
Cadmium	4.11	3.23	7.33
Chromium	17.8	2.89	20.7
Cobalt	1.52	<0.20	1.62
Copper	10.8	2.73	13.5
Lead	20.1	<0.50	20.3
Manganese	6.61	<0.80	7.01
Mercury*	0.05	1.98/2.97	5.00
Molybdenum	14.9	< 0.40	15.1
Nickel	1.56	1.96	3.52
Selenium	71.0	482	553
Vanadium	33.1	0.10	33.2
Major metals			
Aluminum	3190	287	3480
Calcium	754	2380	3130
Iron	5500	92.9	5590
Magnesium	223	77.9	300
Titanium	334	12.0	346

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-33 Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP (September 5, 1993) (Data in µg/Nm³)

(All data here by Method 29; sample volume 2.518 Nm³)

	Particulate	Vapor	Total
Trace metals	!		
Antimony	0.43	0.03	0.46
Arsenic	2.58	0.54	3.12
Barium	24.8	2.61	27.4
Beryllium	1.27	< 0.02	1.27
Boron	51.0	⁻ 13900	13900
Cadmium	6.59	1.97	8.56
Chromium	27.6	2.90	30.5
Cobalt	1.77	<0.20	1.87
Copper	13.8	0.79	14.6
Lead	21.0	<0.50	21.0
Manganese	9.36	<0.80	9.76
Mercury*	0.08	1.38/2.23	3.68
Molybdenum	19.0	< 0.40	19.0
Nickel	8.51	2.30	10.8
Selenium	134	206	340
Vanadium	36.8	0.19	37.0
Major metals			
Aluminum	3780	258	4040
Calcium	1010	2250	3260
Iron	6570	143	6720
Magnesium	282	69.2	351
Titanium	384	11.0	395

^{*}The column for vapor gives separate data from peroxide and permanganate impingers. See Table 6-36 for other mercury data.

Table 6-34 Average Metal Concentrations in the Gas Stream at the Outlet of Unit 7 ESP* (Data in μg/Nm³; with standard deviations)

	- Particulate	Vapor	Total
Trace metals			
Antimony.	0.369 ± 0.0855	0.0472 ± 0.189	0.416 ± 0.173
Arsenic	4.46 ± 2.31	1.94 ± 1.44	6.40 ± 4.98
Barium	21.3 ± 3.24	2.44 ± 10.6	23.7 ± 3.95
Beryllium	1.37 ± 0.288	<0.02	1.38
Boron	50.4 ± 9.95	13200 ± 6260	13300 ± 2040
Cadmium	6.51 ± 1.93	2.94 ± 1.5	9.45 ± 2.69
Chromium	32.8 ± 4.52	2.68 ± 15.8	35.4 ± 5.37
Cobalt	1.98 ± 0.489	<0.20	2.18
Соррег	13.3 ± 1.94	1.72 ± 5.49	15.1 ± 1.84
Lead	23.1 ± 3.62	0.255 ± 9.75	23.4 ± 4.87
Manganese	10.3 ± 1.37	<0.80	10.7
Mercury	0.0518 ± 0.0207	4.16 ± 2.1	4.21 ± 0.697
Molybdenum	16.7 ± 1.68	<0.40	16.9
Nickel	14.9 ± 2.77	2.1 ± 7.6	17.0 ± 3.52
Selenium	72.2 ± 50	274 ± 164	347 ± 204
Vanadium	37.9 ± 4.16	0.293 ± 17.3	38.2 ± 5.27
Major metals			
Aluminum	4660 ± 1680	265 ± 1650	4920 ± 2040
Calcium	837 ± 125	2090 ± 558	2930 ± 474
Iron	6730 ± 1070	134 ± 3040	6860 ± 1350
Magnesium	260 ± 26.9	68.1 ± 101	329 ± 25.8
Titanium	381 ± 37.3	11.4 ± 176	392 ± 45.3
*Based on data in	Tables 6-31, 6-32, and 6-3	33.	

Table 6-35
Ratios of Metal Concentrations in the Gas Stream at the Outlet of Unit 7 ESP to the Total Concentration of Entrained Solids*
(Data in µg/g; averages of daily results)

	Particulate	Vapor	Total	
Trace metals				
Antimony	5.25	0.615	5.87	
Arsenic	66.1	28.7	94.7	
Bari u m	307	36.4	344	
Beryllium	20.1	<0.26	20.2	
Boron	732	199000	200000	
Cadmium	93.2	45.3	138	
Chromium	475	40.1	515	
Cobalt	29.0	<1.5	29.7	
Соррег	194	28	222	
Lead	342	3.65	346	
Manganese	150	<11	155	
Mercury	0.745	63.7	64.4	
Molybdenum	244	<5.3	246	
Nickel	213	31.1	244	
Selenium	1013	4480	5490	
Vanadium	559	4.2	563	
Major metals				
Aluminum	68000	3980	72000	
Calcium	122000	31400	43600	
Iron	98500	1930	100000	
Magnesium	3800	1030	4830	
Titanium	5600	172	5770	

^{*}Calculated by dividing the individual concentrations in Tables 6-31, 6-32, and 6-33 by the appropriate total particulate concentration. The three daily concentrations of total particulate were, in succession, 0.0698, 0.0527, and 0.0877 g/Nm³.

Table 6-36 Concentrations of Mercury Vapor Based on Sampling with Solid Sorbents at Locations Adjacent to the ESPs

·		(Concn ⁴ , µg/Nm ³			
	Date	Hg(II)	Hg(0)	Total	Percent oxidized	
U8 inlet	9/3		_	10.3		
	9/4	5.19	1.31	6.50	79.8	
	9/5	4.79	2.40	7.19	66.6	
U8 outlet	9/3		~	10.2		
	9/4	3.25	4.46	7.71	42.2	
	9/5	5.05	1.97	7.02	71.9	
U7 outlet	9/3			8.81		
	9/4	4.91	2.73	7.64	64.3	
	9/5	4.88	1.43	6.31	77.3	
Ambient ^b	9/4	0.02	0.11	0.13	15	
	9/5	0.03	0.11	0.14	21	

^{*}All data here were derived by subtracting blanks from raw data.

These data, unlike the remainder, are for the actual O₂ concentration.

Table 6-37 Comparison of Metal Concentrations in the Different Gas Streams Adjacent to the ESPs* (Data in µg/g)

	Unit 8 inlet	Unit 7 outlet	Unit 8 outlet
Trace metals			
Antimony	8.32	5.87	<46
Arsenic	26.1	94.7	287
Barium	378	344	716
Beryllium	19.5	20.2	<10.4
Boron	3490	200000	1830000
Cadmium	31.9	138	397
Chromium	412	515	99 5
Cobalt	37.7	29.7	<49
Copper	188	222	468
Lead	285	346	469
Manganese	236	155	<178
Mercury	0.850	64.4	523
Molybdenum	149	246	<662
Nickel	245	244	725
Selenium	81.1	5490	24400
Vanadium	509	563	438
Major metals			
Aluminum	95400	72000	75000
Calcium	19100	43600	787000
Iron	127000	100000	82400
Magnesium	6260	4830	7250
Titanium	7000	5770	5890
*Data from Tables 6	5-25, 6-30, and 6-35.		

6.1.3.2 Acid Gases

Table 6-38 presents the apparent concentrations of anions in flue gas in the three gas ducts associated with the boiler and ESPs. Table 6-39 gives the corresponding concentrations of the acid gases that contain these anions (or, more exactly, in the case of SO₂, the sulfate produced by reaction in the sampling medium). The following tabulation gives the expected concentrations based on the coal analysis and the average observed concentrations at each location:

1	Concn. ppmv				
	<u>HF</u>	<u>HÇi</u>	<u>\$0</u> ,	H ₂ PO,	
Expected	15.2	80.1	2900	11.2	
Observed, Unit 8 ESP inlet 🕟	15.5	67.7	2820	√ <3.0	
Observed, Unit 8 ESP outlet	18.4	69.2	2820	<3.0	
Observed, Unit 7 ESP outlet	16.4	72.2	2760	<2.9	

For HF, HCl, and SO₂, the agreement between expected and observed values is excellent. Clearly, SO₂ as a gas must be the antecedent of the sulfate measured. The agreement between the calculated values for HF and HCl signify that fluoride and chloride also occur as the gaseous compounds, not as salts in the particulate matter,

For H₃PO₄, on the other hand, the agreement is much poorer, although it is indefinite because of insufficient sensitivity in the measurement of phosphate. Not more than 25% of the possible concentration of H₃PO₄ actually occurred; moreover, because of high recoveries of phosphorus as phosphate in particulate matter, it is reasonable to conclude that H₃PO₄ was an inconsequential or even nonexistent component of the flue gas.

For reasons to be discussed subsequently, sulfate was measured in the solids entrained in the gas streams. The solid matter collected on the filter of the acid gases train was used for this purpose; the solids were extracted with water and sulfate was determined in the extract. The results were as follows:

	Concentration, wt%			
	<u>Sept. 3</u>	<u>Sept. 4</u>	<u>Sept. 5</u>	
Inlet, Unit 8 ESP	4.8	5.9	4.5	
Outlet, Unit 8 ESP	3.9	4.8	15.6	
Outlet, Unit 7 ESP	32.4	54.4	59.3	

None of these concentrations in the solids represents a significant concentration of SO₂ in the gas phase. Some of the results are quite unexpected, however, especially the very high concentrations at the outlet of the Unit 7 ESP. Some elevation at an

ESP outlet is plausible because of the decreased particle size and increased specific particle surface area (sulfate is regarded as a surface constituent of ash in the main). Clearly, the elevation at the outlet of the Unit 7 ESP is abnormal compared to that at the outlet of the Unit 8 ESP, especially since the Unit 7 ESP was less efficient than the Unit 8 ESP. Perhaps for reasons not known the ESP causes a higher degree of conversion of SO₂ to SO₃ (or sulfuric acid).

Table 6-38 Anion Concentrations in Ducts Adjacent to the ESPs (Data in µg/Nm²)

		//				
	9/3/93	9/4/93	9/5/93	Avg.	Std.dev.	
Unit 8 ESP inlet						
Fluoride	9890	15600	11300	12300	3000	
Chloride	90800	107000	102000	99900	8300	
Sulfate	11400000	11300000	11200000	11300000	100000	
Phosphate	<8800	<11900	<8500	<11900		
Unit 8 ESP outlet			-	,	- 1.	
Fluoride	11100	19200	13200	14500	4200	
Chloride	87900	116000	103000	102000	14000	
Sulfate	10600000	12300000	1000000	11000000	1100000	
Phosphate	<10300	<11700	<7600	<11700		
Unit 7 ESP outlet						
Fluoride	12400	14600	11800	12900	1500	
Chloride	86600	127000	106000	106000	20000	
Sulfate	10600000	11400000	11000000	11000000	4000000	
Phosphate	<10800	<11300	<9900	<11300	-	

Table 6-39 Acid Gas Concentrations in Ducts Adjacent to the ESPs (Data in ppmv)

		ded in the	*****		
	9/3/93	9/4/93	9/5/93	Avg.	Std.dev.
Unit 8 ESP inlet					<u></u>
HF	12.5	19.7	14.4	15.5	3.7
HCI	61.5	72.8	68.8	67.7	5.7
SO ₂	2850	2820	2800	2820	25
H₃PO₄	<2.2	<3.0	<2.2	<3.0	*
Unit 8 ESP outlet					
HF	14.1	24.3	16.7	18.4	5.3
HCI	59.6	78.3	69.7	69.2	9.4
SO ₂	2640	3080	2740	2820	230
H ₃ PO ₄	<2.6	<3.0	<1.9	<3.0	
Unit 7 ESP outlet					
HF	15.7	18.5	15.0	16.4	1.8
HCI	58.7	86.0	71.9	72.2	13.6
SO ₂	2650	2860	2760	2760	110
H ₃ PO ₄	<2.7	<2.9	<2.5	<2.9	

6.1,3.3 Ammonia and Hydrogen Cyanide

The concentrations of these two components of the gas phase in the three sampling ducts adjacent to the ESPs are listed in Table 6-41. Each analyte is reported in two units: $\mu g/Nm^3$ and ppmv. All of the data are from September 6; only one sampling run was performed at each location. On this date, all injection of ammonia had reportedly terminated.

Ammonia was measurable at the inlet of the Unit 8 ESP (0.06 ppmv) but not at the outlet of this ESP. It was measurable at the outlet of the Unit 7 ESP, on the other hand (0.03 ppmv). If, as NIPSCO reported, the injection of ammonia to treat the problem of excess sulfuric acid vapor had been discontinued two days earlier, the ammonia observed on September 6 presumably has to be attributed to boiler operation.

Hydrogen cyanide, in contrast to ammonia, appeared at roughly the same concentration (approximately 0.3 ppmv) at each site. This gas has to be considered a product of boiler operation.

Ammonia was measured in selected samples of entrained solids as well as in the gas phase. The filter solids from the acid gases train-on September 3-5 (three days in advance of the gas-phase sampling while ammonia injection was still in progress) were extracted with water and the extracts analyzed for ammonia. The analyses were performed by two methods: the electrochemical method based on the ammonia-selective electrode and the colorimetric method. Both methods gave the same result for each solid sample; the results are listed below (%), along with the corresponding equivalent concentrations for the gas phase (ppmv):

	Concentration, % (ppmv)			
	Sept. 3	<u>Sept. 4</u>	Sept. 5	
Inlet solids, Unit 8 ESP	0.02 (1.4)	0.1 (0.7)	<0.1 (<0.7)	
Outlet solids, Unit 8 ESP	0.30 (0.016)	0.45 (0.025)	1.2 (0.13)	
Outlet solids, Unit 7 ESP	3.3 (2.5)	0.59 (0.45)	0.31 (0.24)	

There is not necessarily any error in the apparent inconsistency between the solid-phase and the calculated equivalent gas-phase data; the apparent inconsistency is explained by the very large differences in concentrations of entrained particulate matter at the three locations. The solid matter accounts for very little ammonia in comparison with the reported injection level of about 15 ppmv on September 3 in both Units 7 and 8 and again 15 ppm on September 4 in Unit 8 (see Table 3-6). The data give little indication of the cessation of ammonia injection on September 5.

Table 6-40 Ammonia and Sulfate Concentrations in Fly Ash in Ducts Adjacent to the ESPs (Concentrations in solids are given in %; corresponding equivalent concentrations in the gas phase are given in ppmv within parenthesis.)

	9/3/93	9/4/93	9/5/93
lniet, Unit 8 ESP			
NH ₃ , % (ppmv)	0.02 (1.3)	0.01 (0.7)	<0.01 (<0.7)
SO ₄ -2, % (ppmv)	4.8 (55)	5.9 (77)	4.5 (61)
Outlet, Unit 8 ESP			
NH ₃ , % (ppmv)	0.30 (0.06)	0.45 (0.05)	1.2 (0.09)
SO ₄ -2, % (ppmv)	3.9 (0.14)	4.8 (0.09)	15.6 (0.20)
Outlet, Unit 7 ESP			
NH ₃ , % (ppmv)	3.3 (2.5)	0.59 (0.4)	0.31 (0.4)
SO ₄ -2, % (ppmv)	32.4 (4.4)	54.4 (7.2)	59.3 (13.0)

Table 6-41 Concentrations of Ammonia and Hydrogen Cyanide in Ducts Adjacent to the ESPs (September 6, 1993)

	Conca	Conca, µg/Nm³		Conca, µg/Nm³		ppmv
	NH ₃	HÇN	NH ₃ HCN			
Inlet, Unit 8 ESP	41.0	340	0.058	0.31		
Outlet, Unit 8 ESP	<3.0	305	<0.007	0.27		
Outlet, Unit 7 ESP	11.8	407	0.030	0.36		

6.1.3.4 Carbonyl Compounds

The information presented here pertains to all three sampling ducts adjacent to the ESPs. It is limited, however, to a single sampling day — September 6, 1993 — for reasons already discussed.

Three carbonyl compounds were detected. The individual compounds and their calculated concentrations are listed in Table 6-42. Formaldehyde was found at the highest apparent concentration at each duct. Acetone was evidently present in the ducts at Unit 8 but was evidently present at a lower concentration, or absent, at the outlet of the Unit 7 ESP. Acetaldehyde followed the same pattern as acetone.

There is a serious question as to whether the carbonyl compounds can be correctly measured with the sampling train employed. This statement is made because of the result of an experiment with a spiked sampling train. The usual impingers containing the DNPH trapping reagent were employed; in addition, downstream from the usual impingers, two spiked impingers were added in series. Auditors from RTI injected 16 µg of formaldehyde into each of the extra impingers (the amount was only disclosed to SRI several months later, after the impingers were all analyzed). The sampling train with the spikes was actually used for sampling at the stack, with the results described later in Section 6.3. The crux of the results, however, is that no formaldehyde was found in the spiked impingers. The absence of the spikes, or any detectable fraction, would seem to say that the actual concentration of formaldehyde in a duct or stack may be much higher than is found. The mechanism of loss of formaldehyde in the experiment at Bality is not known.

Table 6-42
Concentrations of Carbonyl Compounds
in Ducts Adjacent to the ESPs
(September 6, 1993)

Streams	Mass collected, µg	Calculated concu,* µg/Nm³		
Inlet, Unit 8 ESP				
Formaldehyde	10.6	6.5		
Acetaldeliyde	1.4	0.3		
Acetone	5.2	3.0		
Outlet, Unit 8 ESP				
Formaldehyde	19.1	14.5		
Acetaldehyde	1.3	0.3		
Acetone	4.1	2.3		
Outlet, Unit 7 ESP	_			
Formaldehyde	11.6	8.4		
Acetaldehyde	<1.0	<1.0		
Acetone	<1.0	<1.0		
Blanics				
Formaldehyde	3.7, 2.5, 1.4			
Acetaldehyde	1.2, <1.0, <1.0			
Acetone	1.4, <1.0, 2.5	-		

^{*}Corrected for average blanks $-2.5~\mu g$ for formaklehyde, 1.0 μg for acetaldehyde (estimated value), and 1.5 μg /for acetone.

6.1.3.5 Volatile Organic Compounds

Presentation of the data from experiments on volatile organic compounds is deferred to Appendix D. These data are not credible, for reasons discussed in the Appendix. Briefly stated, the hydrocarbons found are believed to be unlikely components of the gas streams at Bailly — certainly unlikely at the concentrations that are apparent from the analytical data. The anomalous high concentrations are believed due to generation of the compounds from organic constituents in a heating tape located within the annulus of the sampling probes.

6.1.3.6 Semi-Volatile Organic Compounds

This class of compounds was sampled at all three duct locations adjacent to the ESPs. In common with all the other organics, however, sampling was limited to just one day, September 6, 1993.

The samples from the Modified Method 5 sampling train — both front half (principally the filter) and the back half (principally the XAD sorbent) — were examined particularly for evidence of polycyclic aromatic hydrocarbons (PAHs). There are 16 of these compounds, listed below first in Column 1 and then in Column 2 in order of increasing retention time during analysis by gas chromatography:

Naphthalene Benzo(a)anthracene
Acenaphthalene Chrysene
Acenaphthene Benzo(b)fluoranthene
Fluorene Benzo(k)fluoranthene
Phenanthrene Benzo(a)pyrene
Anthracene Indeno(1,2,3-cd)pyrene

Fluroanthene Dibenzo(a,h)anthracene
Pyrene Benzo(g,h,i)perylene

The absence of these compounds in samples from each sampling location is a plausible indication of their absence in the duct, since each compound <u>was</u> detected in blind audit samples prepared by RTI. The amounts in the audit spikes corresponded to levels corresponding to concentrations as low as 0.1 μ g/Nm³ in the flue gas (see Table 6-20).

There were certain compounds detected other than those listed above. They can be identified as artifacts, however, rather than as presumed components of the flue gas. Generally, they are residues of Impurities in the solvents used for sample work-up or phthalate esters introduced from contaminated laboratory apparatus.

6.1.3.7 Dioxins and Furans

This class of compounds was sampled from the outlet of the Unit 7 ESP but not from either duct adjacent to the Unit 8 ESP. Because only one sampling day was involved (September 6, 1993), there are only two samples to be discussed — one from the front half of the sampling train and one from the back half:

Front half (particulate) — No compound having the characteristics of any dioxin or turan with chlorine substituents at the 2, 3, 7, and 8 positions was detected. These are the compounds with particular toxicity. Likewise, no compound with four, five, six, seven, or eight chlorine constituents REGARDLESS of ring location was detected.

Back half (vepor) — Several compounds were detected, but the significance of detection is ambiguous. All but one of the compounds was detected in an amount BELOW the routine level used for confirmed detection (the lowest amount used for calibration of the analytical procedure). The results are listed in Table 6-43 beside the normal reporting level (all data are in picograms). Formally speaking, only one specific compound can be reported present; this is the 1,2,3,4,6,7,8-substituted furan. Also, with substituent locations ignored, only two groups of compounds can be reported present; these are the tetrasubstituted dioxins and the hexa-substituted furans. The improbably of finding dioxins and furans in the vapor state when none was found in the particulate state essentially eliminates any creditability of compound detection in the vapor state.

Table 6-43 Dioxins and Furans Identified as Vapor-Phase Fractions at the Outlet of the Unit 7 ESP

<u> </u>		00'	70	\sim	بدعتك بالتعميك	
Compounds	willi	∠ J.	1.0	-OL	L ISULUUTI	

Substituent	Individual	Amount found, pg	Reporting			
group	compound		level, pg			
Tetra	None		20 20			
Penta	1,2,3,7,8-PeCDF	2	100			
	2,3,4,7,8-PeCDF	6	100			
Неха	1,2,3,4,7,8-HxCDF	20	100			
	1,2,3,7,8,9-HxCDF	7	100			
	2,3,4,6,7,8-HxCDF	40	100			
Hepta	1,2,3,4,6,7,8-HpCDF	218	100			
	1,2,3,4,7,8,9-HpCDF	51	100			
Octa	OCDF	184	200			
	OCDD	123	200			

All Compounds

Substituent	Compound	Amount	Reporting	
group	type	found, pg	level, pg	
Tetra	Furans	18	20	
	Dioxins	42	20	
Penta	Furans	22	100	
	Dioxins	15	100	
Неха	Furans	139	100	
	Dioxins	69	100	
Hepta	Furans	22	100	
	Dioxins	68	100	
Octa	Furans	184	200	
	Dioxins	123	200	

6.2 Scrubber

6.2.1 Solids

Tables 6-44 and 6-45 give the concentrations of metals and anions in the two solids associated with the scrubber: 1) the limestone feed and 2) the gypsum product. The analyses of these materials required certain auxiliary procedures to correct for obvious errors encountered by the ordinary procedures cited previously in this report:

- The calcium concentrations averaging 38.1% for the limestone
 were obtained by dissolving the material in hydrochloric acid and
 determining calcium by flame injection AAS. The results
 originally obtained, by sample digestion with the mixed acids in
 the microwave oven and subsequent analysis by ICP, averaged
 47.4%, which is clearly higher than expected. The formula value
 for CaCO₃ is 40.1%.
- All four of the major metals in the gypsum were redetermined by sample digestion according to ASTM method and solution analysis by flame injection AAS. The average result for calcium by this method was 25.2%, in reasonable agreement with the formula value of 23.3% for CaSO₄- 2H₂O. Owing to incomplete dissolution of the samples in the microwave procedure, ICP yielded values below 10%.

In addition to calcium, two other components of these two solids can be checked by the analyses performed. One of these is carbon in limestone. The data from CHN analyses are presented in Table 6-46. For limestone, the carbon concentration is 12.1%, in satisfactory agreement with the formula value of 12.0% for CaCO₃. The other constituent that can be checked is sulfate in gypsum. The average result is 56.8%; the formula value is 55.8%.

The anions listed in the analytical tables are the four species customarily determined in the Ballly samples. Sulfite was another species determined in the gypsum because of the uncertainty that oxidation of sulfite to sulfate would be complete. The analytical results showed that the sulfite concentration in the gypsum was negligible; whereas the sulfate concentration was approximately 56%, the sulfate concentration was about 0.5%. This sulfite level was not established clearly; the actual sulfite level may have been less than that stated.

The average concentration of carbon in the gypsum was 0.34%. If this is assumed to be a residue of carbonate from the original limestone, the apparent residue of timestone is about 3% by weight in the gypsum. The slight excess of sulfate over that calculated from the formula for gypsum, however, suggests that there cannot be this much residual limestone present. Hydrogen found in the gypsum may be explained as a component of the water of hydration. Nitrogen is not significant in either limestone or gypsum.

The activities of radionuclides in the limestone and gypsum are shown in Table 6-47. The activities are generally too low to be significant.

The average concentration of mercury in the gypsum, 0.25 µg/g, is of particular interest because gypsum seems to be the primary form of disposal of mercury removed from the flue gas in the scrubber. As later data will show, the mercury removed in the scrubber represents about 50% of the mercury in the flue gas at the scrubber inlet or about 33% of the mercury supplied by the coal. The comparative levels of mercury in the coal and gypsum and their relative flow rates indicate that the gypsum contains about 33% of the mercury from the coal. Thus, the loss of mercury to the scrubber is balanced by the appearance of mercury in the gypsum.

As indicated later by data on material balance (Table 7-23), closures for the AFGD system based on the trace metal concentrations in Tables 6-44 and 6-45 were quite unsatisfactory in some instances. Some of the poor closures are illusory, in the sense that they depend on assumed concentrations that were set at one-half of the detection limits. Most of the poor closures seemed attributable to doubtful results for the limestone and gypsum. Thus, in an effort to obtain improved closures, composites of the limestone and the gypsum for the three test days (9/3, 9/4, and 9/5) were submitted to Galbraith Laboratories for independent analyses by ICP and related AAS methods. The results from Galbraith are listed below:

	Concentrati	ons, µg/g
	Limestone	Gypsum
Antimony	<1.0	<1.0
Arsenic	1.5	<1.0
Barlum	1.0	1.0
Beryllium	<1.0	<1.0
Boron	5.9	19.1
Cadmium	<1.0	<1.0
Chromium	<1.0	1.0
Cobalt	<1.0	<1.0
Copper	1.2	<1.0
Lead	1.2	1.0
Manganese	45.9	5.1
Mercury	<0.01	0.20
Molybdenum	<1.0	<1.0
Nickel	1.7	1.2
Selenium	<2.4	3.9
Vanadium	2.4	2.0

Boron is one of the metals for which major differences exist between the analytical results above and those in Tables 6.44 and 6.45. Other metals have less obvious differences, but the effects on closures are still dramatic.

•	Table 6-44 Metal and Anion Concentrations in the Limestone (Data are in μg/g)						
	9/3/93	9/4/93	9/5/93	Average	Std.dov.		
Trace metals		·					
Antimony	1.87	0.642	0.456	0.989	0.768		
Arsenic	0.292	0.260	0.327	0.293	0.034		
Barium	1.30	1.48	1.36	1.38	0.095		
Beryllium	<0.008	<0.008	<0.008	< 0.008			
Boron	145	105	138	129	21		
Cadmium	< 0.005	<0.005	0.097	< 0.097			
Chromium	0.563	0.636	0.613	0.604	0.037		
Cobalt	0.390	0.302	0.149	0.280	0,122		
Copper	2.23	2.33	2.26	2.27	0.05		
Lead	<0.125	<0.125	<0.125	< 0.125			
Manganese	71.2	67.9	69.1	69.4	1.71		
Mercury	<0.002	< 0.002	< 0.002	<0.002			
Molybdenum	0.785	0.198	0.104	0.362	0.369		
Nickel	2.63	2.46	2.60	2.56	0.091		
Selenium	< 0.10	< 0.10	< 0.10	< 0.10	_		
Vanadium	3.62	3.64	3.64	3.63	0.01		
Major metals					Apr 2170		
Aluminum	4160	4150	3050	3790	638		
Calcium*	380000	380000	382000	381000	1150		
Iron	811	<i>7</i> 51	735	766	40		
Magnesium	3570	3460	_3430	3490	72		
Titanium	13.3	15.4	14.7	14.5	1.1		
Anions							
Fluoride	<400	<400	<400	≤400	-		
Chloride	967	460	2030	1150	800		
Sulfate	4470	1870	9200	5180	3720		
Phosphate	<1000	<1000	<1000	<1000			
*The true value	is 401,000 μg/g.						

Table 6-45 Metal and Anion Concentrations in Gypsum (Data are in μg/g)						
· ·	9/3/93	9/4/93	9/5/93	Average	Sid dev.	
Trace metals		·				
Antimony	0.29	0.33	0.78	0.47	0.27	
Arsenic	1.60	1.71	1.60	1.64	0.06	
Barium	1.38	1.19	0.99	1.18	0.19	
Beryllium	0.41	0.41	0.40	0.41	0.01	
Вогоп	387	408	287	361	65	
Cadmium	<0.020	< 0.020	< 0.020	< 0.020		
Chromium	80.2	13.9	12.6	35.6	38.7	
Cobalt	< 0.30	<0.30	<0.30	< 0.30	**	
Соррег	0.95	0.18	0.17	0.43	0.45	
Lead _	<0.50	< 0.50	<0.50	<0.50		
Manganese	7.43	5.38	5.35	6.05	1.19	
Мегсигу	0.24	0.25	0.25	0.25	0.01	
Molybdenum	12.5	1.8	2.0	5.4	6.1	
Nickel	32.0	7.3	12.2	17.2	13.1	
Se <u>teniom</u>	4.14	3.98	4.42	4.18	0.22	
Vanadium	2.36	1.92	2.06	2.11	0.22	
Major metals						
Aluminum	4500	5500	6700	5600	1100	
Calcium*	284000	281000	290000	285000	4600	
Iron	615	716	805	712	95	
Magnesium	988	976.	870	945	65	
Titanium	24.2	28.3	42.6	31.7	9.7	
Anions						
Fluoride	600	600	800	670	120	
Chloride	1300	134	504	650	600	
Sulfate*	563000	568000	572000	568000	4500	
Phosphate	<1000	<1000	<1000	<1000		

Table 6-46 Carbon/Hydrogen/Nitrogen Analysis of Limestone and Gypsum

	9/3/93	9/4/93	9/5/93	Avg.	Std.dev.
Limestone					
Carbon %	12.09	12.10	12.12	12.10	0.02
Hydrogen %	<0.1	<0.1	<0.1	<0.1	
Nitrogen %	<0.1	<0.1	<0.1	<0.1	
Gypsum					
Carbon %	0.26	0.34	0.42	0.34	0.08
Hydrogen %	0.88	1.01	1.19	1.03	0.16
Nitrogen %	<0.1	<0.1	<0.1	<0.1	

 Table 6-47 Activities of Radionuclides^a in the Limestone and Gypsum (All data in pCi/g)

		9/3/93			9/4/93			9/5/93		
	Activity	Error	ПЪ	Activity	Error	ш	Activity	Error	Ш	
Limestone										
Lead 210	1.7	0.8	1.1	1.4	0.7	1.1	1.8	0.8	1.1	
Polonium 210	0.9	0.4	0.4	1.1	0.4	0.3	0.9	0.4	0.2	
Radium 226	1.5	0.6	0.6	0.9	0.5	0.6	1.0	0.5	0.6	
228	0.1	1.4	2.4	0.8	1.5	2.4	5.5	1.7	2.4	
Thorium 228	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2	
230	1.3	0.3	0.4	1.2	0.3	0.3	1.5	0.3	0.3	
232	ND	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	
Uranium 234	1.2	0.4	0.2	0.5	0.3	- 0.2	- 0.4	0.2	0.3	
235	0.1	0.2	0.2	0.1	0.1	0.3	ND	0.1	0.2	
238	1.3	0.5	0.1	1.2	0.5	0.3	0.8	0.3	0.3	
Total	1.7	_	:	1.7			1.9	_	••	
Суряни									i	
Lead 210	1.2	0.7	1.1	1.4	0.7	1.1	1.0***	0.7	1.1	
Polonium 210	0.5	0.3	0.3	0.7	0.3	0.4	0.5	0.4	0.4	
Radium 226	0.1	0.4	0,6	0.6	0.5	0.6	0.3	0.4	0.6	
228	0.7	1.7	2.8	1.4	1.5	24	0.8	1.4	2.4	
Thorium 228	0.2	0.1	0.2	0.1	0.1	0.2	0.2	0.1	0.2	
230	0.8	0.3	0.4	0.7	0.3	0.4	0.9	0.3	0.4	
232	0.2	0.1	0.2	0.1	0.1	0.2	0.2	0.1	0.2	
Uranium 234	1.1	0.4	0.2	0.7	0.3	0.3	0.6	0.3	0.3	
235	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	
238	0.9	0.3	0.2	0.4	0.2	0.2	0.5	0.2	0.2	
Total	0.8		**	0.8			1.0			
'See footnote on	Table 6-4, pa	age 6-7, for	r definiti	ons of term	S.					

6-68

6.2.2 Water Streams

There are four aqueous streams associated with the scrubber:

Makeup water

Absorber recirculating pump slurry

Bleed pump sturry

Waste water

The first and last of the streams listed above contained negligible amounts of suspended solids; thus, they were analyzed only for dissolved metals and anions. The two slurries contained 22-23% solids by weight. The solids and aqueous phases of each were separated and analyzed for metals and anions; the compositions of the composites were then calculated. All of these data are presented in Tables 6-48 through 6.56.

The solids in the sturries were expected to be essentially gypsum. This expectation was satisfied by the measured concentrations of calcium and sulfate, which were essentially the same as for the gypsum product (Table 6-45). The mercury concentrations in all three materials were nearly the same, as they should have been; the range was 0.25-0.30 μ g/g. Sulfite was a negligible component of the sturry solids, just as it was in the gypsum product.

Table 6-56 gives the measured concentrations of carbonyl compounds in the water streams. The concentrations in the makeup water are about the same as those in the condenser inlet water for the boller but substantially higher than those in the makeup water for the boiler.

The concentrations in the slurries and the waste water are higher than those of the scrubber makeup water.

Concentrations of volatile and semivolatile organic compounds were also measured in the water. The results were similar to the results for water streams at the boiler. In summary, the results were variable and logically attributed to artifacts, such as contaminants introduced inadvertently.

Table 6-48 Daily Metal and Anion Concentrations in Scrubber Makeup Water (Data in µg/mL)

	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	9/3/93	9/4/93	9/5/93
Trace metals			
Апсітопу	<0.0006	< 0.0006	<0.0006
Arsenic	<0.0003	< 0.0003	< 0.0003
Barium	0.0162	0.0194	0.0189
Beryllium	<0.0005	< 0.0005	< 0.0005
Boron	< 0.0625	< 0.0625	< 0.0625
Cadmium	0.0009	0.0010	0.0018
Chromium	<0.006	< 0.006	<0.006 -
Cobalt	<0.002	< 0.002	0.0037
Copper	0.0057	0.0058	0.0046
Lead	< 0.005	<0.005	< 0.005
Manganese	0.0027	< 0.0125	< 0.0125
Mercury	0.00009	0.00011	0.00009
Molybdenum	<0.006	0.0660	<0.006
Nickel	<0.010	0.0053	<0.010
Selenium	<0.0006	<0.0006	0.0032
Vanadium	< 0.003	<0.003	< 0.003
Major metals			
Aluminum	< 0.10	<0.10	<0.10
Calcium	17.7	17.4	18.0
Iron	<0.10	<0.10	<0.10
Magnesium	10.94	11.35	11.28
Titanium	<0.10	<0.10	<0.10
Anlons			
Fluoride	<0.4	<0.4	<0.4
Chloride	11.32	12.14	12.13
Sulfate	23.36	24,30	24.38
Phosphate	<0.50	<0.50	<0.50

Table 6-49 Daily Metal and Anion Concentrations in the Liquid Phase of the Absorber Recirculating Pump Slumy (Data in µg/mL)

		;	
	9/3/93	9/4/93	9/5/93
Trace metals			
Antimony	0.0070	0.018	0.0058
Arsenic	0.0061	0.0062	0.0062
Barium	0.207	0.256	0.240
Beryllium "	0.00085	0.0006	< 0.0005
Boron	974	1001	1059
Cedmium	0.0483	0.0513	0.0050
Chromium	<0.006	0.0558	0.0061
Cobalt	0.0905	0.0917	0.0961
Copper	0.0090	0.0102	0.0082
Lead	0.0059	< 0.005	< 0.005
Manganese	52.9	56.0	59.9
Mercury	0.00018	0.00013	0.00032
Molybdenum	0.138	0.165	0.192
Nickel	0.884	0.876	0.946
Selenium	0.304	0.378	0.371
Vanadium	<0.003	<0.003	0.0056
Major metals			
Aluminum	0.146	0.222	<0.10
Calcium	1904	2042	1746
Iron	<0.10	<0.10	<0.10
Magnesium	2370	2281	2305
Titanium	<0.10	<0.10	<0.10
Anions			
Fluoride	_ 15.2	15.2	12.1
Chloride	6047	6010	6716
Sulfate	2270	2216	2122
Phosphate	<25.0	<25.0	<25.0

Table 6-50 Daily Metal and Anion Concentrations in the Liquid Phase of the Bleed Pump Slurry (Data in µg/mL)

	(Data Ki	te Shurri	
	9/3/93	9/4/93	9/5/93
Trace metals			
Antimony	0.005	0.0048	0.0044
Arsenic	0.0066	0.0062	0.0068
Barium	0.2261	0.2329	0.2604
Beryllium	0.00053	< 0.0005	< 0.0005
Boron	1024	1033	1062
Cadmium	0.0438	0.0444	0.0449
Chromium	<0.006	0.0042	<0.006
Cobalt	0.1072	0.0911	0.1006
Copper	0.0126	0.0124	0.0133
Lead	<0.005	<0.005	<0.005
Manganese	59.9	57.0	60.0
Mercury	0.00035	0.00020	0.00029
Molybdenum	0.144	0.140	0.174
Nickel	0.9242	0.8922	0.9152
Selenium	0.355	0.354	0.461
Vanadium	<0.003	0.0047	0.0072
Major metals			
Aluminum	0.156	<0.10	<0.10
Calcium	2124	2081	2248
Iron	0.243	<0.10	0.236
Magnesium	2339	2259	2233
Titanium	<0.10	<0.10	< 0.10
Anions			
Fluoride	14.0	14.2	11.7
Chloride	6018	6238	6707
Sulfate	2226	2189	1682
Phosphate	<25.0	<25.0	<25.0

Table 6-51 Daily Metal and Anion Concentrations in the Scrubber Waste Water (Data in µg/mL)

	(Data in μg/mL)			
	9/3/93	9/4/93	9/5/93	
Trace metals			·	
Antimony	0.0063	0.0053	0.0069	
Атѕеліс	0.013	0.011	0.010	
Barium	0.204	0.257	0.1614	
Beryllium	< 0.0005	<0.0005	<0.0005	
Boron	58.8	865	891	
Cadmium	0.039	0.0386	0.0325	
Chromium	0.0082	<0.006	<0.006	
Cobalt	0.0657	0.0840	0.0939	
Соррег	0.0086	0.0089	0.0077	
Lead	<0.005	< 0.005	. <0.005	
Manganese	40.3	42.5	44.8	
Mercury	0.00034	0.00042	0.00026	
Molybdenum	0.121	0.1177	0.1233	
Nickel	0.697	0.7359	0.7767	
Selenium	0.283	0.296	0.345	
Vanadium	0.0095	0.0126	0.0142	
Major metals				
Aluminum	0.225	0.185	0.229	
Calcium	1746	2010	2192	
Iron	0.193	0.121	0.220	
Magnesium	1304	1521	1579	
Titanium	<0.10	<0.10	<0.10	
Anions				
Fluoride	16.6	16.0	15.8	
Chloride	4706	4878	5165	
Sulfate	2292	2300	2234	
Phosphate	<10.0	<10.0	<10.0	

Table 6-52 Average Metal and Anion Concentrations in Water Streams Associated with the Scrubber (Data in μg/mL)				
	Makeup	ARP slurry	BP sturry	Waste water
Trace metals	i	i		
Antimony	< 0.0006	0.0103	0.0048	0.0062
Arsenic	< 0.0003	0.0062	0.0065	0.0113
Barium	0.0182	0.2343	0.2398	0.2075
Beryllium	< 0.0005	0.0007*	< 0.0005	< 0.0005
Boron	< 0.062	101	1040	605
Cadmium	0.0012	0.0349	0.0444	0.0367
Chromium	< 0.0061	0.031	<0. 006 "	<0.006
Cobalt	<0.002*	0.0928	0.0996	0.0812
Соррег	0.0054	0.0091	0.0128	0.0084
Lead	< 0.0003	<0.0005	<0.0005	<0.0005
Manganese	< 0.0124	56.3	59.0	42.5
Mercury	0.0001	0.0002	0.0003	0.0003
Molybdenum	<0.006	0.1650	0.1527	0.1207
Nickel	<0.010*	0.9020	0.9105	0.7365
Selenium	<0.0006*	0.3510	0.3900	0.3080
Vanadium	<0.003	<0.003*	0.0040	0.0121
Major metals				
Aluminum	<0.10	0.184*	<0.10°	0.2130
Calcium	17.7	1900	2150	1980
iron	<0.10	<0.10	0.240*	0.178
Magnesium	11.19	2320	2240	1470
Titaniom	<0.010	<0.10	< 0.10	<0.10
Anions				
F-	< 0.40	14.2	13.3	16.1
CI-	11.9	6260	6320	4920
SO ₄ ⁴	24.0	2200	2030	2280
PO ₄ ³	<0.50	<0.50	<0.50	<0.50
Based on two d	laily values, no	t three.		

Table 6-53 Metal and Anion Concentrations in Solids from the Absorber Recirculating Pump Slurry (Data are in $\mu g/g$)

	9/3/93	.9/4/93 .	9/5/93	. Average .	Std.dov.
Trace metals					
Antimony	0.37	0.27	0.29	0.31	0.05
Arsenic	1.26	0.51	0.60	0.79	0.41
Barium	1.72	2.95	3.07	2.58	0.75
Beryllium	< 0.03	<0.03	< 0.03	< 0.03	
Boron	124	135	139 -	. 133	8
Cadmium	< 0.02	<0.02	< 0.02	< 0.02	
Chromium	0.778	1.496	0.504	0.926	0.51
Cobalt	<0.30	<0.30	<0.30	<0.3	
Copper	0.62	1.40	1.00	1.01	0.39
Lead	<0.50	<0.50	< 0.50	<0.50	-
Manganese	6.95	15.00	11.69	11.21	4.05
Mercury	0.25	0.27	0.33	- 0,28	0.04
Molybdenum	<0.50	1.34	< 0.50	<1.34	
Nickel	1.79	3.05	2.75	2.53	0.66
Selenium	4.68	7.06	8.89	6.88	2.11
Vanadium	2,50	5.14	4.17	3.94	1.34
Major metals					
Aluminum	764	695	914	790	112
Calcium	278000	282000	289000	283000	5600
Iron	716	826	1160	901	231
Magnesium	1050	1220	1720	1330	348
Titanium	36.5	72.0	32.2	46,9	21.9
Anions					
Fluoride	600	800	1000	800	200
Chloride	<100	<100	<100	<100	_
Sulfate	547,000	544,000	543,000	545,000	2100
Phosphate	<1000	<1000	<1000	<1000	

Table 6-54 Metal and Anion Concentrations in Solids from the Bleed Pump Slurry (Data are in $\mu g/g$)

		(धकाय या व	■I β(g)(g)		
	9/3/93	9/4/93	9/5/93	Average	Std.dev.
Trace metals				_	
Antimony	0.31	0.25	0.37	0.31	0.06
Arsenic	0.92	0.46	0.59	0.66	0.24
Barium	2.47	1.94	3.09	2.50	0.57
Beryllium	<0.03	< 0.03	<0.03	<0.03	- 1
Вогоп	117	129	137	128	10.07
Cadmium	<0.02	< 0.02	<0.02	< 0.02	ŀ
Chromium	1.44	1.11	1.91	1.49	0.40
Cobalt	<0.30	<0.30	0.304	<0.30	
Copper	1.21	0.65	1.24	1.04	0.33
Lead	<0.50	< 0.50	<0.50	<0.50	ı
Manganese	8.68	8.06	11.46	9.40	1.81
Mercury	0.27	0.25	0.37	0.30	0.06
Molybdenum	< 0.50	<0.50	<0.50	< 0.50	-
Nickel	2.07	1.95	3.07	2.36	0.62
Selenium	5.43	4.82	9.34	6.53	2.45
Vanadium	3,34	2.78	4.45	3.53	0.85
Major metals		ļ		: . 	
Aluminum	442	738	755	645	176
Calcium	284000	278000	284000	282000	3465
Iron	721	820	879	807	80
Magnesium	1060	1150	1860	1360	440
Titanium	40.8	30.2	37.9	36.3	5.5
Anions					
Fluoride	600	600	1000	730	230
Chloride	158	<100	598	<285	_
Sulfate	526,000	531,000	545,000	534,000	9800
Phosphate	<1000	<1000	<1000	<1000	

Table 6-55
Composite Concentrations of Metals and Anions in the Absorber Recirculating Pump and Bleed Pump Slurries*
(Data in µg/g)

	ARP shurry	BP sturry
Trace metals		
Antimony	0.0776	0.0786
Arsenic	0.181	0.165
Barium	0.757	0.790
Beryllium	< 0.0071	- <0.0077
Boron	815	817
Cadmium	<0.032	0.038
Chromium	0.222	0.363
Cobalt	<0.14	0.0753
Copper	0.231	0.262
Lead	<0.11	< 0.12
Manganese	46.2	46.9
Mercury	0.0630	0.0724
Molybdenum	0.128	< 0.237
Nickel	1.26	1.26
Selenium	1.81	189
Vanadium	0.880	0.863
Major metals		
Aluminum	1030	1070
Calcium	64600	70400
Iron	201	197
Magnesium	2100	2050
Titanium	10.5	8.85
Anions		
Fluoride	189	189
Chloride	4860	6320
Sulfate	123000	132000
Phosphate	<220	<240

*Calculated from proportions of solids and liquid and average concentrations in each: ARP slurry, 22.3% solids and 77.7% liquid; BP slurry, 24.4% solids and 75.6% liquid.

Table 6-56 Carbonyl Compounds in Water Streams Associated with the Scrubber (September 6, 1993)

Stream	Concn, µg/L
Makeup	
Formaldehyde	116
Acetaldehyde	<5
Acetone	31
Absorber recirculating pump slurry	
Formaldehyde	371
Acetaldehyde	46
Acetone	. 87
Bleed pump slurry	
Formaldehyde	185
Acetaldehyde	65
Acetone	26
Waste water	
Formaldehyde	198
Acetaldehyde	23
Acetone	99
Bianks	
Formaldehyde	14-57*
Acetaldehyde	<5
Acetone	<5
*Range of values.	

6.3 Stack Gas Stream

6.3.1 Metals

Metal concentrations in the stack are given in Tables 6-57 through 6-60. Attention may be focused on the last two of these tables, which give average concentrations for the three days of testing. Table 6-60 presents the averages in $\mu g/Nm^3$; Table 6-61 gives the averages in $\mu g/g$ where, as in similar tables earlier, the numerator counts both particulate and vaporous forms of the metals and the denominator counts only the total particulate matter.

Mercury concentrations based on sampling with solid sorbents are presented separately in Table 6-62. These data for mercury are believed to be more reliable than the data for this element in the preceding tables, which were based on samples from Method 29. Table 6-62 includes the results of calculations to show the degree of mercury removal in the scrubber. The average in three days of sampling was about 50% of that entering the scrubber from the combination of ducts leaving the Units 7 and 8 ESPs. Apparently, the mercury removed was mainly that occurring in the divalent form; this is logical, since divalent mercury, especially in the form of HgCl₂, is readily dissolved in water, whereas elemental mercury is not.

Nearly all of the metals concentrations expressed in µg/Nm³ are lower than the corresponding values at either ESP outlet. This fact, of course, implies some degree of removal of all metals in the scrubber. The exceptions are intermediate concentrations for antimony, manganese, and selenium for the stack; these exceptions are believed to be due to spurious data at one of the three locations of concern. The spray-chamber type of scrubber at Bailly is not expected to be highly efficient for particulate removal; nevertheless, it is not likely to vary in effectiveness for different metals except through discriminating between the forms in the particulate matter and the vapor phase.

Approximate values of the fractional penetrations of the scrubber efficiencies may be calculated by dividing the stack concentrations of individual metals by the average ESP outlet concentrations, where the average ESP outlet value is two-thirds of the Unit 8 outlet concentration plus one-third of the Unit 7 outlet concentration. (Unit 8 has approximately twice the gas flow of Unit 7.) The discrimination between an element that is present mainly in the particulate matter (barium) and one present mainly as vapor (boron) can thus be illustrated:

Barium — Penetration
$$\approx 1.43/[(0.667(2.10) + 0.333(0.416))] = 0.40$$

Efficiency = 60%

Boron - Penetration
$$= 1230/[0.667(13600) + 0.333(13300)] = 0.091$$

Efficiency = 90.9%

For mercury (utilizing the data from Brooks Rand in Table 6-62), the efficiency is about 50%. The implied reason for limited efficiency is that only part of the mercury is oxidized (divalent) and thus soluble in the aqueous phase of the scrubber.

For selenium, there is an anomaly: the calculated efficiency is negative; the stack concentration is 1.14 times the average ESP outlet concentration. The daily average selenium concentrations ($\mu g/Nm^3$) in the three locations of concern are as follows:

	<u>Particulate</u>	<u>Vapor</u>	<u>Total</u>
Unit 8 outlet	1.82	169	171
Unit 7 outlet	7 2	274	347
Stack	131	190	261

The stack particulate concentration is, in a sense, "impossible;" it is higher than either ESP outlet concentration. The lower gas temperature in the stack, however, makes conversion of vapor to particulate likely, and this tentative effort to find the flawed item of data may be misleading.

6.3.2 Anions and Acid Gases

Data on these species for the gas phase in the stack appear in Table 6-63. They reveal sharp reductions in the concentrations of HF, HCl, and SO₂ from the levels seen at the outlets of the ESPs. If a composite concentration of each of these gases at the inlet of the ESP is calculated (the average of twice the Unit 8 outlet value and one times the Unit 7 ESP, since the gas flows are essentially in a 2:1 ratio), the data in Table 6-63 lead to calculated acid gas removals in the scrubber as follows:

<u>Gas</u>	Removal, %
HF	96
HCI	99
SO,	93

Phosphate was not measurable in the stack gas. This is not a result of any significance, since phosphate was never found as the constituent of the gas phase in the preceding ducts.

Sulfate was measured in the particulate phase of the stack gas. The results were as follows:

Date	<u>\$0,2.%</u>
Sept. 3	72.6
Sept. 4	75.6
Sept. 5	73.6

These data suggest that only about 25% of the particulate matter in the stack was fly ash from the two bollers and that 75% was sulfate entrained from the scrubber. A tentative conclusion, to be moderated somewhat in a later paragraph, embraces the following concepts:

- Calcium represents, on the average, 1.1% of the stack particulate.
 Some of this is in the ash; the balance may be considered to be gypsum from the scrubber. The gypsum content of the stack particulate cannot exceed 4.7% (the mole formula of gypsum weighs 172 g; that of calcium is 40 g and the ratio is 4.3).
- The average concentration of stack particulate was 0.0543 g/Nm³.
 If 75% of this were sulfate from condensed sulfuric acid vapor, the original concentration of sulfuric acid, or SO₃, would be 10 ppmv, a level that is easily consistent with the composition of combustion gas from a coal containing 3% sulfur. Certainly, if the gas preceding the scrubber contained 10 ppmv sulfuric acid, the

cooler gas at the outlet would necessarily contain that concentration as the condensate, probably in the form of fine aerosol particles.

Thus, the tentative argument that 75% of the mass of the stack particulate is a contribution from the scrubber can be supported to a minor degree in terms of entrained gypsum but entirely in terms of condensed sulfuric acid vapor. This conclusion must be tempered, however, for two reasons:

- The particulate matter at the outlet of the Unit 7 ESP contained, for no evident reason, about 50% sulfate, as indicated previously in Section 6.1.3.2. Thus, not all of the sulfate in the stack can be traced to the scrubber.
- The variability of the observed concentrations of stack particulate matter undermines confidence in the conclusion above that is based on the average stack concentration of particulate matter. On successive days, the concentrations were 0.0270, 0.0543, and 0.0815 g/Nm³, of which 75% would correspond to sulfuric acid concentrations of 5, 10, 15 ppmv. It is not possible to say why variable concentrations of sulfuric acid might be expected, unless the trend toward higher particulate concentrations is a result of decreasing rates of ammonia injection.

6.3.3 Ammonia and Hydrogen Cyanide

These gases were measured only on September 6. Their observed concentrations in the stack were as follows:

Ammonia

20.2 µg/Nm³, equivalent to

0.029 ppmv of NH₂

Hydrogen cyanide

15.6 μg/Nm³, equivalent to 0.014 ppmv as HCN

The concentration of NH₃ is not consistent with both of the ESP outlet concentrations, which were <0.007 ppmv in Unit 8 and 0.030 ppmv in Unit 7. Although NH₃ is a basic gas and might be expected to pass through a limestone scrubber without being absorbed, NH₃ is soluble at the pH levels observed in the waste water (around pH 6.9).

The concentration of HCN above is less than the values at the ESP outlets — 0.27 ppmv in Unit 8 and 0.36 ppmv in Unit 7. Logically, HCN should be removed in a limestone scrubber, but with a scrubber pH of 6.9 the removal may be inefficient, as the data suggest.

The particulate in the stack, as well as the flue gas, was analyzed for ammonia. This, however, was done on September 3, 4, and 5, prior to the determination in the gas phase, when there was the expectation initially that ammonia was being injected from the conditioning system. The ammonia concentrations in the solid on the three successive dates were 2.2, 1.1, and 0.27%, corresponding to gas-phase concentrations of 0.84, 0.84, and 0.31 ppmv. The trend was downward, during the period when ammonia injection was terminated.

6.3.4 Organic Compounds

The findings with respect to organic compounds, each class being sampled only on September 6, are as follows:

- The data for carbonyl compounds are given in Table 6-64.
- The data for volatile organics in the stack, as in the preceding ducts, are believed to be erroneous, as discussed in Appendix D.
- No semi-volatile compound believed to be an authentic component of the gas stream was identified. Those compounds that were detected were similar to those detected in the preceding ducts and were regarded similarly as artifacts.
- A few dioxins and furans were detected in particulate fractions of samples from the stack. The names of the detected compounds with 2,3,7,8 substitution, their apparent concentrations, and (in parentheses) the lowest concentrations believed to be reliably identifiable are listed below;

Compound	Concn. pg/Nm		
1,2,3,4,7,8-HxCDF	2 (23)		
2,3,4,6,7,8-HxCDF	3 (23)		
1,2,3,4,6,7,8-HpCDF	13 (23)		
1,2,3,4,6,7,8-HpCDD	4 (23)		
OCDD	7 (45)		

The corresponding results for all compounds with a given number of constituents were as follows:

TCDF	1 (4.5)
HxCDF	14 (23)
HxCDD	7 (23)
HpCDF	22 (23)
HpCDD	8 (23)
OCDD	7 (45)

Table 6-57 Metal Concentrations in the Gas Stream at the Stack (September 3, 1993) (Data in µg/Nm³) (All data here by Method 29)

	Particulate	Vapor	Total
Trace metals		·· · · · ·	
Antimony	0.02	1.01	1.04
Arsenic	3.50	1.68	5.18
Bariom	1.89	<0.20	1.99
Beryllium	0.14	<0.01	0.14
Boron	<0.2	944	944
Cadmium	0.63	0.16	0.79
Chromium	4.13	0.27	4.40
Cobalt	0.11	<0.10	0.16
Copper	2.74	1.32	4.06
Lead	3.05	0.47	3.52
Manganese	2.97	<0.40	3.17
Mercury*	<0.01	0.14/3.14	3.28
Molybdenum	4.80	<0.20	4.90
Nickel	1.90	0.17	2.07
Selenium	131	43.0	174
Vanadium	4.64	0.03	4.67
Major metals			
Aluminum	154	6.41	161
Calcium	570	14.1	584
Iron	330	27.5	358
Magnesium	112	2,20	114
Titanium	24.4	<0.2	24.5

^{*}The column for vapor gives separate data from peroxide and permanganate impingers.

Table 6-58 Metal Concentrations in the Gas Stream at the Stack (September 4, 1993) (Data in µg/Nm³) (All data here by Method 29)

	Particulate	Vapor	Total
Trace metals			
Antimony	<0.05	0.07	0.09
Arsenic	0.40	0.17	0.57
Bariom	1.26	< 0.20	1.36
Beryllium	0.07	< 0.01	0.07
Boron	<0.2	1150	1150
Cadmium	0.32	0.06	0.38
Chromium	3.17	0.14	3.31
Cobalt	0.09	<0.10	0.09
Соррег	0.84	0.33	1.17
Lead	1.53	<0.25	1.65
Manganese	3.19	<0.40	3.19
Mercury*	0.01	0.16/2.37	2.54
Molybdenum	4.12	< 0.20	4.22
Nickel	1.16	1.72	2.88
Selenium	69.9	124	193
Vanadium	3.53	0.08	3.61
Major metals			
Aluminum	130	5.42	136
Calcium	593	6.33	600
Iron	256	27.0	283
Magnesium	107	1.11	108
Titanium	20.6	0.72	21.3

^{*}The column for vapor gives separate data from peroxide and permanganate impingers.

Table 6-59 Metal Concentrations in the Gas Stream at the Stack (September 5, 1993) (Data in μg/Nm³) (All data here by Method 29)

	Particulate	Vapor	Total
Trace metals			
Autimony	<0.05	0.01	0.03
Arsenic	0.40	- <0.05	0.42
Barium	1.97	<0.20	2.07
Beryllium -	- <0.10	<0.10	<0.10
Boron	<0.2	1600	1600
Cadmium	0.28	0.26	. 0.54
Chromium	3.25	0.13	3.38
Cobalt	0.09	<0.10	0.14
Copper -	1.10	0.67	1.77
Lead	1.09	0.25	1.34
Manganese	2.68	< 0.40	2.88
Mercury*	0.01	0.13/2.43	2.57
Molybdenum	4.63	<0.20	4.73
Nickel	1.84	1.40	3.24
Selenium	191	223	415
Vanadium	2.84	<0.10	2.89
Major metals			
Aluminum	114		114
Calcium	651	10.7	661
Iron	202	3.45	206
Magnesium	122	2.48	124
Titanium	17.8	<0.2	17.9

^{*}The column for vapor gives separate data from peroxide and permanganate impingers.

Table 6-60
Average Metal Concentrations in the Gas Stream at the Stack*
(Data in µg/Nm³; with standard deviations)

	Particulate	Vapor	Total	
Trace metals				
Antimony	<0.05	0.36 ± 0.56	0.38 ± 0.56	
Arsenic	1.43 ± 1.79	< 0.62	1.43 ± 1.79	
Barium	1.71 ± 0.39	<0.20	1.71 ± 0.39	
Beryllium	< 0.09	<0.10	<0.10	
Boron	<0.2	1230 ± 340	1230 ± 340	
Cadmium	0.41 ± 0.193	0.16 ± 0.10	0.57 ± 0.21	
Chromium	3.52 ± 0.53	0.18 ± 0.07	3.70 ± 0.61	
Cobalt	0.099 ± 0.011	<0.10	<0.10	
Copper	1.56 ± 1.03	0.77 ± 0.50	2.33 ± 1.52	
Lead	1.89 ± 1.03	0.24 ± 0.24	-2.13 ± 1.21	
Manganese	3.96 ± 0.22	<0.40	4.16 ± 0.22	
Mercury	0.010 ± 0.006	2.79 ± 0.43	2.80 ± 0.42	
Molybdenum	4.51 ± 0.35	<0.20	4.61 ± 0.35	
Nickel	1.63 ± 0.41	1.28 ± 0.82	2.92 ± 0.61	
Selenium	131 ± 61	130 ± 90	261 ± 134	
Vanadium	3.79 ± 0.90	<0.05	3.81 ± 0.90	
Major metals				
Aluminum	133 ± 20	<8	137 ± 20	
Calcium	605 ± 41	10.4 ± 3.9	615 ± 41	
Iron	263 ± 64	19.3 ± 13.7	282 ± 76	
Magnesium	114 ± 7	1.93 ± 0.72	116 ± 8	
Tîtanium	20.9 ± 3.3	<0.4	21.0 ± 3.3	
*Based on data in ?	Tables 6-57, 6-58, 8	and 6-59.		

Table 6-61
Ratios of Metal Concentrations in the Gas Stream at the Stack to the Total Concentration of Entrained Solids*
(Data in µg/g; averages of daily results)

	Particulate	Vapor	Total
Trace metals			
Antimony	<0.8	13	13
Arsenic	47	<22	58
Barium	. 16	<5	18
Beryllium	<2.6	<2.3	<5
Boron -	<5	25,300	25,300
Cadmium	10.9	3.4	14.3
Chromium	83.7	4.7	88.4
Cobalt ,	- 34.7	· <2.3	35.8
Copper	43.5	21.1	64.6
Lead	13.8	<8.4	18.0
Manganese	67.2	<4.5	69.4
Mercury	<0.2	66.5	66.6
Molybdenum	103	<3	104
Nickel	29.0	18.4	47.4
Selenium	2830	2200	5030
Vanadium	90.6	<1.3	91.2
Major metals			
Aluminum	3160	<153	3240
Calcium	10900	169	11,100
Iron	6470	180	6650
Magnesium	2540	44	2580
Titanium	500	<5	500

^{*}Calculated by dividing the individual concentrations in Tables 6-57, 6-58, 6-59 by the appropriate total particulate concentration. The three daily concentrations of total particulate were, in succession, 0.0270, 0.0543, and 0.0815 g/Nm³.

Table 6-62
Concentrations of Mercury Vapor
Based on Sampling with Solid Sorbents
at the Stack

		Conco, µg/Nm	3		
Date	Hg(II)	Hg(0)	Total	Percent oxidized*	
Data from th	ne stack				
9/3/93		<u></u>	3.48	_	
9/4/93	0.09	3.50	3.59	2.5	
9/5/93	0.08	3.42	3.50	2.3	
Calculated d	ata for the scr	ubber inlet			
9/3/93	_]		9.18	-	
9/4/93	3.84	3.84	7.68	50.0	
9/5/93	4.99	1.78	6.77	73.7	
Calculated re	emovals of the	scrubber			
9/3/93		+-	5.70	(62.1%)*	
9/4/93	3.75	0.34	4.09	(53.3%)*	
9/5/93	4.91	-1.64	3.27	(48.3%)	

^{*}The last three lines show instead the percentage of total mercury removed in scrubber.

Table 6-63
Acid Gas Concentrations at the Stack

	9/3/93	9/4/93	9/5/93	Avg	Std.dev.
Data in µg/Nm³					<u> </u>
Fluoride	<487	<556	<444	<556	-
Chloride	1480	1220	1440	1380	140
Sulfate	646000	848000	904000	800000	140000
Phosphate	<3000	<3000	<2300	<3000	
Data in ppmv					
HF	< 0.62	<0.70	<0.56	<0.70	_
HCI	1.0	0.8	1.0	0.9	0.1
SO ₂	162	- '212	226	200	34
H ₃ PO ₄	<0.8	<0.8	<0.6	<0.8	

Table 6-64 Carbonyl Compounds in the Stack (September 6, 1993)

Stream	Mass collected, μg	Calculated concn, µg/Nm³
Formaldehyde	13.2	15.0
Acetaklehyde	<1.0	<1.2
Acetone	10.0	11.4

7.0 DATA ANALYSIS AND INTERPRETATION

7.1 Material Balances

The mass flow rates presented previously as Tables 4-8 through 4-10 were used to calculate material balances for the major metals and trace metal species around each of the system defined in Section 3.2. The measured concentrations of the metals for each day were used with that day's flows to calculate a material balance for each day of the inorganic testing. If the concentration was below the detection limit, the detection limit was divided by two and that concentration was used for the material balance. Since this procedure inevitably leads to extreme imbalances, the mass flows derived from non-detectable concentrations are identified in the mass balances with italics. If a multi-phase flow has one component with a non-detectable concentration and it is more than 20% of the total mass flow, then the total flow is identified with italics also. Closures in which one flow is a non-detect and is more than 20% of the summed input or output are also presented in Italics. Using this procedure, it is easy to see whether an extreme imbalance is the result of non-detectable concentrations.

Appendix E provides an annotated example calculation for trace metal material balances, using cobatt as an example.

7.1.1 Major Element Balances

Five metals, iron (Fe), aluminum (Al), titanium (Ti), calcium (Ca), and magnesium (Mg), were chosen as tracers to evaluate the overall material balance procedures. These metals are refractory and should serve as a tracer for ash flows. The mass balances are presented as Tables 7-1 through 7-5. The material balances were calculated for each day, and the average flows for the three days of testing are shown in the tables. The average of the closures for each day is calculated and shown along with the closure of the average flows. (Closure is defined as the sum of the output mass flows divided by the sum of the input flows, expressed as a percentage.) Tables 7-1A through 7-5A list the sample standard deviations for the mass flows and the daily closures. The mass balance closures are summarized in Table 7-23A.

The closures for the major metals for the boiler system overall are good, with numbers ranging from 101% for iron to 111% for calcium. This result, along with the good closures for the subunits in the boiler system, indicate that the total flow rates are reliable. The condenser closures range from 70% for aluminum (non-detect) to 137% for calcium. However, the closures for the AFGD system are poorer, with a range of 92% for magnesium to 196% for aluminum. The closures for only iron, calcium, and magnesium lie within the 80 to 120% range.

7.1.2 Trace Metal Balances

Mass balances were calculated for each day of testing for each of 16 trace metal species. These balances are presented as Tables 7-6 through 7-22, which includes two balances for mercury. The mass balance closures (average of three daily closures) are summarized in Table 7-23, with the variability as sample standard deviation summarized in Table 7-23A. Alternate values of mass balance closures for the AFGD system are given in Table 7-23B. The two sets of numbers compare closures calculated from the SRI data on average daily metal concentrations in limestone and gypsum and closures calculated from the Galbraith data on metal concentrations in composites of the three daily limestone and gypsum samples (see Section 6.2.1).

The trace metal balances for the boiler system are typical for this type of testing, with overall good results for some elements and poor results for others. The average closures range from 29% for mercury to 256% for selenium. Of the 17 balances (16 elements with a second mercury balance), five lie within an 80 to 120 percent range, and 13 lie within a 60 to 140 percent range. For the overall balances, non-detectable concentrations do not affect these balances using the 20% criterion mentioned above. The worst balances are calculated for the elements that typically give poor results: 256% for selenium, 141% for lead, 29% and 55% for mercury, and 64% for cadmium. The poor mercury results are from a coal concentration that appears to be too high (by 2x) as compared to the consistent flue gas measurements. Table 7-18, which shows the balance for mercury using Brooks Rand as the analytical subcontractor, presents data from the measurement of mercury contamination in the ambient air. The mass flow of mercury in the combustion air is about 1% of the mercury contained in the coal and about 2% of the mercury found in the flue gas.

It is usually not possible to attribute poor closures to specific analytical data that are in error. Nevertheless, certain useful suggestions can be offered; as follows:

- The poor closures for antimorry in the Unit 8 boder and the Unit 8 ESP would be overcome to significant degrees if the fly ash between the boder and ESP contained more of this element than reported. Raising the antimony concentration in the fly ash would raise the closure at the boder and lower the closure at the ESP.
- The poor closures for lead at the same two locations would be improved if the fly ash could be shown to contain less of the element then reported (just the opposite from the shift hypothesized for antimony).
- The poor closures of selenium at the same two locations would be improved if the fly ash concentration of this element were lowered.

• The poor closure for cadmium at the condenser may be regarded as largely an illusion that stems from limitations in analytical sensitivity. For three days at the condenser iniet, the results reported are all less than 0.0003 μg/mL. For the three days at the condenser outlet, one result is <0.0003 μg/ml and the other two are 0.0008 and 0.0012 μg/mL. In the judgment of the SRI staff, the data do not justify computation of a closure. However, following instructions on data treatment, one lists 0.00015, 0.0008, and 0.0016). The ratio of outlet to inlet is 5.67, or the recovery is reported as 567%. As a matter of fact, of course, there may have been contamination from an unrecognized source in the real system, or there may have been contamination in handling of the outlet samples.</p>

The trace metal balances for the AFGD system, as summarized in Table 7-228, are disappointing, with a range of 24% for cadmium to 2750% for chromium. Of the 17 balances, only 5 lie within an 80 to 120% range and 7 within a 60 to 140% band. The AFGD mass balances are dominated by the comparison of trace metal concentrations in the limestone to that in the gypsum:

Some of the poorest closures for the AFGD system were improved by use of the Galbraith data, as revealed in Table 7-23B. Notably improved closures occurred for arsenic, beryllium, cadmium, chromium, molybdenum, and nickel when the Galbraith data were used. Only two of the closures — for cobalt and manganese — were degraded by the substitute data.

Table 7-1 Bailty Mass Balance for Iron Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	g/s	g/s	g/s	g/s		
UNIT 8 BO	UNIT 8 BOILER						
In	Coal	524			524		
	Combustion Air						
	Makeup Water		0.000208		0.000208		
Qut	Flue Gas	173		0.152	173		
	Bottom Ash	315			315		
	f Daily Closures, %				93.3		
	Average Flows, %				93.1		
UNIT 8 ES							
ln	Flue Gas	173		0.152	173		
Out	ESP Hopper Ash	175			175		
	Flue Gas to AFGD	0.183		0.0362	0.219		
	f Daily Closures, %				101		
	Average Flows, %				101		
CONDEN							
in	Inlet Water		0.573		0.573		
Out	Outlet Water		0.573		0.573		
	f Daily Closures, %				100		
	Average Flows, %				100		
BOTTOM	ASH SLUICE						
In	Bottom Ash	315	i		315		
	Skuice Return		0.00230		0.00230		
Out	Bottom Ash Sluice	315	0.00381		315		
	f Dality Closures, %				100		
	Average Flows, %				100		
BOILER (VERALL BALANCE						
in	Coal	524			524		
	Combustion Air						
	Makeup Water]	0.000208		0.000208		
	Sluice Return		0.00230		0.00230		
Out	Bottom Ash Sluice	315	0.00381		315		
	ESP Hopper Ash	175			175		
	Flue Gas to AFGD	0.183		0.0362	0.219		
Average o	f Daily Closures, %				93.6		
Closure of	Average Flows, %				93.4		

Table 7-1 (Continued)
Bailly Mass Balance for Iron
Average of 9/3, 9/4, 9/5/93

, ,	Process	Sold,	Liquid,	Gas,	Total,
	Stream	_g/s	g/s	g/s	g/s
FLUE G/	AS MIXING				
ın	Unit 7 Flue Gas	1.13		0.0224	1.15
	Unit 8 Flue Gas	0.183		0.0362	0.219
Out	Flue Gas to AFGD	1.31		0.0587	1.37
Average (of Daily Closures, %			-	100
Closure o	f Average Flows, %				100
OVERAL	L AFGD SYSTEM BAL	ANCE			
În	Fiue Gas	1.31		0.0587	1.37
	Limestone	5.19	-		5.19
	Service Water	1	0.00432		0.00432
	Compressed Air				
Out	Stack Flue Gas	0.124		0.00915	0.133
	Gypsum	6.45		J	6.45
	Wastewater	L	0.00167		0.00167
Average of Dally Closures, %					101
Closure o	f Average Flows, %				100

Table 7-1A Bailty Mass Balance for Iron Std Dev of 9/3, 9/4, 9/5/93

	Process	Solld,	Liquid,	Gas,	Total,		
	Stream	g/s	g/s	g/s	g/s		
UNIT 8 BOILER							
in	Coal	46.0	i		46.0		
	Combustion Air			ŀ			
	Makeup Water		0.00		0.00		
Out	Flue Gas	7.41		0.111	7.30		
	Bottom Ash	22.3			22.3		
Std Dev o	f Daily Closures, %				3.48		
				Ţ			
UNIT 8 E	SP		·				
In	Flue Gas	7.41		0.111	7.30		
Out	ESP Hopper Ash	11.0			11.0		
	Flue Gas to AFGD	0.0861		0.0125	0.0839		
Std Dev o	f Daily Closures, %				6.44		
-							
CONDEN	ISER		•				
S	Iniet Water		0.00814	- "	0.00814		
Out	Outlet Water		0.00814		0.00814		
Std Dev c	of Daily Closures, %				0.00		
BOTTOM	ASH SLUICE						
ln	Bottom Ash	22.3	-		22.3		
	Sluice Return		0.00161		0.00161		
Qut	Bottom Ash Sluice	22.3	0.00418		22.3		
Std Dev o	f Daily Closures, %				0.00169		
BOILER (OVERALL BALANCE						
In	Coal	46.0		Ï	46.0		
	Combustion Air						
	Makeup Water		0.00		0.00		
	Sluice Return	Į	0.00161		0.00161		
Out	Bottom Ash Sluice	22.3	0.00418	·	22.3		
	ESP Hopper Ash	11.0			11.0		
	Flue Gas to AFGD	0.0861		0.0125	0.0839		
Std Dev o	Std Dev of Dally Closures, %						
2.5 201 0			=		3.31		
							

Table 7-1A (Continued) Bailly Mass Balance for Iron Std Dev of 9/3, 9/4, 9/5/93

	Process	Solld,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s (`g/s			
FLUE G/	FLUE GAS MIXING							
ln	Unit 7 Flue Gas	0.260	<u>"</u>	0.00693	0.267			
	Unit 8 Flue Gas	0.0861		0.0125	0.0839			
Out	Flue Gas to AFGD	0.334	i	0.0176	0.343			
Std Dev o	of Daily Closures, %		-		0.00			
				<u> </u>				
OVERAL	L AFGD SYSTEM BAI	ANCE						
I n	Flue Gas	0.334	Ī	0.0176	0.343			
i	Limestone	0.286	- 1	•	0.286			
	Service Water	ı	0.0000844	ľ	0.0000844			
	Compressed Air							
Out	Stack Flue Gas	0.0299		0.00651	0.0356			
	Gypsum	0.853	•	~ - ··	0.853			
	Wastewater	· ·	0.000516	<u>.</u>	0.000516			
Std Dev o	of Daily Closures, %	· ·		•	19.6			
	•							

Table 7-2
Bailly Mass Balance for Aluminum
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
i	Stream	g/s	g/s	g/s	g/s		
UNIT 8 BO	UNIT 8 BOILER						
ln .	Coal	416			416		
	Combustion Air						
	Makeup Water		0.000208		0.000208		
Out	Flue Gas	130		0.193	131		
	Bottom Ash	269			269		
Average o	f Daily Closures, %_				96.2		
	Average Flows, %				96.1		
UNIT 8 ES							
In	Flue Gas	130		0.193	131		
Out	ESP Hopper Ash	132			132		
	Flue Gas to AFGD	0.102		0.0849	0.187		
	f Daily Closures, %				101		
	Average Flows, %				101		
CONDEN							
In	Inlet Water		0.573		0.573		
Out	Outlet Water		0.398		0.398		
	f Daily Closures, %				70.0		
	Average Flows, %				69.5		
	ASH SLUICE						
ln	Bottom Ash	269			269		
<u></u>	Stuice Return		0.00136		0.00136		
Out	Bottom Ash Sluice	269	0.00316		269		
	f Daily Closures, %				100		
	Average Flows, %				100		
	VERALL BALANCE						
ln	Coat	416			416		
	Combustion Air						
	Makeup Water		0.000208		0.000208		
	Sluice Return		0.00136		0.00136		
Out	Bottom Ash Sluice	269	0.00316		269		
	ESP Hopper Ash	132			132		
	Flue Gas to AFGD	0.102		0.0849	0.187		
Average o	f Daily Closures, %				96.5		
Closure of	Closure of Average Flows, %						

Table 7-2 (Continued)
Bally Mass Balance for Aluminum
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	g/s	g/s	g/s	g/s
FLUE GA	S MIXING				
In	Unit 7 Flue Gas	0.784		0.0440	0.828
	Unit 8 Flue Gas	0.102		0.0849	0.187
Out	Flue Gas to AFGD	0.886		0.129	1.01
Average o	of Daily Closures, %				100
	f Average Flows, %				100
OVERAL	L AFGD SYSTEM BA	LÄNÇE			
in	Flue Gas	0.886		0.129	1.01
	Limestone	25.6	.	1	25.6
	Service Water	1	0.00432	- 1	0.00432
	Compressed Air		- 1	i	<u></u> .
Out	Stack Flue Gas	0.0627		0.00187	0.0646
	Gypsum	50.4		1	50.4
	Wastewater		0.00199	1	0.00199
Average o		197			
Closure o		189			

Table 7-2A
Bailly Mass Balance for Aluminum
Std Dev of 9/3, 9/4, 9/5/93

Stream g/s g		Process	Solid,	Liquid,	Gas,	Total,
In		Stream	g/s	g/s	g/s	g/s
Combustion Air Makeup Water 0.00 0.00 0.00	UNIT 8 B					
Makeup Water	In	Coal	23.8			23.8
Out Flue Gas Bottom Ash 1.45 20.4 0.118 1.34 20.4 Std Dev of Dally Closures, % 1.96 UNIT 8 ESP In Flue Gas 1.45 0.118 1.34 Out ESP Hopper Ash Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas to AFGD Flue Gas Gas Gas Gas Gas Gas Gas Gas Gas Gas		Combustion Air		ľ		
Bottom Ash 20.4 20.4 20.4 Std Dev of Daily Closures, % 1.96		Makeup Water		0.00		0.00
Std Dev of Daily Closures, % 1.96	Out	Flue Gas	1.45		0.118	1.34
UNIT 8 ESP In Flue Gas 1.45 0.118 1.34 Out ESP Hopper Ash 11.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1		Bottom Ash	20.4	j		20.4
In	Std Dev o	f Daily Closures, %				1.96
In		_				
Out ESP Hopper Ash Flue Gas to AFGD 0.0481 11.1 0.0160 0.0353 Std Dav of Daily Closures, % 8.29 CONDENSER 0.00814 0.00814 0.00814 Out Outlet Water 0.294 0.294 0.294 Std Dev of Daily Closures, % 52.0 BOTTOM ASH SLUICE In Bottom Ash Sluice Return 0.0000794 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 0.00126 BOILER OVERALL BALANCE In Coal Suice Return 0.000794 23.8 23.8 BOILER OVERALL BALANCE In Coal Suice Return 0.000794 0.000794 0.0000794 Out Bottom Ash Sluice Est mm 0.000794 0.0000794 0.0000794 Out Bottom Ash Sluice Est mm 0.000794 0.00304 20.4 ESP Hopper Ash 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	UNIT 8 E	SP				
Flue Gas to AFGD 0.0481 0.0160 0.0353 Std Dev of Daily Closures, % 8.29 CONDENSER	In	Flue Gas	1.45		0.118	1.34
Std Dev of Daily Closures, % 8.29	Out	ESP Hopper Ash	11.1	·		11.1
CONDENSER In Inlet Water 0.00814 0.00814		Flue Gas to AFGD	0.0481		0.0160	0.0353
In	Std Dev o	f Daily Closures, %				8.29
In						•
Out Outlet Water 0.294 0.294 Std Dev of Daily Closures, % 52.0 BOTTOM ASH SLUICE 20.4 20.4 In Bottom Ash Sluice 20.4 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 Std Dev of Daily Closures, % 0.00126 BOILER OVERALL BALANCE 23.8 23.8 Combustion Air Makeup Water 0.00 0.00 Sluice Return 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	CONDEN	ISER				
Std Dev of Daily Closures, %	‡n	Inlet Water		0.00814		0.00814
BOTTOM ASH SLUICE	O t	Outlet Water		0.294		0.294
In	Std Dev o	f Daily Closures, %				52.0
In						
Sluice Return 0.0000794 0.0000794	воттом	ASH SLUICE				
Out Bottom Ash Sluice 20.4 0.00304 20.4 Std Dev of Daily Closures, % 0.00126 BOILER OVERALL BALANCE In Coal 23.8 23.8 Combustion Air Makeup Water 0.00 0.00 Sluice Return 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	Jn	Bottom Ash	20.4			20.4
Std Dev of Daily Closures, % 0.00126		Sluice Return		0.0000794		0.0000794
BOILER OVERALL BALANCE	Оut	Bottom Ash Sluice	20.4	0.00304	•	20.4
In Coal 23.8 Combustion Air 0.00 0.00 Makeup Water 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	Std Dev c	f Daily Closures, %				0.00126
In Coal 23.8 Combustion Air 0.00 0.00 Makeup Water 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353						
Combustion Air Makeup Water Sluice Return Out Bottom Ash Sluice 20.4 ESP Hopper Ash 11.1 Flue Gas to AFGD 0.00 0.000794 0.00304 20.4 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	BOILER (OVERALL BALANCE		·		
Makeup Water 0.00 0.00 Sluice Return 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	<u>In</u>	Coal	23.8			23.8
Sluice Return 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353		Combustion Air				
Sluice Return 0.0000794 0.0000794 Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353		Makeup Water		0.00		0.00
Out Bottom Ash Sluice 20.4 0.00304 20.4 ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	ļ					
ESP Hopper Ash 11.1 11.1 11.1 Flue Gas to AFGD 0.0481 0.0160 0.0353	Out	Bottom Ash Sluice	20.4			
Flue Gas to AFGD 0.0481 0.0160 0.0353		•	-			
* · · · · · · · · · · · · · · · · · · ·		. ''			0.0160	
	Std Dev o					

Table 7-2A (Continued) Bailly Mass Balance for Aluminum Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	g/s	g/s	g/s	* * g/s		
FLUE G/	FLUE GAS MIXING						
in	Unit 7 Flue Gas	0.374	1	0.00196	0.373		
	Unit 8 Flue Gas	0.0481	ŀ	0.0160	0.0353		
ă	Flue Gas to AFGD	0.418		0.0154	0.408		
Std Dev	of Daily Closures, %				0.00		
					-		
OVERAL	L AFGD SYSTEM BA	LANCE					
ln	Flue Gas	0.418		0.0154	0.408		
	Limestone	4.02			4.02		
	Service Water		0.0000844	į	0.0000844		
	Compressed Air	i		<u> </u>			
Out	Stack Flue Gas	0.00931		0.00163	··· 0.0108		
	Gypsum -	9.95		•	9.96		
	Wastewater		0.000306		0.000306		
Std Dev	73.0						

Table 7-3
Bally Mass Balance for Titanium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,	
	Stream	g/s	g/s	g/s	g/s	
UNIT 8 BO						
ln	Coal	22.9			22.9	
1	Combustion Air			l		
•	Makeup Water		0.000208	ľ	0.000208	
Öut	Flue Gas	9.58		0.0122	9.59	
	Bottom Ash	13.2		<u> </u>	13.2	
Average o	f Dally Closures, %				99.7	
	Average Flows, %				99.6	
UNIT 8 ES	SP	,				
In.	Flue Gas	9.58		0.0122	9.59	
Out	ESP Hopper Ash	9.70			9.70	
4	Flue Gas to AFGD	0.0110	ŀ	0.00353	0.0146	
Average o	f Daily Closures, %				101	
Closure of	Average Flows, %				101	
ÇONDEN	ŞER					
In	Inlet Water		0.573		0.573	
Out	Outlet Water		0.573		0.573	
Average o	f Daily Closures, %				100	
Closure of	Average Flows, %		-		100	
BOTTOM	ASH SLUICE	•		·		
ŧn	Bottom Ash	13.2		<u> </u>	13.2	
	Sluice Return	Ī	0.00136	- 1	0.00136	
Out	Bottom Ash Sluice	13.2	0.00136		13.2	
Average of	f Daily Closures, %				100	
Closure of	Average Flows, %	•	•		100	
BOILER C	VERALL BALANCE					
<u>In</u>	Coal	22.9			22.9	
•	Combustion Air		ì			
	Makeup Water		0.000208	1	0.000208	
	Sluice Return	.	0.00136		0.00136	
Out	Bottom Ash Sluice	13.2	0.00136		13.2	
1	ESP Hopper Ash	9.70			9.70	
1	Flue Gas to AFGD	0.0110	l	0.00353	0.0146	
Average o	f Daily Closures, %				100	
	Closure of Average Flows, %					

Table 7-3 (Continued)
Bailiy Mass Balance for Titanium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
FLUE GAS	FLUE GAS MIXING							
In	Unit 7 Flue Gas	0.0636		0.00190	0.0655			
	Unit 8 Flue Gas	0.0110		0.00353	0.0146			
ŭ	Flue Gas to AFGD	0.0746		0.00543	0.0801			
Average of	Daily Closures, %				100			
Closure of	Average Flows, %				100			
OVERALL	AFGD SYSTEM BA	LANCE						
ln	Flue Gas	0.0746		0.00543	0.0801			
ļ	Limestone	0.0981			0.0981			
ļ	Service Water		0.00432		0.00432			
	Compressed Air							
Out	Stack Flue Gas	0.00990		0.000146	0.0100			
	Gypsum	0.287			0.287			
	Wastewater	İ	0.000466		0.000466			
Average o	163							
Closure of	Average Flows, %				163			

Table 7-3A Bailty Mass Balance for Titanium Std Dev of 9/3, 9/4, 9/5/93

ĺ		Solid,	Liquid,	Gas,	Total,
• •	Stream	g/s	g/s	g/s	g/s
UNIT 8 BO	ILER				
\$n (Coal	1.07			1.07
ļ (Combustion Air			1	
]]	Makeup Water		0.00]	0.00
Out	Flue Gas	0.121		0.00898	0.122
l <u>l</u> l	Bottom Ash	0.571	<u>_</u>		0.571
Std Dev of	Daily Closures, %				1.71
		_			
UNIT 8 ES	P				
, In	Flue Gas	0.121		0.00898	0.122
Out	ESP Hopper Ash	0.848	1		0.848
ļ.	Flue Gas to AFGD	0.00297		0.000931	0.00208
Std Dev of	Daily Closures, %				7.50
	•		<u></u>		
CONDENS	ER		'		
In I	Inlet Water		0.00814		0.00814
Out	Outlet Water		0.00814		0.00814
Std Dev of	Daily Closures, %	_			0.00
BOTTOM A	ASH SLUICE				
ln l	Bottom Ash	0.571			0.571
	Słuice Return		0.0000794		0.0000794
Out	Bottom Ash Sluice	0.571	0.0000794	٠.	- 0.571
Std Dev of	Daily Closures, %				0.00
BOILER O	VERALL BALANCE				
	Coal	1.07			1.07
[·	Combustion Air		1		
	Makeup Water		0.00	j	0.00
<u> </u>	Sluice Return		0.0000794		0.0000794
Out	Bottom Ash Sluice	0.571	0.0000794		0.571
l j	ESP Hopper Ash	0.848		;	0.848
ı	Flue Gas to AFGD	0.00297		0.000931	0.00208
	Daily Closures, %				. 1.93

Table 7-3A (Continued) Bailly Mass Balance for Titanium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
FLUE GA	FLUE GAS MIXING							
in	Unit 7 Flue Gas	0.00979		0.0000703	0.00980			
	Unit 8 Flue Gas	0.00297		0.000931	0.00208			
Out_	Flue Gas to AFGD	0.0116		0.000861	0.0112			
Std Dev c	of Daily Closures, %				0.00			
			-					
OVERAL	L AFGD SYSTEM BAI	LANCE						
, In	Flue Gas	0.0116		0.000861	0.0112			
	Limestone	0.00655	-		0.00655			
	Service Water		0.0000844		0.0000844			
	Compressed Air		_ !					
Out	Stack Flue Gas	0.00153	!	0.000171	0.00154			
	Gypsum	0.0878	!	1	0.0878			
	Wastewater		0.0000261		0.0000261			
Std Dev c	46.9							
					_ ;			

Table 7-4
Balliy Mass Balance for Calcium
Average of 9/3, 9/4, 9/5/93

·	Process	Salid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
UNIT 8 BO	UNIT 8 BOILER							
iп	Coal	126			126			
	Combustion Air			ŀ				
	Makeup Water		0.00235		0.00235			
Out	Flue Gas	25.5		0.684	26.2			
	Bottom Ash	102	<u> </u>		102			
	f Daily Closures, %				105			
	Average Flows, %				101			
UNIT 8 ES								
ln	Flue Gas	25.5		0.684	26.2			
Out	ESP Hopper Ash	30.3			30.3			
	Flue Gas to AFGD	0.0805		0.505	0.586			
	f Daily Closures, %_				118			
	Average Flows, %				118			
CONDEN								
ln	Iniet Water		230		230			
Out	Outlet Water		316		316			
	Daily Closures, %				137			
	Average Flows, %				137			
BOTTOM	ASH SLUICE							
In	Bottom Ash	102	1		102			
	Sluice Return		0.748		0.748			
Out	Bottom Ash Sluice	102	0.791		103			
	f Daily Closures, %				100			
	Average Flows, %				100			
BOILER C	VERALL BALANCE							
ln .	Coal	126		-	126			
	Combustion Air			İ				
	Makeup Water		0.00235		0.00235			
	Stuice Return		0.748		0.748			
Out	Bottom Ash Sluice	102	0.791		103			
	ESP Hopper Ash	30.3		ļ	30.3			
	Flue Gas to AFGD	0.0805		0.505	0.586			
Average o	f Daily Closures, %				109			
Closure of	Average Flows, %				105			

Table 7-4 (Continued)
Bailly Mass Balance for Calcium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
FLUE GA	FLUE GAS MIXING							
In	Unit 7 Flue Gas	0.139		0.347	0.486			
	Unit 8 Flue Gas	0.0805		0.505	0.586			
Out	Flue Gas to AFGD	0.220		0.852	1.07			
Average o	f Daily Closures, %				100			
Closure of	Average Flows, %				100			
OVERALL	. AFGD SYSTEM BA	LANCE						
In	Fiue Gas	0.220		0.852	1.07			
	Limestone	2580	i		2580			
	Service Water	ľ	1.53		1.53			
	Compressed Air		1_					
Out	Stack Flue Gas	0.286		0.00490	0.291			
	Gypsum	2580			· 2580			
	Wastewater	}	18.4		18.4			
Average o	101							
Closure of	Average Flows, %				101			

Table 7-4A
Bailiy Mass Balance for Calcium
Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	g/s	g/s	g/s	g/s
UNIT 8 BC	ILER		_		
! ⊓	Coal	27.2			27.2
	Combustion Air		1		
	Makeup Water		0.00370		0.00370
Out	Flue Gas	1.07		0.0597	1.12
	Bottom Ash	11,1			11.1
Std Dev of	Daily Closures, %				24.6
		. •			
UNIT 8 ES			·		
l n	Flue Gas	<u>1.</u> 07		0.0597	1.12
Out	ESP Hopper Ash	4.48			4.48
	Flue Gas to AFGD	0.0978		0.401	0.305
Std Dev of	Daily Closures, %	_			18.8
CONDENS	SER			•	
In	Inlet Water	. •	5.39		5.39
Out	Outlet Water		124		124
Std Dev of	Daily Closures, %		·		50.9
	-			:	
BOTTOM	ASH SLUICE				
. In	Bottom Ash	11.1			71.1
L	Sluice Return		0.135	<u> </u>	0.135
Out	Bottom Ash Sluice	11.1	0.122		11.2
Std Dev of	Daily Closures, %		•		0.0846
BOILER C	VERALL BALANCE				_
Ü	Coal	27.2			27.2
	Combustion Air				
	Makeup Water		0.00370		0.00370
İ	Sluice Return		0.135		0.135
Out	Battom Ash Sluice	11.1	0.122		11.2
	ESP Hopper Ash	4.48	_		4.48
	Flue Gas to AFGD	0.0978		0.401	0.305
Std Dev of	Daily Closures, %				25.5
				-	<u> </u>

Table 7-4A (Continued) Bailly Mass Balance for Calcium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
FLUE GA	FLUE GAS MIXING							
ln:	Unit 7 Flue Gas	0.0247		0.0550	0.0663			
<u> </u>	Unit 8 Flue Gas	0.0978		0.401	0.305			
Out	Flue Gas to AFGD	0.0901		0.453	0.371			
Std Dev c	of Daily Closures, %				0.00			
OVERAL	L AFGD SYSTEM BA	LANCE						
in.	Flue Gas	0.0901		0.453	0.371			
İ	Limestone	53.0	ŀ	- 1	53.0			
	Service Water		0.0280	- 1	0.0280			
	Compressed Air	i]				
Out	Stack Flue Gas	0.0198		0.00181	0.0193			
	Gypsum	53.0	ŀ	- 1	53.0			
	Wastewater	i	1.48	- 1	1.48			
Std Dev of Daily Closures, %								
			 -					

Table 7-5
Bailly Mass Balance for Magnesium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
UNIT 8 B	UNIT 8 BOILER							
in In	Coal	27.4			27.4			
	Combustion Air		i					
	Makeup Water		0.000688		0.000688			
Out	Flue Gas	8.55		0.0287	8.58			
L	Bottom Ash	18.6			18.6			
Average o	of Daily Closures, %				99.2			
	f Average Flows, %				99.0			
UNIT 8 E	SP							
In	Flue Gas	8.55		0.0287	<u>8.58</u>			
Out	ESP Hopper Ash	9.40			9.40			
	Flue Gas to AFGD	0.00810	1	0.0220	0.0301			
Average o	of Daily Closures, %				110			
Closure o	f Average Flows, %				110			
CONDEN	ISER		·					
ln .	Inlet Water		129		129			
Out	Outlet Water		128		128			
Average o	of Deily Closures, %	<u> </u>			99.6			
	f Average Flows, %				99.4			
BOTTOM	ASH SLUICE				· <u>-</u> .			
lin i	Bottom Ash	18.6			18.6			
	Stuice Return		0.281		0.281			
Out	Bottom Ash Sluice	18.6	0.287		18.9			
Average o	of Daily Closures, %				100			
Closure o	f Average Flows, %			- "	100			
BOILER (OVERALL BALANCE							
lin	Coal	27.4			27.4			
	Combustion Air		İ					
	Makeup Water		0.000688	Į.	0.000688			
	Sluice Return		0.281		0.281			
Qut	Bottom Ash Sluice	18.6	0.287		18.9			
	ESP Hopper Ash	9.40		l	9.40			
	Flue Gas to AFGD	0.00810	<u> </u>	0.0220	0.0301			
Average o	Average of Daity Closures, %							
	f Average Flows, %		·		102			

Table 7-5 (Continued)
Ballly Mass Balance for Magnesium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	g/s	g/s	g/s	g/s		
FLUE GA	FLUE GAS MIXING						
in	Unit 7 Flue Gas	0.0435	1	0.0113	0.0548		
	Unit 8 Flue Gas	0.00810		0.0220	0.0301		
Out	Flue Gas to AFGD	0.0516		0.0333	0.0849		
Average o	of Daily Closures, %			l.	100		
Closure o	f Average Flows, %				100		
OVERAL	L AFGD SYSTEM BA	LANCE					
ln	Flue Gas	0.0516		0.0333	0.0849		
	Limestone	23.6		,	23.6		
	Service Water	1	0.967	,	0.967		
	Compressed Air						
Out	Stack Flue Gas	0.0537		0.000911	0.0547		
	Gypsum	8.56	ŀ	-	8.56		
	Wastewater		13.6	ŀ	13.6		
Average o	<u> </u>	90.1					
Closure o	f Average Flows, %				90.1		

Table 7-6A Bailly Mass Balance for Magnesium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas.	Total,
	Stream	g/s	g/s	g/s	g/s
UNIT 8 BC	NLER	•			
lo 🗈	Coal	2.75			2.75
	Combustion Air				·
	Makeup Water		0.000832		0.000832
Out	Flue Gas	0.191		0.00789	0.199
	Bottom Ash	2.09			2.09
Std Dev of	Daily Closures, %	•		<u>.</u>	4.65
UNIT 8 ES					
ln .	Flue Gas	0.191		0.00789	0.199
Оut	ESP Hopper Ash	0.176			0.176
	Flue Gas to AFGD	0.00146		0.00551	0.00406
Std Dev of	Daily Closures, %			ļ	4.43
		_		• 1	
CONDEN	SER				-
İ	inlet Water		4.71		4.71
Out	Outlet Water		4.70		4.70
Std Dev of	Daily Closures, %		·	·	7.34
BOTTOM	ASH SLUICE				
ln	Bottom Ash	2.09			2.09
	Skuice Return		0.0196		0.0196
Out	Bottom Ash Sluice	2.09	0.0233		2.10
Std Dev of	Dally Ctosures, %				0.0259
BOILER C	VERALL BALANCE				
ĺn	Coal	2.75			2.75
	Combustion Air				
	Makeup Water		0.000832		0.000832
	Sluice Return		0.0196	 	0.0196
Qut	Bottom Ash Sluice	2.09	0.0233		2.10
	ESP Hopper Ash	0.176			0.176
	Flue Gas to AFGD	0.00146		0.00551	0.00406
Std Dev of	4.90				
ļ	<u> </u>			•	

Table 7-5A (Continued) Bailly Mass Balance for Magnesium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solld,	Liquid,	Gas,	Total,			
	Stream	g/s	g/s	g/s	g/s			
FLUE G	FLUE GAS MIXING							
ž	Unit 7 Flue Gas	0.00657		0.00134	0.00546			
	Unit 8 Flue Gas	0.00146		0.00551	0.00406			
Out	Flue Gas to AFGD	0.00641		0.00620	0.00741			
Std Dev	of Daily Closures, %				····· 0.00			
OVERAL	L AFGD SYSTEM BAI	LANCE						
ı	Flue Gas	0.00641]	0.00620	0.00741			
	Limestone	0.648		4	0.648			
	Service Water	l l	0.0371		0.0371			
Ĺ <u>.</u>	Compressed Air		: [!			
Out	Stack Flue Gas	0.00338		0.000337	0.00366			
İ	Gypsum	0.582	Ţ	-	0.582			
<u> </u>	Wastewater		0.789		0.789			
Std Dev o	3.07							
	-			.				

Table 7-6
Bailty Mass Balance for Antimony
Average of 9/3, 9/4, 9/5/93

<u> </u>	Process	\$olid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B	DILER	·			
In	Coal	25.2			25.2
	Combustion Air			ŀ	
	Makeup Water		0.00125		0.00125
Out	Flue Gas	11.3		0.233	11.5
	Bottom Ash	5.31			5.31 .
	f Daily Closures, %				66.7
	Average Flows, %				66.8
UNIT 8 E8					
In	Flue Gas	11.3	[0.233	11.5
Out	ESP Hopper Ash	37.6			37.6
	Flue Gas to AFGD	0.0309		0.0435	0.0744
	f Daily Closures, 🥳				375
Closure of	Average Flows, %		-	-	326
CONDEN					
<u>, In</u>	inlet Water		3.44		3.44
Out	Outlet Water		3.44	- :	3.44
Average o	f Daily Closures, %				100
Closure of	Average Flows, %				100
BOTTOM	ASH SLUICE				
ln:	Bottom Ash	5.31		1	5.31
	Sluice Return		0.246		0.246
Out	Bottom Ash Sluice	5.31	0.595		5.91
Average o	f Daily Closures, %		•	ĺ	107
Closure of	Average Flows, %		=		106_
BOILER C	VERALL BALANCE				
ln	Coal	25.2			25.2
	Combustion Air				
ŀ	Makeup Water		0.00125		0.00125
	Sluice Return		0.246		0.246
Out	Bottom Ash Sluice	5.31	0.595		5.91
	ESP Hopper Ash	37.6			37.6
L.	Flue Gas to AFGD	0.0309	<u></u>	0.0435	0.0744
Average o	f Daily Closures, %				169
Closure of	Average Flows, %		•		171

Table 7-6 (Continued)
Bailty Mass Balance for Antimony
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,				
	# Stream	mg/s	mg/s	mg/s	mg/s				
FLUE GA	FLUE GAS MIXING								
h	Unit 7 Flue Gas	0.0619		0:0108	0.0727				
	Unit 8 Flue Gas	0.0309		0.0435	0.0744				
Out	Flue Gas to AFGD	0.0928	-	0.0543	0.147				
Average o	f Daily Closures, %				100				
Closure of	Average Flows, %				100				
OVERALL	. AFGD SYSTEM BA	LANCE							
lc	Fiue Gas	0.0928	-	0.0543	0.147				
Ì	Limestone	6.71			6.71				
[Service Water	1	0.0259	Ī	0.0259				
	Compressed Air		· · ·	[
Out	Stack Flue Gas	0.0110		0.171	0.182				
1	Gypsum	4.23		,	4.23				
	0.0576								
Average o	103								
Closure of	64.9								

Table 7-6A Bailly Mass Balance for Antimony Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s_			
UNIT 8 BC	UNIT 8 BOILER							
5	Coal	1.48			1.48			
	Combustion Air							
	Makeup Water		0.00		0.00			
Out	Flue Gas	5.58		0.222	5.79			
	Bottom Ash	1.04			1.04			
Std Dev of	Daily Closures, %				26.4			
UNIT 8 ES	SP -			_				
In	Flue Gas	5 <u>.</u> 58	_	0.222	5.79			
Out	ESP Hopper Ash	15.1		Į.	15.1			
	Flue Gas to AFGD	0.00166		0.0376	0.0392			
Std Dev of	Dally Closures, %				206			
			<u>. </u>	-				
CONDEN		····						
In	Inlet Water		0.0488		0.0488			
Out	Outlet Water		0.0488		0.0488			
Std Dev of	Daily Closures, %				0.00			
	ASH SLUICE							
۱n	Bottom Ash	1.04			1.04			
	Sluice Return		0.0810		0.0810			
Out	Bottom Ash Sluice	1.04	0.194		0.850			
Std Dev of	Daily Closures, %				3.09			
BOILER C	VERALL BALANCE							
9	Coal	1.48			1.48			
	Combustion Air							
	Makeup Water		0.00	į	0.00			
	Sluice Return		0.0810		0.0810			
Out	Bottom Ash Sluice	1.04	0.194		0.850			
	ESP Hopper Ash	15.1	1		15.1			
	Flue Gas to AFGD	0.00166		0.037 <u>6</u>	0.0392			
Std Dev of	48.3							

Table 7-6A (Continued) Bailly Mass Balance for Antimony Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	, Stream	mg/s	mg/s	mg/s	mg/s		
FLUE GAS MIXING							
in	Unit 7 Flue Gas	0.0188		0.0116	0.0276		
	Unit 8 Flue Gas	0.00166		0.0376	0.0392		
Out	Flue Gas to AFGD	0.0204	j	0.0419	0.0621		
Std Dev o	of Daily Closures, %				0.00		
OVERAL	L AFGD SYSTEM BAL	ANCE					
ln .	Flue Gas	0.0204	T	0.0419	0.0621		
	Limestone]	5.24			5.24		
	Service Water		0.000507		0.000507		
_	Compressed Air						
Out	Stack Flue Gas	0.00143		0.263	0.262		
	Gypsum	2.47	ļ		2.47		
	Wastewater		0.00908		0.00908		
Std Dev of Daily Closures, %							
•							

Table 7-7
Bailly Mass Balance for Arsenic
Average of 9/3, 9/4, 9/5/93

	Process	Solld,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
Ìn	Coal	110	•		110			
	Combustion Air	i		j				
	Makeup Water		0.000625		0.000625			
Out	Flue Gas	68.7		0.675	69.4			
	Bottom Ash	0.954			0.954			
	f Daily Closures, %				69.7			
	Average Flows, %			-	63.7			
UNIT 8 E								
ln.	Flue Gas	68.7		0.675	69.4			
Out	ESP Hopper Ash	90.9	:	I	90.9			
	Flue Gas to AFGD	0.215		0.434	0.648			
	f Dally Closures, %				132			
	Average Flows, %				132			
CONDEN	SER							
<u>In</u>	Inlet Water		1.72		1.72			
Out	Outlet Water		1.72	·· .	1.72			
Average o	f Daily Closures, %			<u>.</u> i	100			
	Average Flows, %				100			
BOTTOM	ASH SLUICE		<u>-</u> ·					
ĵn	Bottom Ash	0.954		1	0.954			
	Sluice Return		0.391		0.391			
Out	Bottom Ash Sluice	0.954	1.04		1.99			
Average o	f Daily Closures, %				158			
	Average Flows, %				148			
BOILER (OVERALL BALANÇE							
in	Coal	110			110			
	Combustion Air		İ					
	Makeup Water		0.000625	- 1	0.000625			
L	Sluice Return		0.391		0.391			
Out	Bottom Ash Sluice	0.954	1.04		1.99			
	ESP Hopper Ash	90.9			90.9			
	Flue Gas to AFGD	0.215		0.434	0.648			
Average o	91.9							
Closure of	Closure of Average Flows, %							

Table 7-7 (Continued)
Bailly Mass Balance for Arsenic
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE GA	FLUE GAS MIXING							
. In	Unit 7 Flue Gas	0.752		0.331	1.08			
	Unit 8 Flue Gas	0.215		0.434	0.648			
Out	Flue Gas to AFGD	0.967		0.765	1.73			
Average o	of Daily Closures, %				100			
	f Average Flows, %				100			
OVERAL	L AFGD SYSTEM BA	LANCE						
Ī	Flue Gas	0.967		0.765	1.73			
	Limestone	1.99			1.99			
	Service Water		0.0130	1	0.0130			
	Compressed Air		ļ					
Out	Stack Flue Gas	0.675	Ţ	0.294	0.969			
	Gypsum	14.8	į		14.8			
	0.106							
Average o	436							
Closure o	f Average Flows, %				426			

Table 7-7A Bailly Mass Balance for Arsenic Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,	
	Stream	mg/s	mg/s	mg/s	mg/s	
UNIT 8 B	SOILER					
Įr,	Coal	42.5			42.5	
	Combustion Air					
	Makeup Water		0.00		0.00	
Out	Flue Gas	2.70		0.316	2,41	
	Bottom Ash	0.403			0.403	
Std Dev o	of Daily Ctosures, %				23.3	
UNIT 8 E	SP					
<u>[</u> n	Flue Gas	2.70	·	0.316	2.41	
Out	ESP Hopper Ash	2.45			2.45	
	Flue Gas to AFGD	0.0338		0.132	0.0982	
Std Dev o	of Daily Closures, %				3.48	
CONDE	VSER				•	
In	Inlet Water	··	0.0244	i	0.0244	
Out	Outlet Water		0.0244		0.0244	
Std Dev o	of Dally Closures, %				0.00	
	<u></u>					
BOTTON	A ASH SLUICE					
ŀn	Bottom Ash	0.403			0.403	
	Sluice Return	1	0.0255	i	0.0255	
Out	Bottom Ash Sluice	0.403	0.432		0.251	
Std Dev o	of Daily Closures, %				53.5	
BOILER	OVERALL BALANCE					
٦n	Coal	42.5		1	42.5	
	Combustion Air		<u> </u>			
	Makeup Water		0.00		0.00	
	Sluice Return		0.0255	l	0.0255	
Out	Bottom Ash Sluice	0.403	0.432		0.251	
	ESP Hopper Ash	2.45	1	l	2.45	
	Flue Gas to AFGD	0.0338	-	0.132	0.0982	
Std Dev of Daily Closures, %						
				i i	29.3	

Table 7-7A (Continued) Balliy Mass Balance for Arsenic Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
l	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G/	FLUE GAS MIXING							
ln	Unit 7 Flue Gas	0.505		0.374	0.879			
<u> </u>	Uńit 8 Flue Gas	0.0338		0.132	0.0982			
Out	Flue Gas to AFGD	0.538		0.249	0.785			
Std Dev o	of Daily Closures, %				0.00			
OVERAL	L AFGD SYSTEM BAI	LANCE		•				
ln	Flue Gas	0.538		0.249	0.785			
	Limestone	0.262			0.262			
.	Service Water	1	0.000253		0.000253			
	Compressed Air	ļ		!				
Out	Stack Flue Gas	0.840	·	0.430	1.27			
	Gypsum	0.478		1	0.478			
	Wastewater		0.0199		0.0199			
Std Dev of Daily Closures, %								

Table 7-8
Bailty Mass Balance for Barlum
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid.	Gas,	Total,			
<u> </u>	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 BO	HER							
In	Coal	1640			1640			
	Combustion Air			İ				
	Makeup Water		0.0140		0.0140			
Öut	Flue Gas	519		0.954	520			
	Bottom Ash	1080			1080			
	f Daily Ctosures, %				97.4			
	Average Flows, %				97.6			
UNIT 8 ES	3P							
In	Flue Gas	519		0.954	520			
Out	ESP Hopper Ash	692			692			
	Flue Gas to AFGD	0.969		0.781	1,75			
	Daily Closures, %				136			
	Average Flows, %				133			
CONDEN		<u> </u>						
in	Inlet Water		204		204			
Out	Outlet Water		210		210			
Average of	f Daily Closures, %				103			
Closure of	Average Flows, %				103			
BOTTOM	ASH SLUICE							
- In	Bottom Ash	1080			1080			
	Sluice Return		0.732		0.732			
Out	Bottom Ash Sluice	1080	0.556		1080			
Average o	f Daily Closures, %				100.0			
Closure of	Average Flows, %	- -			100.0			
BOILER C	VERALL BALANCE		·					
I n	Coal	1640	·		1640			
	Combustion Air							
	Makeup Water]	0.0140		0.0140			
	Sluice Return		0.732		0.732			
Out	Bottom Ash Sluice	1080	0.556	_	1080			
	ESP Hopper Ash	692			692			
	Flue Gas to AFGD	0.969		0.781	1.75			
Average o	Average of Daily Closures, %							
	Average Flows, %				108			

Table 7-8 (Continued)
Bailly Mass Balance for Barlum
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Uquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE GAS MIXING								
In	Unit 7 Flue Gas	3.56	T.	0.405	3.97			
	Unit 8 Flue Gas	0.969	1	0.781	1.75			
Out	Flue Gas to AFGD	4.53	i	1.19	5.72			
Average (of Daily Closures, %				100			
Closure c	of Average Flows, %				100			
OVERAL	L AFGD SYSTEM BAI	LANCE						
In	Flue Gas	4.53		1.19	5.72			
	Limestone	9.35		i	9.35			
	Service Water		1.57	İ	1.57			
	Compressed Air	1	[_		:			
Out	Stack Flue Gas	0.806		0.0473	0.854			
	Gypsum .	10.8		[_	10.8			
	Wastewater		1.93	1	1.93			
Average (Average of Daily Closures, %							
Closure c	of Average Flows, %				81.3			

Table 7-8A
Bailly Mass Balance for Barlum
Std Dev of 9/3, 9/4, 9/5/93

Stream mg/s	<u> </u>	Process	Solid,	Liquid,	Gas,	Total,			
UNIT 8 BOILER 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.9 89.5 80.00264 89.5 80.00264 89.5 80.00264 89.5 80.00264 89.5 80.00264 89.5 80.00264 89.5 80.00264 89.9		Stream	mg/s	mg/s	mg/s	mg/s			
Combustion Air Makeup Water 0.00264 0.00264	UNIT 8 B	UNIT 8 BOILER							
Makeup Water 0.00264 0.00264 Out Flue Glas 70.7 95.3 95.3 Std Dev of Daily Closures, % 5.81	ln	Coal	89.9			89.9			
Out Flue Gas Bottom Ash 70.7 95.3 0.226 70.9 95.3 Std Dev of Daily Closures, % 5.81 UNIT 8 ESP In Flue Gas 70.7 0.7 0.226 70.9 70.9 Out ESP Hopper Ash Flue Gas to AFGD 0.398 112 Flue Gas to AFGD 0.398 0.178 0.287 112 112 112 112 112 112 112 112 112 112		Combustion Air							
Bottom Ash 95.3 95.3 95.3		Makeup Water		0.00264		0.00264			
Std Dev of Daily Closures, % 5.81	Out		70.7		0.226				
In Flue Gas 70.7 0.226 70.9		Bottom Ash	95.3			95.3			
In	Std Dev o	f Daily Closures, %				5.81			
In									
Out ESP Hopper Ash Flue Gas to AFGD 112 0.398 0.178 0.287 Std Dev of Daily Closures, % 38.6 CONDENSER In Inlet Water 7.19 7.19 Out Outlet Water 6.34 6.34 Std Dev of Daily Closures, % 6.65 BOTTOM ASH SLUICE In Bottom Ash Sluice 95.3 95.3 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 BOILER OVERALL BALANCE 89.9 89.9 BOILER OVERALL BALANCE 0.00264 0.00264 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 112 Flue Gas to AFGD 0.398 0.178 0.287	UNIT 8 E								
Flue Gas to AFGD 0.398 0.178 0.287	in	Flue Gas	70.7	_	0.226	70.9			
Std Dev of Daily Closures, % 38.6	Out	ESP Hopper Ash	112	i		112			
CONDENSER In Inlet Water 7.19 7.19 7.19 Out Outlet Water 6.34 6.34 Std Dev of Daily Closures, % 6.65		Flue Gas to AFGD	0.398		0.178	0.287			
In	Std Dev o	f Daily Closures, %				38.6			
In									
Out Outlet Water 6.34 6.34 Std Dev of Daily Closures, % 6.65 BOTTOM ASH SLUICE 95.3 95.3 In Bottom Ash Sluice 95.3 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 Std Dev of Daily Closures, % 0.0238 BOILER OVERALL BALANCE 0.00264 0.00264 In Coal Combustion Air Makeup Water Sluice Return 0.00264 0.00264 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash Sluice 112 112 112 Flue Gas to AFGD 0.398 0.178 0.287	CONDEN	·							
Std Dev of Dally Closures, % 6.65	<u>In</u>	<u> </u>		7.19		7.19			
BOTTOM ASH SLUICE	Out	Outlet Water	:	6.34		6.34			
In Bottom Ash Sluice Return 95.3 Sluice Return 95.3 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 Std Dev of Daily Closures, % 0.0238 BOILER OVERALL BALANCE 89.9 89.9 89.9 89.9 6.00264 0.00264 In Coal Makeup Water Makeup Water Sluice Return 0.102 0.102 0.102 0.102 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287	Std Dev o	f Daily Closures, %				6.65			
In Bottom Ash Sluice Return 95.3 Sluice Return 95.3 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 Std Dev of Daily Closures, % 0.0238 BOILER OVERALL BALANCE 89.9 89.9 89.9 89.9 6.00264 0.00264 In Coal Makeup Water Makeup Water Sluice Return 0.102 0.102 0.102 0.102 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287									
Stuice Return 0.102 0.102	BOTTOM	ASH SLUICE			<u> </u>				
Out Bottom Ash Sluice 95.3 0.230 95.1 Std Dev of Daily Closures, % 0.0238 BOILER OVERALL BALANCE In Coal 89.9 89.9 Combustion Air 0.00264 0.00264 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287	ln	Bottom Ash	95.3			95.3			
Std Dev of Daily Closures, % 0.0238		Sluice Return		0.102		0.102			
BOILER OVERALL BALANCE 89.9 89.	Out	Bottom Ash Sluice	95.3	0.230		95.1			
In Coal 89.9 89.9 Combustion Air 0.00264 0.00264 Makeup Water 0.102 0.102 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287	Std Dev o	f Daily Closures, %				0.0238			
In Coal 89.9 89.9 Combustion Air 0.00264 0.00264 Makeup Water 0.102 0.102 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287									
Combustion Air 0.00264 0.00264 Makeup Water 0.102 0.102 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287	BOILER (OVERALL BALANCE							
Makeup Water 0.00264 0.00264 Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287	(n	1	89.9			89.9			
Sluice Return 0.102 0.102 Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 112 Flue Gas to AFGD 0.398 0.178 0.287		Combustion Air		·					
Out Bottom Ash Sluice 95.3 0.230 95.1 ESP Hopper Ash 112 112 Flue Gas to AFGD 0.398 0.178 0.287		Makeup Water		0.00264		0.00264			
ESP Hopper Ash 112 112 112 112 112 112 112 112 112 11		Sluice Return		0.102		0.102			
Flue Gas to AFGD 0.398 0.178 0.287	Out	Bottom Ash Sluice	95.3	0.230		95.1			
		ESP Hopper Ash	112		1	112			
		Flue Gas to AFGD	0.398		0.178	0.287			
	Std Dev o	5.13							
(<u> </u>				· · · · · ·			

Table 7-8A (Continued) Bally Mass Balance for Barium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE G/	AS MIXING				
in In	Unit 7 Flue Gas	0.724		0.0332	0.723
	Unit 8 Flue Gas	0.398	l	0.178	0.287
Qut	Flue Gas to AFGD	0.935		0.208	0.935
Std Dev o	of Daily Closures, %				0.00
OVERAL	L AFGD SYSTEM BA	LANCE			
In	Flue Gas	0.935		0.208	0.935
	Limestone	0.496	. 1	ļ	0.496
	Service Water		0.176	_	0.176
	Compressed Air		j		
Out	Stack Flue Gas	0.179		0.000393	0.178
	Gypsum	1.79	ŀ		1.79
	Wastewater		0.410		0.410
Std Dev of Daily Closures, %					
					14.2

Table 7-9
Bailly Mass Balance for Beryllium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
. In	Coal	67.3			67.3			
ĺ	Combustion Air		•	- 1	!			
	Makeup Water		0.00104		0.00104			
Öt	Flue Gas	26,6		0.237	26.8			
	Bottom Ash	24.1		1	24.1			
Average o	f Daily Closures, %				77.1			
	Average Flows, %	•			75.7			
UNIT 8 E	SP	-						
In	Flue Gas	26.6		0.237	26.8			
Out	ESP Hopper Ash	28.5			28.5			
	Flue Gas to AFGD	0.0221		0.00309	0.0252			
	f Daily Closures, %				107			
	Average Flows, %			<u> </u>	106			
CONDEN								
<u>In</u>	Inlet Water		2.86		2.86			
Out	Outlet Water		2.86		2.86			
	f Daily Closures, %				100			
	Average Flows, %				100			
воттом	ASH SLUICE							
in	Bottom Ash	24.1			24.1			
	Sluice Return		0.00682		0.00682			
Out	Bottom Ash Sluice	24.1	0.00934		24.1			
	f Daily Closures, %				100			
	Average Flows, %				100			
BOILER (OVERALL BALANCE							
. In	Coal	67.3			67.3			
ł	Combustion Air	l	1	!				
ļ	Makeup Water	l	0.00104	ŀ	0.00104			
	Sluice Return		0.00682	<u></u>	0.00682			
Out	Bottom Ash Sluice	24.1	0.00934		24.1			
Ì	ESP Hopper Ash	28.5	ì	ľ	28.5			
<u> </u>	Flue Gas to AFGD	0.0221	 	0.00309	0.0252			
Average o	80.0							
Closure of	Average Flows, %				78.2			

Table 7-9 (Continued)
Bality Mass Balance for Beryllium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid.	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
FLUE GA	FLUE GAS MIXING						
ln	Unit 7 Flue Gas	0.230		0.00167	0.232		
<u> </u>	Unit 8 Flue Gas	0.0221		0.00309	0.0252		
Out	Flue Gas to AFGD	0.252		0.00475	0.257		
Average o	of Daily Closures, %				100		
	f Average Flows, %				100		
OVERAL	L AFGD SYSTEM BA	LANCE					
ln	Flue Gas	0.252		0.00475	0.257		
]	Limestone	0.0271			0.0271		
i	Service Water '		0.0216		0.0216		
i .	Compressed Air	!	ļ.		_		
Out	Stack Flue Gas	0.0409		0.00944	0.0504		
	Gypsum	3.68	,		3.68		
l	Wastewater		0.00233		0.00233		
Average o	Average of Daily Closures, %						
Closure o	f Average Flows, %	···-	-		1220		

Table 7-9A Bailly Mass Balance for Beryllium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
ļ	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B	<u> </u>				****
În	Coal	11.8	····	<u> </u>	11.8
	Combustion Air			-	
	Makeup Water		0.00		0.00
Out	Flue Gas	2.08		0.291	2.37
	Bottom Ash	2.23			2.23
Std Dev of	Daily Closures, %				121
UNIT 8 ES	SP				
In	Flue Gas	2.08		0.291	2.37
Out	ESP Hopper Ash	0.630			0.630
	Flue Gas to AFGD	0.0167	ì	0.000166	0.0166
Std Dev of	f Daily Closures, %				7.13
	`				
CONDEN					
În	Inlet Water		0.0407		0.0407
Out	Outlet Water		0.0407		0.0407
Std Dev of	Daily Closures, %				0.00
	ASH SLUICE				
In	Bottom Ash	2.23	i .		2.23
	Sluice Return		0.000397		0.000397
Out	Bottom Ash Sluice	2.23	0.00473		2.23
Std Dev o	f Daily Closures, %				0.0178
				<u>.</u>	
	OVERALL BALANCE	- 1			·
In	Coal	11.8		•	11.8
	Combustion Air			1	
	Makeup Water		0.00		0.00
	Stuice Return		0.000397		0.000397
Out	Bottom Ash Sluice	2.23	0.00473		2.23
	ESP Hopper Ash	0.630			0.630
	Flue Gas to AFGD	0.0167		0.000166	0.0166
Std Dev o	f Dally Closures, %				14.9

Table 7-9A (Continued) Bality Mass Balance for Beryllium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Dquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
FLUE GAS MIXING							
in in	Unit 7 Flue Gas	0.0680 (0.0000583	0.0681		
	Unit 8 Flue Gas	0.0167		0.000166	0.0166		
ទី	Flue Gas to AFGD	0.0710		0.000210	0.0711		
Std Dev o	of Daily Closures, %			[0.00		
OVERAL	L AFGD SYSTEM BA	LANCE					
in	Flue Gas	0.0710		0.000210	0.0711		
	Limestone .	0.000492	Į		0.000492		
	Service Water	•	0.000422	- }	0.000422		
	Compressed Air						
Out	Stack Flue Gas	0.0221		0.0123	0.0164		
	Gypsum	0.0518	·		0.0518		
	Wastewater	j	0.000131		0.000131		
Std Dev of Daily Closures, %							
		·					

Table 7-10
Bailly Mass Balance for Boron
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 BO	UNIT 8 BOILER							
In T	Coal	7880			7880			
	Combustion Air							
	Makeup Water		85.4		85.4			
Out	Flue Gas	714		4000	4720			
	Bottom Ash	422			422			
Average of	f Daily Closures, %				65.1			
Clasure of	Average Flows, %		,_,		64.5			
UNIT 8 ES			<u> </u>	<u> </u>				
!n	Flue Gas	714		4000	4720			
Out	ESP Hopper Ash	1450			1450			
	Flue Gas to AFGD	0.0309		4180	4180			
	f Daily Closures, %				122			
	Average Flows, %				119			
CONDEN	<u> </u>			·				
<u>In</u>	Inlet Water		106000		106000			
Out	Outlet Water		358		358			
Average o	f Daily Closures, %				0.348			
	Average Flows, %			·	0.338			
BOTTOM	ASH SLUICE							
In	Bottom Ash	422			422			
<u> </u>	Sluice Return		0.853		0.853			
Out	Bottom Ash Sluice	422	0.853		423			
Average o	f Daily Closures, %				100			
	Average Flows, %				100			
BOILER C	VERALL BALANCE		•					
ln	Coal	7880			7880			
1	Combustion Air				;			
ł	Makeup Water		85.4		85.4			
	Sluice Return		0.853		0.853			
Out	Bottom Ash Sluice	422	0.853		423			
Į.	ESP Hopper Ash	1450	}		1450			
1	Flue Gas to AFGD	0.0309		4180	4180			
Average o	f Daily Closures, %				76.3			
Closure of	Average Flows, %				76.1			

Table 7-10 (Continued)
Bailly Mass Balance for Boron
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE GA					
In	Unit 7 Flue Gas	8.44		2200	2200
	Unit 8 Flue Gas	0.0309	i	4180	4180
Out	Flue Gas to AFGD	8.48		6380	6390
Average o	of Dally Closures, %	•	•		100
Closure o	f Average Flows, %				100
OVERAL	L AFGD SYSTEM BAI	LANCE			
in.	Flue Gas	8.48		6380	6390
ł	Limestone	879	1	1	87 9
	Service Water	•	2,70	1	2.70
	Compressed Air				
Out	Stack Flue Gas	0.0473		582	582
	Gypsum	3270	1		3270
	Wastewater		5480		5480
Average (126				
Closure c	f Average Flows, %				128

Table 7-10A Bailly Mass Balance for Boron Std Dev of 9/3, 9/4, 9/5/93

		Solid,	Uqukl,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 BC	ILER				
In	Coal	652			652
	Combustion Air				
L l	Makeup Water	<u></u> <u> </u>	30.9		30.9
	Flue Gas	591		330	815
	Bottom Ash	63.3			63.3
Std Dev of	Daily Closures, %				13.5
UNIT 8 ES					
	Flue Gas	591		330	815
Out	ESP Hopper Ash	147			147
	Flue Gas to AFGD	0.00166		423	423
Std Dev of	Daily Closures, %				22.6
				<u> </u>	
CONDENS					
	Inlet Water		22100		22100
Out	Outlet Water	-	5.09		5.09
Std Dev of	Daily Closures, %				0.0667
BOTTOM	ASH SLUICÉ				••
l In į	Bottom Ash	63.3			63.3
	Sluice Return	<u> </u>	0.0497		0.0497
	Bottom Ash Sluice	63.3	0.0497		63.4
Std Dev of	Daily Closures, %				0.00
			·		
BOILER O	VERALL BALANCE				
kn	Coal	652			652
1 1	Combustion Air	1	•	- 1	
!	Makeup Water		30.9		30.9
	Sluice Return		0.0497		0.0497
Out	Bottom Ash Skrice	63.3	0.0497		63.4
	ESP Hopper Ash	147	l	l	147
	Flue Gas to AFGD	0.00166		423	423
Std Dev of	3.43				

Table 7-10A (Continued) Bailiy Mass Balance for Boron Std Dev of 9/3, 9/4, 9/5/93

Ą

ŗ

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	_mg/s	mg/s	mg/s
FLUE G	AS MIXING				
<u>In</u>	Unit 7 Flue Gas	2.32		275	273
	Unit 8 Flue Gas	0.00166		423	423
Ö	Flue Gas to AFGD	2.32		662	660
Std Dev	of Dally Closures, %		<u>-</u>	_ j	0.00
OVERAL	L AFGD SYSTEM BAL	ANCE	***		
Ín	Flue Gas	2.32	<u> </u>	662	660
	Limestone	157	•	i	157
	Service Water]	0.0528	-	0.0528
	Compressed Air				
Out	Stack Flue Gas	0.000393	· · · · · · · · · · · · · · · · · · ·	158	158
	Gypsum	577	1	l	577
	Wastewater		4250		4250
Std Dev	of Daily Closures, %	- 4			50.4

Table 7-11
Bailty Mass Balance for Cadmium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Ģas,	Total,
Ì	Stream	mg/s	mg/s	mg/s	_mg/s
UNIT 8 B	OILER		_		
- In	Coal	104			104
	Combustion Air				
	Makeup Water		0.000625		0.000625
Out	Flue Gas	43.4		0.608	44.0
	Bottom Ash	19. <u>6</u>			19.6
Average o	f Daily Closures, %				64.4
Closure of	Average Flows, %]	61.2
UNIT 8 ES	3P				
In	Flue Gas	43.4		0.608	44.0
Out	ESP Hopper Ash	49.0			49.0
	Flue Gas to AFGD	0.718		0.461	1.18
Average o	f Daily Closures, %				115
Closure of	Average Flows, %				114
CONDEN	SER		•		
<u>In</u>	Inlet Water		1.72		1.72
Out	Outlet Water		9.67		9.67
Average o	f Dally Closures, %				567
	Average Flows, %				56 3
BOTTOM	ASH SLUICE		•		
In	Bottom Ash	19.6			19.6
	Stuice Return		0.0240	1	0.0240
Out	Bottom Ash Sluice	19.6	0.0192		19.6
	f Daily Closures, %				100
Closure of	Average Flows, %	·			100.0
BOILER C	OVERALL BALANCE		·		_
kn	Coal	104			104
	Combustion Air			1	
	Makeup Water		0.000625		0.000625
	Sluice Return		0.0240		0.0240
Out	Bottom Ash Sluice	19.6	0.0192		19.6
ŀ	ESP Hopper Ash	49.0			49.0
	Flue Gas to AFGD	0.718		0.461	1.18
Average o	f Daily Closures, %				71.3
	Average Flows, %				67.1

Table 7-11 (Continued)
Bailly Mass Balance for Cadmium
Average of 9/3, 9/4, 9/6/93

	Process	Solid,	Liquid,	Gas,	Total,	
	Stream	mg/s	mg/s	mg/s	mg/s	
FLUE GAS MIXING						
ln	Unit 7 Flue Gas	1.09		0.492	1.59	
	Unit 8 Flue Gas	0.718		0.461.	1.18	
Out	Flue Gas to AFGD	1.81		0.953	2.76	
Average c	of Daily Closures, %			·· ·	100	
	f Average Flows, %				100	
OVERAL	L AFGD SYSTEM BAI	LANCE		•		
In	Flue Gas	1.81		0.953	2.76	
	Limestone	0.234		ľ	0.234	
	Service Water		. 0.107		0.107	
	Compressed Air					
Out	Stack Flue Gas	0.194	"	0.0755	0.269	
ı	Gypsum	0.0906			0.0906	
	Wastewater		0.342	•	0.342	
Average c	23.6					
Closure o	f Average Flows, %				22.6	

Table 7-11A

Bally Mass Balance for Cadmium

Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid.	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B	OILER				
ln	Coal	33.3			33.3
	Combustion Air		İ		
	Makeup Water		0.00		0.00
Out	Flue Gas	8.24		0.543	8.78
	Bottom Ash	13.4		i	13.4
Std Dev c	of Daily Closures, %				29.5
UNIT 8 E	SP _		·		
In	Flue Gas	8.24		0.543	8.78
Out	ESP Hopper Ash	9.90			9.90
i	Flue Gas to AFGO	0.590		0.213	0,798
Std Dev c	if Daily Closures, %				8.49
CONDE	ISER	· .			
ln	Inlet Water		0.0244		0.0244
Out	Outlet Water		8.22		8.22
Std Dev c	of Dality Closures, %				484
			·		
BOTTON	1 ASH SLUICE			_	
In	Bottom Ash	13.4			13.4
L	Sluice Return		0.0214		0.0214
Out	Bottom Ash Sluice	13.4	0.0162	_	13.4
Std Dev o	of Daily Closures, %		- "		0.504
BOILER	OVERALL BALANCE				
โก	Coal	33.3	<u> </u>		33.3
	Combustion Air				
	Makeup Water		0.00		0.00
	Sluice Return		0.0214		0.0214
Out	Bottom Ash Sluice	13.4	0.0162	· · · · ·	13.4
1	ESP Hopper Ash	9.90		1	9.90
ļ	Flue Gas to AFGD	0.590		0.213	0.798
Std Dev d	of Daily Closures, %				31.6
	-		المستحدد الم		

Table 7-11A (Continued) Bailly Mass Balance for Cadmium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid, (Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G/	FLUE GAS MIXING							
ln	Unit 7 Flue Gas	0.432		0.153	0.508			
	Unit 8 Flue Gas	0.590	1	0.213	0.798			
Out	Flue Gas to AFGD	0.970		0.363	1.28			
Std Dev o	of Daily Closures, %				0.00			
OVERAL	L AFGD SYSTEM BA	LANCE			_			
In	Flue Gas	0.970	. T	0.363	1.28			
	Limestone .	0.376	1	i	0.376			
	Service Water		0.0427	ŀ	0.0427			
	Compressed Air		, , , ,					
Out	Stack Flue Gas	0.0893		0.0470	0.0957			
	Gypsum	0.000604		. [0.000604			
	Wastewater		0.0441		0.0441			
Std Dev d	. 4.34							

Table 7-12 Bailly Mass Balance for Chromium Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
UNIT 8 BO	OILER						
ln	Coal	1640			1640		
	Combustion Air						
	Makeup Water		0.0125		0.0125		
Out	Flue Gas	558		1.22	559		
	Bottom Ash	692			692		
	f Daily Closures, %				78.9		
Closure of	Average Flows, %		·		76.3		
UNIT 8 ES							
In	Flue Gas	558		1.22	559		
Oüt	ESP Hopper Ash	584			584		
<u> </u>	Five Gas to AFGD	1.41		0.977	2.39		
	f Daily Closures, %				105		
	Average Flows, %				105		
CONDEN							
	Inlet Water		34.4		34.4		
	Outlet Water		34.4		34.4		
	f Daily Closures, %	<u></u>			100_		
	Average Flows, %				100		
	ASH SLUICE	, <u> </u>		· · · · · · · · · · · · · · · · · · ·			
ln in	Bottom Ash	692			692		
	Sluice Return		0.0819		0.0819		
Out	Bottom Ash Sluice	692	0.0819		692		
	f Daily Closures, %				100		
	Average Flows, %				100		
	VERALL BALANCE						
ln	Coal	1640			1640		
	Combustion Air]			
	Makeup Water		0.0125	1	0.0125		
	Sluice Return		0.0819		0.0819		
Out	Bottom Ash Sluice	692	0.0819		692		
	ESP Hopper Ash	584			584		
	Flue Gas to AFGD	1.41		0.977	2.39 80.7		
	Average of Daily Closures, %						
Closure of	Average Flows, %				78.0		

Table 7-12 (Continued)
Bailly Mass Balance for Chromium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s '	mg/s		
FLUE GA	FLUE GAS MIXING						
İn	Unit 7 Flue Gas	4.20		0.446	4.65		
	Unit 8 Flue Gas	1.41		0.977	2.39		
Out	Flue Gas to AFGD	5.61		1.42	7.04		
Average o	of Daily Closures, %				100		
_	f Average Flows, %				100		
OVERAU	L AFGD SYSTEM BA	LANCE					
<u>In</u>	Flue Gas	5.61		1.42	7.04		
	Limestone	4.10			4.10		
ľ	Service Water		0.259		0.259		
	Compressed Air		i	<u>. </u>			
Out	Stack Flue Gas	1.66	Ţ,	0.0850	1.75		
	Gypsum	_ 323	i	!	323		
	Wastewater	<u>i</u>	0.0451		0.0451		
Average c	Average of Daily Closures, %						
Closure of	f Average Flows, %				2850		

Table 7-12A
Bailty Mass Balance for Chromium
Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
I n	Coal	501		·	501			
	Combustion Air							
	Makeup Water	i	0.00		0.00			
Out	Flue Gas	58.5		0.631	59.0			
	Bottom Ash	141			141			
Std Dev c	of Daily Closures, %				14.8			
UNIT 8 E								
In	Flue Gas	58.5		0.631	59.0			
Out	ESP Hopper Ash	71.7			71.7			
	Flue Gas to AFGD	0.165	. .	0.126	0.129			
Std Dev c	of Daily Closures, %				5.97			
CONDEN	ISER							
in	Inlet Water		0.488		0.488			
Out	Outlet Water		0.488		0.488			
Std Dev c	of Daily Closures, %	-			0.00			
		•						
BOTTOM	ASH SLUICE		-					
Ìπ	Bottom Ash	141			741			
	Sluice Return		0.00477	ŀ	0.00477			
Out	Bottom Ash Sluice	141	0.00477		. 141			
Std Dev c	of Daily Closures, %				0.00			
BOILER	OVERALL BALANCE							
ln	Coal	501			501			
ľ	Combustion Air		<u> </u>					
ł	Makeup Water		0.00		0.00			
	Sluice Return		0.00477	[0.00477			
Out	Bottom Ash Sluice	141	0.00477		141			
l	ESP Hopper Ash	71.7			71.7			
ł	Flue Gas to AFGD	0.165		0.126	0.129			
Std Dev o	of Daily Closures, %	_ _			16.4			
		•						
	·							

Table 7-12A (Continued) Bailly Mass Balance for Chromium Std Dev of 9/3, 9/4, 9/5/93

•	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G	FLUE GAS MIXING							
þ	Unit 7 Flue Gas	1.19		0.0483	1.16			
	Unit 8 Flue Gas	0.165		0.126	0.129			
Out	Flue Gas to AFGD	1.15		0.122	1.23			
Std Dev	of Daily Closures, %		•		- G.Q0			
		<u>-</u>						
OVERAL	L AFGD SYSTEM BAL	ANCE						
In	Flue Gas	1.15		0.122	1,23			
	Limestone	0.228			0.228			
	Service Water	!	0.00507		0.00507			
	Compressed Air	~	.					
Out	Stack Flue Gas	0.241	-	0.0363	0.277			
	Gypsum	353	. 1	1	-353			
	Wastewater	ŀ	0.0312	. 1	0.0312			
Std Dev	2840							
			· - · - ·					

Table 7-13
Bailly Mass Balance for Cobalt
Average of 9/3, 9/4, 9/5/93

<u> </u>	Process	Solid,	Uquid,	Gas,	Total,
•	Stream	_mg/s	mg/s	mg/s	mg/s
UNIT 8 B	OILER				·
ln.	Coal	98.1			98.1
ł	Combustion Air	i	ľ	İ	
	Makeup Water		0.00416		0.00416
Out	Flue Gas	51.8	· I	0.0577	51.9
	Bottom Ash	<u>60</u> .8		<u> </u>	8.09
Average o	f Daily Closures, %			1	116
	Average Flows, %				115
UNIT 8 ES					
<u>in</u>	Flue Gas	51.8		0.0577	51.9
Out	ESP Hopper Ash	65.8	1		65.8
	Flue Gas to AFGD	0.0309	1	0.0459	0.0768
	f Daily Closures, %				127
	Average Flows, %				127
CONDEN	SER				
ln	Inlet Water		26.6		26.6
Out	Outlet Water	. <u> </u>	11.5		11.5
	f Dally Closures, %		<u>. </u>		73.3
	Average Flows, %				43.1
BOTTOM	ASH SLUICE				
In	Bottom Ash	60.8	1	i	60.8
L	Sluice Return		0.0273		0.0273
Out	Bottom Ash Sluice	60.8	0.0776		60.9
	f Daily Closures, %				100
	Average Flows, %			<u> </u>	100
BOILER C	OVERALL BALANCE		·		
ln ln	Coal	98.1			98.1
1	Combustion Air				
	Makeup Water		0.00416		0.00416
	Skuice Return		0.0273		0.0273
Out	Bottom Ash Sluice	60.8	0.0776		60.9
ľ	ESP Hopper Ash	65.8	ŀ		65.8
	Flue Gas to AFGD	0.0309	<u></u>	0.0459	0.0768
	f Daily Closures, %				130
Closure of	Average Flows, %				129

Table 7-13 (Continued)
Bailly Mass Balance for Cobalt
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
FLUE G	AS MIXING						
ln	Unit 7 Flue Gas	0.333	!	0.0190	0.352		
	Unit 8 Flue Gas	0.0309		0.0459	0.0768		
Out	Flue Gas to AFGD	0.363		0.0649	0.428		
Average	of Daily Closures, %				100		
Closure d	of Average Flows, %				100		
OVERAL	L AFGD SYSTEM BAL	ANCE					
I n	Flue Gas	0.363		0.0649	0.428		
	Limestone	1.90			1.90		
	Service Water	1	0.164		0.164		
	Compressed Air				<u>.</u>		
Out	Stack Flue Gas	0.0457		0.0236	0.0693		
	Gypsum	1.36			<i>1.3</i> 6		
	Wastewater	ì	0.752		0.752		
Average	Average of Daily Closures, %						
Closure d	of Average Flows, %				87.6		

Table 7-13A Bailly Mass Balance for Cobalt Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B	OILER				
În	Coal	10.4			10.4
ł	Combustion Air			Ī	
	Makeup Water		0.00	<u>:</u>	0.00
Out	Flue Gas	5.09		0.0520	5.14
	Bottom Ash	3.54			3.54
Std Dev c	of Daily Closures, %	<u> </u>			10.6
UNIT 8 E	 				
In	Flue Gas	5.09		0.0520	5.14
Out	ESP Hopper Ash	11.5		ŀ	11.5
	Flue Gas to AFGD	0.00166		0.0326	0.0337
Std Dev c	of Daily Closures, %		<u> </u>	· ·	<u>1</u> 1.6
				J	
CONDEN		-			
<u>ln</u>	Inlet Water	<u>-</u>	26.1		26.1
Out	Outlet Water		0.163		0.163
Std Dev c	of Daily Closures, %				46.2
	ASH SLUICE				
h	Bottom Ash	3.54			3.54
	Sluice Return		0.00159		0.00159
Out	Bottom Ash Sluice	3.54	0.0886		3.58
Std Dev c	of Daily Closures, %				0.139
BOILER (OVERALL BALANCE				
In	Coal	10.4			10.4
1	Combustion Air			i	
	Makeup Water		0.00		0.00
<u> </u>	Sluice Return		0.00159		0.00159
Out	Bottom Ash Sluice	3.54	0.0886		3.58
	ESP Hopper Ash	11.5	· .	i	11.5
	Flue Gas to AFGD	0.00166		0.0326	0.0337
Std Dev c	of Daily Closures, %				5.30

Table 7-13A (Continued) Bailly Mass Balance for Cobalt Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
FLUE GA	FLUE GAS MIXING 40%						
ĺn	Unit 7 Flue Gas	0.113		0.00453	0.117		
	Unit 8 Flue Gas	0.00166	1_	0.0326	<u>0.03</u> 37		
Out	Flue Gas to AFGD	0.113		0.0306	<u>0.1</u> 11		
Std Dev o	of Daily Closures, %				0.00		
OVERAL	L AFGD SYSTEM BA	LANCE					
İn	Flue Gas	0.113		0.0306	0.111		
	Limestone	0.820	1]	0.820		
	Service Water		0.135		0.135		
ŀ	Compressed Air				•		
Out	Stack Flue Gas	0.00519		0.000196	0.00506		
	Gypsum [0.00906		1	0.00906		
ŀ	Wastewater		0.105		0.105		
Std Dev o	32,9						

Table 7-14
Bailly Mass Balance for Copper
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
ln.	Coal	369			369			
	Combustion Air	1						
	Makeup Water		0.0139		0.0139			
Out	Flue Gas	258		0.476	258			
<u>.</u>	Bottom Ash	132			132			
	f Daily Closures, %		<u> </u>		107			
	Average Flows, %				106			
UNIT 8 ES			· · · · · · · · · · · · · · · · · · ·					
<u>h</u>	Flue Gas	258		0.476	258			
Out	ESP Hopper Ash	309			309			
	Flue Gas to AFGD	0.518		0.519	1.04			
	f Daily Closures, %		<u> </u>		122			
	Average Flows, %				120			
CONDEN								
<u>In</u>	inlet Water		59.6		59.6			
Out	Outlet Water		74.1		74.1			
	f Daily Closures, %				130			
	Average Flows, %			<u></u>]	124			
	ASH SLUICE							
In	Bottom Ash	132		. 1	132			
	Sluice Return		0.210		0.210			
Out	Bottom Ash Sluice	132	0.159		132			
	f Daily Closures, %				100.0			
	Average Flows, %				100.0			
BOILER C	OVERALL BALANCE							
Įπ	Coal	369			369			
	Combustion Air							
	Makeup Water		0.0139		0.0139			
	Sluice Return		0.210		0.210			
Out	Bottom Ash Sluice	132	0.159		132			
	ESP Hopper Ash	309		<u> </u>	309			
	Flue Gas to AFGD	0.518		0.519	1.04			
	Average of Daily Closures, %							
Closure of	Average Flows, %				120			

Table 7-14 (Continued)
Bally Mass Balance for Copper
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
L	Stream _	mg/s	mg/s	mg/s	mg/s		
FLUE GAS MIXING							
lin	Unit 7 Flue Gas	2.23		0.285	2.52		
	Unit 8 Flue Gas	0.518		0.519	1.04		
Out	Flue Gas to AFGD	2.75		0.804	3.56		
Average (of Daily Closures, %		•	· ,	100		
Closure o	f Average Flows, %				100		
OVERAL	L AFGD SYSTEM BAI	LANCE					
ln	Flue Gas	2.75	i	0.804	3.56		
	Limestone	15.4		·	15.4		
İ	Service Water		0.464	l	0.464		
	Compressed Air			. 1	-		
Qut	Stack Flue Gas	0.736		0.365	1.10		
i	Gypsum	3.94			3.94		
	Wastewater		0.0783		0.0783		
Average of Dally Closures, %							
Closure c	Closure of Average Flows, %						

Table 7-14A Balliy Mass Balance for Copper Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 BO	DILER		·		
Įμ	Coal	33.8		- 1	33.8
	Combustion Air		- 1		
	Makeup Water		0.00307		0.00307
Out	Flue Gas	46.1		0.334	46.4
	Bottom Ash	26.7			26.7
Std Dev of	Daily Closures, %				24.3
UNIT 8 ES					
ln_	Flue Gas	46.1		0.334	46.4
Out	ESP Hopper Ash	18.3			18.3
	Flue Gas to AFGD	0.203	<u>:. </u>	0.415	0.353
Std Dev of	Daily Closures, %			· <u>-</u>	19.6
<u> </u>					
CONDEN	·				
In	Inlet Water		7.42		7.42
Qut	Outlet Water		39.2		39.2
Std Dev of	Daily Closures, %				78.0
				_ 1	
воттом	ASH SLUICE				
ln i	Bottom Ash	26.7			26.7
	Sluice Return		0.0113		0.0113
Out	Bottom Ash Sluice	26.7	0.0882		26.6
Std Dev of	Daily Closures, %				0.0647
		· · · · · · · · · · · · · · · · · · ·			
BOILER C	VERALL BALANCE				
ţn.	Coal	33.8			33.8
	Combustion Air			ŀ	
1	Makeup Water		0.00307	ł	0.00307
	Sluice Return		0.0113	l	0.0113
Out	Bottom Ash Sluice	26.7	0.0882		26.6
J	ESP Hopper Ash	18.3	i	ŀ	18.3
	Flue Gas to AFGD	0.203	[[0.415	0.353
Std Dev of	Daily Closures, %				16.2

Table 7-14A (Continued) Bailly Mass Balance for Copper Std Dev of 9/3, 9/4, 9/5/93

	Process	Solld,	Liquid,	Gas,	Total,			
L	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G/	FLUE GAS MIXING							
ín	Unit 7 Flue Gas	0.470	T	0.155	0.400			
	Unit 8 Flue Gas	- 0.203		0.415	0.353			
Out	Flue Gas to AFGD	0.546		0.551	0.0806			
Std Dev o	of Daily Closures, %				0.00			
			-					
OVERAL	L AFGD SYSTEM BAI	ANCE		•				
ln	Flue Gas	0.546	T	0.551	0.0806			
ì	Limestone	0.208			0.208			
}	Service Water		0.0591		0.0591			
}	Compressed Air							
Out	Stack Flue Gas	0.481		0.235	0.713			
•	Gypsum	4.08		- 1	4.08			
	Wastewater	-	0.00731		0.00731			
Std Dev o	24.9							
	· <u>-</u>							

Table 7-15 Bailly Mass Balance for Lead Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total.			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
In	Coal	298			298			
	Combustion Air			1				
L	Makeup Water		0.0104		0.0104			
Out	Flue Gas	392		0.417	392			
	Bottom Ash	15.2			15.2			
	f Dally Closures, %	·			141			
Closure of	Average Flows, %				137			
UNIT 8 ES	\$₽				_			
In	Flue Gas	392		0.417	392_			
Out	ESP Hopper Ash	424			424			
	Flue Gas to AFGD	1.19		0.212	1.40			
Average o	f Daliy Closures, %				110			
Closure of	Average Flows, %	···			108			
CONDEN	SER		·					
in	Inlet Water		28.6		28.6			
Out	Outlet Water		28.6		28.6			
Average o	f Daily Closures, %		•	•	100			
Closure of	Average Flows, %				100			
воттом	ASH SLUICE							
In	Bottom Ash	15.2			15.2			
Ĺ	Sluice Return		0.0682		0.0682			
Out	Bottom Ash Sluice	15.2	0.0975		15.3			
Average o	f Daily Closures, %				100			
Closure of	Average Flows, %				100			
BOILER O	OVERALL BALANÇE							
In	Coal	298			298			
İ	Combustion Air							
	Makeup Water		0.0104		0.0104			
L	Sluice Return		0.0682		0.0682			
Qut	Bottom Ash Sluice	15.2	0.0975		15.3			
	ESP Hopper Ash	424		j	424			
	Flue Gas to AFGD	1.19		0.212	1.40			
Average o	Average of Daily Closures, %							
	Average Flows, %		· · · · · · · · · · · · · · · · · · ·		148			

Table 7-15 (Continued)
Bailly Mass Balance for Lead
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s -	mg/s
FLUE GA					
ln	Unit 7 Flue Gas	3.86		0.0710	3.93
	Unit 8 Flue Gas	1.19		0.212	1.40
Out	Flue Gas to AFGD	5.05		0.283	5.33
Average o	of Daily Closures, %				100
Closure o	f Average Flows, %				100
OVERAL	LÄFGD SYSTEM BAI	LANCE			
ļ n	Flue Gas	5.05		0.283	5.33
ł	Limestone	0.424		Į.	0.424
	Service Water		0.216		0.216
	Compressed Air		·]		
Out	Stack Flue Gas	0.893		0.133	1.03
ļ	Gypsum	2.26		· •	2.26
	Wastewater	j	0.0233	j	0.0233
Average o	56.8				
Closure o	f Average Flows, %				55.5

Table 7-15A
Bailly Mass Balance for Lead
Std Dev of 9/3, 9/4, 9/5/93

••	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
UNIT 8 B	OILER						
Įņ.	Coal	46.2			46.2		
	Combustion Air	İ	ľ	İ			
	Makeup Water		0.00		<u> </u>		
Out	Flue Gas	60.3		0.350	60.3		
	Bottom Ash	2.63	:		2.63		
Std Dev o	of Daily Closures, %	·			44.8		
UNIT 8 E	SP						
<u> n</u>	Fiue Gas	60.3		0.350	60.3		
Out	ESP Hopper Ash	23.0			23.0		
	Fiue Gas to AFGD	1.00		0.0547	0.950		
Std Dev o	of Daily Closures, %				10.7		
CONDE	NSER						
Ìn	Inlet Water		0.407		0.407		
Out	Outlet Water		0.407		0.407		
Std Dev o	of Daily Closures, %				0.00		
		•					
BOTTON	f ASH SLUIÇE						
ln	Bottom Ash	2.63	1		2.63		
	Sluice Return		0.00397	ì	0.00397		
Out	Bottom Ash Sluice	2.63	0.0477	1	2.63		
Std Dev o	of Daily Closures, %				0.335		
<u> </u>							
BOILER	OVERALL BALANCE						
ln	Coal	46.2	T I		46.2		
	Combustion Air	ļ					
	Makeup Water	- 1	0.00		0.00		
	Sluice Return]	0.00397		0.00397		
Out	Bottom Ash Sluice	2.63	0.0477		2.63		
	ESP Hopper Ash	23.0			23.0		
	Flue Gas to AFGD	1.00		0.0547	0.950		
Std Dev d	Std Dev of Daily Closures, %						
			.		33.2		

Table 7-15A (Continued) Bailly Mass Balance for Lead Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G/	FLUE GAS MIXING							
ln	Unit 7 Flue Gas	0.881		0.0522	0.933			
	Unit 8 Flue Gas	1.00		0.0547	0.950			
Out	Flue Gas to AFGD	1.76	I	0.0406	1.76			
Std Dev o	of Daily Closures, %				0,00			
	•	-	•					
OVERAL	L AFGD SYSTEM BAI	LANÇE						
<u>In</u>	Flue Gas	1.76		0.0406	1.76			
	Limestone	0.00768		1	0.00768			
	Service Water	i	0.00422	1	0.00422			
	Compressed Air			-				
Out	Stack Flue Gas	0.480		0.0816	0.550			
	Gypsum	0.0151			0.0151			
	Wastewater		0.00131	L	0.00131			
Std Dev o	of Daily Closures, %				7.03			
	-				<u> </u>			

Table 7-16 Bailly Mass Balance for Manganese Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
UNIT 8 B	UNIT 8 BOILER						
ln	Coal	1130			1130		
1	Combustion Air						
	Makeup Water		0.0260		0.0260		
Out	Flue Gas	322		0.445	323		
	Bottom Ash	860			860		
Average o	f Daily Closures, %				105		
Closure of	Average Flows, %				105		
UNIT 8 ES	SP						
In	Flue Gas	322		0.445	323		
Out	ESP Hopper Ash	355			355		
<u> </u>	Flue Gas to AFGD	0.221		0.176	0.397		
	f Daily Closures, %				111		
	Average Flows, %			<u> </u>	110		
ÇONDEN	SER			· <u>-</u>	ı		
ln	inlet Water		71.6		71.6		
	Outlet Water		24.5		24.5		
Average o	f Daily Closures, %				34.2		
	Average Flows, %			1	34.3		
BOTTOM	ASH SLUICE			-			
ļt:	Bottom Ash	860		1	860		
	Sluice Return		0.189		0.189		
Out	Bottom Ash Sluice	860	0.123		· 860		
Average o	f Daily Closures, %	•			100.0		
Closure of	Average Flows, %				100.0		
BOILER C	OVERALL BALANCE						
<u> </u>	Coal	1130		1	1130		
j	Combustion Air						
i	Makeup Water		0.0260		0.0260		
	Sluice Return		0.189	[0.189		
Out	Bottom Ash Sluice	860	0.123		860		
	ESP Hopper Ash	355			355		
4	Flue Gas to AFGD	0.221	.	0.176	0.397		
Average o	108						
	Average Flows, %				108		

Table 7-16 (Continued)
Bailly Mass Balance for Manganese
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
FLUE GA	S MIXING		•				
In	Unit 7 Flue Gas	1.46		0.0666	1.53		
	Unit 8 Flue Gas	0.221		0.176	0.397		
Out	Flue Gas to AFGD	1.68		0.243	1.92		
Average o	f Daily Closures, %			·	100		
	Average Flows, %				100		
OVERALL	. AFGD SYSTEM BA	LANCE	-		_		
- IU	Flue Gas	1.68		0.243	1.92		
	Limestone	471]	1	471		
	Service Water	i	0.440		0.440		
	Compressed Air			[
Out	Stack Flue Gas	1.39		0.0946	1.49		
	Gypsum	54.9	j	i i	54.9		
	Wastewater		396		396		
Average o	Average of Daily Closures, %						
Closure of	Average Flows, %				95.6		

Table 7-16A Balliy Mass Balance for Manganese Std Dev of 9/3, 9/4, 9/5/93

_	Process	Solid,	Liquid,	Gas,	Total,
_	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 BO	DILER				
in	Coal	10.8			10.8
	Combustion Air				
	Makeup Water		0.00		0.00
Qut	Flue Gas	31,2		0.584	31.2
	Bottom Ash	59.2			59.2
Std Dev of	Daily Closures, %		<u> </u>	<u>-</u>	6.51
	-				
UNIT 8 ES					
tn	Flue Gas	31.2		0.584	31.2
Out	ESP Hopper Ash	15.4		•	15.4
	Flue Gas to AFGD	0.161		0.0934	0.118
Std Dev of	Daily Closures, %				15.9
CONDEN					
_ In	Inlet Water		1.02		1.02
Out	Outlet Water		8.95		8.95
Std Dev of	Daily Closures, %				12.1
Ĺ					
BOTTOM	ASH SLUICE				
ī In	Bottom Ash	59.2			59.2
	Służce Return		0. <u>0321</u>		0.0321
Qut	Bottom Ash Sluice	<u>59.2</u>	0.0435		59.2
Std Dev of	f Daily Closures, %				0.00899
BOILER C	VERALL BALANCE				
ln	Coal	10.8			10.8
	Combustion Air		[
	Makeup Water		0.00		0.00
	Sluice Return		0.0321		0.0321
Out	Bottom Ash Sluice	59.2	0.0435		59.2
	ESP Hopper Ash	15.4			15.4
	Flue Gas to AFGD	0.161		0.0934	0.118
Std Dev of	3.97				
<u> </u>					

Table 7-16A (Continued) Ballity Mass Balance for Manganese Std Dev of 9/3, 9/4, 9/5/93

•	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE GA	FLUE GAS MIXING							
ln	Unit 7 Flue Gas	0.357		0.00233	0.359			
	Unit 8 Flue Gas	0.161		0.0934	0.118			
ğ	Flue Gas to AFGD	0.380		0.0956	0.432			
Std Dev c	of Dally Closures, %				0.00			
				•				
OVERAL	L AFGD SYSTEM BA	LANCE			<u> </u>			
'n	Flue Gas	0.380		0.0956	0.432			
	Limestone	~ 17.2 [i i	1	17,2			
	Service Water	į	0.183		0.183			
	Compressed Air			1				
Out	Stack Flue Gas	0.129	-	0.000786	0.130			
	Gypsum	11.1		1	11.1			
	Wastewater		16.7		16.7			
Std Dev o	1.05							

Table 7-17 Bailly Mass Balance for Mercury Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
ł	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 B	UNIT 8 BOILER							
in	Coal	4.09			4.09			
[Combustion Air	1	1					
Ì	Makeup Water		0.000833]	0.000833			
Out	Flue Gas	0.0726		1.07	1.14			
	Bottom Ash	0.00370			0.00370			
Average o	f Daily Closures, %				29.2			
Closure of	Average Flows, %				28.0			
UNIT 8 E	SP	·						
ln in	Flue Gas	0.0726		1.07	1.14			
Out	ESP Hopper Ash	0.00887			0.00887			
<u> </u>	Flue Gas to AFGD	0.00941		1.23	1.24			
Average o	f Daily Closures, %				116			
Closure of	Average Flows, %				110			
CONDEN	SER							
<u>In</u>	Inlet Water		1.56		1.56			
Out	Outlet Water		1.64		1.64			
	of Daily Closures, %				119			
Closure of	Average Flows, %				105			
BOTTOM	ASH SLUICE		- · · - · · · · · · · · · · · · · · · ·					
in	Bottom Ash	0.00370	•	ľ	0.00370			
	Sluice Return		0.00483		0.00483			
Out	Bottom Ash Sluice	0.00370	0.00463		0.00833			
	of Daily Closures, %				102			
	f Average Flows, %				97.7			
BOILER (OVERALL BALANCE							
ln	Coai	4.09			4.09			
	Combustion Air	1						
	Makeup Water		0.000833		0.000833			
	Sluice Return		0.00483		0.00483			
Oüt	Bottom Ash Sluice	0.00370	0.00463		0.00833			
	ESP Hopper Ash	0.00887	 	i	0.00887			
	Flue Gas to AFGD	0.00941		1.23	1.24			
Average c	Average of Daily Closures, %							
Closure o	f Average Flows, %				30.8			

Table 7-17 (Continued) Bailly Mass Balance for Mercury Average of 9/3, 9/4, 9/5/93

į

4

Process Liquid, Solid. Gas. Total. Stream mg/s mg/s mg/s mg/s FLUE GAS MIXING Unit 7 Flue Gas 0.00883 0.690 0.699 1.24 Unit 8 Flue Gas 0.00941 1.23 Flue Gas to AFGD 1.92 1.94 Out 0.0182 Average of Dally Closures, % 100 Ciosure of Average Flows, % 100 OVERALL AFGD SYSTEM BALANCE 1.94 Flue Gas 0.0182 1.92 Limestone 0.00678 0.00678 Service Water 0.00836 0.00836Compressed Air Stack Flue Gas 1.32 Out 0.00395 1.32 Gypsum 2.23 2.23 0.00316 Wastewater 0.00316 Average of Dally Closures, % 182 Closure of Average Flows, % 182

Table 7-17A Bailly Mass Balance for Mercury Std Dev of 9/3, 9/4, 9/5/93

Out Outlet Water 1.32 1.32 Std Dev of Daily Closures, % 92.8 BOTTOM ASH SLUICE 0.00182 0.00182 In Bottom Ash 0.00182 0.00201 Out Bottom Ash Sluice 0.00182 0.0000312 0.00183 Std Dev of Daily Closures, % 26.2 BOILER OVERALL BALANCE 0.535 0.535 Combustion Air Makeup Water 0.000314 0.000314 Stuice Return 0.00201 0.00201		Process	Solid,	Liquid,	Gas,	Total,
in Coal Combustion Air Makeup Water 0.000314 0.000314 0.000314 0.000314 0.000314 0.000314 0.000314 0.345 0.355 0.00182 0.00182 0.00182 0.00182 0.00182 0.00182 0.00182 0.00182 0.00182 0.00231 0.00231 0.00231 0.00231 0.00231 0.00231 0.00331		Stream	mg/s	mg/s	mg/s	mg/s
Combustion Air Makeup Water 0.000314 0.000314 0.000314	UNIT 8 B					
Makeup Water	in	Coal	0.535	-	•	0.535
Out Flue Gas 0.0101 0.345 0.365 Bottom Ash 0.00182 0.00182 0.00182 Std Dev of Daily Closures, % 13.4 UNIT 8 ESP 0.00231 0.345 0.355 Out ESP Hopper Ash Flue Gas to AFGD 0.00842 0.0930 0.0984 Std Dev of Daily Closures, % 32.2 0.0930 0.0984 CONDENSER In Inlet Water 0.458 0.458 0.458 Out Outlet Water 1.32 1.32 1.32 Std Dev of Daily Closures, % 92.8 BOTTOM ASH SLUICE 0.00182 0.00201 In Bottom Ash Sluice Notice Return 0.00201 0.00201 0.00201 Out Bottom Ash Sluice Combustion Air Makeup Water Suice Return 0.00201 0.00314 0.00314 Suice Return 0.00201 0.00201 0.00201 Out Bottom Ash Sluice Esp Hopper Ash 0.00231 0.00201 0.00231 ESP Hopper Ash 0.00231 0.00231 0.00231 Fiue Gas to AFGD 0.00842 0.0030 0.0984	ŀ	Combustion Air]	
Bottom Ash 0.00182 0.00182 13.4		Makeup Water		0.000314		0.000314
Stid Dev of Daily Closures, % 13.4	Ort	Flue Gas	0.0101		0.345	0.355
In Flue Gas 0.0101 0.345 0.355 Out ESP Hopper Ash 0.00231 0.0930 0.0984 Stid Dev of Daily Closures, % 32.2	<u> </u>	Bottom Ash	0.00182		_ :	0.00182
In Flue Gas 0.0101 0.345 0.355 Out ESP Hopper Ash 0.00231 0.0930 0.0984 Stid Dev of Daily Closures, % 32.2 CONDENSER	Std Dev o	f Daily Closures, %				13.4
In Flue Gas 0.0101 0.345 0.355 Out ESP Hopper Ash 0.00231 0.0930 0.0984 Stid Dev of Daily Closures, % 32.2 CONDENSER			•			
Out ESP Hopper Ash Flue Gas to AFGD 0.00231 0.0930 0.0984 Std Dev of Daily Closures, % 32.2 CONDENSER In Inlet Water 0.458 0.458 Out Outlet Water 1.32 1.32 Std Dev of Daily Closures, % 92.8 BOTTOM ASH SLUICE In Bottom Ash Sluice Return 0.00201 0.00201 Out Bottom Ash Sluice O.00182 0.000312 0.00183 Std Dev of Daily Closures, % 26.2 BOILER OVERALL BALANCE 1.32 0.00314 In Coal Makeup Water Stuice Return 0.00314 0.00314 Out Bottom Ash Sluice Esp Hopper Ash Sluice Esp Hopper Ash O.00231 Fiue Gas to AFGD 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0930 0.0984	UNIT 8 E	SP				
Flue Gas to AFGD 0.00842 0.0930 0.0984	In	Flue Gas	0.0101		0.345	0.355
Std Dev of Daily Closures, % 32.2	Out	ESP Hopper Ash	0.00231			0.00231
CONDENSER		Flue Gas to AFGD	0.00842		0.0930	0.0984
In Inlet Water 0.458 0.458 Out Outlet Water 1.32 1.32 1.32 Std Dev of Daily Closures, % 92.8	Std Dev o	f Daily Closures, %				32.2
In Inlet Water 0.458 0.458 Out Outlet Water 1.32 1.32 1.32 Std Dev of Daily Closures, % 92.8						
Out Outlet Water 1.32 1.32 Std Dev of Daily Closures, % 92.8 BOTTOM ASH SLUICE 0.00182 0.00201 In Bottom Ash Sluice Return 0.00201 0.00201 Out Bottom Ash Sluice 0.00182 0.000312 0.00183 Std Dev of Daily Closures, % 26.2 BOILER OVERALL BALANCE 0.535 0.535 Combustion Air Makeup Water Sluice Return 0.000314 0.000314 Out Bottom Ash Sluice 0.00182 0.00201 0.00201 Out Bottom Ash Sluice 0.00231 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0930 0.0984	CONDEN	ISER			_	
BOTTOM ASH SLUICE In Bottom Ash 0.00182 0.00201 0.00201 0.00201 0.00201 0.00201 0.00183 Std Dev of Daily Closures, % 26.2	n	inlet Water		0.458		0.458
BOTTOM ASH SLUICE In Bottom Ash 0.00182 0.00201 0.00201 0.00201	Out	Outlet Water		1.32		1.32
In	Std Dev o	f Daily Closures, %				92.8
In			•—		-	
Sluice Return 0.00201 0.00201	BOTTOM	ASH SLUICE				
Out Bottom Ash Sluice 0.00182 0.0000312 0.00183 Std Dev of Daily Closures, % 26.2 BOILER OVERALL BALANCE In Coal 0.535 0.535 Combustion Air 0.000314 0.000314 Makeup Water 0.00201 0.00201 Out Bottom Ash Sluice 0.00182 0.0000312 ESP Hopper Ash 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0930 0.0984	1n	Bottom Ash	0.00182			0.00182
26.2 26.2		Sluice Return		0.00201	,	0.00201
BOILER OVERALL BALANCE	Out	Bottom Ash Sluice	0.00182	0.0000312		0.00183
in Coal 0.535 0.535 0.535 0.535 0.535 Combustion Air Makeup Water 0.000314 0.000314 0.00201 0.00201 0.00201 0.00201 0.00201 0.00201 0.00231 ESP Hopper Ash 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0030 0.0930 0.0984	Std Dev o	f Daily Closures, %				26.2
in Coal 0.535 0.535 0.535 0.535 0.535 Combustion Air Makeup Water 0.000314 0.000314 0.00201 0.00201 0.00201 0.00201 0.00201 0.00201 0.00231 ESP Hopper Ash 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0030 0.0930 0.0984						
Combustion Air	BOILER (OVERALL BALANCE				
Makeup Water 0.000314 0.000314 Stuice Return 0.00201 0.00201 Out Bottom Ash Sluice 0.00182 0.0000312 0.00183 ESP Hopper Ash 0.00231 0.00231 0.0030 0.0930 Flue Gas to AFGD 0.00842 0.0930 0.0984	İn	Coal	0.535	·		0.535
Stuice Return 0.00201 0.00201 Out Bottom Ash Sluice 0.00182 0.0000312 0.00183 ESP Hopper Ash 0.00231 0.00231 0.0030 0.00842 Flue Gas to AFGD 0.00842 0.0930 0.0984		Combustion Air				
Out Bottom Ash Sluice 0.00182 0.0000312 0.00183 ESP Hopper Ash 0.00231 0.00231 0.00231 Flue Gas to AFGD 0.00842 0.0930 0.0984		Makeup Water		0.000314		0.000314
ESP Hopper Ash 0.00231 0.00231 Fiue Gas to AFGD 0.00842 0.0930 0.0984		Stuice Return		0.00201		0.00201
Flue Gas to AFGD 0.00842 0.0930 0.0984	Out	Bottom Ash Sluice	0.00182	0.0000312		0.00183
		ESP Hopper Ash	0.00231		1	0.00231
Std Dev of Daily Closures, % 6.07	l	Flue Gas to AFGD	0.00842		0.0930	0.0984
	Std Dev o	6.07				
				•	-	

Table 7-17A (Continued) Bailty Mass Balance for Mercury Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid.	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE GA	S MIXING				
'n	Unit 7 Flue Gas	0.00409		. 0.101	0.0986
	Unit 8 Flue Gas	0.00842		0.0930	0.0984
Out	Flue Gas to AFGD	0.00669		0.0327	0.0354
Std Dev c	of Daily Closures, %	•	•		.0.00
OVERAL	L AFGD SYSTEM BA	LANCE			
In	Flue Gas	0.00669	i	0.0327	0.0354
ļ.	Limestone	0.000123			0.000123
ł	Service Water		0.00115		.0.00115
j	Compressed Air		<u> </u>		-
Out	Stack Flue Gas	0.00138		0.192	0.191
i	Gypsum	0.0433			0.0433
	Wastewater	-	0.000698		0.000698
Std Dev c	4.86				
				-	

Table 7-18
Bailly Mass Balance for Mercury (B-R)
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total.
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B				11194	
in	Coal	3.89			3.89
	Combustion Air		ŀ	0.0481	0.0481
	Makeup Water	i	0.000833	+	0.000833
Out	Flue Gas			2.18	2.18
	Bottom Ash	0.00370			0.00370
Average o	f Daily Closures, %				54.8
	Average Flows, %				55.4
UNIT 8 E	SP	<u>.</u>			
In	Flue Gas			2.18	2.18
Out	ESP Hopper Ash	0.00887			0.00887
	Flue Gas to AFGD			2.57	2.57
	f Daily Closures, %				120
	Average Flows, %				118
CONDEN			·		<u> </u>
.In	Inlet Water		1.56		1.56
Out	Outlet Water		1.64		1.64
	f Daily Closures, %				119
	Average Flows, %	·			105
BOTTOM	ASH SLUICE				
ln i	Bottom Ash	0.00370			0.00370
	Sluice Return		0.00483		0.00483
Out	Bottom Ash Sluice	0.00370	0.00463		0.00833
	f Daily Closures, %				102
	Average Flows, %				97.7
BOILER (OVERALL BALANCE				
i in	Coal	3.89		l	3.89
l	Combustion Air			0.0481	0.0481
	Makeup Water		0.000833	j.	0.000833
	Sluice Return		0.00483	<u></u> _i	0.00483
Qut	Bottom Ash Sluice	0.00370	0.00463		0.00833
	ESP Hopper Ash	0.00887		•	0.00887
	Flue Gas to AFGD			2.57	2.57
Average o	65.2				
Closure of	Average Flows, %				65.5

Table 7-18 (Continued) Bailty Mass Balance for Mercury (B-R) Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE G/	FLUE GAS MIXING							
In	Unit 7 Flue Gas		1	1.27	1.27			
	Unit 8 Flue Gas		i	2.57	2.57			
Out	Flue Gas to AFGD			3.84	3.84			
Average (of Daily Closures, %				100			
Closure o	f Average Flows, %		•	_	100			
OVERAL	L AFGD SYSTEM BAL	ANCE						
ļr	Flue Gas			3.84	3.84			
	Limestone	0.00678	ļ	l l	0.00678			
	Service Water		0.00836		0.00836			
	Compressed Air		i	ŀ				
Out	Stack Flue Gas			1.52	1.52			
	Gypsum	2.23	j		2.23			
	Wastewater		0.00316		_0.00316			
Average	99.7							
Closure c	of Average Flows, %				97.6			

Table 7-18A Bailly Mass Balance for Mercury (B-R) Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas.	Total,		
	Stream	mg/s	mg/s	mg/s	mg/s		
UNIT 8 B							
ln In	Coal	0.589			0.589		
	Combustion Air			0.00214	0.00214		
	Makeup Water		0.000314		0.000314		
Out	Flue Gas			0.614	0.614		
	Bottom Ash	0.00182		i	0.00182		
Std Dev o	f Daily Closures, %				7.94		
UNIT 8 E	SP	-					
ln	Flue Gas			0.614	0.614		
Qut	ESP Hopper Ash	0.00231			0.00231		
	Flue Gas to AFGD			0.560	0.560		
Std Dev o	f Daily Closures, %				7.37		
			·				
CONDEN	ISER						
k	Inlet Water		0.458		0.458		
Out	Outlet Water		1.32		1.32		
Std Dev o	f Daily Closures, %	•		ı	92.8		
				Ţ			
BOTTOM	ASH SLUICE						
រោ	Bottom Ash	0.00182			0.00182		
	Sluice Return		0.00201		0.00201		
Out	Bottom Ash Sluice	0.00182	0.0000312		0.00183		
Std Dev o	f Daily Closures, %				26.2		
BOILER C	OVERALL BALANCE						
ln	Coal	0.589			0.589		
	Combustion Air			0.00214	0.00214		
i	Makeup Water		0.000314		0.000314		
	Stuice Return		0.00201		0.00201		
Out	Bottom Ash Sluice	0.00182	0.0000312		0.00183		
	ESP Hopper Ash	0.00231		[0.00231		
	Flue Gas to AFGD			0.560	0.560		
Std Dev o	Std Dev of Daily Closures, %						

Table 7-18A (Continued) Balliy Mass Balance for Mercury (B-R) Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE G/	AS MIXING		•		
In	Unit 7 Flue Gas			0.240	0,240
	Unit 8 Flue Gas			0.560.	0.560
Out	Flue Gas to AFGD			0.786	0.786
Std Dev o	of Daily Closures, %				0.00
în	Flue Gas Limestone Service Water	0.000123	0.00115	0.786	0.786 0.000123 0.00115
Out	Compressed Air Stack Flue Gas Gypsum Wastewater	0.0433	0.000698	0,272	0.272 0.0433 0.000698
Std Dev	of Daily Closures, %				17.3

Table 7-19
Bailly Mass Balance for Molybdenum
Average of 9/3, 9/4, 9/5/93

<u>~</u>	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s_	mg/s			
UNIT 8 B	UNIT 8 BOILER							
In	Coal	283			283			
	Combustion Air							
	Makeup Water		0.0125	_	0.0125			
Out	Flue Gas	205		0.293	205			
	Bottom Ash	1.12	<u>. </u>		1.12			
Average o	f Daily Closures, %	·	·		78.8			
Closure of	Average Flows, %				72.9			
UNIT 8 ES	SP	<u>-</u>						
រូក	Flue Gas	205	- " -	0.293	205			
Out	ESP Hopper Ash	217			217			
Ĺ <u>.</u>	Flue Gas to AFGD	1.41		0.0618	1.47			
	f Daily Closures, %			· · · · · ·	108			
Closure of	Average Flows, %				106			
CONDEN	SER		•	_				
In	inlet Water	 .	34.4	-	34.4			
Out	Outlet Water	i	34.4	_	34.4			
Average o	Daily Closures, %	<u> </u>	<u>_</u>		100			
Closure of	Average Flows, %		•	·	100			
BOTTOM	ASH SLUICE				<u> </u>			
, In	Bottom Ash	1.12			1.12			
	Sluice Return	i	0.133		0.133			
Out	Bottom Ash Sluice	1.12	0.187	•-	1.30			
Average o	f Daily Closures, %		_		102			
	Average Flows, %	•			104			
BOILER	OVERALL BALANCE							
In	Coal	283			283			
	Combustion Air	·						
	Makeup Water		0.0125		0.0125			
	Stuice Return		0.133		0.133			
Out	Bottom Ash Sluice	1.12	0.187		1.30			
	ESP Hopper Ash	217			217			
	Flue Gas to AFGD	1.41]	0.0618	1.47			
Average o	Average of Daily Closures, %							
Closure of	Average Flows, %				77.5			

Table 7-19 (Continued)
Balliy Mass Balance for Molybdenum
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,	
<u> </u>	Stream	mg/s	mg/s	mg/s	mg/s	
FLUE GA	AS MIXING					
Ín	Unit 7 Flue Gas	2.79		0.0333	2.82	
	Unit 8 Flue Gas	1.41		0.0618	1.47	
Out	Flue Gas to AFGD	4.20		0.0951	4.29	
Average (of Daily Closures, %				100	
Closure d	of Average Flows, %				100	
OVERAL	L AFGD SYSTEM BAI	LANCE				
In	Flue Gas	4.20		0.0951	4.29	
	Limestone	2.46]		2.46	
	Service Water		2.11		2.11	
	Compressed Air	l				
Out	Stack Flue Gas	2.14	-	0.0473	2.18	
	Gypsum	61.8	•		61.8	
	Wastewater	_, <u>, 1</u>	1.12		1.12	
Average (Average of Daily Closures, %					
Closure o	of Average Flows, %				735	

Table 7-19A Bailly Mass Balance for Molybdenum Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
UNIT 8 BO	UNIT 8 BOILER							
ln .	Coal	139			139			
ĺ	Combustion Air							
	Makeup Water		0.00		0.00			
Out	Flue Gas	47.6		0.359	48.0			
	Bottom Ash	0.749			0.749			
Std Dev of	Dally Closures, %				21.0			
UNIT 8 ES	SP		•					
In	Flue Gas	47.6		0.359	48.0			
Qut	ESP Hopper Ash	30.5			30.5			
	Flue Gas to AFGD	0.123		0.00333	0.125			
Std Dev of	Daily Closures, %				15.4			
				[
CONDEN	SER							
in	inlet Water		0.488		0.488			
Out	Outlet Water		0.488		0.488			
Std Dev of	f Daily Closures, %				0.00			
			•	i				
BOTTOM	ASH SLUICE							
ln .	Bottom Ash	0.749			0.749			
	Sluice Return		0.0884	_	0.0884			
Out	Bottom Ash Sluice	0.749	0.182		0.931			
Std Dev of	f Daily Closures, %				4.22			
BOILER (OVERALL BALANCE							
ln	Coal	139			139			
4	Combustion Air							
	Makeup Water		0.00		0.00			
	Sluice Return		0.0884		0.0884			
Out	Bottom Ash Sluice	0.749	0.182		0.931			
	ESP Hopper Ash	30.5			30.5			
	Flue Gas to AFGD	0.123		0.00333	0.125			
\$td Dev of	f Daily Closures, %				24.0			
	<u> </u>				·			

Table 7-19A (Continued) Bailly Mass Balance for Molybdenum Std Dev of 9/3, 9/4, 9/5/93

	Process	Şolid,	Liquid,	Gas,	Total,	
_	Stream	mg/s	mg/s	mg/s	mg/s	
FLUE G/	AS MIXING					
Įn.	Unit 7 Flue Gas	0.374		0.00117.	0.374	
	Unit 8 Fiue Ges	0.123	ŀ	0.00333	0.125	
Out	Five Gas to AFGD	0.483		0.00420	0.487	
Std Dev o	of Daily Closures, %				0.00	
OVERAL	L AFGD SYSTEM BAL	ANCE				
, ju	Flue Gas	0.483		0.00420	0.487	
	Limestone	2.52			2.52	
	Service Water	•	3.21	1	<i>3.21</i>	
	Compressed Air			1		
Qut	Stack Flue Gas	0.150		0.000393	0.150	
	Gypsum	49.2			49.2	
	Wastewater		0.0760	·	0.0760	
Std Dev of Dally Closures, %						
				"		

Table 7-20 Bailly Mass Balance for Nickel Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 BC	XLER	·			
In I	Coal	906			906
l !	Combustion Air		•	·	
	Makeup Water		0.0208		0.0208
Out	Flue Gas	330		1.30	331
	Bottom Ash	273			273
Average of	Daily Closures, %				72.3
Closure of	Average Flows, %				66.7
UNIT 8 ES	SP				
<u>In</u>	Flue Gas	330		1.30	331
Out	ESP Hopper Ash	349	·		349
	Flue Gas to AFGD	0.792	•	1.13	1. <u>93</u>
Average of	Daily Closures, %				106
Closure of	Average Flows, %				106
CONDEN	SER		•		
<u>in</u>	Inlet Water		57.3		57.3
Out	Outlet Water		73.6		73.6
Average of	Daily Closures, %				128
Closure of	Average Flows, %				128
BOTTOM	ASH SLUICE				
ln in	Bottom Ash	273			273
	Sluice Return		0.136		0.136
Out	Bottom Ash Sluice	273	0.442		274
Average of	Daily Closures, %				100
	Average Flows, %				100
BOILER O	VERALL BALANCE	·	•		
ſ	Coal	906			906
1	Combustion Air	ĺ			
•	Makeup Water		0.0208		0.0208
	Stuice Return	1	0.136	į	0.136
Out	Bottom Ash Sluice	273	0.442		274
•	ESP Hopper Ash	349		Ì	349
	Flue Gas to AFGD	0.792		1.13	1.93
Average of	Dally Closures, %				74.9
	Average Flows, %				68.9

Table 7-20 (Continued)
Bailly Mass Balance for Nickel
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s			
FLUE GA	FLUE GAS MIXING							
<u>In</u>	Unit 7 Flue Gas	1.05		0.300	1.35			
	Unit 8 Flue Gas	0.792		1.13	1.93			
Out	Flue Gas to AFGD	1.85		1.43	3.28			
Average o	of Daily Closures, %				100			
Closure o	f Average Flows, %				100			
OVERAL	L AFGD SYSTEM BA	LANCE		_				
In	Fiue Gas	1.85	1	1.43	3.28			
!	Limestone	17.4	- !	j	17.4			
•	Service Water		0.441		0.441			
	Compressed Air		į.					
Out	Stack Flue Gas	0.771		0.520	1.29			
1	Gypsum	156	ļ	Į.	156			
	Wastewater		6.85	1	6.85			
Average of Daity Closures, %								
Closure o	Average Flows, %				777			

Table 7-20A Bailly Mass Balance for Nickel Std Dev of 9/3, 9/4, 9/5/93

	Process	\$olid,	Liquid,	Gas,	Total,	
	Stream	mg/s	mg/s	mg/s	mg/s	
UNIT 8 BO	CALER					
ln.	Coal	396			396	
1	Combustion Air					
	Makeup Water		0.00		0.00	
Out	Flue Gas	51.6		1.42	51.3	
	Bottom Ash	30.3			30.3	
Std Dev of	Daily Closures, %				19.9	
	_					
UNIT 8 ES	SP					
İn	Flue Gas	51.6		1.42	51.3	
Qut	ESP Hopper Ash	48.8			48.8	
	Flue Gas to AFGD	0.213		0.911	0.796	
Std Dev of	Daily Closures, %				1.94	
CONDEN			_			
ln	Inlet Water		0.814		0.814	
Out	Outlet Water		29.0		29.0	
Std Dev of	Daily Closures, %				<i>48.5</i>	
		· <u></u> ·		•		
BOTTOM	ASH SLUICE	-				
In	Bottom Ash	30.3			30.3	
	Sluice Return		0.00794		0.00794	
Out	Bottom Ash Stuice	30.3	0.0588		30.4	
Std Dev of	Daily Closures, %	<u>-</u> .			0.00934	
BOILER C	VERALL BALANCE					
In	Coal	396			396	
	Combustion Air	•				
	Makeup Water		0.00		0.00	
	Sluice Return		0.00794		0.00794	
Out	Bottom Ash Sluice	30.3	0.0588		30.4	
	ESP Hopper Ash	48.8			48.8	
	Flue Gas to AFGD	0.213		0.911	0.796	
Std Dev of	Std Dev of Daily Closures, %					

Table 7-20A (Continued) Bailly Mass Balance for Nickel Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	_mg/s	mg/s	mg/s	mg/s
FLUE G/	"				
In	Unit 7 Flue Gas	0.696		0.0896	0.682
1	Unit 8 Flue Gas	0.213	<u> </u>	0.911	0.796
Out	Flue Gas to AFGD	0.808		0.825	1.29
Std Dev c	of Daily Closures, %_				0.00
		10-00		-	-
OVERAL	L AFGD SYSTEM BAI	ANCE			· !
Į ln	Flue Gas	0.808		0.825	1.29
	Limestone	0.897		l	0.897
ĺ	Service Water-		- 0.0230		- 0.0230
	Compressed Air			<u> </u>	
Out	Stack Flue Gas	0.189		0.390	0.287
	Gypsum * *	120		ŀ	120
	Wastewater		0.293		0.293
Std Dev d	490				

Table 7-21
Balliy Mass Balance for Selenium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,			
	Stream	mg/s	mg/s	mg/s	mg/s_			
UNIT 8 BO	UNIT 8 BOILER							
in	Coal	51.3			51.3			
1	Combustion Air							
	Makeup Water		0.0142		0.0142			
Out	Flue Gas	48.3		62.2	110			
	Bottom Ash	0.817]	0.817			
Average o	f Daily Closures, %		·		256			
	Average Flows, %				217			
UNIT 8 ES	SP				•			
ln	Flue Gas	48.3		62.2	110			
Out	ESP Hopper Ash	11.7			11.7			
	Flue Gas to AFGD	0.567		52.2	52.7			
Average o	f Daily Closures, %				58.5			
	Average Flows, %				58.3			
CONDEN								
<u>In</u>	Inlet Water		3.44		3.44			
Qut	Outlet Water		3.44	•	<i>3.44</i>			
Average o	f Daily Closures, %				100			
Closure of	Average Flows, %	·	•		100			
BOTTOM	ASH SLUICE	_						
ln	Bottom Ash	0.817			0.817			
	Sluice Return		0.188		0.188			
Out	Bottom Ash Stuice	0.817	0.259		1.08			
	f Daily Closures, %				115			
	Average Flows, %				107			
BOILER C	VERALL BALANCE		•					
ln .	Coal	51.3			51.3			
1	Combustion Air			1				
	Makeup Water		0.0142	{	0.0142			
	Stuice Return		0.188		0.188			
Out	Bottom Ash Sluice	0.817	0.259		1.08			
	ESP Hopper Ash	11.7			11.7			
	Flue Gas to AFGD	0.567		52.2	52.7			
Average o	f Daily Closures, %				149			
	Average Flows, %				127			

Table 7-21 (Continued)
Bailty Mass Balance for Selenium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s		
FLUE GA	SMIXING				
ln	Unit 7 Flue Gas	11.9		45.0	56.9
	Unit 8 Flue Gas	0.567	<u></u> i	52.2	52.7
Š	Flue Gas to AFGD	12.4		97.2	110
Average o	of Daily Closures, %				100
Closure o	f Average Flows, %	-			100
OVERAL	L AFGD SYSTEM BA	LANCE			
Īn	Flue Gas	12.4	· · - T	97.2	110
	Limestone	0.339		1	0.339
	Service Water		0.109	1	0.109
	Compressed Air		l		
Out	Stack Flue Gas	61.7		61.5	123
	37.9				
	2.86				
Average o	161				
Closure o	f Average Flows, %				149

Table 7-21A Bailly Mass Balance for Selenium Std Dev of 9/3, 9/4, 9/5/93

Maki Out Flue	bustion Air aup Water	mg/s 32.4	mg/s	mg/s	mg/s 32.4
In Coal Com Make Out Flue	bustion Air aup Water	32.4			32 /
Com Make Out Flue	bustion Air aup Water	32.4			32 /
Maki Out Flue	oup Water				UE.4
Out Flue					
	Gas		0.0125		0.0125
Botto	uas	7.50		19.4	18.5
	om Ash	0.416			0.416
Std Dev of Daliy	Closures, %				92.5
UNIT 8 ESP			<u></u>		-
in Flue	Gas	7.50		19.4	18.5
Out ESP	Hopper Ash	1.83			1.83
Flue	Gas to AFGD	0.164		<u>1</u> 5.8	15.7
Std Dev of Dally	Closures, %				11.3
1	•				
CONDENSER				<u>-</u>	
in inlet	Water		0.0488		0.0488
Out Outle	et Water		0.0488		0.0488
Std Dev of Dally	Closures, %				0.00
BOTTOM ASH	SLUICE	••			
in Botte	om Ash	0.416			0.416
Sluic	e Return [0.0768		0.0768
	om Ash Sluice	0.416	0.167		0.385
Std Dev of Daily	Closures, %			_	31.5
BOILER OVER	ALL BALANCE				
In Coal		32.4	··- I	-	32.4
Com	bustion Air		ļ	i	
Mak	eup Water		0.0125		0.0125
	e Return		0.0768		0.0768
Out Botto	om Ash Sluice	0.416	0.167		0.385
ESP	Hopper Ash	1.83	l	1	1.83
Flue	Gas to AFGD	0.164	<u></u>	15.8	15.7
Std Dev of Daily	Closures, %				61.4

Table 7-21A (Continued) Bailly Mass Balance for Selenium Std Dev of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE GA	IŞ MIXING	-		£7.1	
_ In	Unit 7 Flue Gas	10.1		28.8	31.9
	Unit 8 Flue Gas	0.164		<u>15.8</u>	15.7
Out	Flue Gas to AFGD	10.0		38.0	44.0
Std Dev o	f Daily Closures, %				0.00
OVERAL	L AFGD SYSTEM BA	LANCE		· · · · · · ·	
İn	Flue Gas	10.0		38.0	44.0
	Limestone	0.00614	i		0.00614
	Service Water	Į.	0.145	[0.145
	Compressed Air			ľ	
Out	Stack Flue Gas	28.4		42.5	62.7
	Gypsum	2.17	Į	ŀ	2.17
	Wastewater	<u>_</u> _j	0.271	i	0.271
Std Dev c	62.1				

Table 7-22 Bailly Mass Balance for Vanadium Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 B	OILER				
In	Coal	1860			1860
	Combustion Air			i	
	Makeup Water		0.00625		0.00625
Out	Flue Gas	699		0.775	700
	Bottom Ash	869			869
	f Daily Closures, %				86.2
	Average Flows, %				84.5
UNIT 8 ES					
<u>In</u>	Flue Gas	699		0.775	700
Out	ESP Hopper Ash	833	•		833
	Flue Gas to AFGD	1.20	<u>-</u>	0.0512	1.25
	f Daily Closures, %				120
	Average Flows, %				119
CONDEN	SER		·		
ln	Inlet Water		17.2		17.2
Out	Outlet Water		17.2		17.2
	Daily Closures, %				100
	Average Flows, %				100
BOTTOM	ASH SLUICE				
ln .	Bottom Ash	869			869
	Sluice Return		0.0409		0.0409
Out	Bottom Ash Sluice	869	0.0409		869
	f Daily Closures, %		<u>-</u>	<u></u>	100
	Average Flows, %				100
BOILER C	VERALL BALANCE				
ln	Coal	1860			1860
l	Combustion Alr				
	Makeup Water		0.00625		0.00625
	Stuice Return		0.0409		0.0409
Out	Bottom Ash Stuice	869	0.0409		869
ľ	ESP Hopper Ash	833	·		833
	Flue Gas to AFGD	1.20		0.0512	1.25
Average o	93.5				
Closure of	Average Flows, %	<u></u>			91.7

Table 7-22 (Continued)
Balky Mass Balance for Vanadium
Average of 9/3, 9/4, 9/5/93

	Process	Solid,	Llauid,	Gas,	Total,				
	Stream	mg/s	mg/s	mg/s	mg/s				
FLUE GA	FLUE GAS MIXING								
ln	Unit 7 Flue Gas	6.30		0.0418	6.34				
	Unit 8 Flue Gas	1.20	ļ	0.0612	1,25				
Out	Flue Gas to AFGD	7.50		0.0930	7.59				
Average o	of Daily Closures, %				100				
Closure o	f Average Flows, %				100				
OVERAL.	L AFGD SYSTEM BA	LANCE							
In	Flue Gas	7.50		0.0930	7.59				
	Limestone	24.6	- 1	1	24.6				
	Service Water	1	0.130	1	0.130				
	Compressed Air								
Out	Stack Flue Gas	1.73	-	0.0253	1.76				
	19.2								
l	0.112								
Average o	64.9								
Closure o	f Average Flows, %				65.0				

Table 7-22A
Bailly Mass Balance for Vanadium
Std Dev of 9/3, 9/4, 9/5/93

Combustion Air Makeup Water 0.00 0.		Process	Solid,	Liquid,	Gas,	Total,				
In			mg/s	mg/s	mg/s	mg/s				
Combustion Air Makeup Water 0.00 0.	UNIT 8 B									
Makeup Water 0.00 0.	ln	Coal	317			317				
Out Flue Gas 80.5 0.753 81 Bottorn Ash 116 1 1 Std Dev of Daily Closures, % 18 UNIT 8 ESP In Flue Gas 80.5 0.753 81 Out ESP Hopper Ash 23.5 23 23 Flue Gas to AFGD 0.224 0.0227 0.2 Std Dev of Daily Closures, % 0.244 0.2 CONDENSER In Inlief Water 0.244 0.2 Out Outlet Water 0.244 0.2 Std Dev of Daily Closures, % 0.0 0.00238 0.002 Out Bottom Ash Stuice 116 0.00238 1 Std Dev of Daily Closures, % 0.0 0.00238 1 Std Dev of Daily Closures, % 0.0 0.00238 1 Std Dev of Daily Closures, % 0.0 0.00238 1 Std Dev of Daily Closures, % 0.0 0.00238 1 Std Dev of Daily Closures, % 0.0 0.00238 1		Combustion Air		ŀ]					
Bottorn Ash	l	Makeup Water		0.00		0.00				
Std Dev of Daily Closures, % 18	Out	Flue Gas	80.5	Ī	0.753	81.3				
UNIT 8 ESP		Bottom Ash	116			116				
In	Std Dev o	if Daily Closures, %		. <u></u>		18.4				
In				•	"					
Continue	UNIT 8 E	SP				— —				
Flue Gas to AFGD 0.224 0.0227 0.2 Std Dev of Daily Closures, % 11	h	Flue Gas	80.5	·	0.753	81.3				
Std Dev of Daily Closures, % 11	Out	ESP Hopper Ash	23.5			23.5				
CONDENSER In Inlet Water 0.244 0.2		Flue Gas to AFGD	0.224		0.0227	0.224				
In	Std Dev o	f Daily Closures, %				11.6				
In										
Out Outlet Water 0.244 0.2 Std Dev of Daily Closures, % 0. BOTTOM ASH SLUICE 116 1 In Bottom Ash Sluice Return 0.00238 0.002 Out Bottom Ash Sluice 116 0.00238 1 Std Dev of Daily Closures, % 0. 0. BOILER OVERALL BALANCE in Combustion Air Makeup Water Sluice Return 0.00 0. Out Bottom Ash Sluice ESP Hopper Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 Flue Gas to AFGD 0.224 0.0227 0.2 0.0227 0.2	CONDEN	ISEA								
BOTTOM ASH SLUICE In Bottom Ash 116 1	<u>In</u>	Inlet Water		0.244		0.244				
BOTTOM ASH SLUICE In Bottom Ash 116 1 0.00238 0.002	Out	Outlet Water		0.244		0.244				
In	Std Dev o	i Daily Closures, %]	0.00				
In										
Situice Return 0.00238 0.002 Out Bottom Ash Stuice 116 0.00238 1 Std Dev of Daily Closures, % 0.00238 0.002 BOILER OVERALL BALANCE 317 3 3 3 3 4 4 4 4 4 4	BOTTOM	ASH SLUICE	•	<u> </u>						
Out Bottorn Ash Sluice 116 0.00238 1 Std Dev of Daily Closures, % 0. 0. BOILER OVERALL BALANCE 317 3 In Coal 317 3 Combustion Air Makeup Water 0.00 0. Sluice Return 0.00238 0.002 Out Bottorn Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23.5 23.5 Flue Gas to AFGD 0.224 0.0227 0.2	În	Bottom Ash	116			116				
Std Dev of Daily Closures, % O.		Sluice Return		0.00238		0.00238				
BOILER OVERALL BALANCE in Coal 317 3 Combustion Air Makeup Water 0.00 0. Sluice Return 0.00238 0.002 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23 Flue Gas to AFGD 0.224 0.0227 0.2	Out	Bottom Ash Sluice	116	0.00238		116				
in Coal 317 3 Combustion Air Makeup Water 0.00 0. Sluice Return 0.00238 0.002 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23 Flue Gas to AFGD 0.224 0.0227 0.2	Std Dev o	f Daily Closures, %			· · · · · · · · · · · · · · · · · · ·	- 0.00				
in Coal 317 3 Combustion Air Makeup Water 0.00 0. Stuce Return 0.00238 0.002 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 Flue Gas to AFGD 0.224 0.0227 0.2						•				
Combustion Air	BOILER (OVERALL BALANCE	··· ·							
Makeup Water 0.00 0.00238 Sluice Return 0.00238 0.0023 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23.5 23.5 Flue Gas to AFGD 0.224 0.0227 0.227	in	Coal	317	·· · · · - T		317				
Makeup Water 0.00 0.00238 Sluice Return 0.00238 0.0023 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23.5 23.5 Flue Gas to AFGD 0.224 0.0227 0.227		Combustion Air								
Stuice Return 0.00238 0.002 Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23.5 23.5 23.5 Flue Gas to AFGD 0.224 0.0227 0.22		1 1		0.00		0.00				
Out Bottom Ash Sluice 116 0.00238 1 ESP Hopper Ash 23.5 23.5 23.5 Flue Gas to AFGD 0.224 0.0227 0.2		1 ' 1				0.00238				
ESP Hopper Ash 23.5 23 Flue Gas to AFGD 0.224 0.0227 0.2	Out	+	116			116				
Flue Gas to AFGD 0.224 0.0227 0.2		1 1				23.5				
	1	1 7.			0.0227	0.224				
iere err er ewit Asabitant is	Std Dev o		 7	<u> </u>	<u> </u>	17.6				
										

Table 7-22A (Continued) Bailty Mass Balance for Vanadium Std Dev of 9/3, 9/4, 9/5/93

	Process	Şolid,	Liquid,	Gas,	Total,
	Stream			mg/s	mg/s
FLUE G/					
ln	Unit 7 Flue Gas	1.08		0.0321	1.11
	Unit 8 Flue Gas	0.224		0.0227	0.224
Ċ	Flue Gas to AFGD	0.998		0.0140	1.01
Std Dev	of Daily Closures, %				0.00
OVERAL	L AFGD SYSTEM BAI	ANCE			:
ln	Flue Gas	0.998		0.0140	1.01
	Limestone	0.440		1	0.440
	Service Water		0.00253		0.00253
	Compressed Air				
Out	Stack Flue Gas	0.422		0.0121	0.417
	Gypsum ·	2.15			215
	Wastewater		0.0181		0.0181
Std Dev o	of Daily Closures, %		•		5.33
					i

Table 7-23 Baily Average Mass Balance Closures

	T	Unit 8	Unit 8	Bottom	U8 Boiler		Flue Gas	AFGD
Element	Symbol	Boiler	ESP	Ash Sluice	Overall	Condenser	Missing	Overall
Antimony	Sb	86.7	375	107	169	100	100	103
Arsenic	As	69,7	132	158	91.9	100	100	436
Barium	Ва	97.4	136	100.0	108	103	100	61.6
Beryllium	Be	77.1	107	100	80.0	100	100	1260
Boron	В	65.1	122	100	76.3	0.348	100	126
Cadmium	Cd	64.4	115	100	71.3	567	100	23.6
Chromium	Cr	78.9	105	100	80,7	100	100	2750
Cobalt	Ço	116	127	100	130	73.3	100	94.1
Copper	Çu	107	122	100,0	120	t30	100	26.4
Lead	Рb	141	110	100	151	100	100	56.8
Manganese	Min	105	111	100.0	108	34.2	100	95.5
Mercury	Hg _	29.2	116	102	31,3	119	100	182
Mercury (BR)	Hg	54.8	120	102	65.2	119	100	99.7
Molybdenum	Mo	78.8	108	102	85.3	100	100	795
Nickel	Ni	72.3	106	100	74.9	128	100	750
Selenium	Se	256	56.5	115	149	100	100	161
Venedium	V	86.2	120	100	93.5	100	100	64.9
iron	Fe	93,3	101	100	93,6	100	100	101
Aluminum	Al .	96.2	101_	100	96.5	70.0		197
Titanium	Ti	99.7	101	100	100	100	100	163
Calcium	Ca	105	118	100	109	137	100	101
Magnesium _	Mg	99.2	110	100	102	99.6	100	90.1
Total		90.3	120	100	100	100	100,0	95.1
Ash		101	100	100	101	NA NA	100	120
Carbon		98.8	104	100	103	NA	100	98.4

Italics represent numbers heavily influenced by non-detectable concentrations.

Table 7-23A Bally Std Dev of Daily Mass Balanca Closures

		Unit 8	Unit 8	Bottom	U8 Boller		Flue Gas	AFGD
Element	Symbol	Boiler	ESP	Ash Stuice	Overeit	Condenser	Mixing	Overali
Antimony	Sb	26.4	206	3.09	48,3	0.00	0.00	99.6
Arsenic	As	23.3	3.48	53.5	29.3	0.00	0.00	74.9
Barium	Ва	5,81	38,6	0,0238	5.13	6.65	0.00	14.2
Beryllium	Be	12.1	7.13	0.0178	14.9	0.00	0.00	241
Boron	В	13.5	22.6	0.00	3.43	0.0667	0.00	50.4
Cadmium	Cd	29.5	8.49	0.504	31.6	484	0.00	4,34
Chromium	Cr	14.8	5.97	0.00	16.4	0.00	0.00	2840
Cobalt	Co	10.6	11.6	0.139	5,30	46.2	0.00	32.9
Copper	Cu	24.3	19.6	0.0647	16.2	78.0	0.00	24.9
Lead	Pb	44.8	10.7	0,335	33.2	0.00	0.00	7.03
Manganese	Mn	6.51	15.9	0.00899	3,97	12.1	0.00	1.05
Mercury	Hg	13.4	32.2	26.2	6.07	92.8	0.00	4.86
Mercury (BR)	Hg	7.94	7,37	26.2	5.46	92.8	0.00	17.3
Molybdenum	Mo	21.0	15.4	4.22	24.0	0.00	0.00	543
Nickel	NI	19.9	1.94	0.00934	21.3	48.5	0.00	490
Selenium	Se	92.5	11.3	31.5	61.4	0.00	0.00	62.1
Vanadium	V	18.4	11.6	0.00	17.6	0.00	0.00	5,33
	<u> </u>		•					
Iron	Fe	3.48	6.44	0.00169	3.31	0.00	0.00	19.6
Aluminum	Äl	1.96	8,29	0.00126	3.68	52.0	0.00	73.0
Titanium	77	1.71	7.50	0.00	1.93	0.00	0.00	46.9
Calcium	Ça	24,6	18.8	0.0846	25.5	50.9	0.00	0.0356
Magnesium	Mg	4.65	4,43	0.0259	4,90	7.34	0.00	3.07
		-						
Total		3.71	7.36	0.00	0.0834	0.00	0.00	2.08
Ash		1.04	0.00	0.00	1.04	NA	0.00	1,61
Carbon		2.38	4.80	0.00	2.32	NA	0.00	2.81

 $Italics \ represent \ numbers \ heavily \ influenced \ by \ non-detectable \ concentrations.$

Table 7-23B
AFGD Closures from Two Data Sources

	Closure %				
Elements	SRI analysis*	Galbraith analysis			
Antimony	65	134			
Arsenic	426	47			
Barium	81	86			
Beryllium	1220	123			
Boron	128	91			
Cadmium	67	90			
Chromium	2850	98			
Cobalt	88	135			
Copper	26	47			
Lead	56	73			
Manganese	96	142			
Mercury	182	132			
Molybdenum	735	50			
Nickel	777	125			
Selenium	149	135			
Vanadium	65	82			

^{*}Data from the last line of entries in Tables 7-6 through 7-22, which are based on averages of daily flows. (They are not the averages of closures for each three days, which are found in Table 7-23.)

each three days, which are found in Table 7-23.)

^bData equivalent to those in the second column, except that flows of limestone and are based on the results at Galbraith (see page 6-64).

7.2 Efficiencies of Removal of Trace Species

There are two direct ways for expressing the efficiency of removal of trace species from the Bailly investigation:

- Removal within the Unit 8 ESP. This is based on the direct comparison of concentrations expressed in μg/Nm³ or ppmv (either at constant, 3% O₂) at the inlet and the outlet of the ESP.
- Removal within the scrubber. This is based on a comparison of
 a weighted average of the concentrations at the outlets of the
 Units 7 and 8 ESPs and the stack. Weighting takes into account
 the relative gas volume fraction and the species concentrations
 in the two outlet ducts. The volume fraction for Unit 7 is
 approximately 0.33 and that for Unit 8 is approximately 0.67. It
 will be understood that the removal of fly ash in the scrubber
 may not be equal to the net removal of particulate matter,
 because the entrainment of scrubber solids, such as gypsum,
 and the condensation of sulfuric acid vapor within the scrubber
 will make the net removal less than the removal of incoming fly
 ash.

It is also possible to compute an approximate efficiency of ash removal across the Unit 7 ESP. The two units burned the same coal and have the same type of boller. The uncertainty about Unit 7 is the carryover of coal ash to fly ash at the ESP inlet. It seems reasonable to use the inlet concentration observed at Unit 8 as the value at Unit 7. Even if the actual concentration of inlet ash in Unit 7 were just 75% of that at Unit 8, the error in the ESP efficiency would not change proportionally. If, for example, the removal efficiency were stated to be 99.00% with an inlet concentration of 4.0 g/Nm³, the efficiency would change only to 98.67% if the inlet concentration were corrected to 3.0.

7.2.1 Metals

The efficiencies of removal of metals across the two ESPs and the scrubber are listed in Tables 7-24, 7-25, and 7-26. The value for the Unit 7 ESP is based on an assumed equality of metal concentrations at the inlet of two ESPs each sampling day. The efficiencies were calculated from the blank-corrected data with no effort to mask irregularities. The anomalies thus entered in the table are commented on in the following paragraphs.

The equation used to calculate efficiencies of the two ESPs is of the following simple form:

Efficiency = 100[1 - (ESP outlet concn.)/(ESP inlet concn.)]

Table 7-24 Efficiencies of Metal Removal in the Unit 8 ESP (Data in %)

	9/3/93	9/4/93	9/5/93	Average	Std.dev.
Antimony	99.86	100,23	99.83	99.97	0.22
Arsenic	98.64	98.26	98.33	98.41	0.20
Barium	99.60	99.72	99.77	99.70	0.09
Beryllium	99.90	99.88	100.00	99.92	0.07
Boron	36.86	-5.04	26.49	19.43	21.83
Cadmium	94.81	98.05	99.14	97.33	2.25
Cobalt	99.59	99.57	99.70	99.62	0.07
Chromium	99.97	100.33	100.10	100.14	0.18
Соррег	99.72	99.49	99.72	99.64	0.13
Lead	99.43	99.70	99.90	99.68	0.24
Manganese	99.74	99.88	99.92	99.85	0.09
Mercury ²	25.72 0.97	-5.50 -18.62	-20.34 2.36	-0.04 -5.10	23.52 11.73
Molybdenum	99.26	99.37	99.51	99.38	0.13
Nickel	99.15	99.55	99.66	99.45	0.27
Selenium	69.88	44,36	58.95	57.73	12.81
Vanadium	99.82	99.79	99.88	99.83	0.05
Aluminum	99.85	99.88	99.90	99.87	0.03
Calcium	97.46	97.51	97.51	97.50	0.03
Iron	99.85	99.90	99.92	99.89	0.04
Magnesium	99.72	99.68	99.68	99.69	0.02
Titanium	99.84	99.86	99.89	99.87	0.02

^{*}The second line is based on data from the solid traps, which purportedly measure only vapor and thus should not show any ESP effect.

Table 7-25 Efficiencies of Metal Removal in the Unit 7 ESP (Data in %)

	9/3/93	9/4/93	9/5/93	Average	Std.dev.
Antimony	97.82	99.33	99.34	98.83	0.88
Arsenic	90.43	97.01	97.72	95.05	4.02
Barium	98.51	98.94	98.80	98.75	0.22
Beryllium	97.99	98.88	98.86	98.58	0.51
Boron	41.79	-7.67	28.27	20.80	25.57
Cadmium	90.20	95.34	95.80	93.78	3.11
Cobalt	98.05	98.45	98.38	98.29	0.21
Chromium	98.32	99.30	99.28	98.97	0.56
Соррег	97.76	98.55	98.76	98.36	0.53
Lead	97.76	98.81	98.44	98.34	0.53
Manganese	99.00	99.42	99.26	99.22	0.22
Mercury*	28.47 13.63	-35.90 0.91	-9.72 10.11	-5.72 8.22	32.38 6.57
Molybdenum	97.16	97.95	98.07	97.72	0.49
Nickel	98.45	98.80	98.64	98.63	0.17
Selenium	60.62	-57.68	32.21	11.71	61.77
Vanadium	98.00	98.72	98.74	98.49	0.42
Aluminum	98.46	99.28	99.18	98.97	0.45
Calcium	97.42	96.62	96.90	96.98	0.41
Iron	98.72	99.11	98.95	98.93	0.20
Magnesium	98.88	99.04	98.96	98.96	0.08
Tîtanium	98.72	99.03	98.92	98.89	0.16

[&]quot;The second line is based on data from the solid traps, which purportedly measure only vapor and thus should not show any ESP effect.

Table 7-26 Efficiencies of Metal Removal in the Scrubber (Data in %)

	9/3/93	9/4/93	9/5/93	Average	Std.dev.
Antimony	-335.83	42.58	120.76	-\$7.50	244.24
Arsenic	10.75	78.39	85.64	58.26	41.31
Barium	88.11	90.61	88.82	89.18	1.29
Beryllium	81.51	84.60	100.00	88.70	9.91
Boron	92.55	91.41	89.53	91.16	1.52
Cadmium	91.60	90.94	87.90	90.15	1.97
Cobalt	78.13	76.92	82.83	79.30	3.12
Chromium	99.59	-21.40	104.76	60.98	71.41
Copper	49.20	83.75	77.39	70.11	18.39
Lead	78.20	84.01	84.85	82.35	3.62
Manganese	69.88	42.43	75.03	62.45	17.35
Mercury	25,10 60.50	34.92 53.01	39.10 44.53	33.04 52.68	7.19 7.99
Molybdenum	47.88	45.77	56.09	49.92	5.45
Nickel	82.61	58.71	69.70	70.34	11.96
Selenium	-29.65	34.63	-52.01	-15.68	44.99
Vanadium	75.27	73.55	81.95	76.92	4.44
Aluminum	95.07	90.89	94.54	93.50	2.28
Calcium	77.20	74.65	78.43	76.76	1.93
Iron	90,70	87.19	92.90	90.26	2.88
Magnesium	38.51	31.38	40.33	36.74	4.73
Titanium	87.99	85.06	89.95	87.67	2.46

The second line is based on data from the solid traps, and it presumed to show the scrubber effect more accurately.

The equation for the scrubber is more complex; it includes the measured flow rate of gas at each location:

Efficiency =
$$100C_xF_x/[C_yF_y + C_xF_g]$$

where the C and F terms designate concentration and flow rate, respectively; the subscripts S, 7, and 8 indicate stack, Unit 7 outlet, and Unit 8 outlet.

Table 7-24 for the Unit 8 ESP shows four-values that exceed 100%, three for daily values and one for an average. These are the results of relatively large errors in small numbers that make the outlet concentration negative (that is, the blank correction exceeds the value corrected). The consequence of this anomaly is that the efficiency is not defined; certainly, a conservative conclusion is that the efficiency is very close to 100%. There are three daily efficiencies and one average that are negative, signifying that the outlet concentration was higher than the inlet concentration as the result of errors in sampling or analysis. Not surprisingly, all of these anomalies are for elements that are largely in the vapor state and not well controlled in an ESP; the anomalies are for boron and mercury.

The data in Table 7-24 are based on Method 29. The results for mercury based on sampling with solid traps (Table 6-36) are also negative (- 5%).

The following is a summary of the averages of the efficiencies for the Unit 8 ESP (Table 7-24):

Efficiency range, %	Elements
<20	B, Hg
20-60	Se
60-98	Cd, Carrier
98-99	As
99.0-99.9	Ba, Co, Cu, Pb, Mn, Mo,
	Ni, V, Al, Fe, Mg, Ti
> 99 .9	Sb, Be, Cr

Table 7-25 for Unit 7 ESP has the anomaly of negative efficiencies. Classification of the individual elements gives the following:

Efficiency range. %	Elements
<20	Hg, Se
20-60	B
60-98	As, Cd, Mo, Ca
98-99	Sb, Ba, Be, Co, Cr, Cu,
	Pb, Nl, V, Al, Fe, Mg, Ti
>99	Mn

Generally, the efficiencies in Unit 7 ESP are shifted to lower values from those seen in Unit 8 ESP. This shift follows that of total particulate removal efficiency: 98.7% for Unit 7 and 99.8% for Unit 8 (assuming the same inlet concentration at both ESPs).

The data in Table 7-26 suffer severely from the anomalies due to large relative errors in small numbers. Some of the conclusions that can nevertheless be drawn from these data are as follows:

- The average efficiency of removal of boron (largely in the vapor state and subject to absorption in the aqueous spray droplets in the scrubber) is 91% — one of the highest values, but not significantly different from efficiencies of removal of metals in the particulate state (barlum and beryillum, for example).
- The average efficiency for mercury is listed as 33%. The data based on sampling with solid traps indicate that the value is nearer 50% (Table 6-62). The extent of mercury removal is believed to be controlled by the fraction in the oxidized (divalent) state.
- The efficiency for the third volatile metal, selenium, is not defined. The difficulty with this metal was previously discussed in Section 6.3.
- · The efficiency for antimorry is not defined.
- The efficiencies of the remaining metals can be classified by range, but the uncertainties of some of the data are clearly very large. An effort to interpret all of the differences on a rational basis can hardly be worthwhile. Nevertheless, the classification (Including all metals except the two not defined) is as follows:

Efficiency range, %	Elements
<50	Hg, Mo, Mg
50-80	As, Co, Cr, Cu,
	Min, Ni, V, Ca
80-90	Ba, Be, Pb, Ti
>90	B, Cd, Al, Fe

7.2.2 Anions and Acid Gases

Anions that are components of particulate matter are probably removed by the ESPs and scrubber about to the same degree as the particulate matter itself. This report contains very little data to support this assumption; whether it is precisely correct is of little consequence, however, because of the compelling evidence that except for phosphate the anions occur mainly in the gas phase as acid gases.

The control of the acid gases HF, HCl, and SO_2 in the ESPs is negligible (see Table 6-35). The control in the scrubber is very effective, on the other hand. The following data were previously given in Section 6.3.2:

<u>Gas</u>	Removal in scrubber. %
HF	96
HCI	99
SO ₂	93

7.23 Organic Compounds

The data for organic compounds are not sufficiently definitive to justify any conclusion about their removal in either the ESPs or the scrubber.

7.3 Emission Factors

Emission factors were calculated from three items of information:

- Concentration of the species in the stack (µg/Nm²)
- Flue gas production per unit mass of coal (Table 6-2 shows that the volume is, on the average, 0,008204 Nm³ per gram of coal burned).
- Calorific value of the coal (Table 6-1 shows that the average value is 25809.
 J per gram of coal).

The emission factor for the unit concentration in the stack (1.0 $\mu g/Nm^3$) is thus calculated as follows:

1.0
$$\mu$$
g/Nm³ x 0.008204 Nm³/g x 1 g/25809 g/J = 0.318 x 10⁻⁶ μ g/J

or

$$1.0 \mu g/Nm^3 = 0.318 g/10^{12} J = 0.739 lb/10^{12} Btu$$

The product of the second two terms in the above equation gives the value $0.318 \times 10^{-6} \, \text{m}^3/\text{J}$. This value can be compared with the value based on coal feed rates and gas flow rate in the stack. The daily values are as follows:

September 3	0.320 x 10 ⁻⁶ Nm ³ /J
September 4	0.316 x 10 ⁴ Nm³/J
September 5	0.320 x 10 ⁴ Nm³/J

Thus, the calculated volume of flue gas gives essentially the same ratio of gas volume to thermal energy as the recorded rate of coal consumption and the measured rate of gas flow in the stack.

As an example, mercury has an average stack concentration of $3.52~\mu g/Nm^3$. Hence, the emission factor of this metal is $1.12~g/10^{12}~J$ or $2.60~b/10^{12}~Btu$. (This result is based on the analysis at Brooks Hand.)

The emission factors of the metals and anionic substances are given in Table 7-27. The uncertainty range given for each is the 95% confidence interval. This range is derived by use of the theory of error propagation (11). The uncertainty analysis is discussed in Appendix F.

Table 7-27 Emission Factors* Calculated from Stack Concentrations (Uncertainty, 95% confidence limits)

g/10 ¹² J lb/10 ¹² Btu Antimony 0.121 ± 0.442 0.281 ± 1.03 Arsenic 0.455 ± 1.41 1.06 ± 3.28 Barium 0.544 ± 0.309 1.26 ± 0.716 Beryllium <0.03 <0.07 Boron 391 ± 269 909 ± 625 Cadmium 0.181 ± 0.166 0.421 ± 0.386 Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt <0.03 <0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercury ^b 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1	···		
Arsenic 0.455 ± 1.41 1.06 ± 3.28 Barium 0.544 ± 0.309 1.26 ± 0.716 Beryllium <0.03 <0.07 Boron 391 ± 269 909 ± 625 Çadmium 0.181 ± 0.166 0.421 ± 0.386 Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt <0.03 <0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <420	<u> </u>	g/10 ¹² J	1b/10 ¹² Btu
Barium 0.544 ± 0.309 1.26 ± 0.716 Beryllium <0.03	Antimony	0.121 ± 0.442	0.281 ± 1.03
Beryllium < 0.03 < 0.07 Boron 391 ± 269 909 ± 625 Cadmium 0.181 ± 0.166 0.421 ± 0.386 Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt < 0.03 < 0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride < 180 < 420 <td>Arsenic</td> <td>0.455 ± 1.41</td> <td>1.06 ± 3.28</td>	Arsenic	0.455 ± 1.41	1.06 ± 3.28
Boron 391 ± 269 909 ± 625 Cadmium 0.181 ± 0.166 0.421 ± 0.386 Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt < 0.03 < 0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride < 180 < 420 Chloride $> 440 \pm 112$ $> $	Barium	0.544 ± 0.309	1.26 ± 0.716
Cadmium 0.181 ± 0.166 0.421 ± 0.386 Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt < 0.03 < 0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride < 180 < 420 Chloride 440 ± 112 1020 ± 260	Beryllium	<0.03	<0.07
Chromium 1.18 ± 0.48 2.73 ± 1.11 Cobalt < 0.03 < 0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride < 180 < 420 Chloride 440 ± 112 1020 ± 260	Boron	391 ± 269	909 ± 625
Cobalt <0.03 <0.07 Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 2.07 ± 0.78 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Cadmium	0.181 ± 0.166	0.421 ± 0.386
Copper 0.741 ± 1.20 1.72 ± 2.79 Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Setenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Chromium	1.18 ± 0.48	2.73 ± 1.11
Lead 0.677 ± 0.956 1.57 ± 2.22 Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Cobalt	<0.03	<0.07
Manganese 1.32 ± 0.18 3.07 ± 0.42 Mercuryh 0.890 ± 0.334 1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Соррег	0.741 ± 1.20	1.72 ± 2.79
Mercury ^b $0.890 \pm 0.334 \\ 1.12 \pm 0.07$ 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Lead	0.677 ± 0.956	1.57 ± 2.22
1.12 ± 0.07 2.60 ± 0.16 Molybdenum 1.47 ± 0.28 3.41 ± 0.65 Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180	Manganese	1.32 ± 0.18	3.07 ± 0.42
Nickel 0.928 ± 0.483 2.16 ± 1.07 Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Mercury	0.890 ± 0.334 1.12 ± 0.07	2.07 ± 0.78 2.60 ± 0.16
Selenium 83.0 ± 106 193 ± 246 Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Molybdenum	1.47 ± 0.28	3.41 ± 0.65
Vanadium 1.21 ± 0.71 2.81 ± 1.65 Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Nickel	0.928 ± 0.483	2.16 ± 1.07
Aluminum 43.6 ± 15.9 101 ± 37 Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Selenium	83.0 ± 106	193 ± 246
Calcium 196 ± 33 454 ± 76 Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Vanadium	1.21 ± 0.71	2.81 ± 1.65
Iron 89.6 ± 60.1 208 ± 140 Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Aluminum	43.6 ± 15.9	101 ± 37
Magnesium 36.9 ± 6.5 85.7 ± 15.0 Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180	Calcium	196 ± 33	454 ± 76
Titanium 6.68 ± 2.62 15.5 ± 6.08 Fluoride <180	Iron	89.6 ± 60.1	208 ± 140
Fluoride <180 <420 Chloride 440 ± 112 1020 ± 260	Magnesium	36.9 ± 6.5	85.7 ± 15.0
Chloride 440 ± 112 1020 ± 260	Titanium	6.68 ± 2.62	15.5 ± 6.08
	Fluoride	<180	<420
SO, 170000 ± 74000 395000 ± 172000	Chloride	440 ± 112	1020 ± 260
	SO,	170000 ± 74000	395000 ± 172000

^{*}Based on stack concentration of analyte (µg/Nm³), calculated volume of flue gas from unit mass of coal (Nm³/g), and calorific value of coal (J/g).

my ny

The first value for mercury is based on samples from Method 29. The second is based on sampling with solid traps.

8.0 SPECIAL TOPICS

8.1 Particulate and Vapor Phase Partitioning

The partitioning of a metal between the particulate and vapor phases can, in general, be a continuous process as the gas progresses from the boiler to the much lower temperatures at the stack. A gradual shift from the vapor state to the particulate state as the temperature decreases can be expected for two reasons: 1) the vapor pressure of any given species of a metal falls as the temperature falls, and thus condensation or adsorption ensues; 2) the chemical state of the metal will change, typically toward greater molecular complexity, and thus the tendency to change from the vapor state to the particulate state will be enhanced. An example of a metal shifting in species is mercury, which is most stable at the high temperatures in the boiler as the element (a highly volatile species, even at ambient temperature) but becomes increasingly more stable and less volatile as the compounds HgO and HgCl₂ at lower temperatures.

A comparison of trace metal concentrations in bottom ash and fly ash gives an indication of how partitioning between solid and gas occurs in the boiler. Table 6-8 in an earlier section of this report presented data making that comparison possible. The conclusions were as follows:

Antimony, arsenic, beryllium, boron, cadmium, copper, lead, molybdenum, mercury, and selenium were present at higher concentrations in the ESP ash than in the bottom ash, as the presumed consequence of volatility at boiler temperatures, causing exit from the boiler in the gas phase but partial transfer to the particulate phase before the gas stream reached the ESP.

Boron, mercury, and selenium were poorly recovered in the ESP ash, as the presumed occurrence in the gas phase even at the ESP temperature (about 150 °C).

A comparison of the specific metal concentrations in the ducts adjacent to the ESPs was given earlier, in Table 6-37. This table confirms the predominance of boron, mercury, and selenium in the vapor state and indicates that many or most of the other metals were in the vapor state at high temperatures upstream from the ESPs, because their concentrations in the units $\mu g/Nm^3$ increase sharply as particle size decreases.

A further comparison can be made by inspecting the data in the stack (Table 6-61). Here the trends toward increasing specific concentration with decreasing particle size break down because each of the volatile metals is appreciably absorbed in the scrubber.

8.2 Plume Simulation Dilution Sampling

8.2.1 SRI Condensibles Air Dilution Train

Sampling both without dilution and with dilution was performed at the Unit 7 ESP outlet. Sampling with dilution lowers both the flue gas concentrations and the gas temperature, thus simulating the two important changes that occur in the plume as stack gas emerges into the atmosphere. These processes will cause condensation of certain vaporous substances or, alternatively, may cause adsorption of these substances on pre-existing particulate matter. The net effect, whether there is homogeneous or heterogeneous condensation, is the transfer of vapors to particulate of small particle size.

Sulfuric acid vapor is the primary condensible substance in five gas other than water vapor. If flue gas exits a stack at a typical temperature, 150 °C, it may contain up to 75 ppm of H₂SO₄ vapor; when the gas is cooled, however, the vapor will essentially disappear and the corresponding amount of acid will be found as a fine aerosol mist. There is also evidence that certain metal vapors will condense and be concentrated on small aerosol particles. This has been demonstrated for As and Se, for example, with a dilution sampler of the type to be described in the following paragraphs. Certainly, this increase of metal concentrations on fine particulate matter in the plume from a stack is to be expected; there is compelling evidence that this phenomenon occurs before the gases reach the exit from the stack, while the flue gas is being cooled on passage from the boller to the base of the stack. A continuation and amplification of the process in the plume must occur. The corresponding condensation of certain organic matter is to be expected also.

During the last 15 years, SRI developed several sampling trains incorporating dilution and cooling for purposes similar to those of present concern. The most recent dilution train was developed for widespread measurement of condensibles; it is called the CADT (Condensibles Air Dilution Train). It is Illustrated in Figure 8-1. It was designed and built for EPA under the scenario that in-stack total particulate matter (or PM_{sc}) is a material separate from condensibles. For condensibles measurement with the CADT, process gas is conveyed to the dilution chamber through an in-stack filter, Method 5 probe, and heated sample flow-measuring orifice. Process gas is diluted in rapid mixing with filtered, cooled ambient air to obtain a final gas mixture near 20 °C. A residence time of 2 to 3 sec, sufficient for condensation, is provided prior to collection of condensed particulate matter on a quartz filter, 150 mm in diameter. Tests indicated that condensation on walls of the dilution chamber is low (<10%). The criteria of practical operation and precise measurements, which are needed for formal emission measurement methodology, were of primary concern in design of the CADT. Although losses of particulate passing through the CADT have not been specifically measured, it is believed that particles smaller than 5 µm would reach the condensibles filter with high efficiency and that this size fraction is the more important. Details of CADT operation are given in the following paragraphs.

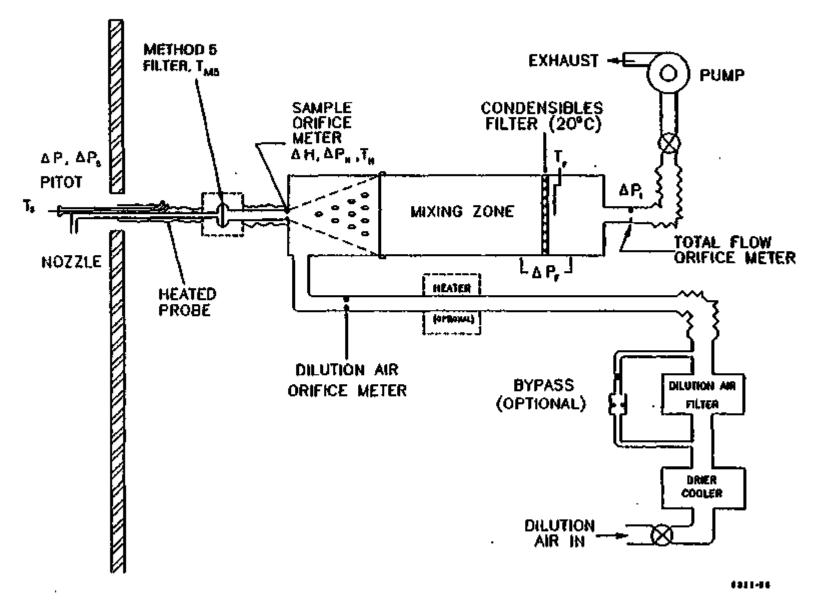


Figure 8-1. Schematic of Condensibles Air Dilution Train

Description and operation of the CADT

The condensible air dilution train is illustrated in Figure 8-1. The portion of the sampling train from the nozzle up to and including the Method 5 filter is identical to the Method 5 train. The in-stack portion may be replaced by probes specified for Method 17 or the Constant Sampling Rate (CSR) approach for PM₁₀. Sample flow and dilution air flow are established by the pump at the exhaust end of the CADT and regulated with valves in the dilution air inlet and the exhaust branches. Sample gas is passed to the sample orifice meter through a heated glass tube. The sample orifice meter is located at the apex of the perforated diluter cone where dilution gas is injected to rapidly mix with the sample gas. The diluted sample then passes through the mixing zone to the filter for condensibles where condensed particulate matter is collected. Gas passing this filter then passes through the total flow orifice meter and flow control valves before being exhausted through the pump.

The sample orifice meter, diluter cone, the housing of the cone, and all internal surfaces downstream to the diluter exit are coated with Tetlon. The sample orifice meter is fabricated from stainless steel, and all components of the diluter are fabricated from aluminum. The overall weight of the diluter cylinder is about 15 kg, its length is 85 cm, and the outside diameter, including flanges and insulation, is 23 cm.

The dilution air consists of ambient air conditioned by cooling in an ice bath condenser, passing through a column of sillca get, passing through a bed of activated charcoal, and being filtered through an absolute filter. The temperature of the dilution air must be controlled at less than 20 °C to obtain the desired temperature of the total diluted gas (sample gas and dilution air). Insulation of the dilution air conduit serves to prevent overheating of the dilution air during warm weather. A heater is included on the dilution air conduit to warm the dilution air in cold weather. The purpose of the bypass around the dilution air filter in the illustration is to permit passage of a small fraction of particles from the ambient air to pass into the diluter if needed as condensation nuclei.

Dilution factor and flow rates

While the dilution approach is attractive conceptually because it simulates a source/ambient interface more nearly than other approaches, its major procedural advantage is that sufficient dilution prevents condensation of large quantities of water vapor from the stack gas. For a specified sampling rate, the amount of dilution is limited by sizes and costs of the train components that are reasonable. The gas flow rate of the cyclone identified for PM_{10} measurements is limited to about 0.5 scfm to obtain a particle cut size at 10 μ m, and limiting the sampling rate with a Method 5 train to less than about 0.5 scfm is reasonable. Pumps with a loaded capacity of 10 scfm (which is about 20 times the PM_{10} flow rate value) are practical for source sampling. These factors led to selection of 20 for the maximum volume dilution factor. This dilution factor is high enough to avoid condensation of water for moisture contents up to 35%, higher than moisture contents of most sources including many with wet scrubbers. At Balify we selected a target dilution factor of 10, giving sample and total diluted gas flow rates for the CADT of 0.5 and 5 scfm, respectively. This dilution factor was selected to maximize the detection limits for the analytes without severely

compromising the effect of dilution cooling on condensation or causing problems from the condensation of moisture.

Dilution and mixing zone

The geometry of the diluter cone is a 50% scale-up of one used extensively to extract flue gas for measurement of size distribution. The 82 dilution air jets are designed for high, small-scale turbulence and low net swirl to produce a flat velocity distribution at the cone exit. The length of the cone is 23 cm, and its exit diameter is 15.2 cm. The inside diameter of the mixing zone is 15.2 cm, and its length is 48,9 cm. The primary criterion for selecting these dimensions was to provide residence time in the range 1.5 to 2 sec, previously recommended by the literature survey performed by McCain and Williamson of our staff (12), at a total diluted gas flow rate of 10 scfm.

Sample orifice meter (sample gas flow rate and volume)

The sample gas temperature from the probe up to and including the orifice disc of the sample orifice meter is maintained at 120 °C to prevent condensation of moisture in the sample gas. The orifice meter serves the same purpose as that used in Method 5, the monitoring of sample flow rate required to maintain isokinetic sampling. In addition, it serves the purpose of the dry gas meter in Method 5; the total sample gas volume is measured at this point, before dilution of the sample. Calibration of the orifice meter is performed in the same manner as in Method 5 (with a wet test meter installed upstream of the orifice meter and a leak check to verify that gas flow through the wet test meter and orifice meter is the same). Sample gas volume is measured in the CADT through digital electronic integration of the signal from a differential pressure transducer across the orifice.

8.2.2 Plume Simulation Dilution Sampling at Bailty

The CADT was operated to collect samples at the outlet of the Unit 7 ESP each day. Particles larger than about 8 µm were removed by means of a cyclone mounted at the inlet end of the probe to minimize/prevent possible fouling of the sample flow-metering orifice. Multiple gas trains were used behind the filter for parallel sampling each day. Two of the trains were identical — for metals on the days of inorganic sampling and for semi-votatile organics and dioxins/furans on the one day of organic sampling. The third sampler on the inorganics days consisted of solid sorbents for mercury, and the fourth collected acid gases. There were only two gas samples on the organics day, for the purpose already indicated.

Several sample components were recovered each day. Different types of analytes were determined on the basis of the following components:

Metals. The quantity in the particulate fraction was a composite
of the amounts found in three fractions: 1) probe rinse, 2) filter,
and 3) dilution chamber rinse. The combined amounts in the
three fractions were assumed to be all of the particulate matter in
the total gas volume. The original concentration of each metal in
the duct was calculated by correcting the total gas volume

through the three sampling elements first for the dilution factor and then for the actual O_2 level in the duct. Thus, the concentration was expressed in $\mu g/Nm^3$.

The quantities of each vapor collected in the two impinger trains were consolidated and expressed as an original duct concentration by using the combined sample volumes, corrected as described above.

- Calculation of duct concentrations of the acid gases was based only on the amounts collected in the impinger train.
- Calculation of mercury vapor in the duct was based on the amounts in the solid traps behind the filter.
- Organic compounds were pooled and expressed as duct concentrations as described for metals.

The approximate dilution factor in the collection of all the samples was 10:1. The gas volume from the duct was approximately 5 m³; the total including dilution air was thus about 60 m³. The gas was cooled in the dilution chamber to approximately 20-26 °C in each experiment.

8.2.3 Analytical Results for Diluter Samples

The main question to be considered is whether simulated plume dilution changed the distribution of trace substances between the particulate and vapor states. One other question that potentially can be addressed is whether dilution changed the distribution of mercury in different species.

Certain types of species were sampled at the stack with and without the diluter. Those sampled both ways were trace metals at large (Method 29), mercury with iodated carbon traps, acid gases, semi-volatile organics, and dioxins and furans. Those not sampled with dilution were ammonia, hydrogen cyanide, aldehydes, and volatile organics.

8.2.3.1 Trace Metals

Tables 8-1, 8-2, and 8-3 present the results of daily measurements of trace metals at the stack with the simulated plume diluter used in a modification of Method 29. The data presented for dilution sampling have been corrected for dilution to show the original duct concentrations. The data from previous tables that give the concentrations observed with direct sampling (that is, without dilution) are also included in these tables. Thus, concentrations in each state (particulate or vapor) and as the total can be compared.

Consider first the question of whether the three volatile metals give evidence of condensing with cooling and dilution. The question has to be answered by considering not the total concentrations but the proportions of particulate and vapor

concentrations. (The lack of agreement between total concentrations with and without dilution makes the comparison of total concentrations of little use.) For boron, there was strong evidence of vapor condensation or adsorption on particulate matter; without dilution, over 99% of the boron was in the vapor state, whereas with dilution only 33% was in the vapor state. For mercury, dilution reduced the vapor percentage from a value in excess of 99% to just 39%. For setenium, the reduction in percent vapor was from 80% to 14%. The percentages cited are averages from three days of sampling; there is considerable spread in the individual values, but even so the data are consistent from day to day in showing the effects described.

The data from mercury vapor sampling with solid traps permits consideration of the question of the effect of cooling and dilution on the proportions of mercury in the divalent and elemental species. The vapor data (concentrations in µg/Nm³) are presented below in a summary that includes particulate data from Tables 8-1, 8-2, and 8-3:

	Sept. 3	<u>Sept. 4</u>	Sept. 5
Direct sampling			
Particulate -	0.03	0.05	0.08
Vapor	•		
Hg(II)	. =	4.91	4.88
Hg(0)	_	2.73	1.43
			
Total	8.84	7.69	6.39
Dilution sampling			
Particulate	2.97	4.72	7.78
Vapor _			
Hg(II)	_	241	2.79
Hg(0)	_	2.79	2.29 *****
Total	11.91	9.96	12.86

Percentages of vapor in the divalent state on the two days when vapor speciation was accomplished were 64 and 77% with direct sampling or 46 and 55% with dilution sampling. Thus, for the vapor alone, there was a minor shift from the divalent state to the elemental state. The appropriate interpretation of the data is made indefinite, however, by the lack of agreement between the total concentrations with and without dilution. Perhaps the most reasonable interpretation is to point to the large increase in the particulate mercury with dilution as a consequence of a net shift toward the divalent state rather than the elemental state. If, as seems reasonable, the total concentration of divalent mercury is taken to be the sum of the particulate mercury and the divalent mercury in the vapor state, the percentages in the divalent state are 64 and 68% with direct sampling and 71 and 78% with dilution sampling.

8.2.3.2 Acid Gases

Table 8-4 compares the observed concentrations of the acid gases HF, HCl, and SO₂ (in ppmv at 3% O₂ for the duct, before dilution).

The data indicate that the only likely effect of dilution and sampling was a reduction in the concentration of HCl. The average HCl concentration decreased from 72.2 ppmv with direct sampling to 53.4 ppmv with dilution sampling. The question to be considered is whether the loss of HCl was due to condensation or adsorption. This question can be considered by attempting to assign a value to the dew point of a gaseous mixture of HCl and water vapor: would 75 ppmv of HCl and 9% water vapor (the approximate concentrations in the duct) reach the dew point on being diluted 1:10 and cooled to 20-25 °C, with air containing about 1% water vapor (dew point 40 °F)? Unpublished work by the author does not address this question specifically, but it Indicates that the answer is very likely no. The loss of HCl, therefore, is more likely due to adsorption.

8.2.3.3 Organic Compounds

No clear-cut effect on either semi-volatile compounds or dioxins and furans could be detected. The possible presence of semi-volatiles was obscured by contaminants, as elsewhere in the system. The dioxins and furans were reduced to even lower concentrations than those present in the duct; they were undetectable after dilution.

Table 8-1 Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP from Dilution Sampling (September 3, 1993) (Comparison with undiluted metals at the same location; data in μg/Nm³) (All data by Method 29)

	Particulate	Vapor	Total
	w/Diln (w/o Diln)	w/Dila (w/o Dila)	w/Diln (w/o Diln)
Trace metals			
Antimony	0.87 (0.43)	<0.04 (0.14)	0.89 (0.56)
Arsenic	25.4 (7.72)	3.07 (4.41)	28.4 (12.1).
Barlom	46.3 (22.2)	3.83 (2.13)	50.2 (24.3)
Beryllium	1.79 (1.77)	···-<0.02 (<0.02)	1.80 (1.78)
Boron	12010 (62.3)	6530 (10900)	18540 (11000)
Cadmium	6.03 (8.84)	0.05 (3.64)	6.08 (12.5)
Chromium	36.8 (29.9)	2.43 (2.26)	39.2 (32.1)
Cobalt	6.85 (2.66)	0.47 (0.14)	7.32 (2.80)
Соррег	18.6 (15.5)	3.16 (1.64)	21.8 (17.1)
Lead	23.8 (28.2)	<0.10 (0.76)	23.8 (29.0)
Manganese	11.6 (10.2)	<0.80 (<0.80)	12.0 (11.0)
Mercury*	2.97 (0.03)	0.64/3.09 (0.83/3.08)	6.70 (3.94)
Molybdenum	20.9 (16.3)	<0.40 (<0.40)	21.1 (16.5)
Nickel	16.7 (8.68)	0.76 (1.18)	17.5 (9.86)
Selenium	165 (11.5)	46.5 (135)	212 (146)
Vanadium	42.7 (43.2)	0.28 (0.45)	42.9 (43.7)
Major metals			
Aluminum	4080 (7010)	260 (249)	4340 (7260)
Calcium	980 (744)	1840 (1640)	2820 (2380)
Iron	6180 (8120)	160 (166)	6340 (8280)
Magnesium	234 (277)	64.3 (57.2)	298 (334)
Titanium	356 (425)	10.9 (11.3)	367 (436)

"The column for vapor gives separate data from peroxide and permanganate impingers.

Table 8-2 Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP from Dilution Sampling (September 4, 1993) (Comparison with undituted metals at the same location; data in µg/Nm³) (All data here by Method 29)

	Particulate	Vapor	Total
	w/Diln (w/o Diln)	w/Diln (w/o Diln)	w/Diin (w/o Diln)
Trace metals			
Antimony	0.68 (0.25)	<0.04 (<0.04)	0.70 (0.27)
Arsenic	15.3 (3.07)	0.35 (0.88)	15.7 (3.95)
Barium	52.4 (17.0)	3.26 (2.57)	55.7 (19.5)
Beryllium	1.22 (1.08)	<0.02 (<0.02)	1.23 (1.09)
Вогоп	13508 (38.0)	5590 (14900)	19098 (14900)
Cadmium	3.13 (4.11)	<0.10 (3.23)	3.18 (7.33)
Chromium	30.4 (17.8)	3.53 (2.89)	34.0 (20.7)
Cobalt	2.27 (1.52)	<0.20 (<0.20)	2.37 (1.62)
Copper	17.4 (10.8)	3.79 (2.73)	21.2 (13.5)
Lead	17.47 (20.1)	<0.50 (<0.50)	17.7 (20.3)
Manganese	14.4 (6.61)	<0.80 (<0.80)	14.8 (7.01)
Mercury	4.72 (0.05)	0.66/1.94 (1.98/2.97)	7.32 (5.00)
Molybdenum	22.0 (14.9)	<0.40 (<0.40)	22.2 (15.1)
Nickel	11.4 (1.56)	0.99 (1.96)	12.4 (3.52)
Selenium	473 (71.0)	113 (482)	586 (553)
Vanadium	35.6 (33.1)	0.11 (0.10)	35.7 (33.2)
Major metak		:	
Aluminum	3480 (3190)	298 (287)	3780 (3480)
Calcium	760 (754)	2240 (2380)	3010 (3130)
Iron	5170 (5500)	162 (92.9)	5330 (5590)
Magnesium	180 (223)	80.8 (77.9)	261 (300)
Titanium	286 (334)	12.6 (12.0)	299 (346)

8-10

Table 8-3 in the Gas Stream

Metal Concentrations in the Gas Stream at the Outlet of the Unit 7 ESP from Dilution Sampling (September 5, 1993) (Comparison with undiluted metals at the same location; data in µg/Nm³) (All data here by Method 29)

	Particulate	Vapor	Total
	w/Diln (w/o Dila)	w/Dân (w/o Dân)	w/Dila (w/o Dila)
Trace metals			
Antimony	0.63 (0.43)	<0.04 (0.03)	0.65 (0.46)
Arsenic	11.6 (2.58)	0.14 (0.54)	11.7 (3.12)
Barium	42.0 (24.8)	3.66 (2.61)	45.7 (27.4)
Beryllium	0.87 (1.27) ····	···<0.02 (<0.02)	0.88 (1.28)
Вогов	12075 (51.0)	6656 (13900)	18732 (13900)
Cadmium	2.71 (6.59)	~0.10 (1.97)	2.76 (8.56)
Chromium	26.3 (27.6)	4.82 (2.90)	31.1 (30.5)
Cobalt	0.79 (1.77)	<0.20 (<0.20)	0.89 (1.87)
Copper	11.7 (13.8)	3.58 (0.79)	15.3 (14.6)
Lead	12.1 (21.0)	<0.50 (<0.50)	12.3 (21.2)
Manganese	6.03 (9.36)	<0.80 (<0.80)	6.43 (9.76)
Mercury	7.68 (0.08)	0.67/1.84 (1.38/2.22)	10.2 (3.68)
Molybdenum	17.8 (19.0)	<0.40 (<0.40)	18.0 (19.2)
Nickel	8.36 (8.51)	3.11 (2.30)	11-5 (10.8)
Selenium	508 (134)	9.4 (206)	517 (340)
Vanadium	25.9 (36.8)	0.03 (0.19)	25.9 (37.0)
Major metals			
Aluminum	2410 (3780)	292 (258)	2700 (4040)
Calcium	560 (1010)	2140 (2250)	2700 (3260)
Iron	3010 (6570)	128 (143)	3130 (6720)
Magnesium	119 (282.0)	97.0 (69.2)	215 (351)
Titanium	198 (384)	12.7 (11.0)	210 (395)

Table 8-4 Anion and Corresponding Acid Gas Concentrations at the Outlet of the Unit 7 ESP from Dilution Sampling (Comparison with undiluted metals at the same location; data in µg/Nm²)

	September 3, 1993 w/Diln (w/o Diln)	September 4, 1993 w/Diln (w/o Dila)	September 5, 1993 w/Diln (w/o Diln)
Anions - μg/Nm³		•	
Fluoride	10,400 (12,400)	11,100 (14,600)	13,600 (11,800)
Chioride	66,100 (86,600)	78,800 (127,000)	91,500 (106,000)
Sulfate	11.05 x 10° (10.60 x 10°)	9,50 x 10° (11.40 x 10°)	10.3 x 10° (11.00 x 10°)
Phosphate	<9400 (<10,800)	<8300 (<11,300)	<8500 (<11,300)
Acid gases - ppmv			· · · · ·
HF	13.1 (15.7)	14.1 (18.5)	17.2 (16.4)
на	44.8 (58.7)	53.4 (86.0)	62.0 (71.9)
SOz	2760 (2650)	2380 (2860)	2570 (2760)
н,ро,	<2.4 (<2.7)	<2.1 (<2.9)	<2.2 (<2.5)

8.3 Particle Size

8.3.1 Particle Mass versus Particle Size

Particle size distributions of the particulate matter suspended in the flue gases were measured *In-situ* using cascade impactors at the ESP outlet locations and stack and series (cascade) cyclones at the ESP inlet location. A University of Washington (Pilat) Mark V/III impactor was used with an SRI/EPA right engle precollector at the ESP outlets and stack to provide data in seven size fractions with separation diameters ranging from 0.19 μ m to 9.5 μ m. SRI/EPA Five Series Cyclones were used at the Unit 8 ESP inlet to provide data in six size fractions with separation diameters ranging from 1.06 μ m to 10.3 μ m.

Results of the size distribution measurements are shown in Figures 8-2, 8-3, 8-4, and 8-5 in the conventional cumulative percentage of mass concentration contributed by particles smaller than the indicated diameter. The data are shown on an aerodynamic diameter basis - one in which the actual particle behaves in air as though it were a unit density sphere of the indicated size. The physical size of the particle may differ from the aerodynamic size because of its shape and/or density. The extrapolations to sizes larger than the first stage D_{50} and smaller than the last stage D_{50} were obtained by means of cubic splines with forced continuity in slope and value and subject to the conditions that there is zero accumulated concentration at some minimum diameter (0.01 μ m in this case) and no further accumulation at sizes greater than some maximum diameter (1000 μ m in this case) as described in "Procedures Manual for the Recommended ARB Particle Size Distribution Method (Cascade Impactors)" (13).

The result of series cyclone measurements at the Unit 8 ESP inlet is presented in Figure 8-2. The solid line in this figure represents the average result for the three runs and the broken lines show the 90% confidence limits for the average based on the scatter in the data from the Individual runs. Figure 8-3 presents the results of the particle size measurements made with a cascade impactor at the Unit 8 outlet (as only one sample was obtained, confidence limits cannot be shown). There was a reduction in mean diameter from $^{\sim}20~\mu m$ to $^{\sim}4~\mu m$ across the ESP. Figure 8-4 shows the size distribution measured with a cascade impactor at the outlet of the Unit 7 ESP. This distribution has a mean diameter of $^{\sim}8~\mu m$. The coarser distribution of particle sizes leaving the Unit 7 ESP than were measured leaving Unit 8 ESP is consistent with the higher mass emissions from the Unit 7 ESP. Figure 8-5 shows the average particle size distribution and associated 90% confidence intervals for triplicate cascade impactor measurements in the stack. The distribution has a mean size of $^{\sim}0.55~\mu m$. The fineness of this distribution is largely attributable to condensed acid droplets which we determined constituted about 75% of the total mass emissions.

The collection efficiency of the Unit 8 ESP as a function of particle size is shown in Figure 8-6. The figure shows the typical dependence on size that characterizes ESPs, and causes the shift in size distributions presented in Figures 8-2, and 8-3. Figure 8-7 is the ratio of outlet to inlet mass concentrations across the AFGD scrubber and across the Unit 8 ESP. The AFGD system inlet mass concentration was determined by combining the fractional mass flow rates from Units 7 and 8 weighted by the measured gas flow rates. This plot shows that acid vapor condensation affects the fractional penetration of submicron particles through the scrubber.

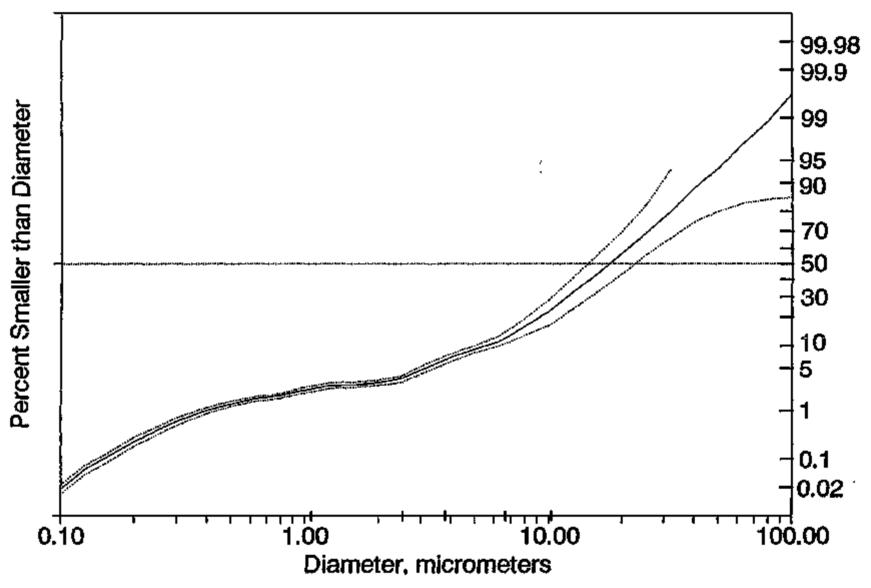


Figure 6-2. Particle Size Distribution (Aerodynamic Diameter Basis) of Fly Ash Entering the Unit 8 ESP as Measured by Series Cyclones. The Heavy Vertical Ticks Show the Approximate Fractionation Diameters.

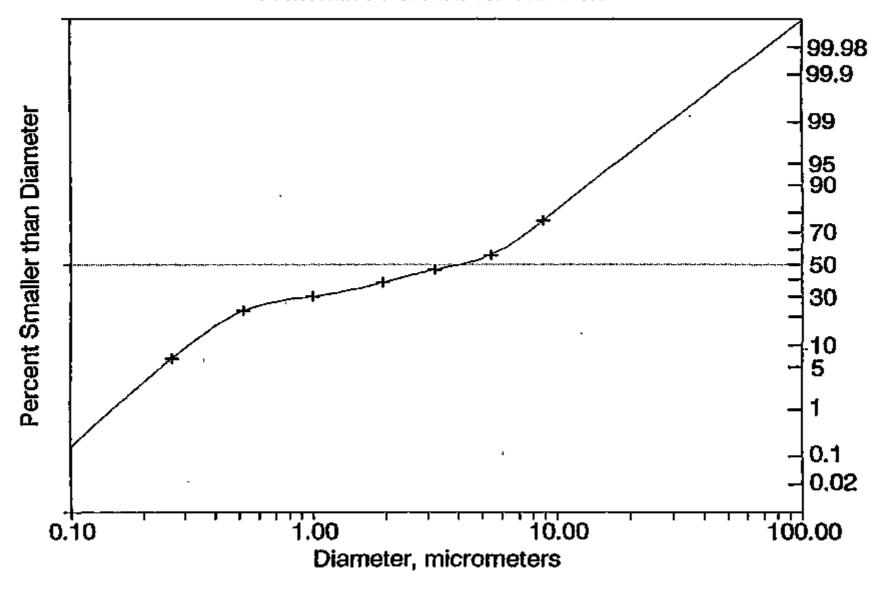


Figure 8-3. Particle Size Distribution of Fly Ash at the Unit 8 ESP Outlet as Measured by Cascade Impactor.

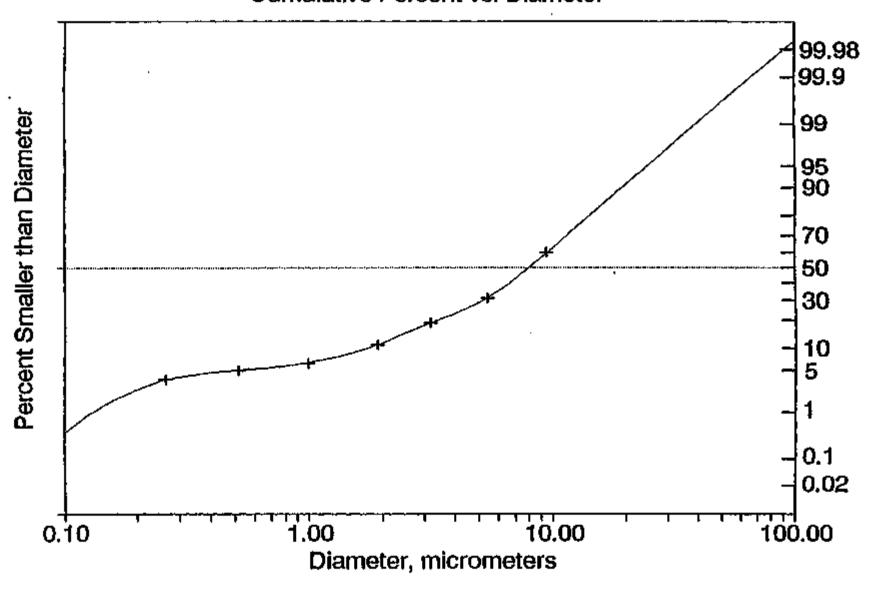
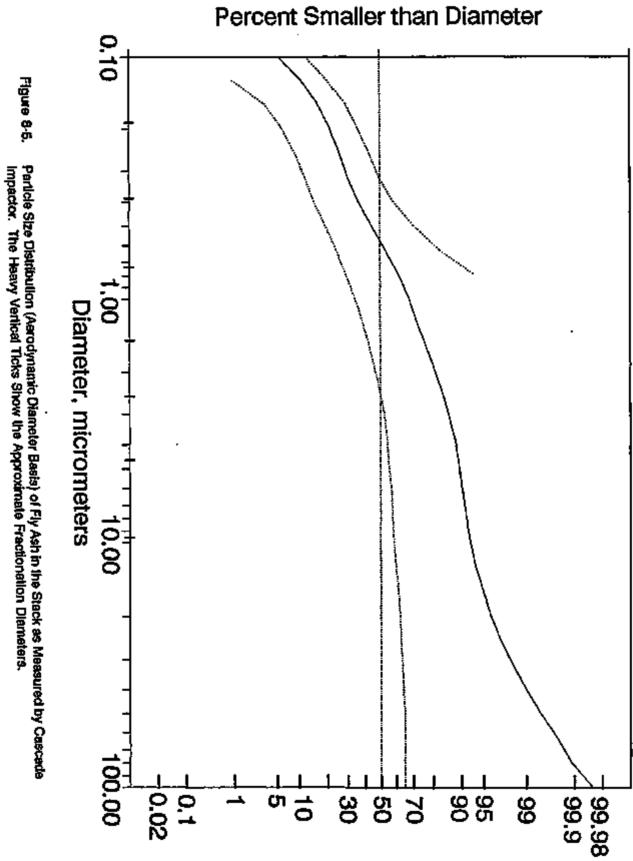



Figure 8-4. Particle Size Distribution of Fty Ash at the Unit 7 ESP Outlet as Measured by Cascade Impactor.

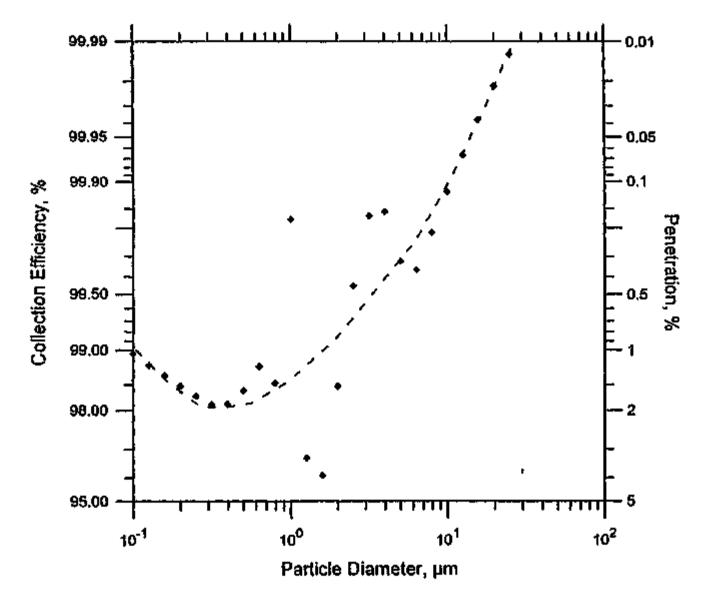


Figure 8-8. Fractional Coffection Efficiency of the Unit 8 ESP.

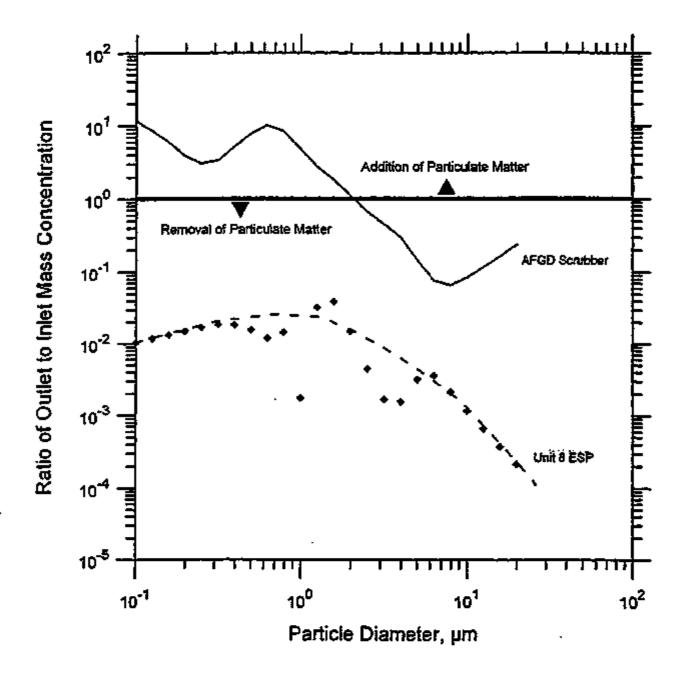


Figure 8-7. Ratio of Outlet to Inlet Mass Across the AFGD System and the Unit 8 ESP.

8.3.2 Concentrations of Trace Metals versus Particle Size

Tables 8-5 through 8-9 give metal concentrations as a function of ash particle size in samples collected from the entrained state with series cyclones. The top of each table presents the particle range and the percentage of the total particulate mass in that range. The first three tables present the results for samples collected at the inlet of the Unit 8 ESP; the tast two tables give data for the outlets of the two ESPs.

The particles in the two larger size ranges were collected separately, in the first two cyclones of the series. For the Unit 8 inlet location, the particles in the finer size ranges, on the other hand, were collected in different size ranges in different cyclones and combined as a composite for analysis. For the ESP outlet locations the finer size ranges were all collected on a filter downstream of two cyclones. The last column in the tables gives the weighted average metal concentrations in the three size ranges.

The metals that do NOT show increasing concentrations with decreasing particle size are more the exception than the rule. The more notable exceptions to the rule of the inverse relationship between concentration and particle size in the data sets at the ESP inlet are found in one but not three of the data sets. There are more frequent exceptions to the rule in the outlet data, especially for the Unit 8 ESP. In this instance, the middle-size particles present most of the anomaly, but represent only a very small fraction of the total mass.

Table 8-10 compares, for the inlet of the Unit 8 ESP, the averages of the concentrations in the cyclone composites with the averages from the Method 29 filter. The concentrations of the trace metals agree remarkably well. Ironically, the concentrations of the major metals, which should be more easily established, do not agree as well.

Table 8-5 Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 3, 1993 (Data in $\mu g/g$)

	· Joan	ישישייי -		
	Stage 1	Stage 2	Stage 3	Composite ^a
Particle size, µm	>10.3	6.7-10.3	<6.7	
Mass, %	72.98	14.51	12.51	100.00
Trace metals, μg/g		<u>-</u> ·		
Antimony	4.70	10.0	40.1	9.90
Arsenic	14.7	25.4	92.4	26.00
Barium	360	407	462	380.00
Beryllium	15.3	20.4	7.74	34.4
Boron ^b		-	_	-
Cadmium	15.2	38.2	59.0	24.0
Chromium	233	450	1360	406
Cobalt	35.5	44.9	51.5	38.8
Соррег	134	202	359	172
Lead	180	318	637	257
Manganese	212	221	281	222
Mercury	0.023	0.801	0.142	0.15
Molybdenum	55.7	172	820	168
Nickel	178	262	359	213
Selenium	3.70	10.7	<i>7</i> 3.3	13.4
Venadium	354	615	147	532
Major metals, μg/g				
Aluminum	52600	58400	59500	54300
Calcium	10500	16800	20800	12700
Iron	65600	73900	91500	70000
Magnesium	3210	5980	6430	4010
Titanium	3350	8120	10900	4980

^{*}Computed as the sum of individual products of decimal fraction times concentration (µg/g).

bNo data available for boron. See Table 8-6.

Table 8-6 Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 4, 1993 (Data in µg/g)

	Stage 1	Stage 2	Stage 3	Composite*
Particle size, µm	>10.2	6.6-10.2	<6.6	
Mass, %	74.25	13.22	12.53	100.00
Trace metals, μg/g			:	
Antimony	5.22	9.04	_43.2	10.5
Arsenic	11.7	20.6	85.5	22.1
Barium	335	347	427	348
Beryllium	15.1	18.34	32.8	17.8
Boron	499	730	1670	676
Cadmium	14.9	32.9	65.2	23.6
Chromium	219	380	1280	373
Cobalt	. 33.2	37.9	55.0	36.6
Copper	140	173	342	170
Lead	156	286	722	244
Manganese	<u>2</u> 13	208	278	220
Mercury	0.023	0.117	0.004	0.03
Molybdenum	49.9	121	711	142
Nickel	172	225	354	202
Selenium	5.13	9.99	82.3	15.4
Vanadium	350	530	1350	499
Major metak, μg/g				
Aluminum	50800	55600	94800	57000
Calcium	9500	6050	19300	10300
Iron	66400	67000	152000	77200
Magnesium	<u>56</u> 50	5750	6670	5790
Titanium	6500	7530	11300	7240

8-22

Table 8-7 * Metal Concentrations in Cyclone Fractions at the Inlet of the Unit 8 ESP on September 5, 1993 (Data in μg/g)

	(sear at h8t8)								
	Stage 1	Stage 2	Stage 3	Composite*					
Particle size, µm	>10.2	6.6-10.2	<6.6	-					
Mass, %	76.60	12.68	10.71	99.99					
Trace metals, μg/g									
Antimony	6.84	13.3	37.0	10.9					
Arsenic	18.0	32.5	196	38.9					
Barium	357	402	457	373					
Beryllium	15.5	22.1	36.0	18.6					
Boron ^b		**		••					
Cadmium	26.7	16.7	80	31.1					
Chromium	258	584	1470	430					
Cobalt	32.7	46.6	59 .3	37.3					
Copper	172	256	397	207					
Lead	154	339	737	240					
Manganese	222	226	277	228					
Mercury	0.017	0.069	0.049	0.03					
Molybdenum	73.1	223	844	175					
Nickel	221	352	519	270					
Selenium	5.54	11.4	47.0	10.7					
Vanadium	400	704	1450	551					
Major metals, μg/g									
Aluminum	49200	54300	97200	55500					
Calcium	11100	15800	20300	12700					
Iron _	62100	71300	143000	71900					
Magnesium	5960	6250	6700	6070					
Titanium	6400	8400	11300	7170					

^{*}Computed as the sum of individual products of decimal fraction times concentration $(\mu g/g)$. bNo data available for boron. See Table 8-6.

Table 8-8 Metal Concentrations in Cyclone Fractions at the Unit 8 ESP Outlet on September 6, 1993 (Data in µg/g)

	Stage 1	Stage 2	Stage 3	Composite*
Particle size, µm	>9.1	5.5-9.1	<5.5	
Mass, %	51.68	1.12	47.2	100.00
Trace metals, μg/g				
Antimony	10.7	<400	67.8	38.0
Arsenic	58.4	1320	249	149_
Barium	172	1230	564	359
Beryllium	7.45	<10	27.7	17.1
Boron	<u></u>	1		
Cadmium	109	308	104	107
Chromium	2150	88200	2120	2130
Cobalt	50.2	2020	46.3	48,3
Copper	142	3420	391	261
Lead	103	<50	658	368
Manganese	2250	7500	399	1370
Mercury	1.04	30.0	0.71	0.88
Molybdenum	113	<50	1570	807
Nickel	1560	78600	746	1170
Selenium	623	4660	592	609
Vanadium	219	870	1120	651
Major metak, µg/g		•		:
Aluminum	40500	103000	41900	41200
Calcium	12400	6610	19800	15900
Iron	291000	312000	88800	195000
Magnesium	2960	11500	4790	3830
Titanium	3250	11900	6400	4752

*Stage 2 deleted from calculations because of suspected unreliable data from small sample.

Table 8-9 Metal Concentrations in Cyclone Fractions at the Unit 7 ESP Outlet on September 5, 1993 (Data in μg/g)

	Stage 1	Stage 2	Stage 3	Composite
Particle size, µm	>10.4	6.7-10.4	<6.7	<u></u>
Mass, %	45.42	16.51	38.07	100.00
Trace metals, µg/g				
Antimony	<u> 17.8</u>	33.7	61	36.9
Arsenic	35.9	97.9	169	96.9
Barium	397	494	٠	>262
Beryllium	28.3	34.3	39.4	33.5
Boron				
Cadmium	42.2	115	127	86.7
Chromium	503	984	2450	1320
_Cobalt	51.2	65.0	60	56.8
Соррег	258	308	373	310
Lead	381	539	1260	740
Manganese	377	277	282	325
Мегсигу	0.172	0.277	0.232	0.21
Molybdenum	245	390	1570	775
Nickel	345	<u>673</u>	634	509
Selenium	156	112	145	145
Vanadium	589	842	1260	887
Major metals, μg/g				
Aluminum	77900	55400	126000	92400
Calcium	17000	20700	18700	18200
Iron	755000	79900	261000	455000
Magnesium	4980	5910	5410	5300
Titanium	6370	8310	8820	7620

Table 8-10
Comparison of Metal Concentrations at the Inlet of the Unit 8 ESP in Samples from the Method 29 Filter and the Series Cyclones (Data in µg/g)

-	M29	Cyclone
	filter*	composite ^b
Antimony	8.2	10.4
Arsenic	25.6	29.0
Barium	378	367
Beryllium	19.3	18.2
Boron	529	676
Cadmium	31.4	26.2
Chromium	411	403
Cobalt	37.7	37.6
Copper	187	183
Lead	285	247
Manganese	235	224
Mercury	0.053	0.070
Molybdenum	148	162
Nickel	244	228
Selenium	35.4	13.2
Vanadium	508	527
Aluminum	95300	55400
Calcium	18600	11900
Iron	127000	73100
Magnesium	6240	5290
Titanium	6990	6460

*From first data column of Table 6-25 (averages).

*From last columns of Tables 8-5, 8-6, and 8-7 (averages, except for the single value for boron).

8.4 Comparison of Method 29 and Carbon Traps for Mercury Measurements

Concentrations of mercury in the vapor state were determined on the filter and in the peroxide and permanganate impingers of Method 29 and the solid traps devised by Bloom (2). The data from the two methods are compared in Table 8-11.

One of the observations from this table is that the total mercury concentration in the gas stream at each location was usually lower when measured by Method 29. Another observation is that at duct locations preceding the stack the proportions as divalent and elemental mercury were essentially opposite by the two methods. This statement is based on the prevailing concept that the peroxide impingers of Method 29 should capture divalent mercury selectively, leaving only elemental mercury to be captured in the permanganate. One possible interpretation is that the retention of the divalent vapor in the peroxide was incomplete and the vapor that penetrated the peroxide was subsequently collected in the permanganate. This interpretation, however, is at variance with other studies that have shown excellent correlation between speciation results from the two methods.

The two methods do, however, seem in sensible agreement as to total mercury at the stack. They are also in agreement as to speciation at the stack, where both concur in showing evidence for nearly complete removal in the scrubber of the divalent vapor.

Table 8-11 Comparison of Mercury Concentrations from Two Sampling Trains

Method 29	Method 29		9/4/93	9/5/93	Average	% of Total
Unit 8	Filter	0.30	0.25	0.25	0.27	6%
ESP Inlet	H ₂ O ₂ /HNO ₃	1.12	0.93	1.08	1.04	25%
	KMnO ₄	4.09	2.50	2.02	2.87	69%
ļ	TOTAL	5.51	3.68	3.35	4.18	
Unit 8	Filter	0.06	0.01	0.02	0.03	1%
ESP Outlet	H ₂ O ₂ /HNO ₃	0.91	1.15	1.63	1.23	31%
	KMnO ₄	3.15	2.73	2.39	2.76	69%
	TOTAL	4.12	3.89	4.04	4.02	,
Unit 7	Filter	0.03	0.05	0.08	0.05	1%
ESP Outlet	H ₂ O ₂ /HNO ₃	0.83	1.98	1.38	1.40	33%
	KMnO ₄	3.08	2.97	2.23	2.76	66%
	TOTAL	3,94	5.00	3.69	4.21	
Stack	Filter		0.01	0.01	0.01	0%
	H ₂ O ₂ /HNO ₃	0.14	0.16	0.13	0.14	5%
	KMnO ₄	3.14	2.37	2.43	2.65	95%
	TOTAL	3.28	2.54	2.57	2.80	

Table 8-11 (Concluded) Comparison of Mercury Concentrations from Two Sampling Trains

			Concentrat	tion, μg/N an³		
		9/3/93	9/4/93	9/5/93	Average	% of Total
Solid traps	ş *					
Unit 8	Hg(II)		5.19	4.79	4.99	62%
ESP Inlet	Hg(0)		1.31	2.40	1.86	23%
	TOTAL	10.30	6.50	7.19	8.00	
ESP -	Hg(II)	_	3.25	5.05	4.15	50%
	Hg(0)		4.46	1.97	3.22	39%
	TOTAL	10.20	7.71	7.02	8.31	
Unit 7	Hg(II)		4.91	4.88	4.90	65%
ESP Outlet	Hg(0)		2.73	1.43	2.08	27%
	TOTAL	8.81	7.64	6.31	7.59	
Stack	Hg(II)		0.09	0.08	0.09	2%
	Hg(0)		3.50	3.42	3.46	98%
	TOTAL	3.48	3.59	3.50	3.52	

^{&#}x27;On 9/3/93, only traps of iodated carbon were used, and only total mercury was determined.

Booker

9.0 REFERENCES

- U.S. Environmental Protection Agency. Test Methods for Evaluating Solid Waste. EPA/SW-846, Third Edition, November 1986 (Revision 1, July 1992).
- Nicolas S. Bloom. "Mercury Speciation in Flue Gases: Overcoming the Analytical Difficulties." Presented at Managing Hazardous Pollutants - State of the Art. Washington, D.C. Nov. 4-6, 1991.
- W. Chow, "PISCES: Tracking Trace Chemicals in Power Plants." J. Air Waster Manage. Assoc. 40, 806 (1990).
- Edward B. Dismukes. "Measurements of Air Toxics Emissions from a Coal-Fired Boiler Equipped with a Tangentialty Fired Low NO_x Combustion System." Second Annual Clean Coal Technology Conference. September 7-9, 1993, Atlanta, GA.
- J. T. Yeh, G. R. McCann, J. J. Demeter, and D. Bienstock. <u>Removal of Toxic Trace Elements from Coal Combustion Effluent Gas, in Trace Contaminants from Coal.</u>
 S. Torrey, editor. Noyes Publishing Corporation (1978).
- Method 1311. Toxicity Characteristic Leaching Procedure. Federal Register 55, No. 61, p. 11863 (March 29, 1990).
- U.S. Environmental Protection Agency. Methods Manual for Compliance with the BIF Regulations. EPA/530-SW-91-010. December 1990.
- 8. M. W. Weatherburn. <u>Phenol-Hypochlorite Reaction for the Determination of Ammonia</u>. Anal. Chem. 39, 971 (1967).
- W. J. Dixon. "Processing Data for Outliers." Biometrics 9, No. 1, Appendix, p. 89 (1953).
- M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. JANAF Thermochemical Tables. Third Edition. American Chemical Society and the American Institute of Physics. New York, New York (1986).
- American Society of Mechanical Engineers. Measurement Uncertainty.
 ANSI/ASME PTC 19.1-1985. United Engineering Center. New York, New York (1985).
- J. D. McCain and Ashley D. Williamson. "A Review of Current Methods for Measuring Particulate Matter Including Condensables from Stationary Sources." EPA-800/12-88-765, U.S. Environmental Protection Agency, Research Triangle Park, NC. pp. 25 (1988).

 J. D. McCain, et al. Procedures Manual for the Recommended ARB Particle Size Distribution Method (Cascade Impactors). Attachment 1 to the Final Report for ARB Contract A3-092-32. "Recommended Methodology for the Determination of Particle Size Distribution in Ducted Sources." May 1986 (NTIS PB 86-218666/WEP).

10.0 GLOSSARY

AAS Atomic absorption spectroscopy

acfm Actual cubic feet per minute

AFGD Advanced Flue Gas Desulfurization (Pure Air scrubber for SO₂ at Bailly)

ALD Aldehyde sampling train

Amm/HCN Ammonia/hydrogen cyanide sampling train

ARP Absorber recirculation pump

BP Bleed pump

Btu British thermal unit

CADT Condensibles Air Dilution System (device for plume simulation)

CT&E Commercial Testing & Engineering Company

CVAAS Cold vapor atomic absorption spectroscopy

CVAFS Cold vapor atomic fluorescence spectroscopy

D_{so} Particle size at which an impactor stage retains 50% of the incoming

sample and passes the balance

DIL Dilution sampling train

DOE Department of Energy

DNPH 2,4-Dinitrophenylhydrazine

DQO Data Quality Objective

dscfm Dry standard cubic feet per minute (at 273 K)

EPRI Electric Power Research Institute

ESP Electrostatic precipitator

FGD Flue gas desulfurization

g gram

GC/MS Gas chromatography/mass spectroscopy

GFAAS Graphite furnace atomic absorption spectroscopy

HAP Hazardous air pollutant

HG Mercury sampling train

HGAAS Hydride generation atomic absorption spectroscopy

HPLC High performance liquid chromatography

ICCT Innovative Clean Coal Project

ICP Inductively coupled argon plasma emission spectroscopy

Joule

lb pound

LLD lower limit of detection

m meter

M2 EPA Method 2

M5 EPA Method 5

M5AT EPA Method 5 train for acid gases

M5MMT EPA Method 5 train for multiple metals

M17 EPA Method 17

M29 EPA Method 29

MACT Maximum Available Control Technology

mg milligram

ug microgram

um micrometer

MM5 Modified Method 5

MMD Mass-median diameter

MMT Multiple Metals Train

MW Megawatt net

MWe Megawatt electrical

ND Not determined

NIPSCO Northern Indiana Public Service Company

Nm³ Normal cubic meter (dry gas volume adjusted to reference conditions of

293.15 K, 1 atm, 3% O₂) (This temperature and pressure are the values

stipulated as standard conditions for reporting performance

characteristics of stationary sources. See 40 CFR, Part 60, Subpart A,

page 15, in 7/1/93 edition.)

NR No result

PAH Polycyclic aromatic hydrocarbon

PCDD Perchlorinated dibenzodioxin

PCDF Perchlorinated dibenzofuran

PETC Pittsburgh Energy Technology Center

pg picogram

PISCES Power Plant Integrated Systems: Chemical Emission Studies

PM₁₀ Particles smaller than 10 um

ppbv parts per billion by volume

ppmv parts per million by volume

QA Quality Assurance

QC Quality Control

RTI Research Triangle Institute

SIE Specific ton Electrode

SOP Standard Operation Procedure

SRI Southern Research Institute

SV Semi-volatile (organic compound)

SVOC Semi-volatile organic compounds

SW-846 Manual for the analysis of solid wastes (EPA; Reference 6)

TCLP Toxicity characteristic leaching procedure

U of W Mk V University of Washington Mark V impactors

UARG Utility Air Regulatory Group

UV Ultraviolet

VOST Volatile Organic Sampling Train

XAD Resin for adsorbing organic vapors

APPENDIX A

AUDITING

APPENDIX A1

ROUND ROBIN COAL ANALYSES

SRI participated in round robin analyses of coal samples administered by CONSOL, Inc. for DOE. We analyzed 17 coal samples in duplicate under the round robin. There were two samples from each of the eight plants being tested in the DOE air toxics assessment program, plus one reference coal. Analyses specified included proximate and ultimate, 10 major ash constituents, the 16 trace elements in the DOE program scope of work, and fluorine.

Results of the analyses of those two coal samples determined to be from Bailly are presented in the following tables. SRI was designated as Lab V in the CONSOL compilation of results; Lab V designation is used in the following tables. BRL stands for Brooks Rand, Ltd., which provided additional determinations of mercury under arrangement with SRI.

On a relative basis, the worst flaw in the SRI results was with antimony, the concentration of which was not really defined. For most of the metals, the SRI data were not at either extreme (high or low) in the results compiled by all five laboratories. The exceptions were SRI data showing the lowest concentrations of chromium, cobalt, and selenium and the highest concentrations of beryllium and vanadium.

Table A1-1
Round Robin Proximate and Ultimate
Analytical Data on Bailty Coal
(Data in wt% or Btu/lb for moisture-free coal)

	Coal	Lab I	Lab II	Lab III	Lab IV	Lab V
Ash	В	12-68	12.69	12.56	12.45	12.43
	.	12.54	12.72	12.53	12.55	12.48
	ĸ	12.59	12.63	12.44	12.47	12.44
		12.38	12.6	12.49	12.46	12.62
Carbon	В	68.33	70.23	70.12	68.86	68.84
	1	67.79	70.07	69.95	68.82	68.78
	ĸ	68.06	70.23	69.61	68.99	68.7
	<u>.</u>	81.55	70.02	69.21	68.92	68.93
Hydrogen	В	5.1	4.82	4.83	4.51	4.68
		5.29	4.84	4.81	4.56	4,68
	K	4.98	4.82	4.91	4.55	4.69
		4.6	4.87	4.9	4.53	4.7 -
Nîtrogen	В	1.26	1.33	1.42	1.35	1.33
		1.23	1.44	1.4	1.3	1.27
	к	1.33	1.34	1.41	1.29	1.33
		1.35	1.32	1.36	1.35	1.26
Sulfur	В	3.63	3.43	3.46	3.48	3.51
		3.63	3.49	3.47	3.47	3.48
	K	4	3.4	3.51	3.48	3.44
		3.88	3.43	3.54	3.45	3.39
Chlorine	B	0.05	0.084	0.079	ND	0.1
,]	0.05	0.077	0.078	ND	0.12
1	ĸ	0.04	0.073	0.086	ND	0.07
		0.03	0.09	0.088	ND	0.07
Fluorine	В	<0.001	0.093	0.0090	ND	0.0073
ĺ	[< 0.001	0.092	0.0090	ND	0.0078
	K	0.000001	0.088	0.0080	ND	0.0056
		< 0.001	0.089	0.0080	ND	0.0056
Calorific	В	11900	12398	12376	12390	12350
value)	11480	12402	12367	12378	12321
	K	11326	12359	12391	12392	12384
		11013	12363	12411	_12389	12388

Table A1-2
Round Robin Data on Metal Oxides
in Ash from Bailly Coal
(Data in wt% for moisture-free coal)

	^p Coal	Lab I	Lab II	Lab III	Lab IV	Lab V
Na ₂ O	В	0.7	0.79	0.78	0.73	0.86
		0.71	0.79	0.7	ND	0.84
	ĸ	0.7	0.77	0.8	0.77	0.92
		0.27	0.76	0.7	ND	0.82
K ₂ O	В	2.37	2.39	2.25	2.26	2.2
		2.19	2.38	2.22	ND	2.2
	K	2.19	2.36	1.71	1.95	2.2
		2.32	2.35	2.05	ND	2.2
MgO	В	0.3	1.09	0.77	ND	1.1
	1	0.36	1.1	0.77	ND :	1.1 ·
	ĸ	0.3	1.09	0.74	ND	i.1
		0.26	1.09	0.81	ND	1.1
CaO	В	1.84	3.94	1.84	ND	3.6
		1.62	3.85	1.97	ND	3.3
	ĸ	1.5	3.81	1.92	ND	3.5
		1.41	3.68	1.81	ND	3.5
Al_2O_3	В	18.59	19.41	18.28	19.05	19
	ļ	18.69	19.46	19.4	ND	18.9
	K	15.6	19.36	18.74	18.5	18.6
		17.43	19.39	17	ND	18.4
Fe ₂ O ₃	В	16.42	17.97	16.7	ND	17.1
		16.5	17.83	16.42	ND	16.7
	ĸ	14.17	19.07	1.74	ND	17.5
		15.59	18.9	1.59	ND	17.4
SiO ₂	В	49.21	51.04	ND	50.95	49.2
-	1	49,47	51.01	ND	ND	49.3
	ĸ	46	51.78	ND	48.95	50.6
		46.73	51.75	ND	ND	51
TiO ₂	В	1.01	1	0.86	0.96	0.8
_		1	0.99	0.78	ND	8.0
	ĸ	0.94	0.99	0.85	1.68	0.9
	<u> </u>	0.98	0.98	0.71	ND	1

Table A1-2 Concluded Round Robin Data on Metal Oxides in Ash from Bailly Coal (Data in wt% for moisture-free coal)

	Coal	Lab I	Lab II_	Lab III	Lab IV	<u>Lab</u> V
P ₂ O ₅	В	0.3	0.26	0.51	ND	0.43
		0.3	0.27	0.51	ND	0.3
'	K	0.26	0.31	0.59	ND	0.39
		0.27	0.28	0.51	ND	0.32
so,	В	ND	1.94	ND	ND	3
!	•	ND	1.96	ND	ND	3.2
	K	ND	1.87	ND	ND	3.56
		ND_	1.86	ND	ND	3.54

Table A1-3
Round Robin Data on Major
Metals in Bailty Coal
(Data in wt% for moisture-free coal)*

Metal	Coal	Lab I	Lab II	Lab III	Lab IV	Lab V
Aluminum	В	1.23	1.29	1.21	1.26	1.26
		1.24	1.29	1.29	_	1.25
	K	1.04	1.28	1.24	1.23	1.23
		1.16	1.29	1.13	_	1.22
Calcium	В	0.165	0.353	0.165	ND	0.323
		0.145	0.345	0.177	ND	0.296
	к	0.134	0.341	0.172	ND	0.314
		0.126	0.330	0.162	ND	0.314
Iron	В	1.44	1.58	1.46	ND	1.50
		1.45	1.56	1.44	ND	1.96
	ĸ	1.24	1.67	0.153	ИD	1.59
		1.37	1.66	0.139	ND	1.53
Magnesium	В	0.023	0.082	0.058	ND	0.083
_		0.027	0.083	0.058	ND	0.083
	ĸ	0.023	0.082	0.056	ND	0.083
		0.020	0.082	0.061	ND	0.083
Titanium	В	0.076	0.075	0.065	0.072	0.060
		0.075	0.074	0.059	ND	0.060
	ĸ	0.071	0.074	0.064	0.126	0.068
		0.074	0.074	0.053	ND	0.075

^{*}Calculated from the average ash content calculated from Table A3-1 (12.54%) and the individual oxide concentrations the coal ash.

Table A1-4
Round Robin Data on Trace
Metals in Bailly Coal*
(Data in μg/g for moisture-free coal)

Metal	Coal	Lab I	Lab II	Lab III	Lab IV	Lab V
Antimony	В	1.97	1.72	1.38	1	4.43
		0.99	1.72	1.63	1	3.22
	ĸ	1.42	1.7	1.77	2	26
		1.97	1.73	1.55	1	ND
Arsenic	В	1.53	2.53	1	2	0.75
	1	1.65	2.57	1	ND	1.21
	K	1.75	2.48	1	1	2.3
	:	2.19	2.6	1	ND	2.4
Barium	В	95.36	404.6	402	250	365
		88.87	417.4	461	250	389
	К	82.08	397.2	495	230	385
<u> </u>		7 <u>9</u> .87	377.8	462	240	374
Beryllium	В	1.53	1.33	1.2	1	1.47
		1.21	1.4	1.2	1.3	1.39
	к	1.42	1.14	1.2	1.3	1.32
		1.42	1.16	1.4	1.1	1.35
Boron	В	95.36	87.94	86	82	60.7
		74.61	90.9	84	65	47.4
	к	89.74	75.17	80	82	45.2
		90.81	75.9	77	74	65.9
Cadmium	В	<0.06	0.01	<0.4	<0.6	0.036
		<0.06	<0.01	<0.4	<0.6	0.34
	K	<0.06	<0.1	<0.4	<0.6	0.018
	ł	2.95	<0.1	<0.4	<0.6	ND
Chromium	В	10.96	12.89	10.2	9	7
	1	8.56	10.44	10	10	7.5
	K	10.84	9.42	10.8	10	7.6
	<u> </u>	10.72	9.9	9.9	9	7.4
Cobalt	В	5.59	3,96	4.24	4	2.34
		4.83	4.07	4.38	4	2.38
	K	6.24	4.15	4.34	5	2.74
	1	6.24	4	3.97	3	3.41

Table A1-4 Concluded Round Robin Data on Trace Metals in Ballly Coaf*

(Data in µg/g for moisture-free coal)

, , , , , , , , , , , , , , , , , , , ,								
Metal	Coal	Lab I	Lab II	Lab III	Lab IV	Lab V		
Соррег	В	52.61	10.44	<40.5	10	14.1		
		10.53	10.47	<42.9	10	14.7		
	ĸ	13.13	11.56	<39.2	11	13.7		
		14.22	11.49	<35.7	10	13.4		
Lead	В	6.25	10.02	12	10	6.1		
		5.05	10.06	12	11	7.5		
	ĸ	7.33	9.45	11	10	6.72		
		8.1	9.63	9	9	7		
Manganese	В	54.81	99.5	73.9	77	76.3		
_		50.47	100.7	82.7	82	75.5		
	к	51.44	90.6	82.5	87	77.1		
		47.05	90.6	79.1	79	75.4		
Mercury	В	<0.1	0.097	0.08	0.07	0.078		
		<0.1	0.093	0.08	0.07	0.071		
	K	<0.1	0.082	0.07	0.08	0.078		
		0.16	0.089	0.08	0.08	0.077		
Molybdenum	В	2.52	1.75	6.65	<6	0.429		
		<2	1.73	5.92	<6	0.795		
	ĸ	2.96	1.68	<19.6	<8	0.488		
		2.95	1.66	<17.8	<8	ND		
Nickel	В	7.45	8.4	<15.2	6	6.4		
		6.69	7.74	<16.1	4	6.4		
	ĸ	8.54	7.28	<14.7	5	5.9		
		8.1	8.23	<13.4	6	7.3		
Selenium	В	<0.6	1.62	1	2	1.07		
		<0.6	1.84	1 1	ND	1.77		
	К	1.2	1.59	1	<1	0.79		
,		1.03	1.72	1	ND	0.26		
Vanadium	В	29.6	24.82	25	27	27		
		24.14	25.52	26.8	29	27.9		
	ĸ	26.27	22.37	26.1	28	27		
		27.35	23.81	21.6	26	26.1		

^{*}The data here are for dry coal and thus differ, in principle, from the data for the as-received coal presented in the body of the report.

APPENDIX A2

RESULTS OF AUDIT SPIKE ANALYSES

Tables A2-1 through A2-4 present the results of analyses of samples intended to contain only the spikes placed in the sampling media by the auditing team from Research Triangle Institute. The application of spikes was performed at the Bality site on September 6, 1993. The spiked samples were subsequently analyzed as blind samples at SRI during the subsequent months; that is, the analysts were not aware that the samples were supposed to contain only the spikes applied by RTI. All of the spikes were in the four analyte classifications discussed; none of the spikes were dioxins or furans.

The amounts of analytes in the spikes were disclosed by DOE to SRI in a communication on December 17, 1993. Later, on July 26, 1994, Shrikant Kulkarni of RTI notified the SRI staff about an error in the amounts of the formaldehyde spikes in the DOE communication. The data in Table A2-2 are based on the corrections supplied by RTI.

<u>a. Metals</u>. Two filters, two impingers containing the peroxide sampling medium, and two impingers containing the permanganate sampling medium were spiked. The results from the SRI laboratory and the specified spike amounts are given in Table A1-1. The recoveries of the five metals applied as spikes are listed below; the answers to the question of whether or not the recoveries were in accord with the data quality objectives (DQO, 80-120% recovery) are also ilsted:

•		Recovery	Satisfaction of DQO?
Arsenic	Filter 1	27%	No
	Filter 2	18%	No
	impinger 1	85%	Yes
	Impinger 2	50%	No
Cadmium	Filter 1	11 6 %	Yes
	Filter 2	115%	Yes
	Impinger 1	77%	No
	Impinger 2	76%	No
Lead	Filter 1	120%	Yes
	Filter 2	120%	Yes
	impinger 1	76%	No
	Impinger 2	90%	Yes
Mercury	Impinger 1	142%	No
•	Impinger 2	81%	Yes
Selenium	Filter 1	76%	No
	Filter 2	78%	No
	Impinger 1	69%	No
	Impinger 2	85%	Yes

In addition to the rather mediocre record of spike recovery, we also had several false positive results for metals that were detected even though they were not spikes from RTI. The data, it will be acknowledged, have not been corrected for blanks. Nevertheless, the possible effects of blank corrections have been considered carefully, and the considered judgment is that blank correction, although required for a rigorous data analysis, could not make a large change in the results. Correction would, in principle, lower the recoveries of actual spiked metals, but the magnitude of correction would be small.

- <u>b. Carbonyl compounds</u>. Two pairs of DNPH impingers were spiked. The pertinent data are presented in Table A2-2. There was initially uncertainty about the actual amounts of formaldehyde, the only compound introduced by RTI, as indicated by the preceding discussion. The corrected data on these spikes indicated that the formaldehyde recoveries were 74 and 108%, which are reasonably consistent with the DQO that is, recovery between 80 and 120%.
- c. Volatile organic compounds. Three pairs of sampling tubes (Tenax and Tenax/charcoal) were used to collect analytes from a mixture supplied by RTI in a cylinder. Only one cylinder was provided, and sample volumes were near the same value each time. Consequently, the analyte amounts did not vary significantly.

The data for this group of compounds are given in Table A2-3 on three successive pages. The compounds listed were all of those detected or applied by RTI. The table shows that some false positive detections occurred, and three compounds in the spikes were never reported by the analysts because they were not in the group the SRI laboratory is programmed to detect and quantify. The table designates the compounds that met the DQO (recovery within the limits 50-150%). The score with respect to DQO is as follows:

	Detections within DQO limits	Detections outside DQ 	Misses	<u>False +</u>	
Audit 1	13	3	3	1	
Audit 2	9	5	3	3	
Audit 3	9	6	4	1	

d. Semivolatile organic compounds. Two filters and two XAD cartridges were spiked with a single mixture which contained 16 polycyclic aromatic hydrocarbons. Table A2-4 lists the compounds and their amounts in the spiked sampling media; this table also lists the amounts found in the SRI analysis. Those data marked with asterisks conform to the DQO limits (recoveries of 20-150%).

Obviously, the analytical results for the XAD are much superior to the reported results for one of the filters. All 16 compounds were found in both resin samples, and all results satisfied the DQO. For the one spiked filter reported, 12 of the 16 compounds were detected, although three dld not satisfy the DQO. The remaining

four compounds were detected but at such low levels that their detection must be said to be equivocal. For the other spiked filter, no data are reported because part of the extract of this filter was splited; recoveries of analytes were certainly incomplete.

Table A2-1 Audit Spikes of Metals in M29 Filter and Impingers (Data in μg)

		Observed a	nt SRI	Reported by RTI			
	Filter	Peroxide	Permanganate	Filter	Peroxide	Permanganate	
Spike set 1		ļ					
Arsenic	54	8.49		200	10		
Cadmium	16.2	7.74		14	10		
Lead	170	15.2		142	20		
Mercury	<0.02	0.031	14.2			10	
Selenium	60.7	10.3		80	15		
Spike set 2						.=.	
Arsenic	1.81	4.96		10	10		
Cadmium	11.5	7.65		10	10		
Lead	36.0	18.0		30	20		
Mercury	<0.02	<0.02	8.09			10	
Selenium	38.9	25.6		50	30		

Table A2-2 Audit Spikes of Carbonyl Compounds in DNPH Impingers (Data in µg)

	Spike :	No. 1	Spike No. 2		
	SRI	RTT	SRI	RTP	
Formaldehyde	11.9	16	8.63	8	
Acetaldehyde	1.22		1.42		
Acetone	7.02		8.26		

^{*}The recoveries for Spikes Nos. 1 and 2 are 74 and 108%, respectively, approximately the lower and upper limits of the DQO.

Table A2-3 Audit Spikes of Volatile Organic Compounds in VOST Media (Data in ng)

	0	Observed at SRI				
	Tenax	T/char.	Total	Reported by RTI	Recovery ^a %	
Andit 1						
Chloromethane			Ø	0	.*	
Vinyl chloride	55,8		56	243	23	
Bromomethane	49.2	13.2	62	136-	46	
Methylene chloride	395	26.5	422	0	False +	
Chloroform	486		486	498	98*	
1,1,1-Trichloroethane	140		140	432	32	
Carbon tetrachloride	618	8.46	626	527	. 119*	
Benzene	330	5.73	336	310	108*	
1,2-Dichloroethane	408		408	427	96*	
Trichlorethene	551		551	553	100*	
1,3-Dichloropropane	160		160	145	110*	
Toluene	153	28	181	137	132*	
Tetrachloroethene	701		701	645	109*	
Chlorobenzene	154		154	156	99*	
Ethylbenzene	129		129	146	88*	
m- & p-xylene			0	0	*	
o-xylene	123		123	150	82*	
Trichlorofluoromethane ^b			0	187	0	
1,2-Dibromoethane ^b			0	259	0	
1,3-Butadiene ^b			0	229	0	

^{*}The asterisks designate results that were compatible with the DQO: recovery between 50 and 150%. False + indicates an erroneous compound detection.

The last three compounds were not within SRI's detection capability.

Table A2-3 Continued

Audit Spikes of Volatile Organic Compounds in VOST Media

(Data in ng)

	·	<u> </u>			
	٥	bserved at S	Dancered	Dane	
	Tenax T/char. Total		Reported by RTI	Recovery*	
Audit 2	•	i	i		
Chloromethane	56.6		57	0	False +
Vinyl chloride	39.2	135	174	246	71*
Bromomethane	53.9	16.8	71	138	51*
Methylene chloride	499	49.2	548	0	False +
Chloroform	464		464	504	92*
1,1,1-Trichloroethane	179	1	179	438	41
Carbon tetrachloride	580		580	534	109*
Benzene	248	<u> </u>	248	313	79*
1,2-Dichloroethane	391		391	432	91*
Trichlorethene	441		441	560	79*
1,3-Dichloropropane	114		114	147	78*
Toluene	59.5		60	139	43
Tetrachloroethene	366		366	653	56*
Chlorobenzene	54.9		5 5	158	35
Ethylbenzene	46.6		47	147	32
m- & p-xylene	37		37	0	False +
o-xylene	43.7		44	152	29_
Trichlorofluoromethane ^b			0	189	0
1,2-Dibromoethane			0	2 62	0
1,3-Butadiene ^b			0	232	0

^{*}The asterisks designate results that were compatible with the DQO: recovery between 50 and 150%. False + indicates an erroneous compound detection.

^bThe last three compounds were not within SRI's detection capability.

Table A2-3 Concluded Audit Spikes of Volatile Organic Comounds in VOST Media (Data in ng)

		·			
	0	bserved at S	RI		
	Tenax	T/char.	Total	Reported by RTI	Recov.%
Audit 3					
Chloromethane			0	0	*
Vinyl chloride	41.3	142	183	250	73*
Bromomethane	52.3	14.9	67	140	48
Methylene chloride	500	29.5	530	0	False +
Chloroform	496		496	511	97*
1,1,1-Trichloroethane	189	14.2	203	444	46
Carbon tetrachloride	614		614	542	113*
Benzene	270		270	318	85*
1,2-Dichloroethane	399		399	438	91*
Trichlorethene	468		468	568	82*
1,2-Dichloropropane	115		115	149	77*
Toluene	40.7		41	141	29
Tetrachloroethene	307		307	663	46
Chlorobenzene	28.9		29	160	18
Ethylbenzene			0	149	0
m- & p-xylene			0	0	*
o-xylene	12.8		13	154	8
Trichlorofluoromethane ^b			0	192	0
1,2-Dibromoethane ^b			0	266	0
1,3-Butadiene ^b			0	236	0

^{*}The asterisks designate results that were compatible with the DQO: recovery between 50 and 150%. False + indicates an erroneous compound detection.

^bThe last three compounds were not within SRI's detection capability.

Table A2-4 Audit Spikes of Semi-Volatiles in Modified Method 5 Sampling Media (Data in µg)

	Filter 1 (see Note)			Filter 2		
	SRI	RTI	Recov.%	SRI	RTI	Recov.%
Naphthalene		90		<0.166	75	<0.2
Acenaphthalene		180	,-	<0.413	150	< 0.3
Acenaphthene		90		1.82	75	2
Fluorene		18		2.65	15	18
Phenanthrene		9	ŀ	2.7	7.5	36*
Anthracene		9		< 0.304	7.5	<4.0
Fluoranthrene		- 18		6 ·	15	40*
Pyrene		9		1.82	7.5	24*
Chrysene		- 9	<u> </u>	4.24	7.5	57*-
Benzo(a)anthracene · ·		9		1.17	7.5	16
Benzo(b)fluoranthene		18		20.1	15	134*
Benzo(k)fluoranthene		9.		9.5	7.5	127*
Benzo(a)pyrene		9		< 0.42	7.5	<5.6
Indeno(1,2,3-cd)pyrene		9		5.55	7.5	74*
Dibenzo(a,h)anthracene		18		11.5	15	77*
Benzo(a)perylene		18		10.2	15	68*

*Within DQO limits (20 - 150%). Note: No valid data were obtained because of partial sample loss.

Table A2-4 Concluded
Audit Spikes of Semi-Volatiles in Modified Method 5 Sampling Media
(Data in µg)

		XAD 1	l	XAD 2			
	SRI	RTI	Recov.%	SRI	RTI	Recov.%	
Naphthalene	62.7	90	70*	51.5	75	69*	
Acenaphthalene	130	180	72*	84,5	150	56*	
Acenaphthene	61.2	90	68*	51.5	75	69*	
Fluorene	11	18	61*	9.01	15	60*	
Phenanthrene	5.84	9	65*	5.05	7.5	67*	
Anthracene	2.9	9	32*	4.14	7.5	55*	
Fluoranthrene	11.7	18	65*	9.69	15	65*	
Pyrene	6.22	9	69*	5.45	7.5	73*	
Chrysene	6.65	9	74*	5.2 5	7.5	70*	
Benzo(a)anthracene	5.89	9	65*	5,4	7.5	72*	
Benzo(b)fluoranthene	11.3	18	63*	10.1	15	67*	
Benzo(k)fluoranthene	6.3	9	70*	5.29	7.5	71*	
Benzo(a)pyrene	2.38	9	26*	3.71	7.5	49*	
Indeno(1,2,3-cd)pyrene	6.97	9	77*	5.9	7.5	79*	
Dibenzo(a,h)anthracene	10.8	18	60*	9.82	15	65*	
Benzo(g,h,i)perylene	11.3	18	63*	9.92	15	66*	
*Within DQO limits (20 -	150%).						

APPENDIX B

SAMPLING PROTOCOL

Particle Size

Process Location:

Stack

Equipment:

University of Washington Mark V/III cascade impactor with SoRI/EPA Right Angle Precollector and EPA M5 sampling train with stainless steel probe; tared quartz fiber substrates and filters with plastic Petri dishes for each.

Collection Frequency:

Sampling time based on particle concentrations found at time of test. A single sample may be run over several tests depending on the time required to obtain optimum stage catches.

Procedure Summary:

Stack gas sampling equipment is calibrated no later than 60 days after last calibration as described in the Quality Assurance Plan. An initial traverse is made with a pitot tube at each sample port following: EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate, and to check for cyclonic air flow. sampling train is assembled with tared substrates and particulate filter, a stainless steel condenser for moisture, and a dryer containing 200 to 300 grams of silica gel. EPA Method 5 procedures are followed for pre-test and post-test leak checks. isokinetic sampling rate, and data recording. If the velocity distribution is flat, sampling will be done by traversing in a standard Method 5 fashion, but at a constant sampling rate. Otherwise, sampling is done at a constant sampling rate at four points within the duct which are selected by virtue of having velocities equal to the average duct velocity. The impactor section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The collection substrates and particulate filter are removed from the impactor and precollector, carefully placed into their original plastic Petri dishes and placed in a desiccator to equilibrate before weighing. All weighing is done on site with a Cahn microbalance with weights recorded to the nearest 10 micrograms.

The internal surfaces of the nozzle, and precollector are cleaned by brushing into a tared aluminum foil

container which is weighed with the precollector collection substrate.

The contents of the condenser and dryer are weighed to nearest 0.5 gram to determine the amount of water condensed.

References:

Methods 1, 2, 3, 4, and 5, Appendix A, <u>Reference</u> <u>Methods. New Source Performance Standards</u>, 40 CFR 60, revised 7/9/85

J. D. McCain et al, Procedures Manual for the Recommended ARB Particle Size Distribution Method (Cascade Impactors), Attachment No. 1 to the Final Report for ARB Contract A3-092-32 "Recommended Methodology for the Determination of Particle Size Distribution in Ducted Sources". SoRI-EAS-86-466, May 1986. NTIS PB 86-218666/WEP.

Particle Size and Size Fractionated Samples for

Chemical Analysis

Process Location:

Particle Size: Unit 8 ESP Inlet

Size Fractionated Sample for Analysis: Unit 8 ESP

inlet, and Units 7 & 8 ESP Outlets.

Equipment:

SRI/EPA Five Series Cyclone with stainless steel probe; tared quartz fiber filters with plastic Petri dishes and glass vials for cyclone catches. Only the first two cyclones and a filter were used at the ESP

outlet locations.

Collection Frequency:

Sampling times will be in based on particle concentrations found at time of test: typically about 60 to 1000 minutes at the ESP inlet and outlet locations, respectively. One sample per pair of test days at the inlet. The sampling time at the outlets may run over several tests depending on the time

required to obtain optimum stage catches.

Procedure Summary:

Stack gas sampling equipment is calibrated no later than 60 days after last calibration as described in the Quality Assurance Plan. An initial traverse is made with a pitot tube at each sample port following EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate, and to check for cyclonic air flow. sampling train is assembled with clean cyclones and a 63 mm quartz fiber particulate filter, a stainless steel condenser and a dryer containing 200-300 grams of silica gel. EPA Method 5 procedures are followed for pre-test and post-test leak checks, isokinetic sampling rate, and data recording. If the velocity distribution is flat, sampling will be done by traversing in a standard Method 5 fashion, but at a constant sampling rate. Otherwise, sampling is done at a constant sampling rate at four points within the duct which are selected by virtue of having velocities equal to the average duct velocity. Alternatively, sampling may be confined to the high velocity portion of the duct if the velocity distribution is badly skewed on the basis that the bulk of the particle transport would be expected to occur in the high velocity area. The cyclone/filter section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The cyclone catches are removed in two portions for each cyclone. First, loose particles in a cyclone are poured or brushed into a tared vial. The remaining material in a cyclone is then rinsed out with a stiff bristle brush and acetone. Both portions are then desiccated (the acetone is evaporated prior to desiccation). The filter is removed separately and is carefully placed into its original plastic Petri dish. All catches are then weighed after 24 hours of desiccation. All weighing is done on site with a four or five place Mettler balance with weights recorded to the nearest 0.1 milligrams.

The contents of the condenser/drier are weighed to nearest 0.5 gram to determine the amount of water condensed.

Methods 1, 2, 3, 4, and 5, Appendix A, <u>Reference</u> Methods, New Source Performance Standards, 40 CFR 60, revised 7/9/85

J. D. McCain et al, Procedures Manual for the Recommended ARB Sized Chemical Sampling Method (Cascade Cyclones). Attachment No. 2 to the Final Report for ARB Contract A3-092-32 "Recommended Methodology for the Determination of Particle Size Distribution in Ducted Sources". SoRI-EAS-86-467, May 1986. NTIS PB 86-218674/WEP.

References:

Dilution Sample (Simulated Plume)

Process Location:

Unit 7 ESP Outlet

Equipment:

Custom SRI air dilution sampling train SoRI/EPA Cyclone Precollector and glass lined probe; conditioned, scrubbed and filtered dilution air at approximate 10:1 dilution ratio; tared quartz fiber filters with sealed teffon envelopes; various EPA and other impinger trains and sorbent traps for vapor phase constituents behind the filter.

Collection Frequency:

One sample per test day.

Procedure Summary:

Stack gas sampling equipment is calibrated no later than 60 days after last calibration as described in the Quality Assurance Plan. An initial traverse is made with a pitot tube at each sample port following EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate, and to check for cyclonic air flow. The sample flow is metered using a calibrated orifice located at the diluter inlet. The integrated sample volume is totalized continuously by means of an electronic flow totalizer which receives a signal from a Dressure transducer across the Compensation is made in the totalizer for absolute gas pressure, temperature and density. moisture content of the stack gas is obtained from

The sampling train is assembled with a tared quartz filter mounted at the exit of the diluter to collect particulate phase material. Sample takeoffs are used as needed behind the filter to supply diluted gases to various traps and/or impingers for vapor phase components. EPA Method 5 procedures are followed for pre-test and post-test leak checks separately for the dilution train and the individual vapor phase samplers to be run downstream of the filter. EPA Method 5 techniques are also used for isokinetic sampling rate, and data recording. Sampling will be done by traversing in a standard Method 5 fashion.

After sampling is completed the diluter section of the sampling train is moved intact to the cleanup area for sample recovery as follows: The particulate filter is removed from the diluter and is carefully placed into its teflon jacket for transport to the lab.

The probe and cyclone catches are recovered like Method 5 nozzle and probe washes.

Finally, the internal surfaces of the diluter are washed with solvents appropriate to the primary target species for the sampling day.

References:

Methods 1, 2, 3, 4, and 5, Appendix A, Reference Methods. New Source Performance Standards, 40 CFR 60, revised 7/9/85

W. E. Farthing, Development of Sampling Methodology for Dilution Air Sampling of Condensible Emissions from Stationary Sources. Southern Research Institute Task Report on Contract 68-02-4442 with the US EPA, AREAL, RTP, NC. August, 1990

Multiple Metals and Particulates -- EPA Method 29 (Tentative; 40 CFR) or Method 0012 (SW-846)

Process Location:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack, Dilution Sampler at Unit 7 ESP Outlet

Equipment:

Multiple metals sampling train (Figure A.1); plastic Petri dish with tared particulate filter; 8 glass jars (500 mL) with Teffon-lined lids

Filters used by SRI are preweighed quartz fiber filters. Weights are obtained with a Mettler Model HK balance, or equivalent, after filters are desiccated to constant weight.

Collection Frequency:

Sampling time will be in accordance with EPA procedures which require 60 min of sampling to acquire a 1.25 m³ or greater sample. One sample at each location per inorganic test day.

Procedure Summary:

Stack gas sampling equipment is calibrated no later than 60 days after last previous calibration. An initial traverse of the duct to be sampled is made with a pitot tube at each sample port following EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate, and to check for cyclonic air flow. sampling train is assembled with a tared particulate filter, 100 mL of 5% HNQ₂/10% H₂O₂ in the first and third impingers, with the second and fourth impingers empty, 100 mL of 4% KMnO₄/10% H₂SO₄ in the fifth and sixth impingers, an empty seventh impinger, and 200-300 g of silica get in a final impinger. EPA Method 5 procedures are followed for pre-test and post-test leak checks, isokinetic sampling rate, filter change-outs (if needed), and data recording. The impinger section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The particulate filter is removed from its holder, carefully placed into a 250 ml glass bottle and sealed with a teflon lined lid.

The internal surfaces of the nozzle, probe and front half of the filter holder are cleaned by rinsing and

brushing with acetone, followed by a final rinsing with a 0.1 normal nitric acid solution into a separate sample jar (probe finse sample).

The liquid contents of each impinger is measured to nearest milliliter to determine the amount of water After emptying the contents of condensed. impingers one through three into one or more sample bottles as needed, the back half of the filter. holder, connecting glassware, and impingers one through three are thoroughly rinsed with 0.1 normal nitric acid. The rinsate is added to the liquid contents of the impingers. The liquid contents of impingers four through six are then poured into one or more sample jars as needed and these impingers are rinsed with a 10 normal HCl solution with the rinsate being added to the sample jar containing the impinger solutions. The silica gel contents of the final impinger are recovered and weighed to the nearest 0.5 g to determine the amount of water collected.

Samples for analysis:

Acetone rinse of probe and front housing Nitric acid rinse of probe and front housing Filter HNO₃ impingers and rinse H₂SO₄/KMnO₄ impingers and rinse

References:

Methods 1, 2, 3, 4, and 5, Appendix A, Reference Methods, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

Methodology for the Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incinerator and Similar Combustion Processes. EPA Method 29 (tentative) -- pp 3-1 through 3-47, Methods Manual for Compliance with the BIF Regulations, EPA/530/SW-91- 010, December 1990.

Acid Gases and Anions.

Process Location:

Acid Gases and Anions: Unit 8 ESP Intet, Units 7 & 8 ESP Outlets, Stack, Dilution Sampler at Unit 7 ESP Outlet

Equipment:

Method 5 sampling train (Figure A.2); plastic Petri dish with tared particulate filter, 8 glass jars (500 mL) with Teflon-lined lids.

Collection frequency:

Sampling time will be in accordance with the method procedure. One sample at each location per inorganic test day.

Procedure summary:

Stack gas sampling equipment is calibrated no later. than 60 days after last calibration. traverse is made with a pitot tube at each sample port following EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate, and to check for cyclonic air flow. The sampling train is assembled with tared particulate filter, an empty first impinger, and 100 mL of a solution consisting of 25 g/l of sodium carbonate, 25 g/l of sodium bicarbonate, and 100 ml/l of 33% hydrogen peroxide in the second and third impingers. These are followed by a dry impinger and a final impinger loaded with 200 to 300 g of silica gel. Method 5 procedures are followed for pre-test and post-test leak checks, filter change-outs (if needed), and data recording. The impinger section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The particulate filter is removed from its holder, carefully placed in a 250 ml glass bottle which is sealed with a teflon lined lid.

The internal surfaces of the nozzle, probe and front half of the filter holder are cleaned by rinsing, brushing, and final rinsing with acetone into a separate sample jar (probe rinse sample).

The liquid contents of the impingers are measured to nearest milliliter to determine the amount of water condensed; the liquid contents of the first three impingers are collected in a separate container and

the back half of the filter holder, connecting glassware, and the impingers are thoroughly rinsed with distilled water. The rinsate is added to the sample jar(s) containing the impinger contents; the silica get contents of the final impinger are recovered and weighed to the nearest 0.5 g to determine amount of water collected.

References:

Methods 1, 2, 3, 4, and 5, Appendix A, Reference Methods, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

Isokinetic HCI/Cl₂ Emission Sampling Train (Method 0050) — pp 3-70 through 3-96, Methods Manual for Compliance with the BIF Regulations, EPA/530-SW-91-010, December 1990.

Volatile Organics - EPA Method 0030 (SW-846)

Process Location:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack, and ambient air

Equipment:

Volatile organic sampling train (VOST); soment cartridges, glass culture tubes with screw caps, atuminum foil

Collection frequency:

Continuous run at approximately 0.5 L/min with replacement of sorbent tube pairs after each of the prescribed sampling intervals (for example, 4, 10, and 20 min). Various intervals are used to ensure that the capacity of the sorbents is not exceeded and that, at the same time, sufficient sample is collected. One group of samples at each location per organic test day.

Procedure summary:

Sorbent cartridge preparation. The procedures for preparing, handling, storing, and analyzing the cartridges will be those described in the EPA protocol referenced below. As described in the protocol, new sorbent material (Tenax resin and charcoal) will be Soxhlet-extracted, vacuum-dried, thermally conditioned with organic-free nitrogen, and loaded into cartridges which are subsequently pressure-leak tested. Three of the conditioned cartridges will be analyzed to confirm that they are free of background contamination before sample collection. Each sorbent tube will be labeled with an identification number.

The sorbent cartridges will be protected from contamination by placing them in culture tubes which contain clean charcoal. The cartridges will be stored at 4 °C in an area free from sources of organic contamination. The cartridges will be packed separately and kept cold with "blue ice" in insulated containers during transport to the test site.

Before each replicate sampling run, the sample coordinator will supply the resin cartridges, including a field blank, to the stack sampling manager. At the end of each run, the sample coordinator will recover the cartridges, pack them in cold chests, and complete the appropriate records.

VOST operation. The sample collection procedures is described in the EPA protocol referenced below. As described in the protocol, the sample train will be cleaned and assembled before installing the resin cartridges. The caps to the cartridges will be stored in a clean glass jar while the cartridges are in the train. The train will then be leak tested at 10 in. Hg above the train's operating vacuum in such a manner as to prevent exposure of the train components to the ambient air.

Before sampling is started, ice water will be circulated throughout the condensers and the probe will be purged of ambient air and located in the stack at a point with a typical stack velocity and temperature. The probe will be heated to 130 to 150 °C (266 to 302 °F). The train will be operated under "SLOW-VOST" conditions, i.e., at a rate of 0.5 L/min for up to 40 min to collect a maximum volume of 20 L for each pair of sorbent cartridges. Four pairs of cartridges will be collected during each test run. The SLOW-VOST conditions were selected to make the VOST sampling period approach the time required for collecting semivolatile organics from the stack gas by the modified EPA Method 5.

Two cartridges will be removed and the end caps replaced; the cartridges will be labeled with date, time, and test-run number, wrapped in atuminum foil, and returned to the culture tubes. Samples of the condensate water will also be collected as described in the EPA protocol to prevent the loss of volatile organics.

The sample collection data will be recorded for each cartridge pair. The samples will be given to the sample coordinator along with the chain-of-custody sheet. The VOST will be removed from the stack to a organic-free area where it will be cleaned and prepared for the next test run.

U.S. EPA, November 1986, Test Methods for Evaluating Solid Wastes, Method 0010, SW-846.

Reference:

Semi-Volatile Organics (known as Modified Method 5 or Semi-VOST) — EPA Method 0010 (SW-846) and PCDDs and PCDFs

Process Location:

Unit 8 ESP Iniet, Units 7 & 8 ESP Outlets, Stack, Dilution Sampler at Unit 7 ESP Outlet (back half only). (PCDDs and PCDFs at Unit 7 Outlet and Stack only.)

Equipment:

Modified EPA Method 5 sampling train; sorbent cartridges, aluminum foil, glass jars with Teflon-lined lids

Collection frequency:

Continuous except for possible filter changes and port moves with a minimum 3 m3 sample volume to be collected. One sample at each location per organic test day except for the diluter where two will be run in parallel.

Procedure summary:

Sorbent cartridge preparation. The procedures for preparing, handling, storing, and analyzing the cartridges will be those described in the EPA method referenced below. New sorbent material will be cleaned by Soxhlet extraction and one of the conditioned tubes will be analyzed to confirm that the tubes are free of background contamination.

Before each sampling run, the sample coordinator will supply the sorbent tubes, including a field blank, to the stack sampling team. At the end of each run, the sample coordinator will recover the sorbent tubes, along with a sample collection data sheet. The samples will be stored in insulated cold chests in an area that is free from sources of organic contamination.

The sampling train is assembled as follows:

All openings are kept covered until just prior to assembly, to prevent contamination

Particulate filter in holder

Organic collection module (gas conditioning section, sorbent trap, condensate knockout trap)

First impinger empty with a short stem to collect the condensate; 100 mL distilled water in second and

third impingers; fourth impinger empty; fifth impinger containing indicating silica gel weighed to nearest 0.5 g. The condensate impinger bottle must be large enough to contain all of the expected condensate without overflowing.

Silicone grease may not be used in train.

Stack sampling:

The MM5 unit, exclusive of the sorbent trap and the particulate filters, will be provided by the stack sampling manager. With the exception of the necessary modification for installing and recovering the condenser and sorbent trap, the sampling procedures will be as specified in EPA Methods 1 and 2 for stack gas air flow measurements, and Method 5 for moisture content and particulates. Ice water is circulated around the condenser and sorbent trap to maintain a gas exit temperature below 20°C at the exit of the sorbent module. The sampling technicians record the data as recommended in Method 5.

The sampling equipment will be calibrated no later than 60 days after the last calibration. The sampling train will be operated according to standard procedures so that at least 3 m³ of sample will be obtained.

The samples will be recovered from the MM5 train as follows:

Particulate filter – Will be removed from the holder, placed in an amber glass bottle with a Teflon-lined tid, sealed with tape, then wrapped in aluminum foil, placed in a plastic bag, and sealed.

Probe rinse — The nozzle, probe and front half of the filter holder and any connecting glassware will be brushed and rinsed three times each with methanol and methylene chloride. The rinses will be measured volumetrically and placed in a glass sample jar with a Teflon-lined lid. A toluene rinse will also be made at the Unit 7 outlet and stack for PCCD/PCDF analysis.

Condensate -- The condensate will be volumetrically measured and placed in a glass sample jar. The glassware from the back half of the filter will be rinsed through the condenser to the sorbent trap with the same solvents as used for the front half of

Recovery:

the train. The rinses will be measured volumetrically and placed in a glass sample jar with a Teflon-lined lid.

Sorbent cartridge — Will be removed from the sampling train, capped, wrapped with aluminum foil, and sealed in a plastic bag.

Impinger water — The contents of the first, second, and third impingers will be volumetrically measured and placed in amber glass sample bottles along with a distilled water rinse of these impingers and connecting glassware.

Silica get -- The silica get impinger will be reweighed to nearest 0.5 g.

All of the sample containers will be assigned numbers and labeled with date, time and test-run number. The samples will be turned over to the sample coordinator along with the chain-of-custody sheet. The sample coordinator will record the appropriate data in the field log book and pack the samples in the original shipping package which will be stored in the sample cleanup area. The sample train data sheet will be reviewed by the sampling team manager and forwarded on to the sampling coordinator.

Method 5, Appendix A, Test Methods and Procedures, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

Method S008, Sampling and Analysis Methods for Hazardous Waste Combustion, EPA-600/8-84-002, February 1984.

Modified Method 5 Sampling Train (Proposed), Test Methods for Evaluating Solid Wastes; Physical/Chemical Methods, SW-846, Second Edition, NTIS PB85-103026, 1984.

References:

Aldehydes

Process Location:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack

Equipment:

Method 5 sampling train (Figure A.2); particulate filter; 3 glass jars (500 mL) with Teflori-lined lids

Collection Frequency:

One sample at each location per organic test day. Sample volumes of about 0.5 m³ are collected.

Procedure Summary:

Stack gas sampling equipment is calibrated no later than 60 days after last calibration. Single point samples. The sampling train is assembled with an untared particulate filter (to be discarded), followed by two impingers loaded with 100 ml each of an aqueous solution of DNPH (dinitrophenylhydrazine). These are followed by a dry impinger and a final impinger loaded with 200 to 300 g of silica gel. Method 5 procedures are followed for pre-test and post-test leak checks, and data recording. The impinger section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The particulate filter is removed and discarded.

The liquid contents of the impingers are measured to nearest milliliter to determine the amount of water condensed; the liquid contents of the two DNPH impingers are collected in a glass container and the back half of the filter holder, connecting glassware, and the impingers are thoroughly rinsed with distilled water. The rinsate is added to the sample jar(s) containing the impinger contents; the silica gel contents of the final impinger are recovered and weighed to the nearest 0.5 g to determine amount of water collected.

References:

Methods 5, Appendix A, Reference Methods, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

EPA Method T05 for aldehydes.

Ammonia and Cyanide

Process Location:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack

Equipment:

Method 5 sampling train (Figure A.2); untared particulate fifter; 4 glass jars (500 mL) with Teflon-lined lids.

Collection frequency:

Single point sampling will be done at point having a typical gas temperature for the duct being sampled. A sample gas volume of approximately 0.5 m³ will be collected. One sample will be collected at each location per pair of test days.

Procedure summary:

Stack gas sampling equipment is calibrated no later than 60 days after last calibration. The sampling train is assembled with an untared particulate filter. (to be discarded, two impingers containing 100 mL of a solution consisting of 25 g/l of sodium carbonate, 25 g/l of sodium blcarbonate in water, a dry impinger, and a fourth and fifth impinger, each containing 100 ml of a 0.1 normal H₂SO₄ solution. The first two impingers collect ammonia and cyanide and the fourth and fifth collect any ammonia passed by the previous impingers. These are followed by a dry impinger and a final impinger loaded with 200 to 300 g of silica gel. Method 5 procedures are followed for pre-test and post-test leak checks, and data recording. The impinger section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The particulate filter is removed and discarded.

The liquid contents of the impingers are measured to nearest milliliter to determine the amount of water condensed; the liquid contents of the first and second impingers are collected a one container and the back half of the filter holder, connecting glassware, and the impingers are thoroughly rinsed with distilled water. The rinsate is added to the sample jar(s) containing the impinger contents of the first two impingers; The contents of the third impinger are poured into a separate container and the impinger is rinsed with water with the rinsate being added to the impinger contents. The silica gel contents of the final impinger are recovered and

weighed to the nearest 0.5 g to determine amount of water collected.

References:

Methods 1, 2, 3, 4, and 5, Appendix A, Reference Methods, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

Mercury

Process Location:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack,

Diluter, ambient air

Equipment:

Unit 8 ESP Inlet, Units 7 & 8 ESP Outlets, Stack: Heated probe with glass or quartz wool plug to remove particulate matter, two soda lime traps and two indated charcoal traps in series for collection of mercuric compounds and mercury.

Diluter: Two soda time traps and two iodated charcoal traps for collection of mercuric compounds

and mercury.

Collection Frequency:

One sample per inorganic test day.

Procedure Summary:

Single point samples are obtained at a flow rate of about 0.5 liters per minute to collect about 25 liters (250 liters for dilution probe). The traps are maintained at about 110°C to eliminate moisture condensation. Traps are sealed with tellon caps at the end of each run and the capped tubes are

placed in a sealed plastic bag.

References:

Personal communications from Nicholas Bloom and Eric Prestbo of Brooks-Rand Inc., Seattle, WA.

Bloom, Nicolas S. "Mercury Speciation in Flue Gases: Overcoming the Analytical Difficulties." Presented at: Managing Hazardous Pollutants -State of the Art. Washington, D.C. Nov. 4-6, 1991.

Sample Name: Particulates — EPA Method 17

Process Location: Unit 8 ESP Intet, Units 7 & 8 ESP Outlets, Stack

Equipment: Method 17 sampling train, sample bottle with tared

particulate thimble

Thimbles used by SRI are preweighed glass fiber thimbles. Weights are obtained with a Mettler Model HK balance, or equivalent, after thimbles are

desiccated to constant weight.

Collection Frequency: Sampling time will be 72 to 360 minutes to acquire a

1.0 m³ or greater sample. One sample at each

location per organic test day.

Procedure Summary:

Stack gas sampling equipment is calibrated no later. than 60 days after last previous calibration. An initial traverse of the duct to be sampled is made with a pitot tube at each sample port following EPA Methods 1 and 2 to establish sample traverse points, gas velocity profile, temperature, and flow rate. The sampling train is assembled with a tared particulate thimble, stainless steel condenser, and silica gel column. EPA Method 5 procedures are followed for pre-test and post-test leak checks, isokinetic sampling rate, thimble change-outs (if needed), and data recording. The thimble and nozzle section of the sampling train is moved intact to the cleanup area for sample recovery as follows:

The particulate thimble is removed from its holder, carefully placed into a 500 ml glass bottle and sealed with a teflon lined lid.

The internal surfaces of the nozzle and thimble holder are cleaned by rinsing and brushing with acetone into a separate sample jar (probe rinse sample).

The liquid content of the condenser is measured to nearest 0.1 gram to determine the amount of water condensed. The silica gel contents of the drying column are weighed to the nearest 0.1 g to determine the amount of water collected.

Samples for analysis:

Acetone rinse of nozzle and filter holder

Filter

References:

Methods 1, 2, 3, 4, 5, and 17 Appendix A, Reference Methods, New Source Performance Standards, 40 CFR 60, revised July 1, 1991.

APPENDIX C

ANALYTICAL METHODOLOGY AND QUALITY ASSURANCE/QUALITY CONTROL

APPENDIX C

ANALYTICAL METHODOLOGY AND QUALITY ASSURANCE/QUALITY CONTROL

C.1 QA Objectives

The analytical objective for this project was to provide data to conduct comprehensive assessments of toxic emissions from the Bailly Generating Station. Sfil's compliance with the QA/QC requirements identified for this project in our Site Specific Quality Assurance Plan for the Bailly facility is discussed in this appendix.

As part of our discussion, we describe changes to or deviations from the analytical methods cited in our Site Specific Analytical Plan for the Bailly facility and their likely impact on the quality of the data. We also describe any difficulties encountered with the analysis and its impact on the data. We discuss instrument calibration, precision of replicate determinations, and recovery of surrogates and standard matrix spikes where appropriate. Precision and accuracy are calculated and reported as relative percent difference and as percent recovery respectively.

Precision and accuracy data are reported in the tables found in this Appendix for:

Metals

Anions

Carbonyl compounds (aldehydes and ketones)

Volatile organic compounds

Semivolatile organic compounds

Dioxins and furans

Relative percent difference is calculated using the equation,

$$R\%D = ((V_4 - V_2) + ((V_4 + V_2)/2)) \times 100$$

where:

R%D = relative percent difference,

V, = The higher result from duplicate analyses, and

 V_2 = The lower result from duplicate analyses.

Recovery is calculated using the equation

$$%R = ((V_1 - V_2) + V_3) \times 100,$$

where:

%R = percent recovery

V, = The result for a matrix spike sample,

V₂ = The result for the unspiked sample, and

V₃ = The known amount of spike added to the matrix spike sample.

Initially, no data base for any of the check samples existed from which to calculate mean values and control limits based on standard deviations for precision, accuracy and recovery. Although QC samples were analyzed with actual samples, the data points required to generate a data base large enough for each type of QC check sample were not obtained. As stated in the Site Specific Quality Assurance Plan, prescribed objectives were: for accuracy ±10%; for precision 15% RSD; for recovery 80-120%; and for completeness 90%.

The analytical methods employed on this project have not been validated for several of the matrices encountered. Performance characteristics such as recovery and reproducibility for these methods when used to analyze coal, ash, and pollution control by-products were not established at the start of this project. Throughout the analytical effort, it became evident that the methods used to analyze the samples collected at the Balliy facility would have to be modified and optimized to obtain data suitable for use in establishing mass balances. Major method adaptations employed on this project and our success or lack thereof will be described.

C.2 Sample Custody Procedures

C.2.1 Chain of Custody

Chain of custody procedures were established to identify and trace samples from collection to final analysis. Such documentation included labels to prevent mix-up, container seals to prevent unauthorized tampering with contents of the sample containers, custody forms, and records necessary for documentation of the data.

The field sampling operations included:

 Documentation of the procedure used for sample collection and of information pertaining to the reagents or supplies that became an integral part of the sample (e.g., filters and absorbing reagent).

- Procedures and forms for recording the exact location and specific considerations associated with sample acquisition.
- Documentation of specific sample-preservation method.
- Use of pre-prepared sample labels containing all information necessary for effective sample tracking.
- Standardized field-tracking reporting forms to establish sample custody in the field prior to shipment.

C.2.2 Documentation

As needed, forms were updated or new ones were created as determined by the QA Coordinator and the Program Manager. Completed forms were kept in files of the Environmental Sciences Department or the Analytical Chemistry Division, as appropriate.

C.2.3 Document Storage

All documents received with samples have been maintained by the sample custodian. For all original documents retained by the analyst or other project participants, a memo identifying the documents and location of the documents has been prepared for submission to the QA Coordinator. The QA Coordinator will maintain a directory for all outstanding documents that lists the project, the document(s), the custodian, and the location of the documents.

C.2.4 Sample Custody

The analytical laboratories have maintained retrievable records of the chain of custody for all samples collected and analyzed.

C.3 Analytical Method Descriptions and QA/QC Data

In this section, the methods used for analyses of the different classes of analytes are described. In addition, the results of QA/QC experiments are presented in tabular form.

C.3.1 Metals

Samples were prepared for metal analysis by digestion in a microwave oven. The digestion procedures were based on recommendations from the oven manufacturer, CEM Corporation. The principal steps in digestion are outlined below (these steps apply to the simultaneous treatment of 12 filled digestion vessels):

Solids (coal, 0.5 g; other solids, 1.0 g). The solid was placed in one of the polytetrafluorethylene microwave vessels; 10 mL of concentrated nitric acid was added and then the first step of heating was followed.

This first step required a power input of 75 W for a total of 20 min, with gradually increasing pressure control points (maximum, 200 psi). Next, 5 mt. of hydrofluoric acid and 1 mt. of hydrochloric acid were added; heating was performed with 60 W of power for 20 min with initial pressure control at 150 psi and concluding control at 20 psi. Finally, with 30 mt. of saturated aqueous boric acid added, heating occurred with 100 W of power input for 6 min with the pressure initially at 50 psi and finally at 20 psi. The resulting liquid was diluted in a polyethylene volumetric flask to a final volume of 100 mt.

Liquids (40 mL). After the liquid was placed in a microwave vessel, an addition of 5 mL of concentrated nitric acid was made. The mixture was heated with 100 W of power for 20 min at an initial pressure of 70 psi and a final pressure of 20 psi. The resulting solution was diluted with water to a total of 50 mL in a polyethylene volumetric flask.

C.3.1.1 Methods for Aluminum, Barium, Beryillum, Calcium, Cadmium, Cobatt, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Titanium, and Vanadium.

These metals were determined by inductively coupled plasma/atomic emission spectroscopy (ICP/AES), SW-848 Method 6010. Yitrlum and scandium were used as the internal standards for determinations of both the trace metals and the major metals (Al, Ca, Fe, Mg, and Ti). Section 3.1.3 below discusses alternative methods for cadmium and lead.

C.3.1.2 Methods for Antimony, Arsenic, and Selenium.

Arsenic determinations by gaseous hydride generation involve the reduction of arsenic with potassium iodide in the presence of HCI to its trivalent form. Arsenic was then reacted with sodium borohydride to form the hydride in a vessel being purged with nitrogen to sweep the hydride into the absorption cell. In the cell lined up in the optical path of the spectrophotometer the arsenic concentration was determined by reading absorption at 193.7 nm.

Antimony determinations by gaseous hydride generation followed the procedure outlined above for arsenic. Antimony was reduced with potassium iodide in the presence of HCl then reacted with sodium borohydride to form the hydride. Antimony concentrations were determined by reading absorption at 217.6 nm. This method represented the best available technique for achieving the desired detection levels for antimony.

Selenium determinations by gaseous hydride generation involve the reduction of selenium in the presence of HCl. Selenium was then reacted with sodium borohydride to form the hydride and purged from a reaction vessel into an absorption cell with nitrogen. Selenium concentration was determined by reading absorption at 196.0 nm.

The method of standards addition was selected as the calibration technique for antimony and arsenic. The analysis of antimony and arsenic by either GFAAS or by HGAAS produced more accurate results when the method of standards addition was employed. Selenium determination, on the other hand, by either GFAAS or HGAAS, provided acceptable values with or without standards addition.

C.3.1,3 Alternative Methods for Cadmium and Lead.

Cadmium and lead were determined by GFAAS when element levels necessitated lower detection levels. The method required that 20 μ L of the sample be introduced into a graphite tube. The tube was heated in a furnace to bring the sample to dryness, further heating charred the sample eventually atomizing the element of interest. For cadmium, the absorption of light caused by the excitation of the elements electrons was measured at a wavelength of 228.8 nm. For lead, absorption was measured at a wavelength of 263.3 nm.

C.3.1.4 Mercury

Mercury was determined by cold-vapor AAS and AFS in a single experiment. That is, the gas train bearing elemental mercury vapor was passed first through the absorption cell and then through the fluorescence cell.. Customarily, the data from CVAFS were reported; the detection limit for mercury by fluorescence was of the order of 0.01 µg/mL in the solution in which elemental mercury was produced and vaporized. On occasion, the data from CVAAS were used when the concentration was above the range of the nine-point calibration curve.

Determination of mercury in coal using the sample preparation technique provided in SW-846 Method 7471 (in which the silicate component of the ash is not chemically decomposed) provided results that proved to be systematically low. Coal digestion in the microwave procedure, on the other hand, was deemed satisfactory. This procedure employs HF, which is capable of decomposing silicate and releasing mercury that may be inaccessible otherwise.

C.3.1.5 Recovery of Metal Spikes in Various Types of Samples

Tables C-1 through C-9 present the results of analyses of samples of several types both as received and after spiking with the metals of interest at known concentrations. There are certain notations that are common to all of these tables:

NR	No result
ND	Not determined
NV	No certified value

Table C-1. Recovery of Metal Spikes in Coal (Data in µg/mL)

	Sa	mple	Spike	Spike/		Spikes			% Recovery	<u> </u>
Element	Conc.	Dup. conc.	level	sample	MS conc.	MSD cone.	Rei. % Diff.	MS	MSD	Avg.
Antimony	0.0034	0.0042	0,1	26.3	0.083	0.103	22	80	99	89
Arsenic	0.0011	0.0015	0.05	38.5	0.036	0.045	22	70	87	78
Bariwo	0.2044	0.2122	0.4	1.9	0.6595	0.6234	6	114	103	108
9eryllium	0.0078	0.0087	0.1	12,1	1801.0	0.1026	3	98	94	96
Cadmium	0.00146	0.00204	0.02	11.4	0.0165	0.0167	1	75	73	74
Chromium	0.158B	0.2582	0.2	1.0	0.523	0.5449	4	182	143	163
Cobalt	0.012	0.0125	0.4	32.7	0.4329	0.4222	3	105	102	104
Соррег	0.0445	0.0504	0.2	4,2	0,2363	0.2346	ı	96	92	94
Lead	0.0322	0.0353	0.1	3.0	0.0889	0.0938	5	57	59	58
Manganese	0.1465	0.1575	0,2	1.3	0.3594	0.3449	4	107	94	100
Molybdenum	0.0256	0.0372	0,2	6.4	0.256	0.2676	4	115	115	115
Nickel	0.0974	0.1538	0.4	3.2	0.5944	0.6191	4	124	116	120
Selenium	0.00408	0.0059	0.05	10.0	0.032	0.036	12	56	60	58
Vanadium	0,1925	0.2155	0.1	0.5	0.3156	0.3602	13	123	145	134

ç

į

}

Table C-2. Recovery of Metal Spikes in Limestone (Data in µg/mL)

	Sa	ımpte	Spike	Spike/		Splikes			% Recovery	
Element	Conc.	Dup. cont.	level	sample	MS conc.	MSD coec.	Rel. % Diff.	MS	MSD	Avg.
Antimony	0.018	0.017	0.1	5.7	0.127	0.131	3	109	114	112
Arsenic	0.013	0,013	0.05	3.8	0.074	0.078	5	122	130	126
Barlum	0,0546	0.0579	0,4	7. l	0.431	0.431	0	94	93	94
Beryllium	ND	ND	0.1	ind.	0,095	0.0944	1	95	94	95
Cadmium	0.0041	0.00368	0,02	5 . I	0,0206	0.0214	4	83	89	86
Chromium	0,0246	0.0229	0.2	8.4	0.214	0.202	6	95	90	92
Cohalt	0,006	0.0112	0.4	46.5	0.375	0.39	4	92	95	94
Соррег	0,0906	0.095	0.2	2.2	0.33	0.334	1	120	120	120
Lead	ND	ND	0.1	Ind.	0.039	0.077	66	39	77	58
Manganese	2,767	2,881	0.2	0.1	3.01	2.979	1	122	49	85
Molyhdenum	ND	0.017	0.2	fred.	0.214	0.216	1	107	100	103
Nickel	0,1043	0.1079	0.4	3,8	0,452	0,457	1	87	87	87
Selerium	ND	ND	0.05	Ind.	0.0444	0.0455	2	89	91	90
Vanadium	0.146	0.153	0.1	0.7	0.245	0.254	4	99	101	100

Table C-3. Recovery of Metal Spikes in ESP Hopper Ash (Data in μg/mL)

	<u></u>	ample	Spike	Spike/		Spikes			% Recovery	<u> </u>
Element	Conc.	Dup. conc.	level	sample	MS conc.	MSD conc.	Rei. % Diff.	MS	MSD	Avg.
Antimony	0.315	0,316	0.1	0.317	0.402	0.412	3	87	96	92
Arsenic	0.607	0.333	0.05	0.106	0.476	0.53	L1	0	394	197
Barium	NR	4.08	1.4	0.343	5.34	5.4	-	90	94	92
Beryllium	0.23	0.226	1.0	0.439	0.329	0.332	_ I	99	106	103
Boron	19.2	19.2	1.0	0.052	21.9	22.2	ı	270	300	285
Cadmiun	0.49	0.49	1.02	2.082	1.38	1.39	1	87	88	88
Chromium	4.75	4.76	1.2	0.252	5.89	5.95	1	95	99	97
Cobalt	0.432	0.421	0,4	0.938	0.818	0.858	5	97	109	103
Соррег	2.43	2.42	1.2	0.495	3.67	3.75	2	103	111	107
Lead	2.56	2.57	1.1	0.429	3.64	3.48	5	98	83	90
Manganese	2.35	2.31	1.2	0.515	3.42	3.43	0	89	93	91
Molybdenum	1.693	1.75	0.2	0.116	1.896	1.97	4	102	110	106
Nickel	2.86	2.82	t.4	0.493	4.18	4.19	0	94	98	96
Selenium	0.081	0.085	0.05	0.602	0.124	0.123	ı	86	76	81
Vanadiom	6.17	6.06	1.1	0.180	7.1	7.19	1	85	103	94

Table C-4. Recovery of Metal Spikes in Sluice Water Supply (Data in µg/m/L)

	Sa	nopte	Spike Jevel	Spike		Spikes		% Recovery			
Element	Conc.	Dup. conc.		sample	MS conc.	MSD conc.	Rel. % Diff.	MS	MSD	Avg.	
Antimony	0.0095	0.0034	0.1	15.5	0.18	0.169	6	171	160	110	
Arsenic	0.0129	0.0014	0.05	7.0	0.0582	0.0621	7	91	98	63	
Barium	0.019	0.0183	0.4	21.4	0.382	0.359	6	91	85	59	
Beryllium	D	ND	0.1	}	0.093	0.085	. 9	93	85	59	
Boron	0.117	0.18	1	6.7	1.08	0.9	18	96	78	59	
Cadmium	ND	ND	0.02		0.0233	0.022	6	117	110	76	
Chromium	0.0052	0.0098	0.2	26.7	0.186	0.18	3	90	87	59	
Coball	ИD	NTD	0.4		0.371	0.342	8	93	86	60	
Соррег	0.0069	0.0108	0.2	22.6	0,19	0.176	8	92	85	59	
Lead	ND	ND	0,1		0.076	0.075	t ·	76	75	50	
Manganese	ND	0.0093	0.2	21.5	0.185	0.173	7	93	87	60	
Molybdenum	0.005	ND	0.2	40.0	0.191	0.184	4	93	90	61	
Nickel	0.0058	ИD	0.4	69.0	0.365	0.337	8	90	83	58	
Selenium	0.0021	ND	0.05	23.8	0.0501	0.0443	12	96	84	60	
Vanadium	ND	NID	0,1	<u> </u>	0.096	0.087	to	96	87	61	

Table C-5. Recovery of Metal Spikes in MMT Front-Half Solids (Data in µg/mL)

	Sample	Spike	Splike/		Spikes	, , , , , , , , , , , , , , , , , , ,		% Recovery	
Element	conc.	level	sample	MS conc.	MSD conc.	Rel. % Diff.	MS	MSD	Avg.
Antimony	0.289	0.1	0,346	0,404	0.415	3	115	126	121
Arsenic	0.5	0.05	0,100	0.519	0.514	1	38	28	33
Barium	3.6	1,4	0.389	5	4.104	20	100	36	68
Beryllium	0.213	0.1	0,469	0,304	0,311	2	91	98	95
Cadmium	0.381	1.02	2.677	1.28	1,28	0	88.1	88.1	88
Chromium	3.7	1.2	0.324	4.93	5.05	2	102.5	112.5	108
Cobalt	0.382	0.4	1.047	0.8	0.794	1	104.5	103	104
Соррег	1.93	1,2	0,622	3.25	3.26	0	110	110.8	110
Lead	2,56	1.1	0.430	3.59	3.76	5	93.6	109.1	101
Manganese	2.3	1.2	0.522	3.47	3.49	1	97.5	99.2	98
Molybdenum	1.32	1.2	0.909	2.41	2.49	3	90.8	97.5	94
Nickel	2.21	1.4	0.633	3.66	3.64	ı	103.6	102.1	103
Scienium	0.291	0.05	0.172	0.372	0.36	3	162	138	150
Vanađium	5.23	1.1	0.210	6.4	6.51	2	106.4	116,4	111

Table C-6. Recovery of Metal Spikes in MMT Back-Half impingers (Data in µg/mL)

	Method	Spike	Sp8ke/	! 	Spikes		% Recovery	,	
Element	Blank	level	sample	MS conc.	MSD coac.	Rel. % Diff.	MS	MSD	A∀g.
Antimony	0.0016	0,1	62.5	0.0883	0.0946	7	86.7	93	90
Arsenic	0.0002	0.05	250.0	0.0432	0.0436	ı	86	86.8	86
Barkun	ND	0.4		0.3761	0.3975	6	94	99,4	97
Beryllium	ND	0.1		0.0972	0.0948	3	97.2	94,8	96
Boron	3,94	-	0.3	8.16	5.91	32	422	197	310
Cadminm	ND	0.02		0.0177	0.0166	6	88.5	83	86
Chromium	0,005	0.2	40.0	0.1839	0.1826	1	89.5	88.8	89
Cobalt	NÐ	0.4		0.3766	0.3606	4	94,2	90.2	92
Соррег	NĐ	0.2	i	0.1994	0.1955	2	99.7	97.8	99
Lead	ND	0.1		0.084	0.0911	8	84	91.1	8.8
Manganese	ND	0.2		0.1878	0.1902	1	93.9	95.1	95
Molybdenum	ND	0.2		0.1912	0.1916] 0	95.6	95.8	96
Nickel .	ND	0.4		0.3698	0.3615	2	92.5	90.4	91
Seleniam	0.00053	0.05	94.3	0.0301	0.0315	5	59. l	61.9	6!
Vanadinm	ND	0.1		0.0952	0.0923	3	95.2	92.3	94

Table C-7. Recovery of Metal Spikes in ARP Liquid Phase (Data in μg/mL)

	Sa	mple	Splice	Spike/		Spikes		<u> </u>	% Recovery	<u></u>
Etement	Conc.	Dup. conc.	Sevel	sample	MS cone.	MSD cone.	Rel. % Diff.	MS	MSD	Avg.
Antimony	0.00056	0.0002	0.1	263.2	0.0924	0.0952	3	92	95	93
Arsenic	0.0049	0.002	0.05	14.5	0.0561	0.0543	3	102	105	104
Barium	0.166	0.103	0.4	3.0	0.506	0.493	3	85	98	91
Beryllium	ND	ND	0.1		0.102	0.102	0	102	102	102
Boron	974	979	1.0	0.0	1018	1040	2	4400	6100	5250
Cadmium	0.0348	0.0263	0.02	0.7	0.076	0.0494	42	206	115	160
Chromium	0.0036	ND	0.2	55.6	0.198	0.198	0	97	97	97
Cobalt	0.0724	0.0491	0.4	6.6	0.445	0.443	ı	93	99	96
Соррег	0.0072	0.0027	0.2	40.4	0.219	0.219	0 '	106	108	107
Lead	0.0047	ND	1.0	21.3	0.0897	0.0714	23	85	67	76
Manganese	t.69	1.12	1.02	0.7	3	2.68	ы	128	153	141
Molybdeaum	0.1101	0.072	0.2	2.2	0.294	0.277	6	92	103	97
Nickel	0.707	0.439	0.4	0.7	0.846	0.845	0	35	102	68
Selenizum	0.243	0.152	0.05	0,3	0.157	0.203	26	0	102	51
Vanadium	ND	ND	0.1		0.107	0.102	5	107	102	105

Table C-8. Recovery of Metal Spikes in ARP Solids (Data in µg/mL)

,	Sample		Splke	Spike/		Spikes			% Recovery	<u> </u>
Element	Conc.	Dup. conc.	level	sample	MS cone.	MSD conc.	Rel. % Diff.	MS	MSD	Avg.
Antimony	0.0029	0.0051	0.1	25.0	0.089	0.098	10	86	93	90
Arsenic	0.006	0.0119	0.05	5.6	0.044	0.0136	106	76	3	40
Barium	0.0308	0.0324	0.4	12.7	0.434	0.45	4	101	104	103
Beryllium	ND	ND	0.1		0.0931	0.0935	0	93	94	93
Cadmium	ND	0.00248	0.02	8.1	0.04	0.04	0	200	188	194
Chromium	0.0051	0.0219	0,2	14.8	0.22	0.278	23	108	128	118
Cobalt	ND	ND	0.4		0.512	0.537	5	128	134	131
Соррег	0.01	0,013	0.2	17.4	0.241	0.257	6	116	122	119
Lead	ND	ND	0.1		0.0572	0.0588	3	57	59	58
Manganese	0.117	0,0928	0.2	1.9	0.331	0.341	3	107	124	116
Molybdenum	ND	ND	0.2		0.221	0.273	21	113	137	124
Nickel	0.0276	0,0459	0.4	10.9	0.491	0.533	В	116	122	119
Selenium	0.0893	0.0961	0,05	0.5	0.158	0.138	14	137	84	111
Vanadium	0.0419	0.0369	0.1	2.5	0.176	0,145	19	134	801	[2]

Table C-9. Recovery of Meroury Spikes in Various Media (Data in µg/mL)

Sample	Sa	mple .	Spike	Splike/	1	Spikes			% Recover	,
description	Cenc.	Dup. conc.	level	sample	MS conc.	MSD cone.	Rel. % Diff.	MS	MSD	Avg.
Coat	1.2	1.08	1.0	0.9	1.84	1.94	13	70	80	75
Coat	0.505	NR	1.0	2.0	1.18	1.18	0	68	68	68
Lime	< 0.02	< 0.02	1.0	1.0	1.09	1.08	J	109	108	109
Bettom Ash	0.031	< 0.002	1.0	32.3	0.949	0.97	2	93	95	94
Cyclone	0.0366	0,0332	1.0	28.7	0.962	0.925	4	93	89	91
Water	< 0.20	< 0.20	1.0	1.0	1,14	1.16	2	114	116	115
Water	0.054	0.057	1.0	18.0	1.08	1.09	t :	t02	103	103
MMT/Pilter	0.395	0.442	1.0	2.4	1.19	1.06	18	77	64	71
MMT/Filter	0.0531	NR	0.5	9.4	0.589	0.647	11	107	119	113
MMT/Pilter	0.122	0.917	1.0	1.9	0.964	NR:		86	NR	
MMT/Peroxide	1.72	NR	1.0	0.6	2.78	2.84 ⁻	6	106	112	109
MMT/Peroxide	< 0.02	NR	1.0	1.0	0.989	1.14;	14	99	114	107
MMT/KMnO4	0.188	NR	1.0	5.3	1.22	1.34	10	110	122	116
ММТ/КМпО4	1.37	NR	1.0	0.7	2.32	2.3	2	95	93	94
MMT/KMaO4	0.110	0.12	1.0	8.5	NR	1.25		NR	113	
MMT/KMnO4	0.617	0.617	1.0	1.6	1.68	1.55	13	106	93	100
ММТ/КМпО4	0.144	0.13	1.0	7.3	1.01	1.05	9	87	91	89

The tables all have the same format:

the results of metal determinations in the sample as received, usually in duplicate;

the spike level calculated for the solution prepared to be analyzed;

the ratio of the spike concentration to the average of the sample concentrations:

the results of duplicate sample analyses with spikes added;

the relative percent difference in results for the spiked samples;

the recovery of the spike in duplicate analyses (that is, the difference observed between spiked and unspiked samples, compared with the spike level.

Generally, the values of relative percent difference are more satisfactory than the values of percent recovery. This is hardly surprising, as will be explained. The following show the maximum values of relative percent difference in the determinations of metals other than mercury in spiked samples of various types:

<u>Sample</u>	Maximum R%D
Coal	22%
Limestone	6% (with one exception, 66%)
ESP hopper ash	11%
Sluice water supply	18%
MMT front half	20%
MMT back half	7%
ARP liquid phase	42%
ARP solids	23% (with one exception, 106%)

For mercury, the maximum value is 18%. The two exceptions are noted above specifically as exceptions to avoid conveying the impression that the highest values are part of the general population of results.

Consider the result of 66% noted above as an exception. The result is for lead, which was not detectable in the sample and the spike level was 0.1 μ g/mL; the concentrations found after spiking were 0.039 and 0.077 μ g/mL. Consider also the result of 106%, which occurred for arsenic in the ARP solids. The duplicate results for the sample were 0.006 and 0.012 μ g/mL; with a spike of 0.05 μ g/mL added, results were 0.044 and 0.014 μ g/mL. The two elements associated with very poor replication, arsenic and lead, were chronic causes of difficulty at the low concentrations that occurred in these two instances.

Achieving satisfactory results in terms of spike recovery was more difficult because in many instances it involved measurement of small differences between

relatively large numbers. Consider recoveries of 270 and 300% for boron spikes in the ESP hopper ash. The spike was only about 5% of the background concentration in the sample; hence, achieving poor recovery was not surprising. Consider even more absurd results for the boron spike in the ARP liquid phase. The recoveries were around 5000%, but then the spike was only 0.1% of the sample concentration.

The mismatch in magnitude between boron spikes and boron spike concentrations occurred because the unspiked sample and the spiked sample were digested and analyzed at the same time and the appropriate magnitude of the spike was not known. In retrospect, if the recovery of a boron spike in the given medium had been an issue in itself, the sample would have been spiked again but at a more appropriate level and reanalyzed. There are data for boron in other forms, however, that suggest that determination of boron was not a matter for urgent attention.

C.3.1.6 Recovery of Metals at Known Concentrations in Laboratory QC Samples and in Standard Reference Materials

Tables C-10 through C-14 present data showing recovery of metals in media other than field samples — either laboratory QC solutions prepared to contain metals at known concentrations or Standard Reference Materials purchased from the National Institute of Standards and Technology or Brammer Standards Company.

Solutions obviously constitute easier analytical problems because the sources of error encountered in putting a solid into solution are absent. This statement is borne out by the data on the general set of metals in Table C-10 and the data for mercury in particular in Table C-14. For mercury, the worst recovery value is 131% in a solution where the concentration was quite low. For the other metals, there are two indefensible results — recoveries around 300% for chromium and nickel, which may have been due to laboratory contamination.

For the solid SRMs — either coal or ash — a major problem is getting complete digestion and thus getting all of the metals to the analyzer. In both of the coal SRMs, the certified value for antimony is quite low and thus even having adequate sensitivity is a problem. Other sources of error are contamination during sample digestion and during sample dilution and subsequent chemical processing as is involved for the atomic absorption methods employed for antimony, arsenic, cadmium, lead, and selenium.

The data for SRMs in Tables C-11, C-12, and C-13 reveal that several metals frequently are not determined satisfactorily in solid media:

- In one instance the concentration of antimony was twice the certified value. In analyses of the NIST coal, the determination of antimony was not completed successfully.
- Cadmium was always at a low concentration and not determined adequately.
- Components of stainless steel chromium, molybdenum, and nickel — were sometimes found at excessive concentrations.

Table C-10
Recoveries of Metals at
Known Concentrations in a Laboratory QC Solution
(Data in μg/mL)

		Analysis 1		Ana	lysis 2	Analysis 3		
Element	Known conc.	Conc.	Recov.%	Conc.	Recov.%	Conc.	Recov.%	
Barium	4.00	4.21	105	4.23	106	4.18	105	
Beryllium	1.00	0.93	93	1.04	104	0.94	94	
Cadmium	0.25	0.33	130	0.27	108	0.33	131	
Chromium	1.00	1.05	105	0.99	99	3.35	335	
Cobalt	1.00	0.89	89	1.01	101	0.93	93	
Соррет	1.00	0.89	89	0.99	99	0.68	68	
Lead	1.00	1.10	-110 -	0.55	- 55	1.09	109	
Manganese	1.00	0.93	93	0.88	88	1.03	103	
Molybdenum	2.00	1.98	99	2.05	103	2.16	108	
Nickel	1.00	0.92	92	0.94	94	2.95	295	
Vanadium	2.50	2.46	98	2.71	108	2.27	91	

Table C-11
Recoveries of Metals at Certified Concentrations in SARM 20 Coal*
(Data in µg/g)

		Analysis		
Element	Certified value	Conc.	Recov. %	
Antimony	0.4	0.88	220	
Arsenic	4.7	5.42	115	
Barium	372	353	95	
Beryllium	2.5	1.11	44	
Вогоп	90	NR		
Chromium	67	59.8	89	
Cobalt	8.3	4.93	59	
Copper	18	15.1	84	
Lead	26	15.3	59	
Manganese	80	71.4	89	
Nickel	25	25.9	104	
Selenium	0.8	0.295	37	
Vanadium	47	42.6	91	

Table C-12
Recoveries of Metals at
Certified Concentrations in NIST 1632b Coal*
(Data in µg/g)

	[Ana	lysis 1	Ana	lysis 2		
Element	Certified value	Conc.	Recov.%	Conc.	Recov.%	Relative diff. %	
Antimony	0.24	ND		NR		**	
Arsenic	3.72	3.60	97	2.57	69	33	
Barium	67.5	67.4	100	69.9	104	4	
Cadmium	0.0573	0.028	49	ND		-	
Chromium	11	8	73	20	181	85	
Cobalt	2.29	1.80	79	1.14	50	45	
Copper	6.28	8,60	137	6.28	100	31	
Lead	3.67	5.60	153	2.46	67	78	
Manganese	12.4	11.0	89	10.7	86	3	
Molybdenum	0.9	ND		2.0	217	+-	
Nickel	6.1	5,6	92	11.7	192	71	
Selenium	1.29	1.98	153	0.16	12	170	
Vanadium	14	15	107	14	99	8	

*Purchased from National Institute of Standards and Technology, Gaithersburg, MD.

Table C-13
Recoveries of Metals at
Certified Concentrations in NIST 1633a Fly Ash*
(Data in µg/g)

	, , <u>.</u>	Analysis 1		Anai	Date:	
Element	Certified value	Cone,	Recov.%	Conc.	Recov.%	Relative
Antimony	6.8	17.98	264.4	4.45	65.4	121
Arsenic	145	115	79.3	159	109.7	32
Barium	1500	1293	86.2	1358	90.5	5
Beryllium	12	16.02	133.5	16.8	140	5
Cadmium	1	0.859	85.9	NR		_
Chromium	196	167.95	85.7	174.2	88.9	4
Cobalt	46	39.06	84.9	38.6	83.9	1
Соррег	118	115	97.5	101	85.6	13
Lead	72.4	NR	**	NR	_	
Manganese	179	159	88.8	159	88.8	0
Molybdenum	29	17.84	61.5	16.72	57.7	6
Nickel	127	109.9	86.5	112	88.2	2
Selenium	10.3	7.9	76.7	7.88	76.5	0
Vanadium	297	306	103	286	96.3	7

*Purchased from National Institute of Standards and Technology, Gaithersburg, MD.

Table C-14 Recoveries of Mercury in Various SRMs and Laboratory QC Standards (Data in µg/g or µg/L)

Sample*	Reference cone.	Observed conc.	% Recovery
SARM 20	0.25	0.142	57
SARM 20	0.25	0.136	54
SARM 20	0.25	0.163	65
SARM 20	0.25	0.183	73
NBS 1633a	0.16	0.195	122
NBS 1633a	0.16	0.215	134
QC095	250	24	110
QC095	250	230	92
QC095	250	238	95
QC095	250	208	83
QC095	250	275	110
QC095	250	249	100
QC095	250	229	92
QC043	4.00	4.60	115
QC044	4.00	4.27	107
QC045	2.00	2.21	111
QC047	0.080	0.105	131
QC048	0.120	0,066	55

^aFirst group — solids (μg/g), ^bSecond group — solutions (μg/L).

The occurrence of these elements in stainless steel may be coincidental, but the fact may point indirectly to a source of contamination.

 Selenium was often recovered at very low levels atthough in one instance reported here was found at a high level.

C.3.1.7 Blanks for Metals Recovered by Method 29

Table C-15 compares the quantities of metals recovered in actual sampling runs with the quantities from so-called "blank trains." The differences between measured sample quantities and corresponding blank quantities were used for calculating net sample amounts and for calculating the sample concentrations reported in Section 6. Data are not presented for all sampling experiments; instead, they are given for two experiments, one at the inlet and one at the outlet of the Unit 8 ESP. These two locations had the extremes in sample concentrations; thus, the blank corrections had effects at these locations.

The first page of the table presents data for the front half of the sampling train at each location. The second page gives data for the back half. Clearly, the blank sometimes exceeded the sample amount and led to apparent negative concentrations (which were reported as less than the appropriate detection limit). The absolute value of the blank correction for the inlet filter is about 1.7 times the value for the outlet filter because of the difference in filter sizes in the inlet sampling train and the blank train.

C.3.2 Anions

As described previously in Section 5, three anions (chloride, sulfate, and phosphate) in acid gas impingers were determined by ion chromatography, and the fourth (fluoride) was determined by use of an ion-selective electrode. These ions were determined by use of the same techniques in water and solid samples. In the case of the latter, the solids had first been made water-soluble by fusion with NaOH.

Table C-16 presents the results of measurements of anion spikes in selected samples of the various media. The recoveries range, with just a few exceptions, between 90 and 110%.

Table C-17 gives recoveries of spikes of cyanide and ammonia in impinger solutions that had been used for sampling flue gas. The three examples given are in the range 95-100%.

Blanks were inconsequential in comparison with reported sample quantities.

C.3.3 Carbonyl Compounds (Aldehydes and Ketones)

These compounds were analyzed by HPLC according to EPA Method 0011 (7), which was written specifically for formaldehyde.

Table C-15 Comparison of Sample and Blank Amounts of Metals

	Inlet, Un	it 8 ESP	Outlet, Unit 8 ESP		
Metal	Sample, µg	Blank, µg	Sample, µg	Blank, µg	
FRONT HALF	_				
Antimony	61.3	1.13	0.31	0.66*	
Arsenic	289	0.77	2.75	0.45	
Barium	3810	9.4	18.5	5.5	
Beryllium	205	0.043	0.29	0.025	
Boton	7760	58	1.59	34*	
Cadmium	296	1.0	13.3	0.	
Chromium	4560	8.5	18.6	5.0	
Cobalt	392	2.6	1.46	1.55*	
Copper	1780	6.8	7.84	4.01	
Lead	3010	0.43	19.8	0.25	
Manganese	2420	2.6	6.62	1.48	
Mercury	0.76	0.067	0.22	0.039	
Molybdenum	1370	36	33.5	21.2	
Nickel	2540	4.3	2.10	2.55*	
Selenium	468	0.94	2.32	0.55	
Vanadium	5105	0.43	3.90	0.25	
*Produces a net :	result that is negat	ive.			

Table C-15 (Concluded) Comparison of Sample and Biank Amounts of Metals

	Inlet, Un	it 8 ESP	Outlet, Unit 8 ESP		
Metal Sample, µg		Blank, µg	Sample, µg	Blank, µg	
BACK HALF					
Antimony	0.56	0.10	0.16	0.10	
Arsenic	2.74	0.10	0.92	0.10	
Barium	8.23	2.54	1.98	2.54*	
Beryllium	0.025	0.02	0.00	0.02*	
Boron	34600	403	11900	403	
Cadmium	6.28	0.01	2.18	0.01	
Chromium	10.7	1.23	3.29	1.23	
Cobalt	0.95	0.72	0.08	0.72*	
Copper	6.57	4.2	0.81	4.2*	
Lead	1.76	0.25	0.53	0.25	
Manganese	16.8	14.3	0.90	14.3*	
Mercury	11.6	0.03	4.03	0.03	
Molybdenum	0.25	0.25	0.00	0.25*	
Nickel	21.1	0.50	7.19	0.50	
Selenium	316	1.25	110	1.25	
Vanadjum	0.62	0.25	0.13	0.25*	

Table C-16 Recoveries of Anion Spikes in Various Samples

			Concn, µg/mL		Calles	
Type of sample	Analyte	Dil factor	Sample	Spike	Spike recovery, %	
Acid Train Impingers						
Unit 8 inlet	chloride chloride fluoride	50 50 1	2.25 2.23 1.00	2.00 9.90 16.3	102 99.0 100	
Unit 8 outlet	sulfate sulfate	1000 1000	12.8 11.9	19.6 90.9	98.0 97.0	
Unit 8 outlet	sulfate	1000	17.7	19.6	99.0	
Stack	chloride	5	0.202	0.196	99.0	
Diluter	fluoride	1	13.8	2.00	95.0	
Liquid Samples						
Condenser inlet	fluoride	1	<0.40	4.00	100	
Condenser outlet	sulfate chloride fluoride	10 20 1	2.50 0.693 <0.40	2.50 0.50 3.00	104 100 100	
Boiler makeup water	sulfate chloride	1 1	<0.10 <0.05	0.20 0.10	116 108	
Sluice water supply	sulfate chloride	50 20	2.53 0.719	2.50 1.00	111 106	
Bottom ash sluice water	phosphate fluoride	1 1	<0.50 <0.40	1.00 1.00	104 90.0	
Bleed pump slurry	suifate chloride phosphate	200 2500 20	8.41 2.68 <0.50	8.00 2.00 1.00	105 114 85.7	
Abs. recirc. pump slurry	phosphate	50	< 0.50	1.00	83.3	
Boiler waste water	phosphate	20	<0.50	1.00	88.0	

Table C-16 Concluded Recoveries of Anion Spikes in Various Samples

			Concn,	րg/mL ⁺		
Type of sample	Analyte	Dil factor	Sample	Spike	Spike recovery, %	
Solid Samples		:				
Bottom ash	sulfate chloride phosphate	2 1 2	0,565 0.111 0.770	0.50 0.107 1.00	104 115 96.6	
ESP hopper ash	sulfate chloride phosphate	5 1 4	3.07 0.781 0.763	3.00 1.00 0.800	98.2 108 103	
Abs. recirc. pump slurry	sulfate chloride phosphate fluoride	25 1 1 1	10.9 0.138 <0.50 0.50	10.0 0.25 1 0.50	96.8 110 102 140	
Gypsum	sulfate	25	11.45	10.0	101	

Table C-17 . Recoveries of Cyanide and Ammonia Spikes in Impinger Samples

mr		75.7	Concn, µg/mL		
Type of sample	Analyte	Dil factor	Sample	Spike	Spike recovery, %
Unit 8 inlet	cyanide		0.394	0.741	99.0
Stack	cyanide		0.026	0.196	97.0
Unit 7 outlet	ammonia	_	0.041	0.069	97.1

One of the significant handicaps to the method is obtaining the sampling reagent DNPH in a sufficiently pure state. Normally, the 70%-pure reagent that is widely available commercially is used for the method (the 30% balance of the reagent content is mainly water). In the work at Balliy, however, an ultra-pure reagent was purchased from Radian Corporation. Nevertheless, significant and variable blank values were encountered, as revealed by the tables presenting sample data in the body of this report.

Another factor introducing uncertainty in the data is the stability or lack of stability of formaldehyde in the sampling reagent while sampling is in progress. Section 6.1.3.4 recounts the experience in recovering formaldehyde that had been spiked into sampling reagent before stack gas was drawn through the reagent. The results of the spiking experiment suggest either that the complex between formaldehyde and DNPH is not sufficiently stable to prevent the volatilization of the aldehyde or that unknown constituents in flue gas can destroy the complex.

Opposing the possible loss of formaldehyde during sampling is the possibility that some level of contamination occurred from the environment. The laboratory made available for preparation and work-up of the sampling trains was a trailer that was suspected to contain element of construction based on formaldehyde-containing resins; thus, the trailer atmosphere was sampled with a blank train for about the twice the volume sampled from flue gas. A quite significant amount of formaldehyde, $58~\mu g$, was collected, compared with 10-20 μg from flue gas. There was not necessarily a significant contamination in any sample from the flue gas, but the possibility of some level of contamination does exist.

The level of recovery of spikes applied in the laboratory was disappointing. For the unused sampling medium, recovery of formaldehyde spikes ranged from 72 to 97%. For aqueous media from the plant, the following are illustrative results:

	<u>Formaldehy</u>	de recovery. %
<u>Water sample</u>	<u>Spike</u>	Duplicate
Condenser inlet	· -28	-23
Boiler makeup	117	68
Bleed pump sturry	35	112

The concentrations in the three samples before spiking were 112, 38, and 185 μ g/L, respectively; the spike produced an increment of 97.5 μ g/L. In the first instance, where negative recoveries are listed, recalculation of recoveries assuming the true sample value was zero yields recoveries of 97 and 103%. It is probable, but not subject to proof at this date, that the observed concentration before splking was near zero and the recalculated recovery values are approximately the true results.

Data on blanks are given in Table 6-42 in the body of the report. The ranges in micrograms were 1,4-3.7 for formaldehyde, <1.0-1.2 for actaldehyde and <1.0-2.5 for acetone.

C.3.4 Volatile Organic Compounds

C.3.4.1 Experimental Methods

EPA Methods 8240B and 5041 were modified for the determination of volatile organic compounds by replacing the packed column with a capillary column. At the beginning of each day, the GC/MS system tuning performance criteria were checked for a 50-ng sample of bromoflucrobenzene (BFB). Three isotopically labelled compounds were used as internal standards during calibration of the GC/MS system to avoid matrix interferences. The analyst prepared calibration curves with calibration standards at five concentration levels for each volatile organic compound. Each calibration standard included a known, constant amount of internal standard.

Most system performance check compounds used to assess instrument readiness for the analyses of liquids and VOST tubes met the minimum requirements listed in Methods 8240B. Bromoform was the only SPCC that did not meet listed method requirements. Calibration curves relative response factors were verified on each working day by measurement of the middle calibration check standard. The response of all calibration check compounds met method requirements. The continuing calibration check compounds met method requirements.

C.3.4.2 QA/QC Data

Data on the recovery of compounds that were present in known concentrations in samples analyzed for volatile organics are presented in Tables C-18, C-19, and C-20. The first two of these tables give the recoveries of three so-called surrogates, which were always added to the samples to be analyzed. One of the table deals with samples of water; the second pertains to samples collected on Tenax and Tenax-charcoal sampling tubes from the VOST. The final table presents the data on other compounds that were added as spikes in the water samples.

The specifications in SW-846 for acceptable recoveries of the individual compounds are included in the tables. Clearly, the actual recoveries were well within the ranges of acceptable values.

The rejection of the field data as being of improbable value follows not from any objective criteria in terms of laboratory performance but from the subjective reasoning presented subsequently in Appendix D.

C.3.4,3 VOST Blanks

Table C-21 lists the quantities of volatile organics found in three types of blanks as defined in the table. The lowest-boiling compounds in the first four columns were found erratically as the result, it is believed, of poor laboratory handling. The benzene and toluene in the blanks would have made inconsequential corrections in the observed samples quantities of these compounds but, of course, are irrelevant because the sample quantities are considered erroneous.

Table C-18 Recovery of Surrogate Volatile Organic Compounds in Water Samples

	Recovery, %							
Sample	Surrogate 1*	Surrogate 2 ^b	Surrogate 3°					
Boiler makeup water	91.9	95.4	92.6					
Condenser inlet	89	98.3	94.9					
Sluice water supply	90.7	95.7	95.9					
Bottom ash sluice	89.4	95.5	92.3					
Abs. recirc. pump slurry	90.7	93.7	95.2					
Bleed pamp slurry	93.1	97	94.1					
Scrubber waste water	91.5	97.2	98.2					

^{*1,2-}Dichloroethane-d₄ (SW-846: 76-114%). *Toluene-d₃ (SW-846: 88-110%). *4-Bromofluorobenzene (SW-846: 86-115%).

Table C-19 Recovery of Surrogate Volatile Organic Compounds in VOST Samples

	Recovery, %						
Sample*	Surrogate 1 th	Surrogate 2°	Surrogate 2*				
Unit 8 inlet - T	101	98	101				
T/C	93	97	102				
Unit 8 outlet - T	93	97	95				
T/C	98	101	105				
Unit 7 outlet - T	94	97	92				
T/C	93	98	101				
Stack - T	92	95	77				
T/C	92	96	97				

^{*}T=Tenax; T/C=Tenax/charcoal. The samples indicated here are the 20-L samples at the four VOST locations.

⁵1,2-Dichloroethane-d₄ (SW-846: 76-114%).

Toluene-d₈ (SW-846: 88-110%)

⁴4-Bromofluorobenzene (SW-846: 86-115%).

Table C-20 Recovery of Spikes of Volatile Compounds in Selected Water Samples

		Recovery, %								
Spiking compound*	SW-846	Boiler makeup		Condenser outlet		Bleed pump sturry		Scrubber waste water		
	specifi- cation	MS	MSD	MS	MSD	MS	MSD	MS	MSD	
1,2-dichloroethane-d,	76-114	94.2	92.4	90	93.4	93.4	95.6	86.8	90	
toluene-d,	88-110	97.6	96.2	96.4	100	95.2	98.2	94.6	93.8	
4-bromofluorobenzene	86-115	100	94,4	97.4	97.6	92	94.8	93.6	96.8	
1,1-dichloroethene	50.5-150	116	112	123	121	102	105	95.8	80.2	
benzene	64-136	95.6	97.2	94.8	96.6	92.4	96	90	94	
trichloroethene	66.5-134	90.8	95	92.6	94	91.4	93.2	88	95.2	
toluene	74.5-126	91.8	96.2	94	94.2	90.6	94.8	87.4	90.4	
chlorobenzene	66-134	90.8	91.8	92,4	90	89	91.4	87.6	91	

"Each at 50 µg/L. The first three compounds are the three surrogates cited in the preceding two tables.

Table C-21 Compounds Measured in VOST Blanks

		Quantity in annograms							
Sampling Sample location type"	Bromo- methane	Acctone	Carbon disulfide	Methylene chloride	Benzene	Tolorne			
Inlet, ESP Unit 8	T(LC) TC(LC) T(FB) TC(FB) T(TB) TC(TB)	25 19	17	20 45	6.0 2110 2530 497	8.6 5.8 5.8			
Outlet, ESP Unit 8	T(LC) TC(LC) T(FB) TC(FB)	15	,	22	26	12 7.2	7.2		
Outlet, ESP Unit 7	T(LC) TC(LC) T(FB) TC(FB) T(TB) TC(TB)	18	24 36	_	5.1	9.6			
Stack	T(LC) TC(LC) T(FB) TC(FB) T(TB) TC(TB)	34 20 10	21 11		21 21 71 57	9.2 6.2 6.2	60		

[&]quot;T=Tenax

FB=field blank (sample tubes opened momentarily in the field but not exposed to a flow of air)
TB=trip blank (sample tubes shipped to and from the field without ever being opened)

TC=Tenax/charcoal

LC=leak check blank (assembled apparatus checked for air leaks under vacuum with sampling tubes installed)

C.3.5 Semiyolatile Organic Compounds

C.3.5.1 Experimental Methods

Semivolatile organic compounds were analyzed by capillary column GC/MS according to EPA Method 8270B from SW-846. A number of samples analyzed for semivolatile organic compounds were also analyzed for dioxins. These samples were prepared for semivolatile analysis as required by Method 8270B using toluene rather than methylene chloride to extract the samples. The use of toluene as an extractant resulted in some loss of the earlier eluting target compounds with lower boiling points.

A 50-ng sample of decaftuorotriphenylphosphine (DFTPP) was analyzed at the start of each day prior to analysis of semivolatile compounds. The spectrum-validation criteria were met before any samples, blanks, or standards were analyzed. When the criteria for this analysis were not achieved, the analyst retuned the mass spectrometer and repeated the test until all criteria were achieved.

The analysts prepared calibration curves with calibration standards at five concentration levels for each semivoiatile organic compound of interest. Each calibration standard included known, constant amounts of six internal standards. Calibration curve relative response factors for target compounds were verified on each working day by the measurement of one or more calibration check standards. If the response for any calibration check compound (CCC) varied from the curve response factor by more than ±20, the analyst noted the variance and evaluated the potential impact of the variance on the analysis to be performed. If the response for any calibration check compound varied from the curve response by more than ±25%, the test was repeated with a fresh calibration standard. If the response of the check compound still varied from the calibration curve by more than ±25%, a new calibration curve was prepared.

Difficulties encountered with several samples necessitated specific departures from the method.

- For the samples extracted with toluene, the surrogates with lower boiling points typically showed reduced recoveries. This problem was not typically observed for those samples extracted with methylene chloride. It is believed that the higher temperature required to evaporate toluene during the concentration step contributed to the loss of the target compounds with a lower bolling point.
- Contamination with very low levels of benzyl alcohol,
 2-methylphenol, and 4-methylphenol of samples and blanks resulted from the toluene used to wash sampling equipment in the field and to extract the samples in the laboratory. The toluene used on this project was purchased form our supplier for use only on this project.
 The supplier worked with SRI to identify the source of the

problem. Other contaminants that may have originated in the tokuene are benzoic acid and phenol.

Analysis of a calibration check sample at the end of a 12-hr operating period and after completion of a sequence of five samples showed a total loss of retention and resolution on the column. The column was replaced and the instrument retuned and recalibrated before analysis was resumed. Analysis of the five samples in question had to be repeated.

C.3.5.2 QA/QC Data

QA/QC data for samples that contained known added concentrations of selected semivolatile compounds are presented in Tables C-22, C-23, and C-24. Tables C-23 and C-24 give recoverles of surrogates that were added to the samples after field sampling took place. The recoveries of the field spikes provide a measure of the expected efficiency of analyte recovery throughout both field sampling and laboratory analysis; the recoveries of the surrogates reflect the efficiency of recovery as influenced by laboratory operations alone. Finally, Table C-24 presents recovery data on other compounds that were added to the water samples as spikes.

SW-846 gives the following as acceptable limits for the surrogates:

2-Fluorophenol	21-100%
Phenol-d _a	10-94%
Nitrobenzene-d _a	35-114%
2-Fluorobiphenyl	43-116%
2,4,6-Tribromophenol	10-123%
p-Terphenyl	33-141%

Even though the specifications tolerate large deviations from 100% recovery, the data in Tables C-22 and C-23 show recoveries that still are very poor. The first two surrogates, with the lowest chromatographic retention times, were sometimes not even observed in sample analysis; their absence may be attributed to loss by evaporation during the removal of toluene processing solvent by evaporation. Moreover, traces of unremoved toluene had retention times not very different from these surrogates and cause interference in assessing recovery accurately. The very high recoveries in some instances are attributed to reaction of some unknown sample component with the column, which effectively destroyed the usefulness of the column.

The recovery data of the spiking compounds in water (Table C-24) were far more satisfactory. It is not known why the recoveries of compounds in the group referred to a spiking compounds differed so markedly from those termed surrogates when both were added and determined simultaneously.

C.3.5.3 Blanks

The blank filters and blank XAD from the field (components of blank trains or field and trip blanks) were all extracted with toluene. The analyses showed the contamination already attributed to this solvent during the discussion of sample analysis. The list below reveals the range of levels of individual contaminants:

Phenol	0-13 µg
Benzolc acid	277-6680 µg
Benzoic acid	23-1340 µg
Naphthalene	0-4 µg
Phthalate ester	1-9 μg (total of all phthalate compounds)

C.3.6 Dioxins and Furans

Dioxins and furans were determined using SW-846 Method 8290. Each sample was fortified with PCDD/PCDF isotope dilution standards (14 isotopically-labeled compounds) and was extracted with toluene in a Soxhlet extractor. The extracts were concentrated and exchanged into hexane. One isotopically labeled clean-up surrogate was added to the laboratory blanks at this point (0.8 ng/sample). For actual samples, 2 ng of the surrogate was added to the XAD-2 resin before the resin was sent to the field; 0.8 ng of the surrogate was added to filters being sent to the field. The extract was partitioned against 5% NaCl, 20% aqueous KOH, 5% NaCl, several portions of H₂SO₄, and 5% NaCl. The extract was concentrated and eluted through an alumina column with further clean up on an AX-21 carbon/Cellte 545 column. The toluene eluant fraction was spiked with isotopically labeled internal standard, concentrated, and exchanged into nonane. The final sample extracts were analyzed by high-resolution GC/MS.

A five-point calibration curve was generated, having the lowest concentration corresponding to 0.02 ng of TCDD or TCDF in 20 µL of solution; therefore the nominal detection limit for TCDD and TCDF in MM5 samples was 0.02 ng. Similarly, the nominal detection limits for PECDD, PECDF, HXCDD, HXCDF, HPCDD, and HPCDF were 0.10 ng and for OCDD and OCDF 0.20 ng. Concentrations less than these values were determined by extrapolating the calibration curve.

The linearity of the instrument response was verified by the successful initial calibration of the instrument. The linear range of the analyte injected into the gas chromatograph is 0.001 to 0.2 ng/ μ L of TCDD and TCDF; 0.005 to 1.0 ng/ μ L of PECDD, PECDF, HXCDD, HXCDF, HPCDD, and HPCDF; and 0.01 to 2.0 ng/ μ L of OCDD and OCDF. The data indicate that the instrument retained its linearity of response throughout the analyses.

The surrogate 2,3,7,8-tetrachlorodibenzodioxin with chlorine-97 labels was used as a spiking compound in both filters and XAD resin. The amount of the spiking compound was 0.8 ng for filters and 2.0 ng for XAD cartridges (these amounts are to be contrasted to the lowest reporting level of 0.01 ng). Recoveries were as follows:

XAD	80%
XAD	66%
filter	80, 89%
XAD	81, 106%
füter	77%
XAD	74%
filter	74%
XAD	155%
flüter	82%
XAD	70%
	XAD filter XAD filter XAD filter XAD filter

Table	C-22.	Recove	ries of	Surrogates
	fro	m MM5	Samp	les

		Recovery, % of Surrogate ^b								
Sample*		1	2	3	4	5	6			
Unit 8 Inlet	- F	46	22	72	83	76	84			
	- B	61	60	95	90	91	114			
Unit 8 Outlet	- F	54	58	78	87	76	88			
	- B	49	58	74	73	53	89			
Unit 7 Outlet	- F	0	0	55	451	446	148			
	- B	0	0	56	105	117	36			
Stack	- F	0	0	38	467	394	68			
	- B	0	0	42	69	89	74			

^{*}F = front (filter); B = back (XAD)

bSurrogate 1 = 2-Phorophenol
2 = Phenol-d₅
3 = Nitrobenzene-d₅
4 = 2-Phorophenol
5 = 2,4,6-Tribromophenol
6 = p-Terphenyl-d₁₄

Table C-23. Recoveries of Surrogates from Water Samples

	Recovery, % of Surrogate*							
Sample	1	2	3	4	5	6		
Boiler makeup	11	63	88	80	17	94		
Condenser inlet	38	42	44	44	42	48		
Sluice	81	83	76	79	77	86		
ARP slurry	34	41	41	41	32	51		

'Surrogate 1 = 2-Fluorophenol

 $2 = Phenol-\hat{d}_s$

3 = Nitrobenzene-d₃

4 = 2-Fluorobiphenyl

5 = 2,4,6-Tribromophenol 6 = p-Terphenyl-d₁₄

Table C-24 Recovery of Spikes of Semivolatile Compounds in Water Samples

		Boller Makeup		Condenser Outlet		ARP Liquid		Boiler Weste water	
Compounds	Concn., #g/L	MS	MSD	MS	MSD	MS	MSD	MS	MSD
Phenot	400	69	76	73.5	66.8	77.4	66.7	68.3	78.3
2-Chlorophenol	400	72	79.5	75.5	69.8	77.9	67.8	66.3	78
1,4-Dictilorobenzene	200	47.7	62,5	48	48.7	58.4	44.3	41.6	52
N-Nitroso-di-n-Propylamine	200	82	80.5	87	82.5	72	76.4	67.5	71.5
1,2,4-Trichlorobenzene	200	50.5	62.5	57	58	61.9	47.7	44.4	55
4-Chloro-3-methylphenol	400	74.8	74.5	86.3	80.8	78.1	67.5	68.3	78.5
Acenaphihene	200	87	89	97.5	96	87.8	79.5	75	86
4-Nitrophenol	400	62.8	61,3	82.5	86.8	85.5	75.5	73	70.3
2,4-Dinkrotokusna	200	86	88	97.5	92	90,2	86.7	82.5	93.5
Pentachlorophenol	400	62.8	73.8	81.8	87.5	76.7	48.7	58	65
Pyrene	200	96	102	106	99.5	89.9	88.7	81	91

APPENDIX D

DATA ON VOLATILE ORGANICS

APPENDIX D

DATA ON VOLATILE ORGANICS

D.: INTRODUCTION

The previous study by SRI of air toxics at Tuscon Electric Power Company's Springerville generating station provided part of the background for rejecting the data on volatiles from Bailly. The first sampling trip to Springerville in June 1993 yielded data somewhat like the data from Bailly presented here. A second sampling trip in February 1994 (five months later than the investigation at Bailly) made use of certain laboratory studies in the interim to identify possible causes of spurious high concentration of the aromatic hydrocarbons (benzene, toluene, and xylenes). The samples of the second trip yielded much lower concentrations and seemed to confirm the conclusion from the interim studies as to the true source of these compounds.

The specific hypothesis tested during the interim studies was that ambient air drawn into the inlet of the sample line introduces contamination. The assumed path of in-leaking air is the annulus between the glass liner and the sheath of the probe, where a tape-wrapped heating wire is used to keep the liner hot. A force tending to promote the air sweep would, of course, be a negative duct pressure, drawing ambient air into the duct in proximity to the inlet of the sampling line. Only recently have probes from the commercial supplier had provisions for blocking the path of the air sweep by a seal.

The findings were as follows:

- Tape similar to that used by the probe manufacturer evolved benzene, toluene, and xylenes when heated in the laboratory under conditions quite independent of those associated with the VOST probe.
- 2) Adjusting a probe supplied by a commercial source permitted the Investigators to raise or lower benzene, toluene, and xylene impurities in the sample stream drawn from the pilot combustor with gas firing. Putling the liner into the probe, to restrict the access of flue gas but improve the access of leakage air to the probe inlet, increased the impurity levels. It also decreased the recovery of a deuterated benzene spike from the combustor flue gas. Extending the probe into the flue gas, on the other hand shifting the relative access to the opposite of that first described decreased the contaminant level and increased the spike recovery.
- 3) Comparative measurements all indicated that negligible concentrations of normal benzene were produced in the combustor but that appropriate levels of a deuterated benzene spike were recovered. These measurements consisted of:

- a) VOST sampling with a probe extension to minimize infiltration of heating tape off-gases, followed by GC/MS analysis:
- b) Carbon-tube sampling as prescribed by NIOSH, followed by GC/FID analysis; and
- Tediar-bag sampling, followed by analysis with a portable GC equipped with an argon-ionization detector.

With the VOST probe modified to minimize contamination from the tape source, we then returned to Springerville in February 1994 and found previous erratic, sometimes high concentrations of votatile hydrocarbons no longer present. The carbon-tube sampling and the portable GC analysis yielded results similar to those obtained with the modified VOST probe.

It cannot be said positively that the high concentrations of volatiles at Bailly were spurious because of the heated tape as the source. Nevertheless, the probability seems high that this is so.

D.2 DATA FROM BAILLY

The data on volatile organics from Bailly (all collected on September 6) are presented in Table D-1, D-2, D-3, and D-4. These data are believed to be spurious for the reason discussed above and, thus, do not appear in the body of the report. Moreover, no excerpt of the data can be said to be credible. In other words, the entire compilation of data have to be disregarded. It is appropriate, however, to comment upon some aspects of the data.

Each table gives the quantities of the individual compounds in nanograms observed in two of the three components of the Volatile Organics Sampling Train (VOST) (described in SW-846, (1)). The first of these sampling element is designated as T, which stands for a sampling tube filled with Tenax resin. The second element is designated as TC, which represents a sampling tube containing Tenax in the first half and charcoal in the second half. The third element is not listed in these tables; it was a water condensate, which did not usually contain a significant amount of any of the analytes.

In each table there are data for three sampling runs, which differed in duration and thus in gas volume sampled. The nominal values of the sample volumes were 20, 10, and 5 L, collected in runs of 40, 20, and 10 min duration.

There were numerous analytes identified. Some were definitely not components of the gas streams sampled, however, because they also occurred in blanks. Three of the components for which this NOT true are benzene, toluene, and xylenes. Benzene can be singled out for particular remarks. Approximate concentrations of benzene at the three locations, calculated for approximate sample volumes of 20, 10, and 5 L, respectively, are as follows:

Location	Concn, μg/Nm ³
Inlet, Unit 8 ESP	3870, - , 2820
Outlet, Unit 8 ESP	2795, 2070, 2420
Outlet, Unit 7 ESP	129, 102, 160
Stack	514, 252, 192

There is remarkable difference in calculated benzene concentrations between Unit 8 and Unit 7 or the stack. There is no justification, however, for believing that the difference reflects a real difference in gas composition. For reasons described in the preceding paragraphs, difference is attributed to unidentified differences in the sampling procedure, sampling apparatus, or environment.

Table 0-1 Apparent Quantities of Volatile Organics Collected at the Inlet of the Unit 8 ESP (Data in ng)

(Dea in rig)							
	Run 1 (ca. 29 L)	Run 2	(ca. 10 L)	Rum 3 (ca. 5 L)		
	T 5000	TC 5001	T 5002	TC 5003	T 5004	TC 5005	
Chloromethane	3430				832		
Vlnyi chloride	31.3			18.5			
Bromomethane		50.7					
Chloroethane					į		
1,1-Dichloroethene							
Acetone	207	387		150	101	24.6	
Methyl fodide	24.1	158		31.5	:	<u>'</u>	
Carbon disulfide	24.9	48.3		:	470	45	
Methylene chloride		8.12		15.8	i		
trans-1,2-Dichloroethene				!			
1,1-Dichtoroethane	1				:		
2-Butanone					i	ļ	
Caloroform				· ·			
1,1,1-Trichlorethane							
Carbon tetrachloride	<u></u>						
Benzene	7940	79.3		83.2	1410	19.3	
1,2-Dichtorethane	176				İ		
Trichloroethene				!			
1,2-Dichloropropane			į				
Bromodichioromethane			ļ !				
cis-1,3-Dichloropropene							
2-Heranoos				•		<u> </u>	
Tolucae	38.9	11.1		11.3	19.8	9.6	
trans-1,3-Dichloropropene				1			
1,1,2-Trichloroethene					1	1	
Tetrachioroethene		133		83.9			
4-Methyl-2-pentanone	10.6		l				
Dibromochloromethane							
Chiorobenzene							
Ethylbenzene _	 	5.07		20.8		17.0	
m- & p-xylene	19.6	5,35		16.5		13.5	
o-xylene					1		
Styrene	•				1	[
Bromoform						<u> </u>	
1,1,2,2-Tetrschloroethane	ļ					l	

Table D-2 Apparent Quantities of Volatile Organics Collected at the Outlet of the Unit 8 ESP (Data in ng)

	Run 1 (ca. 20 L)	Run 2 (ca. 10 L)		Ren 3 (ca. 5 L)	
	T 5032	TC 5033	T 5084	TC 5085	T 5036	TC 5037
Chloromethane	2340		1120		1160	
Vinyl chloride	8	9.96	5.16		5.64	
Bromomethane	[36			11.9	73.1
Chloroethane	}					
1,1-Dichloroethene						
Acetone	140	144	144		104	71.6
Methyl iodide						
Carbon disulfide		23.9			24.8	
Methylene chloride					1680	30000
trans-1,2-Dichlorcethene						
1,1-Dichloroethane						
2-Butanone					•	
Chloroform	J]		ļ	50.5
1,1,1-Trichlorethans	i l					
Carbon tetrachloride						
Benzene	5590	699	2070		1210	88.9
1,2-Dichlorethane	130		49.5		9.18	
Trichloroethene						
1,2-Dichloropropane						
Bromodichtoromethane			<u> </u>			<u> </u>
cis-1,3-Dichloropropene						
2-Hexanone						
Toluene	44.2	10.5	38		29.6	11
trans-1,3-Dichloropropene	▮ .				H	
1,1,2-Trichioroethene				_		
Tetrachloroethene	╽ ,		<u> </u>			
4-Methyl-2-pentanone						
Dibromochloromethane	1					ļ
Chlorobenzene				:		
Ethylbenzene	28.9	24.8	38.8		13.5	32.2
on- & p-xylene	23.5	19.7	31.5		11	25.6
o-xylene						
Styrene			ľ			
Bromoform						
1,1,2,2-Tetrachloroethane						

Table D-3 Apparent Quantities of Volatile Organics Collected at the Outlet of the Unit 7 ESP (Data in ng)

	(Data in 19)					
		ca. 20 L)	Run 2 (ca. 10 L)		Run 3 (ca. 5 L)	
	T 5016	TC 5017	T 5018	TC 5019	T 5020	TC 5021
Chloromethane	1990				313000	
Vinyl chloride			•		291	
Bromomethane	4	44.4	-	39	1240	37.6
Chloroethane	1		1		ŀ	
1,1-Dichloroethene						
Acetone	123	195	84.1	122	7490	
Methyl iodide	4	100		7	•	
Carbon disulfide	27.8	36.4	25.9	:	1800	
Methylene chloride		2 6.8		17.4	P	
trans-1,2-Dichiornothene			<u></u> !			
1,1-Dichloroethane			1			·
2-Butanone	1					
Chioroform	,					
1,1,1-Trichtorethane	19.6		'			
Carbon tetrachloride						
Benzene	257	76.9	102	58.9	79.6	27.6
1,2-Dichlorethane		•	į			,
Trichloroethene						
1,2-Dichloropropene		j	ľ			!
Bromodichioromethane		ļ				
cis-1,3-Dichtoropropens						
2-Hexanone	l .					
Toluene	45.2	10.7	36.8	8.69	24.6	ļ
trans-1,3-Dichloropropens	<u> </u>	İ				1
1,1,2-Trichloroethene	Į				1	
Tetrachloroethene		30.8		45		1280
4-Methyl-2-pentanone						
Dibromochloromethane	1				ŀ	
Chlorobenzena	<u> </u>					
Ethylbenzene	22.7			22.3	6.93	
m- & p-xylone	18.5	29.5	1	17.7	5.63	
O-xylene		1	<u>ו</u>]		·
Styrene				ŀ	H	
Bromoform		1				
1,1,2,2-Tetrachloroethane				ļ		1
AND THE PROPERTY OF THE PARTY O	<u></u>	<u> </u>	<u> </u>		<u> </u>	

Table D-4 Apparent Quantities of Volatile Organics Collected at the Stack (Data in ng)

ļ 		\Denta A	`**			
	Run I (ca. 20 L)	Rus 2 (ca. 10 L)		Rom 3 (ca. 5 L)	
	T 5048	TC 5049	T 5050	TC 5051	T 5052	TC 5053
Chloromethane			22.5		22.3	(
Vinyl chloride	;					
Bromomethene	1	19		38.6] :	ĺ
Chloroethane	28				70.1	
1,1-Dichlaroethene			_	<u> </u>		
Acetone	302	22	189	13.4	145	<u> </u>
Methyl iodide						ŀ
Carbon disulfide	26.9		22.3		47.2	
Methylene chloride	70300	30000		48.8	66.8	
trans-1,2-Dichteroethene						
1,1-Dichtoroethane						
2-Butanone						
Chloroform	27.3					
1,1,1-Trichtarethane	59.7	•				
Carbon tetrachloride	14.4					
Benzene	257	59.2	126	55.8	95.9	
1,2-Dichlorethane	28.6					
Trichlornethene	145					
1,2-Dichioropropane	82.9					
Bromodichloromethane	!					
cis-1,3-Dichloropropene						
2-Hexanone	_ 1					
Toluene	196	14.6	58.8	13.8	58.3	
trans-1,3-Dichloropropene					1	
1,1,2-Trichloroethene			 			<u> </u>
Tetrachiorocthene	482		41		31.2	
4-Methyl-2-pentanone	6.31					
Dibromochloromethane]			
Chiorobenzene	127		19,7			
Ethylbenzene	111	35.5	22,8			
m- & p-xylene	54.8	28.2	32.5	31.5	12.9	
o-xytene	97		12.3		10.4	
Styrene]
Bromoform						1
1,1,2,2-Tetrachioroethane						1

APPENDIX E

BAILLY MASS BALANCES EXAMPLE CALCULATION

APPENDIX E BAILLY MASS BALANCES EXAMPLE CALCULATION

This example uses the testing performed on September 3, 1993, as the basis for the example calculation. First the mass flow of the input and output streams are calculated, then the mass balance for a single element, cobalt in this case, is calculated. Table E-1 displays the gross flows for the day, while Table E-2 shows the cobalt balance for this day. Table E-3 presents the measured concentrations for cobalt in the input and output streams.

The philosophy used to make mass balances in this report is to assume that there exists a single flow for each stream that represents a pseudo-steady state operation of the power plant. Because of storage capacities in the plant, there can be errors in using measured flows without knowing the rate of change of various levels in storage tanks, bunkers, and other equipment. Gross material balances, single phase material balances, and elemental material balances are all used in calculating the plant flow conditions. Where the flows are consistent, measured flows are used in the material balances. If obvious errors exist, other measured flows are used in the material balances. In a few cases, intelligent guesses of flow rates are made, such as the sluice water flow.

E.1 Gross Material Balances

E.1.1 Unit 8 Boiler

The Unit 8 boiler balance includes coal, makeup water, and combustion air as input streams and flue gas and bottom ash as output streams.

E.1.1.1 Coal Flow Rate

The coal flow rate is taken from the plant data acquisition system. Table 3-3 presents the data taken from the plant, and the coal feed rate is listed on Sheet 6, with units of thousand pounds per hour. The average for the test period is 308.5 klb/hr.

E.1.1.2 Combustion Air

The combustion air calculation is performed on the coal flow rate above with the furnace exit oxygen as reported in Table 4-5 as 5.4% (average of 5.5 and 5.3). That calculation can be performed using Combustion Engineering's <u>Steam</u>, or any combustion handbook, and will not be repeated here. The combustion air result is 430 kg/s.

Table E-1
Baily Mass Balance for Total Flows
Data for September 3, 1993

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	kg/s	kg/s	kg/s	kg/s
UNIT 8 BC	HLER				
ln	Coal	38.9			38.9
	Combustion Air	1	1	430	430
i	Makeup Water		4.16	ł	4.16
2	Flue Gas	1,46		438	439
	Bottom Ash	2.59]		2.59
Closure, %					93.4
UNIT 8 ES	P				
<u>ln</u>	Flue Gas	1.46		438	439
Out	ESP Hopper Ash	1.44			1.44
	Fitte Gas to AFGD	0.0173		499	499
Closure, %					114
ÇONDENS		<u> </u>		<u> </u>	
ln l	Inlet Water	l	11600	T	11600
Out	Outlet Water		11600		11600
Closure, %			111111		100
	ASH SLUICE	<u> </u>			-
ln	Bottom Ash	2,59	<u> </u>	T	2.59
·	Skice Return		25.9		25.9
Out	Bottom Ash Sluice	2.59	25,9		28.4
Closure, %					100
	VERALL BALANCE		' - · · · ·		<u> </u>
ln .	Coal	38.9	Į.	I	38.9
	Combustion Air		ļ.	430	430
	Makeup Water	}	4.16		4.16
	Stuice Return		25.9		25.9
Out	Bottom Ash Sluice	2.59	25.9		28.4
	ESP Hopper Ash	1.44		ļ	1,44
	Flue Gas to AFGD	0.0173		499	499
Closure, %			 	1	106
FLUE GAS			<u> </u>	·	100
in	Unit 7 Flue Gas	0.0145	1	281	281
***	Unit 8 Flue Gas	0.0173	4	499	499
Out	Flue Gas to AFGD	0.0318	 	780	780
Closure, %		3.00.10	 		100.0
	AFGO SYSTEM BAL	ANCE		1	1 700.0
ln in	Flue Gas	0.0918	т	780	780
	Limestone	6.61			6.81
	Service Water	1 5.51	84.7		84.7
	Compressed Air	1	04.7	8.69	8.69
Öut	Stack Flue Gas	0.000	 	806	806
Out		0.0207		00,00	9.11
	Gypsum Mostawates	9.11			1
01 21	Wastewater	ļ	9.90	 	9.90
Closure, %	<u> </u>	<u>L</u> .	<u> </u>		93.7

Table E-2 Bailly Mass Balance for Cobalt Data for September 3, 1993

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
UNIT 8 BO	DILER	•			
" In	Coal	91.3			91.3
	Combustion Air				
	Makeup Water		0.00416	J	0.00416
Out	Flue Gas	46.8		0.0280	46.8
	Bottom Ash	63.1			63.1
Average of	Daily Closures, %				120
Closure of	Average Flows, %				120
UNIT 8 ES	SP .	· · · -	•		
In	Flue Gas	46.8		0.0280	46.8
Öut	ESP Hopper Ash	58.8		ĺ	58.8
	Flue Gas to AFGD	0.0315		0.0252	0.0567
Average of	Daily Closures, %				126
	Average Flows, %				126
CONDEN			<u>-</u>	_ .	•
1n	Inlet Water		11.6		11.6
Qut	Outlet Water		11.6		11.6
Average of	f Daily Closures, %				100
Closure of	Average Flows, %				100
BOTTOM	ASH SLUICE		···		
ln	Bottom Ash	63.1			63.1
	Sluice Return	·	0.0259		0.0259
Out	Bottom Ash Sluice	63.1	0.0259		63.1
Average of	Dally Closures, %				100
	Average Flows, %			- "	100
	VERALL BALANCE				
ln	Coal	91.3			91.3
	Combustion Air		1		
[Makeup Water		0.00416	i	0.00416
	Sluice Return		0.0259		0.0259
Out	Bottom Ash Sluice	63.1	0.0259		63.1
	ESP Hopper Ash	58.8			58.8
	Flue Gas to AFGD	0.0315		0.0252	0.0567
Average of Daily Closures, %					
	Average Flows, %				134 134

Italics indicate numbers derived from non-detectable concentrations.

Table E-2 (Continued)
Bailly Mass Balance for Cobalt
Data for September 3, 1993

	Process	Solid,	Liquid,	Gas,	Total,
	Stream	mg/s	mg/s	mg/s	mg/s
FLUE GA	AS MIXING				
in in	Unit 7 Flue Gas	0.459	1	0.0242	0.484
	Unit 8 Flue Gas	0.0315	<u> </u>	0.0252	0.0567
Out	Flue Gas to AFGD	0.491		0.0494	0.540
Average o	of Daily Closures, %				100
	f Average Flows, %				100
OVERAL	L AFGD SYSTEM BAI	LANCE			
. In	Flue Gas	0.491		0.0494	0.540
ļ	Limestone	2.65	'		2.65
Ì	Service Water	-	0.0847	į	0.0847
	Compressed Air				
Out	Stack Flue Gas	0.0517		0.0235	0.0752
!	Gypsum	1.37		1	1.37
	Wastewater		0.650	l.	0.650
Average o	63.8				
Closure o	f Average Flows, %				63.8

Italics indicate numbers derived from non-detectable concentrations.

Table E-3
Bailly Cobalt Concentrations for 9/3/93

	Process	Solid,	Liquid,	Part. in Gas,	Vapor in Gas
]	Stream	ug/g	ug/ml	ug/Nm3	ug/Nm3
•		""		@ 3% O2	@ 3% 02
UNIT 8 BO	DILER	<u> </u>			
In	Coal	2.35 (6-3)		<u> </u>	T
1	Combustion Air	, , , , , , , , , , , , , , , , , , ,	i -		!
	Makeup Water		< 0.002 (6-14)		
Out	Flue Gas		, , ,	167 (6-21)	<0.20 (6-21)
	Bottom Ash	24.4 (6-6)			<u> </u>
UNIT 8 ES	SP				
ln	Flue Gas			167 (6-21)	<0.20 (6-21)
Out	ESP Hopper Ash	40.8 (6-7)			,
	Flue Gas to AFGD			< 0.20 (6-26)	0.08 (6-26)
CONDEN			·	·-··-	. , ,
In	Inlet Water		< 0.002 (6-12)		
Out	Outlet Water		< 0.002 (6-13)		
воттом	ASH SLUICE				
In	Bottom Ash	24.4 (6-6)	L		
!	Sluice Return		<0.002 (6-15)		
Out	Bottom Ash Sluice	24.4 (6-6)	< 0.002 (6-16)		
BOILER C	VERALL BALANCE				
	Coal	2.35 (6-3)			
	Combustion Air				
]	Makeup Water	_	<0.002 (6-14)		·
	Sluice Return		<0.002 (6-15)	•	
Out	Bottom Ash Sluice	24.4 (6-6)	< 0.002 (6-16)		
1	ESP Hopper Ash	40.8 (6-7)	L		
	Flue Gas to AFGD			<0.20 (6-26)	0.08 (6-26)
FLUE GAS					
la la	Unit 7 Flue Gas			2.66 (6-31)	0.14 (6-31)
	Unit 8 Flue Gas			<0.20 (6-26)	0.08 (6-26)
	Flue Gas to AFGD				
OVERALL	AFGD SYSTEM BA	LANCE			
<u>In</u>	Flue Gas				
[Limestone	0.390 (6-44)	<u></u> _		
	Service Water		<0.002 (6-48)		
	Compressed Air		:		
Out	Stack Flue Gas			0.11 (6-57)	<0.10 (6-57)
[Gypsum	<0.30 (6-45)			
	Wastewater		0.0657 (6-51)		

E.1.1.3 Makeup Water

The makeup water flow rate is taken from the plant data acquisition system, as presented in Table 3-3, Sheet 6. The rate is given as gallons per minute, and the average for the testing period was 65.9 gpm.

65.9 gal	1 min	8.33 lb	0.454 kg	4 4
min	60 sec	1 gal	1 lb	= 4.15 kg/s

E.1.1.4 Flue Gas

The flue gas was measured in the Method 5-type trains, and is summarized in Tables 4-4 through 4-7. The total flow is reported in Table 4-4 as 594 kdscfm (average of 592 and 596). The oxygen concentration is reported in Table 4-5 as 5.4% (average of 5.5 and 5.3). The water content of the flue gas was measured as 10.25% (average of 10.0 and 10.5) from Table 4-6.

594,000 dscf @ 3% O ₂	(20.9-3) dscf @ 5.4 %	1 min	100 scf	1 Nm³
min	(20.9-5.4) dscf @ 3%	60 sec	(100-10.25) dscf	35.31 scf

1000 1	1 g mole	(460+32)R Std. 1	29.19 g	1 kg		
1 Nm³	22.4 Std. 1	(460+68)R Nor. 1	1 g mole	1000 g	=	438 kg/s

The molecular weight was calculated from the composition of the flue gas using O_2 and CO_2 from Tables 4-5, and the H₂O from Table 4-6.

The particulate flow rate is calculated from the measured flue gas flow rate, 280 Nm³/sec (average of 279 and 281), and the measured fly ash loading. Table 4-7 lists the particulate loading for the Unit 8 ESP inlet on 9/3/93 as 4.506 g/Nm³ (average of 4.556 and 4.455).

E.1.1.5 Bottom Ash

The bottom ash flow rate is calculated by difference from the flow rate of particulates into the ESP and the ash entering with the coal. The coal analysis is shown in Table 6-1, and the ash content is 10.4%. The fly ash is assumed to be completely ash, although the hopper ash does contain a few percent of carbon.

E.1.1.6 Closure

The closure is defined as output divided by input expressed as a percentage. The sum of inputs, coal plus air plus makeup water, equals 473.1 kg/s. The sum of the outputs, flue gas plus particulates plus bottom ash, is 442.0 kg/s.

442.0 kg/s output	100 percent	
473.1 kg/s input	1.0 fractional	= 93.4 percent

E.1.2 Unit 8 ESP

The Unit 8 ESP balance consists of flue gas into the ESP as the input and flue gas out of the ESP and ESP hopper ash as the output streams.

E.1.2.1 Flue Gas In

The flue gas in is the same as the flue gas out of the boiler system, 438 kg/s flue gas with 1.46 kg/s fly ash.

E.1.2.2 Flue Gas Out

The flue gas was measured in the Method 5-type trains, and is summarized in Tables 4-4 through 4-7. The total flow is reported in Table 4-4 as 668 kdscfm (average of 655 and 681). The oxygen concentration is presented in Table 4-5 as 5.7%. The water content of the flue gas was measured as 9.35% (average of 9.3 and 9.4) from Table 4-6.

668,000 dscf @ 3% O ₂	(20.9-3) dscf @ 5.7%	1 min	100 scf	1 Nm³
min	(20.9-5.7) dscf @ 3%	60 sec	(100-9.35) dscf	35.31 scf

The molecular weight was calculated from the composition of the flue gas using O_2 and CO_2 from Tables 4-5, and the H_2O from Table 4-6.

The particulate flow rate is calculated from the measured flue gas flow rate, 313 Nm³/sec (average of 309 and 321), and the measured fly ash loading. Table 4-7 lists the particulate loading for the Unit 8 ESP outlet on 9/3/93 as 0.0467 g/Nm³ (average of 0.0145 and 0.0789).

E.1.2.3 ESP Hopper Ash

The ESP hopper ash flow rate is calculated by difference from the flow rate of particulates into the ESP and the fly ash leaving the ESP.

$$\frac{1.46 \text{ kg fly ash}}{\text{sec}} - \frac{0.0173 \text{ kg fly ash}}{\text{sec}} = 1.44 \text{ kg/s bottom ash}$$

E.1.2.4 Closure

The closure is defined as output divided by input expressed as a percentage. The sum of inputs, flue gas plus particulates, equals 439.5 kg/s. The sum of the outputs, flue gas plus particulates plus ESP hopper ash, is 490.3 kg/s.

500.5 kg/s output	100 percent	
439.5 kg/s input	1.0 fractional	= 114 percent

E.1.3 Unit 8 Condenser

The condensers are assumed to be not leaking, and the input flow equals the output flow.

E.1.3.1 Condenser Inlet

The cooling water flow through the condensers is calculated by assuming that the condensate flow on the steam side has to transfer the latent heat of vaporization from the steam to the cooling water. The cooling water temperature change can be found from the Unit 8 plant data. The inlet cooling water temperature is recorded as 72.9°F and the outlet cooling water temperature was recorded as 95.6°F, for a delta of 22.7°F. The condensate flow was recorded as 2097.8 klb/hr.

2,097,000 lb Cd	1 hr	1000 Btu Cd		1 lb •F	0.454 CW	N W La
hr	3600 s	1 lb Cd	22.7 °F	1 Btu CW	1 lb CW	≈ 11,650 kg/s

E.1.3.2 Condenser Outlet

The condenser outlet is assumed to be equal to the inlet flow of 11,650 kg/s.

E.1.3.3 Closure

Since the inlet equals the outlet, the closure is 100% by definition.

B.1.4 Bottom Ash Sluice

E.1.4.1 Bottom Ash

The bottom ash flow rate is calculated above as 2.59 kg/s.

E.1.4.2 Sluice Return

The sluice return is the water that is used to carry the bottom ash to the pond. It is assumed to be 10 times the mass of the bottom ash, from collected samples and observations of the process. Therefore, the sluice return is 25.9 kg/s.

E.1.4.3 Bottom Ash Sluice

The bottom ash sluice is the two phase flow that is sent to the pond. It is assumed that the solids from the bottom ash and the water do not appreciably affect each other. Therefore, the bottom ash sluice is assumed to be 28.49 kg/s (2.59 kg/s solids plus 25.9 kg/s water).

E.1.4.4 Closure

The closure, by definition, is 100%.

E.1.5 Boiler Overall Balance

E.1.5.1 Balance

The boiler balance is taken as the sum of the inputs: coal, air, makeup water, and sluice return. The inputs equal 498.96 kg/s. The outputs, bottom ash sluice, ESP hopper ash, and flue gas, equals 528.93 kg/s.

E.1.5.2 Closure

528.93 kg/s output	100 percent	
498.96 kg/s input	1.0 fractional	= 106 percent

E.1.6 Flue Gas Mixing

E.1.6.1 Unit 7 Flue Gas

The flue gas was measured in the Method 5-type trains, and is summarized in Tables 4-4 through 4-7. The total flow is reported in Table 4-4 as 366 kdscfm. The oxygen concentration is presented in Table 4-5 as 6.2%. The water content of the flue gas was measured as 8.8% (average of 8.2 and 9.4) from Table 4-6.

366,000 dscf @ 3% O ₂	(20.9-3) dscf @ 6.2 %	1 min	100 scf	1 Nm³
min	(20.9-6.2) dscf @ 3%	60 sec	(100-8.8) dscf	35.31 scf

The molecular weight was calculated from the composition of the flue gas using O_2 and CO_2 from Tables 4-5, and the H_2O from Table 4-6.

The particulate flow rate is calculated from the measured flue gas flow rate and the measured fly ash loading. Table 4-7 lists the particulate loading for the Unit 8 ESP outlet on 9/3/93 as 0.0689 g/Nm³ (average of 0.0698 and 0.0679).

E.1.6.2 Unit 8 Flue Gas

The Unit 8 ESP outlet flue gas flow rates are calculated above: 499 kg/s of flue gas carrying 0.0173 kg/s of fly ash.

E.1.6.3 Flue Gas to AFGD

The flue gas to the AFGD is assumed to be the algebraic sum of the two inlet streams. The sum is: 780 kg/s of flue gas carrying 0.0318 kg/s fly ash.

E.1.6.4 Closure

The closure is 100%, by definition.

E.1.7 Overall AFGD Balance

E.1.7.1 Flue Gas Input

The flue gas input calculated above is 780 kg/s flue gas carrying 0.0318 kg/s fly ash.

E.1.7.2 Limestone

The limestone is calculated from a calcium balance around the AFGD. The calcium content of the gypsum exiting the AFGD is 28.4% as reported in Table 6-45. The calcium content of the limestone is 38.0% as reported in Table 6-44. The gypsum flow rate of 9.08 kg/s is calculated in a following section, in E.1.7.6.

9.08 kg gypsum	28.4 kg Ca	100 kg limestone	
seç	100 kg gypsum	38.0 kg Ca	= 6.79 kg/s limestone

E.1.7.3 Service Water

The service water used in the AFGD system is taken from the plant data. Table 3-4, Sheet 6, lists total water to facility as 1350 gpm.

1350 gal	1 min	8.33 lb	0.454 kg	
nin	60 sec	1 gal	1 lb	= 85.09 kg/s

E.1.7.4 Compressed Air

The compressed air is taken from the AFGD data in Table 3-4. Sheet 6 lists air to FAS and air to ARS as 7268 scfm and 7997 scfm, respectively.

15,265 dscf	1 min	1 Nm³
min	60 sec	35.31 scf

1000 1	1 g mole	(460+32)R Std. 1	28.83 g	1 kg		
1 Nm³	22.4 Std. I	(460+68)R Nor. I	1 g mole	1000 g	=	8.64 kg/s

E.1.7.5 Stack Flue Gas

The flue gas was measured in the Method 5-type trains, and is summarized in Tables 4-4 through 4-7. The total flow is reported in Table 4-4 as 996 kdscfm average of 1026 and 965). The oxygen concentration is presented in Table 4-5 as 6.3%. The water content of the flue gas was measured as 15.55% (average of 15.1 and 16.0) from Table 4-6.

996,000 dscf @ 3% O ₂	(20.9-3) dscf @ 6.3 %	1 min	100 scf	1 Nm³
min	(20.9-6.3) dscf @ 3%	60 sec	(100-15.55) dscf	35.31 scf

The molecular weight was calculated from the composition of the flue gas using O_2 and CO_2 from Tables 4-5, and the H_2O from Table 4-6.

The particulate flow rate is calculated from the measured flue gas flow rate and the measured fly ash loading. Table 4-7 lists the particulate loading for the Bailly stack on 9/3/93 as 0.0270 g/Nm³.

E.1.7.6 Gypsum

The gypsum exiting the AFGD system is calculated from a sulfur balance around the system. The SO_2 inlet concentration is taken from Table 3-4, Sheet 2, as 2184 ppm (assumed to be dry). The exit SO_2 is also taken from Table 3-4, Sheet 3, as 167 ppm dry. The sulfur flow rate into the scrubber is calculated below. Unit 7 supplies 366 kdscfm at 6.2% O_2 and Unit 8 supplies 668 kdscfm at 5.7% O_2 . The sum is 1034 kdscfm at 5.88% O_2 .

1,034,000 dscf @ 3% O ₂	(20.9-3) dscf @ 6.3 %	1 min	100 descf	2184 scf SO ₂	1 Nm³
min	(20.9-5.88) dscf @ 3%	60 sec	(100-9.15) scf	106 scf	35.31 scf

The sulfur flow rate out of the scrubber is calculated below. The stack flow is 1026 kdscfm at 6.3% O₂.

1,034,000 dscf @ 3% O₂	(20.9-3) dscf @ 6.3 %	1 min	100 dscf	167 scf SO ₂	1 Nm³
min	(20.9-6.3) dscf @ 3%	60 sec	(100-15.55) scf	10 ⁶ scf	35.31 scf

The captured SO_2 is 3.72 - 0.315 = 3.41 kg/s SO_2 or 1.71 kg/s of sulfur. Table 6-45 lists the sulfate content of the gypsum as 563000 ppm by weight, or 56.3%. The sulfur in the gypsum is equal to 56.3% * 32/96 = 18.77%. So, to capture the 1.71 kg/s of sulfur in the AFGD, 1.71*100/18.77 = 9.11 kg/s gypsum are required.

E.1.7.7 Wastewater

The wastewater flow is taken from the AFGD data summary. Table 3-4, Sheet 5, lists the average as 91.31 gpm for wastewater plus 65.48 gpm from the thickener underflow.

156.8 gai	1 min	8.33 lb	0.454 kg	
min	60 sec	1 gal	1 lb	= 9.88 kg/s

E.1.7.8 Balance

The sum of the inputs (flue gas, limestone, compressed air, and water) equals 880.6 kg/s. The sum of the outputs (stack flue gas, gypsum, and wastewater) equals 825.6 kg/s.

E.1.7.9 Closure

825.6 kg/s output	100 percent	
880.6 kg/s input	1.0 fractional	= 93.7 percent

E.2 Cobalt Material Balance

The cobalt mass balance is shown in Table E-2 (the same as Table 7-13). Table E-3 contains the measured concentrations of cobalt in the process streams along with references to the Tables where they are presented.

E.2.1_ Solid Phases

The solid concentrations are given in ppm by weight. The coal example is shown below.

38.9 kg coal	2.35 kg Co	10 ⁶ mg Co	
SEC	106 kg coal	1 kg Co	= 91.4 mg/s Co

Solid	Mass Flow, kg/s Table E-1	Conc., µg/g Table E-3	Co Flow, mg/s Table E-2
Coal	38.9	2.35	91.4
Bottom Ash	2.59	24.4	63.2
ESP Hopper Ash	1.44	40.8	58.8
Limestone	6.81	0.390	2.66
Gypsum	9.11	0.15	1.37

E.2.2 Liquid Phases

The liquid concentrations are given in μg per ml. The condenser inlet example is shown below.

11,600 kg Cond In	0.001 μg Co	10 ³ ml	1 mg Co	
sec	1 ml Cond In	1 kg	1000 μg Co	= 11.6 mg/s Co

Liquid	Mass Flow, kg/s Table E-1	Conc., µg/ml Table E-3	Co Flow, mg/s Table E-2
Makeup Water	4.16	0.001	0.0042
Cond Inlet	11600	0.001	11.6
Cond Outlet	11600	0.001	11.6
Sluice Return	25.9	0.001	0.0259
Sluice Water	25.9	0.001	0.0259
AFGD Service H ₂ O	84.7	0.001	0.0847
Wastewater	9.90	0.0657	0.650

E.2.2 Gas Phases

The flue gas concentrations are given in μg per Nm³ at 3% O₂. The flue gas exiting the Unit 8 boiler example is shown below.

Solid Phase in the Flue Gas:

$$\frac{280 \text{ Nm}^3 @ 3\%}{\text{sec}} \frac{167 \mu \text{g Co}}{1 \text{ Nm}^3 @ 3\%} \frac{1 \text{mg Co}}{10^3 \mu \text{g Co}} = 46.8 \text{ mg/s Co}$$

Vapor Phase in the Flue Gas:

$$\frac{280 \text{ Nm}^3 @ 3\%}{\text{sec}} = \frac{0.10 \text{ μg Co}}{1 \text{ Nm}^3 @ 3\%} = \frac{10^3 \text{ μg Co}}{10^3 \text{ μg Co}} = \frac{0.0280 \text{mg/s Co}}{10^3 \text{ μg Co}}$$

Flue Gas Stream	Vol. Flow, Nm ³ at 3% O ₂ Table 4-4	Solid Conc., µg/Nm³ 3% O ₂ Table E-3	Solid Co Flow, mg/s Table E-2
Unit 8 ESP In	280	167	46.8
Unit 8 ESP Out	315	0.10	0.0315
Unit 7 ESP Out	173	2.66	0.460
AFGD In	488		0.4921
Stack	469.5	0.11	0.0516

¹ Calculated from the sum of Unit 7 outlet and Unit 8 outlet.

Flue Gas Stream	Vol. Flow, Nm ³ at 3% O ₂ Table 4-4	Vapor Conc., μg/Nm³ 3% O ₂ Table E-3	Vapor Co Flow, mg/s Table E-2
Unit 8 ESP In	280	0.10	0.0280
Unit 8 ESP Out	315	0.08	0,0252
Unit 7 ESP Out	173	0.14	0.0242
AFGD In	488		0.0494²
Stack	469.5	0.05	0.0235

² Calculated from the sum of Unit 7 outlet and Unit 8 outlet.

APPENDIX F

UNCERTAINTY ANALYSES OF EMISSION FACTORS

APPENDIX F

UNCERTAINTY ANALYSIS OF EMISSION FACTORS

This analysis is based on the theory of error propagation as set forth in the publication "Uncertainty Analysis" by the American Society of Mechanical Engineers (14). This appendix first gives the relevant nomenclature, then the derivation of the pertinent mathematical relationships, and finally an example of the input data and the results for mercury.

Nomenclature

E = emission factor

U_E = uncertainty in emission factor

 β_e = bias component in U_e

 S_e = imprecision component in U_e

 $f_F = degrees of freedom in E$

β_i = bias error in parameter i

S_i = sample standard deviation of parameter i

N_i = number of measurements of parameter i

θ_i = sensitivity of E to a change in parameter i

 $\omega_1 = \text{quotient of S/ N}_1^3$

 ψ_i = product of θ_i and ω_i

t = Student "t" factor, defined by degrees of freedom in E

Derivation

The uncertainty in the calculated value of an emission factor E is given as follows:

$$U_{E} = [\beta_{E}^{2} + (S_{E} t)^{2}]^{t_{F}}$$
 (1)

where β_E is a factor associated with blas in each of the experimental measurements, S_E t is a factor associated with random errors in the measurements (as illustrated by the sample standard deviation), and t is Student's t factor, as defined for the factor E.

Each β_E term is a composite of similar terms for all of the parameters used in computing E. Consider the three parameters discussed in Section 7.3 that are combined for computing E:

C = stack concentration;

V = ratio of flue gas flow rate to coal firing rate;

H = the calorific value of the coal).

The equation for combining these parameters is as follows:

$$E = CV/H \tag{2}$$

Each of the three parameters, in principle, has associated with it a bias β_l . Each of these parameters also has associated with it a term θ_l , which is a measure of the sensitivity of E to a change in the parameter:

$$\theta_i$$
 = partial derivative of E with respect to the parameter in question (3)

The definition of the composite term β_E is then given by the following equation:

$$\beta_{E} = \left[\sum (\beta_{i} | \theta_{i})^{2} \right]^{\frac{1}{2}} \tag{4}$$

Similarly, each S_E term is a composite of corresponding terms involving each parameter;

$$S_{z} = \left[\sum (\psi_{i})^{2} \right]^{k} \tag{5}$$

where ψ_i is the product of the sensitivity factor, θ_i , for each parameter, as defined above, and the term ω_i , as defined under Nomenclature:

$$\phi_i = \theta_i \ \omega_i \tag{6}$$

The final term in Equation 1 that requires comment is Student's t, which is assigned the appropriate value from the conventional tables once the number of degrees of freedom in E is calculated. The number of degrees of freedom $t_{\rm E}$ is obtained from the following equation, which consists of terms already defined and the degree of freedom $t_{\rm E}$ of each parameter:

$$f_{\rm E} = (S_{\rm E})^4 / \Sigma (\omega_i \theta_i)^4 / f_i \tag{7}$$

In this report, the value of t selected is that corresponding the 95% confidence intervals.

Ulustration

The above concepts will now be illustrated in terms of the emission factor E for mercury, for which the relevant data (from the carbon sorption traps) are presented as follows:

	Metal concn, C (μg/Nm³)	Gas rate, V (Nm³/g coat)	Calorific value, H (J/g coal)
Mean value	3.52	8.20 x 10 ⁻³	25,809
Std dev	0.06	0.70 x 10 ⁻⁴	12
β	Variable	2.05 x 10 ⁻⁴	645
N	3	3	3
f	2	2	2
θ	3.18 x 10 ⁷	1.36 x 10 ⁻¹	-4.34 x 10 ⁻¹¹
ω	0,03	4.04 x 10 ⁻⁵	6,93

a) As the first assumption, let there be zero bias in the concentration: For the volume and calorific values, a bias of 2.5% is arbitrarily assumed for each term. Conceivably, assignment of a higher bias to the volume and a lesser bias to the calorific value would be justified, but any such shift would be further arbitrariness.

The values of θ and ω are based on the mathematical definitions previously given and require no further comment.

The Intermediate derived quantities based on the above data are as follows:

$$\beta_E = 3.96 \times 10^8 \ \mu g/J$$

$$S_E = 1.25 \times 10^8 \ \mu g/J$$

$$f_E = 3$$

$$t = 4.303$$

Finally, there are the values of the emission factor and its uncertainty, corresponding the 95% confidence interval. These results are obtained initially, by direction calculation from the equations given here, in the units $\mu g/J$. They are listed below, however, in the more customary units:

E = 1.12 g/10¹² J or 2.60 lb/10¹² Btu
$$U_E = 0.066 \text{ g/}10^{12} \text{ J or 0.16 lb/}10^{12} \text{ Btu}$$

b) As the second assumption, let the bias in concentration be 2.5% (0.088 $\mu g/L$). For this assumption:

$$\beta_E = 4.85 \times 10^8 \,\mu g/J$$

 $S_E \approx 1.25 \times 10^8 \ \mu g/J$ (unchanged) $f_E = 3$ (unchanged) t = 4.303 (unchanged) $E = 1.12 \times 10^8 \ \mu g/J$ (unchanged) $U_E = 0.072 \ g/10^{12} \ J$ or $0.17 \ lb/10^{12} \ Biu$

The assumed 2.5% bias in concentration changes the uncertainty factor ($U_{\rm E}$) by 9% (from 5.9% to 6.4% of the reported emission (E)).

c) As the third assumption, let the bias in concentration be 10% or 25%. The uncertainty U(E) at 10% bias is 11.6%, or at 25% bias it is 25.6% of E. Thus, the larger the bias in concentration at constant values of other uncertainty factors, the more nearly the percentage bias in concentration and the percentage bias in E coincide.

He !

APPENDIX G

SAMPLING DATA SHEETS

CONTENTS

G1	Preliminary Traverses and September 3 Tests
G2	September 4 Tests
G3	September 5 Tests
G4	September 6 Tests
G5	Mercury Sampling
G6	Dilution Train Field Data
G7	Reduced Data: Impactor and Cyclones
G8	Spreadsheet Template for Methods 5 and 17
G9	Spreadsheet Template for Dilution Train

Appendix G1 Preliminary Traverses and September 3 Tests

MizzaL S

METROD 5 FIELD DATA

Plant/Location #7 Out/w
Operator Kirtel
Dale 9-3-93
Test No./Run No
Meter Box ID Autrich 3
Gas Meter Cal Factor 1.89
Orifice (D
Orifice MIR 1 S.A.

 Ist Filter:

Leak Rate, cfm, Pretest _000

Leakrate, cfm, Past-lest _____ SPA

2nd Filter (If used);

Leak Rate, cfm, Pretest _____

Leakrate, cfm, Post-test ____

GAS METER START: et: 50.00

GAS METER END, of <u>6339157</u> END TAKE <u>16:46</u>

Clock	Trave	52	Sample	Vacuum	Stack	PHot	Ortfice	Meter	Тетрега	tures (dea	<u>. [7]</u>			
Time	Poin	ıL	Time	h. Ng	Temp	ው	011	Vol				(mp.	1600	DCN
├ —	Num	per.			deg F	in 1120	in. 1120	લ	Probe	Filter	Sorta	<u>Outlet</u>	<u>in</u>	luo
12:10	=	-	13 mm		!			511. 002						
0:40	Ā	<u>-</u>	13	3.5	308	1.50 2.00	1.75 2.21	58.97	291	266		72	77	74
		જ	<i>ુ</i> ય	9,0	3091	1.30	1.52	528.3	307	257		51	82	22
		3	36	20	309	.55	164	5337.mp	268	244		55	86	78
1372		4	48	2.0	<i>3n</i> · i	,50	.58	538 727	<i>as</i> o	<i>ટ્રેપ</i> મ		54	82	81
	$\overline{\mathcal{B}}$	لد	13%	30	34≤	Od.	90.	54427	<u>282</u>	au		60	86	83
	<u> </u>	Q	J4 .	20	35	,55	.64.	54A.53	<i>:313</i>	<i>9</i> 54		54	90	83
		3	بر ط3	35	314	.50	.≾8	554.b	<i>3</i> 97	254		57	92	85
	•		Total	Max	AYE.	Ave sept	Avg.	Total	Avg.	Ava.	klox	kinx.	Avg.	ATE.
		ļ	,	1	312	0.848	0.87] !			i	ı	ا د ا	 ~ 1

94

87.1

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Plant Dailly				,	
Sampling Location Intel - Unit #8	<u>^</u>		, Run Ho	<u> </u>	
ter up by WEK / pars commence Multiple Matals	Date .	09/03/93	Run Date		
commence Multiple Metals					
inalyst Responsible for Recovery 🔔			 		
Calculations & Report Reviewed By _			Report 9at		
FILTERS USED			trituo:		
		Usec	4	Prepared Co	
Alter No		(Tes/K			o.)
filter No. <u>40 139</u>					
					
terbent Trap Ho.		-			
	<u> </u>				
condenser No.		. 4.3 4			"-
		•			
				<u> </u>	
MPTHICER SOLUTIONS:	Initial	Finet			
first	6014			a.	
Second	591.3	-			ه ــــــــــــــــــــــــــــــــــــ
ihird .		a <u>443.9</u>	-		<u>. (.</u> a
Fourth	610.0		-		ه جين
fl fth	<u>578.2</u>	• <u>578.</u>			<u>Ø</u> .
Sfxeh	487.6	a <u>488.</u>			9
Seventh .		•	····· 9		9
STELLON GEL METGHTS:	· Ir			Einal	
710190 436 514///71					
	.72	4.0	9	793.5	لهد العدر
			·		9
		_			
Totala			. 9		
					STAL 237
				μ	· ·
COMMENTS:					
Color of Silica Gal;					
Description of Impinger Water:					
			••		
					
					
					

	5 Field Da	<u>la Contin</u>	ued Date				Run No. **	/ Metal	- 5			Operator	200	17.6
Clock Time	Point	Sample Time	Vacuum in. Hg	Slack Temp	Pilot DP	Orifice DH	Meter Vol.	Tempera	tures (deg	. F)	ln:p.	DGN	DGM	-
- 1	Number		11. 14g	deg. F		in. H20	ପ ,	Probe	Filter	Sorb.	Outlet	in	oul	J
943		10	2,1	300	. 75	"	406.92				7/4	79	78	
	6-2	20	2.1	313	,70	_	411.50	261	242		65	81	79	
·	6-3	36	3,0	308	1:1	2/01	415,92	255	257		65	81	79	
	6-4	40	3.0	310	1.5	1.3	421.41	250	260		66	82	79	
							427.41							
	5-1	10	2.0	3//	,70	164	437.41	253	260	l	70	82	80	1
<u>'033</u>	5.2	20	2.1	312	. 72	l '	431.90	l _	l I	• • • • •	20	82	ه لا	
	5.3	30	3.1	310	41	1.81	436 34	254	261		68	83	80	~
	5.4	40	3./	3/0	/, 3	l .	441,41		r 1		68	83	80]
				_	4		447.95	· 					··· · · · · · · · · · · · · · · · · ·	
	4-1	10	2.2	317	سر75.	,69	447.45	250	260	-	ە ج	.83	80]
	4-2	ەد	2.2	318	75	169	453.60	257	761		70	83	80	
	4.3	30	2.9	316			457,20		l		70	83	81	
1145	4 - 4	40	2 .5	274	, 83	75	462.29	260	259		7/	84	81	
-							467.11							

PUTER# 1 A7250 Leak CHE 13" HS = .005/MIN AMP = 773F

က်

						METITIOD (5 FIELD DATA	i						
Date _ Test N Meter Cos Ne	location or <u>P.M.</u> or <u>P.M.</u> o./Run Mo. Box ID eter Cal. Fac ID DHAP	3/9: M <i>cfa4</i> /	<u>3</u> (5 <u>*</u> /	``	Nozzle ID. Average N Dorometri Ambient ' Assumed	lozzle Dla., le Pressure, Temp., deg Moisture,	Inches 2. In lig 2.4 IF 7 8 °	142		Leokroli 2nd FM Leok Ro	en: de, cfm, l e, cfm, l der (H use de, cfm, e, cfm, l	Post-lest ; ()): Prelest _	∠.oɔo 	s/mu in
			GAS MET	er start, Me <u>0</u> 9	d: <u>41</u>	<u>06.92</u>		gas met end tra	er end, E <u>.</u>	er <u> </u>	30,-	7/ -	=> 12 c4	13.7 2. m
Clock		Sample	Yacuum	Slack	Pilot	Ortfice	ideter	Temperal	lures (dea	<u>. Fl</u>] ~
Time	Point	Time	in lig	Temp	DP	OH	Vol				lmp.	DOM	DCM	
 	Number	 	· -	deg. F	<u>in. 1120</u>	in. 1120	ପ	Probe	Filter	Sorb.	Outlet	<u>in</u>	out	ł
i			•		ľ	İ	<u> </u>		ł	ļ	1			i
			1				ļ — — — — — — — — — — — — — — — — — — —							Ì
ļ	<u> </u>	 -	 		<u> </u>	80-7		.		ļ	. -		·	[
	į	ļ	i 1		en	0	t	1 1		i	1	<u> </u>		ĺ
			7	100		che		-					ii	ĺ
<u> </u>	<u> </u>	<u> </u>	 -71			0'		-[-	ļ			
	1			201		لہ ا	3	1 1			ĺ	· ·		ĺ
<u> </u>	 		0		.0	77		11	_			<u> </u>		•
<u> </u>	<u> </u>	<u> </u>	<u> </u>	06									igwdot	[
	·	ĺ	1 1					j . [
	 -							 			 			
<u> </u>								<u></u> 1			<u> </u>		لـــــا	j
		<u>Total</u>	Max	Avg.	AVE STIT		Total	AVE.	AVE.	<u>Mar</u>	<u>Max</u>	Ave.	Avg.	l
		ļ	ı !	323	0.989	0.91] <u>1</u>	1 1	•	I	,	· '	, 1	l _
	,		1	500	- 101		-						~	7
			•				•					_	#7	

82

ege.	<u> 2</u> of	<u>z</u>		, ,			372.79	8					
Method	l 5 Field Da	la Contin					Run No. 🥕	ETAL				Operator	WJ
Clock Time	Travese Point Number	Sample Time	Vacuum in. lig	Stack Temp dea F	Pitot DP in. H20	Orifice DH ip. U20	Meter Vol. ef	<u>Fempera</u> Probe	tures (deg Filler		imp. Outlet	DGM in	DGM
64	3-1	1014	-4.5	/	 		373.190	ZZ/	253		5/	80	76
72	3-2		-5.0	358	1.40	1.16	317-165	2/5	260	· 	51	82	76
80	3-3	1034	-5-0	358	1.20	1.00	382.30F	22/	263		5/	82	76
88	3-4		-240	362	.60	. 50,	306.615 379.766	217	Z6 3		54	22	76
96	4-1		-5-0	338	1.30	1.08	319.160		269		53	82	76
104	4-2		-5.0	350	1.40	1.96	394.725	202	237		53	8/	76
112	4-3		-5.0	362	1.15		399.265		253		5 0	82	77
120	4-4		-4.0	349	554	.46	406-610	220	240		51	84	77
128	5-1		-\$.0	313	1.30	1.08	407.245	Z45	26 Z	<u> </u>	54	82	76
136	5-2		-5-q	33/	.92	.77	411.695	219	265		52	\$2	79
144	5-3		£٠.6ء	<i>33</i> 8	1.20	1.00	415. 3	227	263		53	85	79
152	5-4		اه.کــ	3 37	1.0	·83 ;	419.750	z 25	262		52	86	80
160	6-/		_5.0	317	1.05		423.790	269	216	-	5 3	86	80
168	6-2		-5.5	325	1.10	.91	427.64	Z/Z	274		5 3	86	8/
174	6-3			٠,٠	1.05	.87	431.720	226	262		52	87	82
184	6-4	Ì	-50	<i>5</i> 45 i	-94	.78	435-142 439.565	211	Z4 51		52	86	80

192 GND -

RAIC			18	مر در	2	80		18	18	2	18		18	82	4	8,3		
Operator		18. 19.	84	83	83	83		83	83	83	738		200	28	758	86		
	1 [imp. Outlet	£73	72	72	66		27	63	19	63		67	65	20	65		
	E	Sort	I 1		GOOD	1												_
37	Temperatures (deg.	Filler	253	253	263	265		256	250	253	95 Z		250	250	2.5%	252		
# He to 4.5	Temperat	Probe	7555		25.5	592		285 785	290	300	270		27/	310	320	252		
	r e	Vol.	11.1.90	01.574	46.77 W		487.51	164 487.51	47.14	29362	1, 2 4 502, 40	508.24	528.28	82815	518.30	574.42	550.71	
Location 04,7 25 Run No.	Oriffice	원 된			16.	. 87		, 64	, 6¢	1.24	1.24				1,3	1.97		
Location (Pilot	년 양 왕	88.	45,	1,05	195	•	. 70	.70	1, 35	1.35	of But Last Kende	,90	190	1.4	8 /		
€0/60	Stack	Temp deg F	326	328	330	328		3.35	335	343	340	21.00	339	339	345	842	T	
ued. Date	Vacuum	in Ag	2.6	2.9	3.1	2.8		4,6	2.8	3.8	3,8		5,9	3.0	3.9	4.0	215	
Field Data Continued. Date	Sample	Time	0/	20	20	40		ŏ/	2	30	40	marg		20	30	0#1		
ン 5 Feed Da	Travese	Point Number	3-1	3.2	3 3	3-4		2-1	2-8	2-3	2-4		1-1	1-2	1-3	11-11	1349	,
Wellford .	Clock	Time					•	1237	••								dals	_

MASS TRAIN OPERATIO	6 Out	dp PITOT	dP ORI	dp PITOT	dP ORI
GAS ANALYSIS - 02 :	6.3	0.500	0.46	1.400	1.28
CO2:	12.5	0.550	0.50	1.450	1.33
H2O:	7.0	0.600	0.55	1,500	1.38
AMB PRESS, in Hg :	29.26	0.650	0.60	1.550	1.42
STACK dP, in H2O :	7.5	0.700	0.64	1.600	1.47
Enter Gas vel., fps	,,,	0.750	0.69	1.650	1.51
or AVG SQR ROOT d :	1.01	0.800	0.73	1.700	1.56
MINIMUM PITOT dR :	0.50	0.850	0.78	1.750	1.61
dP INCREMENT	0.060	0.900	0.83	1.800	1.65
		0.950	0.87	1.850	1.70
STACK GAS TEMP, F :	318	1.000	0.92	1,900	1.74
GAS METER TEMP, F :	90	1,050	0.96	1.950	1.79
		1.100	1/01	2.000	1.84
PITOT CONSTANT :	\0.81	1.150	∌.06	2.050	1.88
ORIFICE CONSTANT :	1,87	1.200	/1.10	2.100	1.93
Nutech 1	\	1.250	/ 1.15	2.150	1.97
NOZZLE DIA, in ;	0.192	1.300	/ 1.19	2.200	2.02
SYSTEM FLOW, acfm:	0.794	1.350	1.24	2.250	2.06
dφ	1.01	\ /			
FLOW, scfm	0.4902				
Target volume	110	17.6	predicted v		
Minutes to Vol.	224.41	X	nozzie T40		
hours to vol.	3.7401				
No. of points:	24				
Read Min./point	9.3503	9/3/93	Outlet 8 me	etais train oper	ation
Use Minutes/point	10	/ \			
		/			
		/			
	/	•			
	/				
	-		١,	ı	
			j	1	

- - ------

.

MASS TRAIN OPERATIO	Inlet 8	dp PITOT	dP ORI	dp PITOT	dP ORI
				4.400	4.40
GAS ANALYSIS - 02 :	6.3	0.500	0.42	1.400	1.16
CO2:	12.5	0.550	0.46	1.450	1.20
H2O :	7.0	0.600	0.50	1.500	1.25
AMB PRESS, in Hg :	29.36	0.650	0.54	1.550	1.29
STACK dP, in H2O :	-20.0	0.700	0.58	1.600	1.33
Enter Gas vel., fps		0.750	0.62	1.650	1.37
or AVG SQR ROOT d :	1.09	0.800	0.66	1.700	1.41
MINIMUM PITOT dP :	0.50	0.850	0.71	1.750	1.45
dP INCREMENT :	0.050	0.900	0.75	1.800	1.50
		0.950	0.79	1.850	1.54
STACK GAS TEMP, F:	332	_ 1.000	0.83	1.900	1.58
GAS METER TEMP, F :	90	1.050	0.87	1.950	1.62
		1.100	0.91	2,000	1.66
PITOT CONSTANT :	0.81	1.150	0.96	2.050	1.70
ORIFICE CONSTANT :	1.87	1.200	1.00	2.100	1.74
Nutech 4		1.250	1.04	2.150	1.79
NOZZLE DIA, in :	0.192	1.300	1.08	2.200	1.83
SYSTEM FLOW, acim :	0.891	1.350	1.12	2.250	1.87
dp	1.18				
FLOW, sofm	0.5418				
Target volume	100	104.0	predicted v	ol.	
Minutes to Vol.	184.58		nozzle T39	/	
hours to vol.	3.0763				
No. of points:	24				
Read Min./point	7.6907	9/3/93	Inlet metals	train operatio	n
Use Minutes/point	8.	- "			

192.

MEMIOD 5 FIELD DATA

Plant/Location SAILLY
Operator CAM
Date _ 9-3:93
Test No./Run No. Mefets /
Meter Box ID 7(-16
Gos Meter Cal Factor
Orifice ID
Orifice DUO

Ist Filler:
Lenk Rate, clim, Pretest .02 cfr @ 18 "7
Leakrate, clim, Post-lest .015 cfr @ 5" H7
2nd Filter (if used):
Leak Rate, clim, Pretest
Leakrate, clim, Post-test

CAS METER START, cl: 060.08 START TIME 8-55 9:02

GAS METER END. et <u>257.12</u> END TIME <u>1523</u>

Clock	Travese	Sample	Р асиин	Stack	Pilol	Ortifice	Meler	Tempera	lures (deg	. វា			
โบทe	Point	Time	In. Hg	Temp	DP	DH	Vot				fosp.	DCM	DGM
	Number		<u> </u>	deg. F	ln. 1120	in. 1120	etet	Probe	Filter	Sort	Outlet	in	opt
9:02	10 T	0		131	.36	1.07	060.08	198	2/2			70	70
9:32	1-1	30.	3. 2	131	. 36				251		48.	76	70
9:32	수	9 Q	9. 3	130	, 36	1.07	080.08	253	z.54		16	76	70
2:43	1-2	15 9 0	3.5	129	. 38		290.21	257	255		49	18	71
<u>0:0₹</u>	1-2	60	3.4	129.	. 36	1.07	299. 16	258	<u> 255</u>		<u>51</u>	18	71
0:17	2-3	7 <i>5</i>	2.6	(29	.38	.33	107.16	234	251		53	76_	72
<u>55:0</u>	1-3	90	28	128	.30	.89	114.33	<u> 232</u>	249		_53	76	72
]	ج ا				'			<u></u> _			<u> </u>		
		Total	<u>xall</u>	hvg.	Ave sort	AVR.	Talal	Avg.	Avg.	Max	Max.	Ave.	Asg.
•	ı	i	' j	19-7	0.581	1,00	ļ () I	!		, ,		1

G-11

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Çalculations & Ac	ole for Recovery _ eport Aeviewed By _	(40 m) 23 30% HzOs		Report Date		
F1(TERS USED			CTELONE		
			(Yes/No)		Prepared Conta (No.)	
filter Mo	3Q 129		10 д			
_			5 ×			
Sorbent Trap Mo.			2.0 µ			
			1.0 g			
Condenser Ho.			0.5 #			
MP1WGER SOLUTION		initial	Final		Gein	
irst		و تعلق 15.2 د ا و تعلق 15.2 د ا	339.4	g	19/-1	
fecond	67	4 15 2	<u>647.9</u>	9	<u>3</u>	
lhird	•	<u>425.3</u> s	<u> </u>	9		/
Fourth	•	F20 0	<u> 589 - 6</u> 59 8 - 2	 •	- 7	7 9
fifth Sixth	•	466.0 g	470.5	— '	4 ,	
inun Seventh	•	9		 ;		9
. <u> </u>		,				³
ILICA GEL VEIGHT	8;	Init	iai		Final	
		85	2.7	9	86.5	<u>53</u> ,8
				<u>`</u>		
						,
			9			g
îotals .					264.1	
rotals .					264.1	,

G-12

١

METHOD 5 FIELD DATA

Plant/Location @ALLLY
Operator CAM
Date 9-3-93
Test No./Run No. meters /
Heler Box ID7/-16
Gos Meter Cat Factor
Orlifice ID
Orifice DIA

Pilot Coefficient. Op
Nozzle ID. SFLANIS ZI
Average Nuzzie Dia., Inches -2.55
Barometric Pressure, in ilg 2446
Ambient Temp., deg. 17 70
Assumed Molsture, % 18
Füler ID
Sinck Pressure, in 1920 7

1st filter: Leak Rate, clim, Pretest <u>oz cfr</u> 6 Leakrate, clim, Post-lest <u>ot</u> s cf- 6 2nd Filter (if used):	9 18 '19 5"17
Leak Rate, cfm, Fretest Leakmte, cfm, Post-test	

GAS METER START, cf: 060.08 START TIME # 9:02

GAS METER END. et <u>257.12</u> END TIME <u>1523</u>

Clock	Travese	Sample	Yacuum	Stack	Pllot	Orifice	Meter	Tempera	tures (den	<u> 13</u>			
Tune	Paint	Thne	In Hg	Temp	OP	DH	Vol	13.113.11			lmp.	DOM	DCM
	Number			deg. F	<u>in. (120</u>	pr 150	eť	Probe	Filter	Sort.	Outlet	<u> </u>	out
2:02	TOPT T	0		131	.36	1.07	060.08	198	242		·	70	70
9:32	1-1	- 30	3.2	131	,36	1.07	<i>0</i> 73.33	239	251		48	76	70
9:32	ᠽ	30	3, 3	130	, 36	1.07	080.08	253	z.54		16	76	70
9:43	1-3	45 9 0	3.5	12 <i>9</i>	38	1.13	090.21	257	255		49	78	71
10:0Z	1- Z	60	3.4	129:	. 36		099.76	258	255		51	18	71
10:17	21-3	75	2.6	129	. ZS	.83	107.16	234	251		53	76	72
10:32	ار الم الم	10	2.8	128	. 30	.89	114.33	232	249		53	76	72.
	-3												
		Total	Max	Avg.	Ave sort	ATQ.	Total	Avg.	Ayg.	lox	Max	Avg.	Avg.
	ı	i i		127	0.581	1,00		1	1	;		۱ ۱	1

G-13

73

d Method	5 Fleld Do	la Contin	ued. Date	9-3-93	iocalion (BALLLY STACK	Run No. A	et=15 _	<u>t</u>			Operator	CAH
Clock		Sample	Vacuum		Pilot	Orifice	Meter	Tempera	tures (deg	. F)			
Time	Point Number	Time	in.	Temp deg. F	DP in. H20	DII in. H2O	Vol. cf	Probe_	Filter		insp. Outlet	DGM in	DGM out
START 10:14	2-(0	Z. Q	128	- 36	1.07	n.4.33						
10:59	1-5	105	Z.5	129	. 36	1.07	121-15	210	251	·	19	76	71
11: 14	2-8	120	2.8	129	, 36	1.07	130.30	213	256	· .	48	78	7/_
<u>85:11</u>	2-2	135	2.9	129	. 36	1-07	138.16	Z13	254		49	75	72
16:44	2.2	150	2.9	129	. 34	1.01	146.24	205	257		48	75	71
11:59	2-1	165	2.9	128	. 36	1.07	154.50	215	25 <i>5</i>		47	7.5	72
12:14	2-1	180	3.0	128	. 38	1.13	163,60	214	256		42	75	7 Z
12:28	2-1	195	3.0	130	. 36	1.07	171. 95	215	252		46	74	71
12:44	.2-1	210	3.0	130	. 36	1-07	180.02	2/7	<u> 254</u>		47	74	71
1259	2-2	225	3. <i>0</i>	(28	.30	.89	187.81	211	<u> 757</u>	 _	49	74	71
13.14	2-2	240	2.9	(29_	.30	.89_	195.57	207	2 <i>5</i> 5		47	73	71
1329	2-2	255 270	2.9	129	.32	<u>. 95</u>	<u> 203.02</u>	210	253	•	49	73	71
1344	2-2	270 3-10	3.0	127	. 32 !	. 9 <u>.5</u>	210.77	214	256		50	74	71
1408	3-1	2 <i>85</i>	3.0	125	. 34	101	217.65	205	2.54		49	74	71
14 23			30	123			226,24				47	74	71_
1438	3-2 3・2	315		120	· 30 · ·30	' •89 '	234.00	198	256 '	•	49	75	71
14 53 1508	3-1	3 <i>30</i> 345	3.0 3.0	111	. 32	-89 -95	241.56 249.18	213 211	253 254		50 20	75	71
1523	3-1	360	3.0	126	- 32	-1	257.12		255		05 ج تح	74 71	71
								-				- ,	

G-14

ASS TRAIN OPERATION	Stack	dp PITOT	dP ORI	dp PITOT	dP OR1
****************		*******	*****	******	
GAS AWALYSIS - Q2 :	6.3	0,100	0.30	0.460	1.36
D02 :	12.5	0.120	0.36	0.480	1,42
H20 1	18.0	0.140	0.42	0.500	1.48
AMB PRESS, in No :	29.06	0.160		0.520	1.54
STACK dP, In 420 :	0.7	0.180	0.53	0.540	1.60
Enter Gas vel., fps	•••	0.200	0.59	0.560	1.66
or AVG SOR ROOT d ;	0.60	0.220	0.65	0.580	1.72
MINIMUM PITOT dP :	0.10	0.240	0.71	0.600	1.78
OP INCREMENT :	0.020	0.260	0.77	0.620	1.84
OP INCHERENT :	0.000	0.280	0.83	0.640	1.90
PROCES CASE TEND E	157	0.306	0.69	0.660	1.96
STACK GAS TEMP, F :	90	0.320	0.95	0.680	2.02
GAS METER TEMP, F :	70	0.340	1.01	0.700	2.08
	0.80	0.360	1.07	0.720	Z. 14 1
PITOT CONSTANT :		0.380	1.13	0.740	
ORIFICE CONSTANT :	1.94				2.20
CAE 71-16		0.400	1.19	0.760	2.25
HOZZLE DIA, in :	0.255	0.420		0.780	2.31
SYSTEM FLOW, acfm :		0.440	1.31	0.800	2.37
do .	0.36				
FLOW, softm	0.526		-4 •		
Terget volume	185		predicted	val.	
Winutes to Vol.	351.69	1	ST elsson		
houre t, vol.	5.8615				
No. of paints:	12				
Regd Hin./point	29.307	9/3/93	Stock mate	ils train op	eration
lise Minutes/point	30				

MASS TRAIN OPERATION	Stack	ф РІТОТ	dP ONE	do bitot	de ori
*************			*****	*****	*****
GAS ANALYSIS - 02 :	6.3	0.100	0.30	0.460	1.36
£02 ÷	12.5	0.120	0.36	0,480	1.42
H29 :	18.0	0.140	0.42	0.500	1.48
AMB PRESS, in Mg :	29,06	0.160	0.47	0.520	1.54
STACK dP, in B20 :	0.7	0.180	0,53	0.540	1.60
Enter Gas vel., fps		0,200	0.59	0.560	1.66
or AVE SOR ACCT d :	0.60	0.220	0.65	0,580	1,72
: 45 TOT19 HUHININ	D.10	0.240	0.71	0.600	1.78
dP INCREMENT :	0.020	0.260	0.77	0.628	1.84

elculations & Report Reviewed 6	y	Repo	rt Pate
	,		
ESLITERS USED		Used	Prepared Consein
3/3/3	3	(Yes/No)	(Ho.)
lter No			
thent Trap No.			
denser No.		0.5 g	
INGER SOLUTIONS:		Final	Gpin
at	948.7	1677.3	
enti	580.0 509 3 We	588.7	
~ ·d	415.2	#17.0	
rth	580.5	ร์ลเ.ร	1.0
th	669.4	668.3	<u>-0.9</u>
th	173.8 423,0xxx.	<u> #75 â</u>	0 <u>-14</u>
enth	g		_g <u>~</u>
ICA GEL WEIGHTS;	(nitta	4	Final
	<i>837</i> .	2	873.9 C
als			·
			12704: 779

MECTIOD 5 FIELD DATA

Plant/Location#7 Critice Acids
Operator Kitt
Date 9-3-43
Test No./Run No. / Acids
Meter flox ID Notice 43
Gos Heter Cal. Factor
Orifice ID
Orifice DH& 1.20

Pitot Coefficient, Cp. 83

Nozzle ID. 7 43

Average Nozzle Dia. inches . (90

Barometric Pressure. In. 11g 20.26

Ambient Temp., deg. P 68*

Assumed Motsture. 7 7.0

Fitter ID

Stack Pressure. In. 1120 7.5

ist Filler:
Leak Rate, cfm. Pretest <u>...D3</u> cfm
Leakrate, cfm. Post-test <u>...D3</u> cfm
2nd Filler (if used):
Leak Rate, cfm. Pretest ____
Leakrate, cfm. Post-test ___

GAS METER START, cf. 634.197 START THE 18:39 GAS METER END. of 660,745 END TIME ___19:58

Travese	Sample	Vacuum	Stack	Pilol	Orifice	Meter	Tempera	tures (deg	. F) _			
Point Number	Time	in. Hg	Temp deg. F	DP In. 1120	DEI in. 1120	Vol.	Probe	Niter	Sorb.	lmp. Ou lle l	DGM In	DGM out
	300	- Allerian		d 340			- FRENK				(39)	25
<u> </u>	G	1.5	<u> 311</u>	.50	.46	635.3	zou	242		66	72	7)
2	ما	1.5	311	.50	.પ6	436.5	39 5	266		55	73	71
3	<u> </u>	30	2//	.65	.59	637.7	291	960		55	73	7/
ч	12	2.3	310.	1.00	.92	6 <u>39</u> 1.317	238	<i>2</i> 51		54	74	7/
Ъі	15	<i>a</i> .0	311	.90	.82	<u>.640.7</u>	267	234		59	72	ור
Я	18	2.0	311	.85	78	6422	287	238		53	74	7/
3	<u>ا</u> ھ	20	211	ุาร	الماه	643.5	298	245		52	<u>זר</u>	7
	Total	Max	Avg.	AYE SUL	Avg.	Total	λνg.	Avg.	<u>Max</u>	Max	AYR.	Arg.
	Point Number	Point Number Show A 1 6 3 6 3 6 4 12 B 1 15 A 18	Point Number 3mn 3m	Point Number In Hg Temp deg F 3 nu	Point Number Number Numbe	Point Number In Hg Temp DP IN 1120 In 1120 3	Point Number Number Time In. Ilg Temp DP DH In. Il20 of In.	Point Number Number Numbe	Point Number Number Numbe	Point Number In fig Temp DP DH In 1120 of Probe Filter Sort. 3 mu	Point Number Time Number in Hg deg F in H20 in H20 of in H2	Point Number

G-17

alculations & Report Reviewed By		Report Date
FILTERS USED		CTCLOHES
- "	Used (Yes/Ho)	Prepared Container (No.)
Iter No. 30133		
bent Trop Ho.		
denser Wo.	0.5 #	
INGEN SOLUTIONS:	948.7 a 1677.3	226.5
et ond <i>580</i>	0 529 3 WK 588 7	s - 720.3 8.7
rg -	415.2 9 417.0	<u></u>
rth	580.5 a 591.5	1-0
th	669.4 , 668.3	-0.9
rth 128 <u>.8</u>	423.0×00, 475 3	e
	1	
CA GEL HEIGHTS:	<u>iniviet</u>	Finel
	837.2	853.0) N
	9	
ei.e		
- -		-1250c: 774.
		107AC: 774.

80
٠.
372

	. ∕ -						_				-							
,	13/	DGM	2/	20	20	2	2	92	11	22	2/2	62	28	8,0	80	18	28	28
	Operator	DGM in	30	28	82	82	82	18	82	84	82	% S	85	86	86	86	87	98
		imp	5/	13	15	54	N	53	50	15	24	52	53	52	53	5,3	52	K
		South	-	į	1		¥		ļ	1	-	1	1		i	1	١	
	7-5	Temperatures (deg.	253	260	263	2%3	692	237	253	240	292	265	263	292	915	274	262	S 2/2
bo	HETALS	Temperat	122	5/2	122/	212	220	202	1/2	220	5 1/2	219	£22	225	269	2/2	226	112
372.798		Weler of 1	373-190	311.165	382.30	50,3%,665	91 1 Th	34.725	399.265	406-610	1.08 mon 245	241.695	7.51	83: 419.750	423.790	457.64	43.720	435.743
	(NE	Orifice DA in 1120	1.16	1.16	8,	Š,	1.08	96.	36	.46	80%	. 77	1.06	.83;	.87	160	£8.	82.
	9/5/92 Contion	Pitot OP in R20	om-/	04.1	02.1	.60	1.30	1.40	(./5	2/2	8	.92	1.20	0.1	1.05	01.10	1.05	49.
`	9/2/6	Strok Temp deg. F	928	358	358	187	338	350	362	844	3/3	.033/	338	337	715	325	342	345
	aed Date	Yacıdum ür. 1 16	5.4-	2.0	-5.03	-40	0-5-	-5.0	-5.0	-4.0	0.5	15.0	љ5.0	5.0	0.5-	5.5	- 5 .b	ا ا ا
Ŋļ	Field Dala Continued. Date	Sample Time	1014		1034													
7 0 7	ر]دم []	Francese Point Number	3-1	3-2	3-3	3-4	1-4	2-4	5-7	1-4	1-5	2-5	8-5	5-4	1-9	2-9	6-3	4-9
2 10	핗	Time	129	22	80	88	36	101	1/2	001	821	136	<i>fth1</i>	75/	160	8.9/	111	h9/
_										G-	19							

MASS TRAIN OPERATIO	Inlet 8	dp PITOT	dP ORI	ф РІТОТ	dP ORI
					
GAS ANALYSIS - 02:	6.3	0.500	0.42	1.400	1.16
CO2:	12.5	0.550	0.46	1.450	1.20
H2O :	7.0	0.600	0.50	1.500	1.25
AMB PRESS, in Hg :	29.36	0.650	0.54	1.550	1.29
STACK dP, in H2O :	-20.0	0.700	0.58	1.600	1.33
Enter Gas vel., fps		0.750	0.62	1. 65 0	1.37
or AVG SQR ROOT d:	1.09	0.800	0.66	1.700	1.41
MINIMUM PITOT dP :	0.50	0.850	0.71	1.750	1.45
dP INCREMENT :	0.050	0.900	0.75	1.800	1.50
		0.950	0.79	1.850	1.54
STACK GAS TEMP, F:	332	_ 1.000	0.83	1.900	1.58
GAS METER TEMP, F:	90	1.050	0.87	1.950	1.62
		1.100	0.91	2.000	1.66
PITOT CONSTANT :	0.81	1.150	0.96	2.050	1.70
ORIFICE CONSTANT :	1.87	1.200	1.00	2.100	1.74
Nutech 4 🗸		1.250	1.04	2.150	1.79
NOZZLE DIA, in :	0.192	1.300	1.08	2.200	1.83
SYSTEM FLOW, actm:	0.891	1.350	1.12	2.250	1.87
dp	1.18				
FLOW, scfm	0.5418				
Target volume	100	104.0	predicted vo	ıl.	
Minutes to Vol.	184.5 B		nozzie T39		
hours to vol.	3.0763			-	
No. of points:	24				
Regd Min./point	7.6907	9/3/93	inlet metals t	train operation	1
Use Minutes/point	8.			•	

192

MELINOD 5 FIELD DATA

Plant/location Berry John
Operator Wall O.
Date 9/3/93
Test No./Run No. AGO-/
Meter Box D NOTECH 4
Gos Meter Cat. Factor
Orifice D
Orifice Diff / 47

Pilol, Coefficient, Op -8/
Nozzle ID. 7-47 (PAZ) (3.45, 4 T-
Average Nozzle Dia., Inches -190
Botometric Pressure. In Hg 29.36
Amblent Temp., deg. P _ 75
Assumed Holsture, 7
Filter in $49 - 140$
Stack Pressure, In. 1120 <u>- 20 0</u>

>	Leak Rate, cfm, Pretest coocen/m Leakinte, cfm, Past-test coocen & 2nd Filter (if used):	
	icak Role, cfm, Prelest Leakrole, cfm, Post-lest	•

GAS METER	START, ef:	441.698
START TIME	150	70

4	1. !lg 1.5	Temp dry F 327	or in. 1120	DH In. 1126	vu. cl 44/69s 44/69s		243	Sorts.	Imp Outlet 5.5	DOM in	DGM out
		327		. 72	, ,		243		5 .5	76	フぐ
				- 72	441.695	200	243		5 5	76	70
5	50	23/					I ' 1			1//2 :	حــ ا
	1	0,00	1.05	.84			1				
5	.0	344	1.05	.84	4436-	134	243		5 Z	77	76
)- O	354	1.1	.88	44.68	198.	Z43		ź2	77	76
					445-82	202	245		52	77	76
5	.0	320	1.2	.96	1146.055						
5	:0	330	1.25	1.0	446.500	205	245		25	77	76
Total	Max	Avg.	Ave soit	Avg	Total	Avg.	Ava.	Max.	ihr	Avg.	Avg.
	5	5-0 5.0 5:0	5.0 354 5.0 320 5:0 330	5.0 354 /./ 5.0 320 /.2 5:0 330 /.25 Total blax Avg. Avg squt	5-0 354 /./ .88 5-0 320 /.2 .96 5:0 330 /.25 /.0 Total blox Avg. Avg squt Avg.	5-0 354 1.1 .88 44.68 445.82 5.0 320 1.2 .96 446.035 5:0 330 1.25 1.0 446.500 Total blax Avg. Avg sout Avg. Total	5-0 354 1.1 .88 44.68 198. 5.0 320 1.2 .96 446.055. 5:0 330 1.25 1.0 446.500 205 Total blax Avg. Avg sout Avg. Total Avg.	5-0 354 1.1 .88 44.68 198.243 445.82 202 245 5.0 320 1.2 .96 446.055. 5:0 330 1.25 1.0 446.500 205 245 Total blax Avg. Avg sout Avg. Total Avg. Avg.	5-0 354 1.1 .88 44.68 198.243 4445.82 202 245 5.0 320 1.2 .96 446.035. 5:0 330 1.25 1.0 446.500 205 245 Total blax Avg. Avg sout Avg. Total Avg. Avg. blax	5-0 354 1.1 .88 44.68 198.243 52 4445.82 202 245 52 5.0 320 1.2 .96 446.055. 5:0 330 1.25 1.0 446.500 205 245 52 Total blax Avg. Avg. squt Avg. Total Avg. Avg. blax	5-0 354 1.1 .88 44.68 198 243 52 77 445-82 202 245 52 77 5.0 320 1.2 .96 446.055. 5:0 330 1.25 1.0 446.500 205 245 52 77 Total blax Avg. Avg sout Avg. Total Avg. Avg. Max. blax Avg.

80.3

PLANT BATTLLY	<u> </u>					
Sampling Location <u>DUTLET</u>			Rup Ha	/		
Set Up By YLOK /2WS	Date	04/03/23				
Comments ACTDS						
Analyst Responsible for Recov	My _					
Colculations & Report Reviews	. —	•	Report Date			
					—	
FILTERS USED			MW WED			
		tised	CYCLONES Pr	epared Container	_	
-MDK 2013 35-	3 0	(Tes/No)		(HQ.)		
Filter No	_30 <u> 35</u>					
		_				
Sorbent Trap No.	 _				_	
				- ···	_	
Condenser to.		0.5 #			_	
						
		···				
IMPINGER SOLUTIONS:	Initial	Final		Gein		
First	641.9 642.1- a	675.7	9	<i>33.8</i>	_ 9	
Second	400.3	156.50	7605,5	5.2	_ 9	
Third	478.7	480.7	7 g	2.0	9	
fourth			9		_ 9	
fifth	0		9		_ 9	
Sixth	ø		9		g	
Seventiti	g	<u> </u>	e ,		_ 9	
						
SILICA GEL METGETS:	<u>lnit</u>	<u>ial</u>		Final		
	di a	0	0	./ net	. g. 3	
	8/2	<u>.8</u> ,	<u> 24 I</u>	, / ML	_ 9	
		9		<u>-</u>	_ 9	
fotals					YOKUr a	14/
					10/1m	
COMENTS:						
Color of Silica Gel:					_	
Description of Impinger Water						
		- -				
					_	
		-		·	_	

	<i>ra</i> eccoa Clock	5 Field Da Travese	Sample	Vacuum	Stack	Location Pitot	Orifice	Run No. Meter	Tommeral	Lures (deg.	គ		<u>Operator</u>	
	Time	Point Number	Time	in. Hg	Temp deg. F	OP in. H20	DFI in, H20	Vol.	Probe	Filter		Imp. Outjet	DGM _in	DGM out
	14	2-3		5.0	346	1.0	. 80	445 4 98 5	150	243	-	22	79	76
	16	2-4	1517	5.0	357	1.1	-88	448 950	202	Z44		27 ⊬	74	75
	•					,		449.940	200	763	- <u>-</u>	57	79	77
1	18	3-1	1325		322	1.2	.96	451.050	200	263	<u> </u>	SI	79	17
	20	3-2	_	6.0	351	7.3	1.04	452.25	201	Z 66		52	80	77
	22	3-3	,	6.0	360	1.1	.88	453.28	198	268		48	80	77
	24	3-4		2:0	363	.60	. 48	454.27	199	264		49	82	78
						·		455.04					· ~	
ľ	Z 6	4-1	/ S 50	5.5	3/8	1.20	.96	455.46	240	263		52	81	78
	28	4-2		5 ,5	347	1.25			-		•	\$ 2	81	78
Ī	30	4-3		5 :5	360	1.1	$\overline{}$	457 SK	199	268		49	84	79
[32	4-4		5.5	363	ک ڙ -		458,59		266	<u> </u>	49	84	79
				, <u>-</u>		·		4 59.37 <u>S</u>						
	34	5-1		200	32/	1.30	1.04	459.180	199	266	· <u>·</u>	50	86	8
	36	5-2		6.0	337	-92	.74	460 895	198	270		49	86	84

BROKE NOZZLE (T-HT)

PULING OUT OF BORT Z

PULING OUT OF BORT Z

() RERNED WITH T-46 LEAK CHECK OK.

BAG. SANZE 1538 FO

1534

Method Clock	5 Pield Da				Location		Run No.	lä	<u>()</u> .			<u>Operator</u>	,
Time	Travese Point Number	Sample Time	Vacuum in lig	Stack Temp deg. F	Pilot DP in. H20	Orifice DH in, H2O	Meler Vol ef	Probe	tures (deg Filter		linp. Ou lle t	DGAI In	DGM out
38	5-3		5.5	347	.94	. 74	461.85	169	272		50	8'6	5.1
40	5-4		5.0	352	.96		462-785				5/	86	8/
·						**	4 68.740						·
42	6-1 6-2 6-3 6-4	1629	6.5	3/8	1.05	.84	465.140 464.090 465.18 466.29 467.25 468.210	199	277		52	83	82
44	6-2		6.0	324	1.1	.88	465.18		-		52	86	83
46	6-3		60	324	1.15	.92	466.29	202	279		25	86	83
48	6-4	16	\$.5	341	1.0	-80	467.25	207	279		51	89	84
							468-210						
								· 					
							•						
								;					
	T							i	1				

YES BY CAKEY WE BROKE ANOTHER

FINNISHED RUN (PORT 6) WITH NOZZLE

T-45.

G-2

ASS TRAIN OPERATION	Inlet 8	dp PITOT	dP OR1	dp PITOT	dP OR1
GAS AMALYSIS - OZ :	6,3	0.500	0.40	1.490	1,12
CO2 2	12.5	0.550	0.44	1.450	1.16
: 05H	7.0	0.600	0.48	1,500	1.20
AMB PRESS, in Ho :	29.36	0.650	0.52	1.550	1.24
STACK dP, in H20 :	-20.0	0.700	0.56	1.600	1.27
Enter Gos val., fps		0.750	0.60	1.650	1.31
or AVE SQR ROOT d :	1.09	0.800	0.64	1.700	1.35
HIMMM PETOT IP :	0.50	0.850	0.68	1.750	1.39
dP 1KCRENENT :	0.050	0.900	0.72	1.800	1.43
		0.950	0.76	1.850	1.47
STACK GAS TEMP, F :	332	1.000	0.80	1.900	1,51
CAS METER TEMP, F :	90	1.050	0.84	1.950	1.55
•		1.100	0.88	2.000	1.59
PITOT CONSTANT :	0.83	1.150	0.92	2.050	1.63
GRIFICE CONSTANT :	1.87	1,200	0.96	2.100	1.67
Hutech 4		1.250	1.00	2.150	1.71
HOZZLE DIA, in :	0.190	1,300	1.04	2.200	1.75
SYSTEM FLOW, acfm :	0.872	1.350	1.08	2.250	1.79
de:	1_18				
FLOV, scfa	0.5306				
Terget volume	20	25.5	predjeted 1	vol.	
Minutes to Vol.	37.697	i	nozzle 147		
hours to vol.	0.6283				
No. of points:	24		ACI	Ø.	
Read Him./point	1.5707	9/3/93		ks train op	eretion
Use Himutes/point	S			•	

ampling Location INLET - UNI	<u> </u>		_ Run No	}
ec up by You lowy		04/03/93		29/03/93
ACTOS		•		
natyst Responsible for Recovery				
olculations & Report Reviewed By			Report Dat	±
	·			
FILTERS USED		- Úse	<u> </u>	<u>Prepared Container</u>
10.140		(Yes/	_	(No+)
ilter 160. <u>40 140</u>		_ 10 µ		
		_ 5 #		. <u>-</u> .
orbent Trap Ho.		_ 2.0 H		<u>-</u>
		1.0 ×	_	
ndenser Xa.		u.5 u	·	
	 	-		
P[NGER_SOLUTIONS:	Initial	Fina	<u> </u>	Gein
rst	622.9	- /3/	7 .	0.4
eand _	597.4	634	/ / -	74.1
ical	124 5	<u> </u>	 :	0.4
erth		4 -7.7-1	<u></u> ,	
th _		·	 :	
th -	-	*		<u></u>
venth	-	•	"	***
		<u> </u>		
ICA GEL WEIGHTS:		pitial		Final
			-	22 2 9.1
		23, 2	خكصہ فہ	3 <i>2,3</i> 9.1
			- ª	
tels			_ 	*

MEIIIOD 5 FIELD DATA

Plant/Location Fully 04/16/#9
Operator PNC / Tommy L.
Date 09/03
Test No./Itun No. #1 ACID
Heler Box ID DUTECH #1
Gos Meter Cal. Factor
Orifice ID
Aridina MIR

Pitot Coefficient, Cp
Average Nuzzle Dia., Inches
Barometric Pressure, in Ilg
Ambient Temp., deg. F
Assumed Moisture, %
Füler ID
Stack Pressure. In. 1120 7 //

ist filler:	10"	,,,,,,,,
Lenk Rate, cfm. Pretost 🛫		
Leakrate, cfm, Post-test 🔀	7‴	, ୦୦୦
2nd Filter (if used):		
Jeak Role, cfm, Pretest		
Leakrate, c/m. Post-test		
		

GAS METER START, cf. 559.48 START TIME /6/0

GAS METER END. of 584.83 END TIME 774

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meler	Tempera	lures (dea	. 1)			
Time	Point Number	H 1 P	in. Hg	Temp deg. F	: DP in. H20	110 <u>1120</u>	Vol. ef	Probe	Filter	Sorb.	bnp. Outlet	DGM in	DOM OUL
1610	6-1	2;0	1.9	310	,40	170	572-T 559,48	272	220		77_	8≥	8,5
	6-2	ii	1.8	307	180	.70	561.36	317	250		74	8/_	82
	6-3	6	1.8	307	1.3	1.14	562.47	735-	<i>25</i> ي		73	8/	82
	6-4	4	λ,ψ:	315	1.5	/, 3	563,6 8	340	249	<u> </u>	73	81	92
	5-1		2.8	3/0	7.25	(S)	563,63	341	250		68	80	81
	5-2	4	2.7	3/0	,75	.66	564.60	341	25/		67	8/	81
	5-3	6		310	Jel	.97	565.51	360	249		67	82	82
		Total	klax	Avg.	Avg sqrt	Λvg.	lolai	Ayg.	Avg	Max,	<u> Max</u>	Ave.	Avg.
				322	1.026	0.94		,	· •		• 1	(ا ا ر

PITOT POST TEAT- R- 6"HZD S- 6"HZD

Melhod 5 Field Data Continued Date o 9/03 location # 8 Run No. ACID # (Operator	ENC		
Clock	Travese	Sample	Vacuum	Stack	Pltot	Orifice	Meter	Tempera	tures (deg	F)			
Time	Point	Time	in. Ilg	Temp	DP	DH	Vol	١.,			imp.	DGM	DGM
·-·	Number	MIL		deg F	in. H20	in. H20	ď	Prote	<u>Filter</u>	Sorts	Outlet	lu	out
	5-4	8		309	1.4	1,2	566,54	360	249				
						,047	567.76						
	4-1	2	/, 9	316	.80	175	547, 83	z 60	249		⊸ 73	_52_	83
	4-2	4	19	316	180	175	568.85	361	251		<u>-73</u>	85	83
<u></u>	4-3	6	2.1	3/8	1,0	.88	579.75	362	250		73	85	83
	4-4	8	2, 1	3/7	.70		570,76		l I	<u>.</u>	74	88	84
						OUT	571.72						
640	3-1	2	2.1	324	,90		571.72	, <u>a, </u>	260	-	75	88	85
	3-2	4	2.1	331	90	779	572.78		260		75-	શ્રુષ્ટ	85
	3-3	6	2.2	33/	10	197	573.78	365	260		74	89	86
	3-4	В	2,2	328	1.0	,88	574.88	355	258		74	90	86
							575.59						
	1-1	г	2,2	328	10	188	<u>575.94</u>	3∂0	256		75	9/	86
	1-2	4	22	300	۵ ,/	.88	576,95	3/3	253		75	90	4 C
	1-3	6	2.7	344	1,5	/, 3	577.99	328	251		75	9z	87

v <u>Method</u>	5 Field Do	la Contin	ued Date	09/03	<u>Location</u>	#8 butter	Run No. 7Z	ı Aç	JP.			Operator	يبرع
Clack Time	Point Number	Sample Time	Vacuum in. Hg	Temp	Pitot DP In. H20	Orifice DH in. H20	Meler Vol. ef		ures (deg Filter	ľ	lmp. Outlet	DGM in	DGAÍ oul_
	1-4		3.1		1.9		579,16						
							580,49						
	2-1	2	2.1	336	.85	.75	570rT	301	240		80	9/	88
	2-2	Ų	2.1	336	185	·7 <u>5</u>	<u>581.58</u>	308	245		80	9/	88
	2-3	6			1.5		582.55				7.7	91	~8°8′
	2.4	8	2.3	340	1.3	1.1	583.74	288	248		77	52	89
<i>17 j</i>	4			-52	aja		584, 83				<u> </u>		
					· · · · · · · · · · · · · · · · · · ·					 -,	<u> </u>		
													
·· 												<u> </u>	
													
											<u> </u>		<u> </u>
											<u> </u>		
			<u>-</u>			·· <u>·</u> ·····	<u>-</u>						
											<u> </u>	· 	

ე. მ

TRAIN DPERATION	8 Out	de PITOT	dP OR1	TOT 19 cpb	de okt
******			*****	******	
IAS AMALYSIS - 02 :	6.3	0.300	0.44	1.400	1.23
co2 :	12.5	D.550	0.48	t.450	1.28
#20 :	7.0	0.600	0.53	1.500	1.32
WIB PRESS, in Hg :	29.26	0.650	0.57	1.550	1.36
STACK dP. in H20 :	7.5	0.700	0.62	1,600	1.41
inter 6ss vel., fps		0.750	0.66	1.650	1_45
or AVG SQR ROOT d :	1.01	0.800	0.70	1.700	1.50
ATHINUM PITOT &P :	0.50	0.850	0.75	1.750	1.54
P INCREMENT :	0.050	0.900	0.79	1.500	1.56
-		0.950	0.84	1.850	1.63
STACK GAS TEMP, F :	318	1.000	0.88	1,900	1,67
JAS HETER TEMP, F :	9D	1.050	0.92	1.950	1.72
20 veren 12m ;		1.100	0.97	2,000	1.76
PITOT CONSTANT :	0.81	1.150	1.01	2.050	1.80
SRIFICE CONSTANT :	1.67	1.200	1.06	2.100	1.85
Outech 1		1.250	1.10	2.150	1.59
tOZZLE OIA, in :	0.190	1.300	1.14	2.200	1.94
SYSTER FLOW, HOTE 1		1.350	1.19	2.250	1.98
	1.01	11277			
\$P FLOW, softm	0.48				
jarget volume	20	27.0	predicted	uni.	
dinutes to Vol.	41.665		nozzle T46		
	0.6944	'	INLEEC 170	•	
neurs to vol.				ACID	
lo. of points:	. 24	4.7.467		~~~	
lead Min./point	1.736	9/3/95	outlet 8 a	mul s train	operacto
Jse Hinutes/point	2				

METHOU 5 FIELD DATA

Plant/Location BALLLY STACK
Operator CAH
Date 9-3-93
Test No./Run No. ACID 1
Meter Box ID 71-16
Gas Meter Cat Factor
Orifice ID
Orifice DHO 1.94

Pitol Coefficient, Cp <u>.80</u>
Nozzle ID. <u>Shawi 6</u>
Average Nozzle Dia., inches <u>.25</u>!
Barometric Pressure, in Ilg <u>29.06</u>
Ambient Temp., deg. F <u>.72</u>
Assumed Molsture, Z <u>.8</u>
Filler ID
Stock Pressure, in Il20 __7

Ist Filter:
Leak Rate, cfm. Pretest <u>ozefo & 10"19</u>
Leakrate, cfm. Post-test <u>ozefo</u>
2nd Filter (if used):
Leak Rate, cfm. Pretest _____
Leakrate, cfm. Post-test ____

GAS METER START, cf: 257. 94 START TIME # 1700 GAS METER END, of 281.07.

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempere	<u>ļures (dea</u>	<u>, F) </u>			
Time	Point Number	Time	in. ilg	Temp deg. F	DP in. 1120	11. H20	Vol. cf	Probe	Filler	Sort.	lmp. Gutlet	DGAE Br	DGM
START	(SUP) -			 .				•			1		
1700	Point	0		_	30	<u>.84</u>	257.94	218	z43		71	73	73
1704	3-1	4	4.0	119	. 30	.84	259.93	226	<u>255</u>		66	74	73
17.08	2	8	4-1	118	. 30	. 24	261. 92	229	<u> 255 </u>	 	64	75	73
1712	3	12	4.1	119	. 28	. 78	263.77	224	254		61	75	74
START ITIB		<u>.</u>				<u> </u>					<u> </u>		
1722	2-1	16	4.1	07	. 30	.84	264.16	222	2 <i>56</i>		62	77	7.5
11 26	z	20	4.1	67	.28	. 78	267. 77	231	257		62	78	76
1730	3	z4	4.1	115	.28	- 78	269.56	222	75 J		61	78	76
		Total	Max	Avg.	Ave sort	APR.	Total	Avg.	Avg.	Max	Mox	Avg.	Avg.
	١		1 1	113	0.535	0,40	1		•		•	ر سے	\sim

Hant DAILLY		•				
impling Location <u>OUTLET - U</u>		Run No				
et tip 8y <u>Y₄OK / D<i>и S</i></u>	Dete <u>09/03/43</u>	Run Date <u>09/01/9.3</u>				
• • • • • • • • • • • • • • • • • • • •	 					
wlyst Responsible for Recovery 🔔		<u></u>				
loulations & Report Reviewed By		Aeport Date				
	<u> </u>					
FILTERS_USED		CYCLONES				
7	ijsa (Yes/i					
leer No. 3Q 144	10 µ					
	·· ·-					
rbent Trap No.						
ndenser No.	. — — — — — — — — — — — — — — — — — — —	-				
PENGER_SOLUTIONS;	InitialFinal	L Gain				
rat _	6360 9 663	<u>، کا ما کا</u> و <u>کا،</u>				
cond	<u>586.1</u> 9 <u>597</u>	9 9 11-8				
ird _	476.0 s 479	9 3.9				
urth _	s	<u> </u>				
fth _	s	<u> </u>				
xth _	s	<u></u> 9				
venth _	s					
TO OF UNICATE.	Initial	Final				
LICA GEL METGATS:	AULTER					
	769.5	779.8 0				
						
tels		9				
		787				

Method	5 filetoj Da	<u>la Contin</u>					Run No. Ac			 -	<u>-</u>	Operator	Au
Clock	Travese		Vacuum		Pilot	Orifice	Meter	Tempera	tures (deg	<u> </u>		1 n.mi.	l bai
Time	Point	Time	in. Hg	Temp	DP	DHI	Vol	<u>.</u> .	<u> </u>		ևոթ	DGM	DGN
	Number			deg. F	in H2O	in. 1120	면	Frobe	Filler	Sorta.	Outlet	in	out
							ļ						
1734	2-1	28	4.1	114	.28	. 78	271-45	216	253		60	79	77
1738	2	32	4.2	114	, 30	.84	273.40	219	253		60	79	77
1742	3	36	4.2	113	. г.	.7B	275-30	216	258		60	80	78
5tart 1749													
753	1-1	40	4.2	102	. 28	. 7 <i>8</i>	27 ⁷ . 27	750	26 Z		63	80	79
1757	S	44	4.3	103	, 28	.78	279.14	254	25B		62	81	79
ıBo!	3	48	4.3	103	, 28	.78	781.02	265	253	- ***	62	81	80
													
									···				
							 			· · · · · · · · · · · · · · · · · · ·			
	 						i		·				-

G-33

Plant BAILLY						
Sampting Location STACK			Rum Wo	<u> </u>		_
Set Up By 144 /DU7	Date _	09103193	Rum Date _			
A LCTAC				·		
Analyst Responsible for Recovery _					 	
Calculations & Report Havinesd By $\underline{}$			Report Date			
						•
FILTERS USED			CYCLONE	<u> </u>		
_		Used (Yes/No	»)	Prepared C	iontainer No.)	
Fitter No. 30 143		10 д		_		
Sarbent Trap No.						
Condenser No.						
						
IMPINGER SOLUTIONS:	Initfal	Final			in	
First	638.7 s	709.			<u>ეა.ც</u> "	1
Second	6060		<u>8</u> ,		<u> 3. t</u>	ı
Third	478.3	475	<u>×_</u> ,		<i>!'_</i> _ 9	l
fourth	s	·	9		9	l
Fifth	9	_ _	<u> </u>		9	ı
Sixth	<u></u> 9	<u> </u>	ş		9	I
Seventh			#		9	ı
STLICA GEL METGHTS:	Ini	itial	-	Final		•
						•
	841.	2	874	4. X	7.6	
			- <u></u>		9	
Totals			•		9	
					TOTEL	ል ጌ/
					latter	. ••
COMMENTS:						
Color of Silice Gel: 100%	3/.12	 <u></u>				
Description of Impinger Weter:						
		<u> </u>				
						
			<u> </u>		<u> </u>	

MASS TRAIN OPERATIO	7 Out	dp PITOT	dP ORI	dp PITOT	dP ORI
**************************************					******
GAS ANALYSIS - 02 :	6.3	0.500	0.58	1.400	1.64
CO2:	12.5	0.550	0.64	1.450	1.70
H2O :	7.0	0.600	0.70	1.500	1.75
AMB PRESS, in Hg :	29.26	0.650	0.76	1.550	1.81
STACK dP, in H2O :	7.5	0.700	0.82	1.600	1.87
Enter Gas vel., fps		0.750	0.88	1.650	1.93
or AVG SQR ROOT d:	0.79	0.800	0.94	1.700	1.99
MINIMUM PITOT dP :	0.50	0.850	0.99	1.750	2.05
dP INCREMENT :	0.050	0.900	1.05	1.800	2.10
		0.950	1.11	1.850	2.16
STACK GAS TEMP, F:	302	1.000	1.17	1.900	2.22
GAS METER TEMP, F:	90	1.050	1.23	1.950	2.28
		1.100	1.29	2.000	2.34
PITOT CONSTANT :	0.82	1.150	1.34	2.050	2.40
ORIFICE CONSTANT :	1.89	1.200	1.40	2.100	2.45
Nutech 3		1.250	1.46	2.150	2.51
NOZZLE DIA, in :	0.202	1.300	1.52	2.200	2.57
SYSTEM FLOW, acfm:	0.688	1.350	1.58	2.250	2.63
dр	0.63				
FLOW, scfm	0.4336			•	
Target volume	100	104.1	predicted vi	ol.	
Minutes to Vol.	230.62		nozzie T2 2		
hours to vol.	3.8436				
No. of points:	20		5 ports X 4	points/port	
Regd Min./point	11.531	9/3/93	Unit 7 Qutie	t metals train t	operation
Use Minutes/point	12				

Orifice DIM

COLKEVED

PARZO. I

LEAK CHECK POTOT To 10 Hz0 8" HLO

MENIOD 5 FIELD DATA

Plant/Location Operator WIS Date Test No./Run No. METALS Meter Dox D NUTECA Gas Meter Cal Factor Orlice ID

Pilot Coefficient, Cp _ + 8/ Nozzle 10. Average Nozzle Dia., Inches <u>192</u> Barometric Pressure, In. 11,29.36 Ambient Temp., deg. F _ 73 Assumed Moisture, % Filter 10 49 1/37 Stack Pressure. In. 1820 - 20-0

Jal Filler: Leak Rate, cfin. Pretest -000/min @15" Leokrate, cfm, Past-test -000/Min @ 10" 2nd Filter (if used): leak Rate, cfm, Pretest Leakrute, cinz. Post-test ___

GAS METER START, cf: 339-145

CAS METER END. of END TIME ...

Clock	Travese	Semple	Vacuum	Slack	Pitot	Orifice	Meler	Tempera	lures (deg	<u>. n</u>			
l'ime	Point Number	Time	in ilg	Temp deg. F	br in. U20	110 1120 110	Vol.	2. Probe	3 FMer	Sorb.	bnp. ≠ Outlet	Dr.MSS In	DCM-7 out
0	1-1	0946	-3.0	32/	-80	.66	359-500	247	254	1	72	75	7 5
8	/-Z		-3.5	327	1.05	-87	343.245		190	-	55	77	73
16	1-3	043	-4.0	340	1.10	-91	347-20	191	193		<i>5</i> 3	78	74
Z 4	1-4	0835	-4.0	346	1.05	-87	351.280	h ' '	253		56	78	7
32	2-/	:	-4.0	319.	1.10	-91	355.87 <u>5</u> 356.190	205	246		53	79	Į,
40	2-2		4.0	336	1.25	1.04	360.2 8 0	198	244		54	79	75
48	2-3		-4.0	345	.90	-75	364.605	Z(0	244		56	96	75
56	2-4		-4.5	356	1.10	-91	368.365	209	246		52	80	75
		Total	Max	Avg.	áve spi	Arg.	Total	AVE.	Avg.	Max	lax	Avg.	Avg.

FICTER + PROES TENT DROPPING TO WEAP NOT BOX (OWEN).

G-36

				_
FILTERS USED	<u> </u>	Usud	Prepared Container	-
Filter No. 3Q 130		(Tea/No)	(No.)	
\			· · · · · · · · · · · · · · · · · · ·	-
				-
seromic frep No				_
Condenser No.				_
				_
IMPTHISER_SOLUTIONS:	[mixiet	Final	Gain	
First	619.1 575.8 week 8		• <u>750'7</u>	
Second	611.8 548 1 week a	<u> 693 8 </u>	.a <u>li.g</u>	9
Third	424.6 2	436.8	·	9
fourth	<u>592.8</u> s	592.3	9 -0.5	g
Fifth		<u> 561.6</u>	9 0,0	9
Sixth	<i>502.7</i> 9	<u> 503.7</u>	. a	9
Seventh			_9 	9
STLICA GEL VETGITS:	inix	ial	Firet	
				_
	<u>793</u>	<u>/</u>	817.3 bc	8
		8 .		9
Totals		s .		9
			40(AL.
				_
COMENTS: +				
Color of Silies Get:	PENK			
				_

MASS TRAIN OPERATION	Stack	dp PLTOT	dP ORI	dp PITOT	dP OR1
******************			4		
DAS AHALYBIS - 02	6.3	0.100	0.25	0.460	1.28
C02 :	12.5	0.120	0.33	0,480	1.34
W20 :	1B_0	0.140	0.39	0.500	1.39
AND PRESS, in Hg :	29,06	0.360	0.45	0.520	1.45
STACK dP, in H20 :	0.7	D. 180	0.50	0,540	1.5D
Enter Ges vel., fps		0,200	0.56	0,560	1,56
or AVG SOR ROOT d :	0.60	0,220	0.61	0,580	1.62
HIRIMAN PETOT dP :	0,10	0,240	0.67	0,600	1.67
dP INCREMENT	0.020	0.260	0.72	0.620	1.73
		0.280	0.78	0,640	1.78
STACK GAS TEMP, F :	137	0,300	0.84	0.660	1.84
GAS METER TEMP, F :	90	0.320	0.89	0.680	1.89
_		0.340	0.95	0.700	1.95
PETOT CONSTANT	0.80	0.360	1.00	0.720	2.00
DRIFTCE CONSTANT	1.94	0.380	1.06	0.740	2.06
CAE 71-16		0,400	1.11	0.760	2,12
MOZZLE DIA, in :	0.251	0.420	1.17	0.780	2,17
SYSTEM FLOW, acting :	0.724	0,440	1.23	0.800	- 2.23
dp .	0.36				
FLOW, soft	0.5097				
Target volume	20	24.5	predicted	vat.	
Minutes to Vol.	39.242		nezzie 🗷	56	
hours to vol.	0.654				
No. of paints:	12		Аc	1D	
1 Min./point	3.2701	9/3/93	Stock mee	els train es	eration
Hinutes/point	4				

Plant <u>SAILLY</u>			,
Scapting Location 57%	Z.K.	Run No	BLANK TRAIN
Set Up By Kevin Doctor	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 Run Date	8/25/93
comens Acid aases			
Analyst Responsible for Recovery			
Calculations & Report Reviewed By			te
	 		
	· ·	<u> </u>	
FILTERS USED		cycle	wite
7101000 0000		Maed	Prepared Container
26.10.1		(Yes/No)	(No.)
Filter Ho. <u>30/24</u>			
			 -
Sorbent Trep No			
	t.0 д		
Condenser No.	0.5 ⁻ д		
· · · · · · · · · · · · · · · · · · ·	•		
THE INGER SOLUTIONS:	initiai	Final	Gain
First	617.8 20521	.618.9	9
Second	590.5	590.0 8	9
Third	<u>472.1</u> 9	472.2 s	
Fourth	9	4	0
#1fth			
Sixth		ş	
Seventh		6	 9
SILICA GEL WEIGHTS:	Initial		Final
	0100		010 5
	817.7	9	<u>8/8.5 </u>
		•	9
•		_	_
Totals		 •	_ 9
	<u> </u>		
COMMENTS:			
Color of Silica Gal: 10 Rol	Liceable Observa.		
Description of Impinger Water:	TEST STATE		<u> </u>
eren ibrida de rebuildes sertes.	-		

Plant Bailly	·		181. I.					
Sampling Location	<u>8</u>	- Rush A	10. Blank	 _				
Set Up By Kerin Dacidly	9/26 <u>9/26</u>	<u>/93</u> Ron t	Date <u>8/26/4</u>	<u>19</u>				
Comments NR3/CN				<u>-</u>				
Analyst Responsible for Recovery 🚈	-,							
Calculations & Report Reviewed By		Report Date						
FELTERS USED			CYCLONES					
		lfeed (Yes/No)	Prepare	Container (No.)				
Fitter No.	5	0 #		•				
		5						
Sorbent Trap No.		ο μ						
		0 μ						
Condenser No.		5 a						
			<u> </u>					
				- <u></u>				
IMPINGER_SQUITIONS:	!njvial	Final		<u>Qain</u>				
First 522.5	1347 PU 9 5	819 501.8 W	<u> </u>	9				
Second	593.9 g	598.7	9					
Third	476.9	476.9	9	9				
Fourth	580,4	580.3						
fifth _	566.2	566.2	· ·	9				
Sixth _	470,1	470.1		9				
Seventh	<u> </u>		ئـــ ه.	<u> </u>				
SILICA GEL WEIGHTE:	Initial		Fin					
3,515,515	70	······		** 				
	- 793. /- 7	70.4	771.	7.				
								
Totals	<u></u>			9				
	-			_				
CQMHENTS:								
Color of Silica Gel: No notice	able change.							
Description of Empinger Water:	<i>y</i>							
		<u> </u>	<u> </u>					
		<u> </u>						
		<u> </u>						

Plant Bailly			Ø,					
Sampling Location (Unit 7 Oc			n но. <u>Р/А</u> п	K TEAN				
Set Up By YLCK	Date <u>0%</u>	<u> 26 (93 </u>	n Date <u>of</u>	26/93				
Comments MMS		<u>-</u>						
Analyst Responsible for Recovery								
Calculations & Report Reviewed (ly	Report Sate						
								
FILTERS USED .			CYCLONES					
		Used		ered Container (Wo.)				
Filter 40. in weigh	ار.	(Yes/40)						
		10 #						
Sorbent Trap No. 45-5-6	13 = 33	2.0 a						
	-55-35	1.0 #						
Condenser No.		0.5 p						
PROTUCED COLUMNS.	*minini	final		Gain				
INPTHGER_SOLUTIONS; Fiest	initial 452.8 g	452.f						
Second	<u>543.5</u> 9	592.5		9				
third	<u>605.9</u> g	605.7						
fourth	448 4 9	498.4						
fifth			-: -					
Sixth	:		-; -					
Seventh		-	_ ° _					
<u> </u>		<u> </u>						
SILTCA GEL WETGRTS:	tait	iel	Final					
			~ 6	10.				
	771	/ <u>,</u> s	75	<i>'3.1</i>				
		9						
fotnis				9				
•	· · · · <u>-</u> ·-		•					
COMMENTS:								
Cotor of Silica Gel: No Ad	Liconble change	ť						
Description of Empinger Water:	(1.5010							
and the sail of substidies and s.								

Used (Yes/No) Final 574.8 573.1 425.5	tepors Dat	IES	
Used (Yes/No) Float 574.8 573.1 425.5	EYCLON	ESContains Prepared Contains (ko,)	
Used (Yes/No) Float 574.8 573.1 425.5	EYELON	IES Contains Prepared Contains (Ko.)	
(Yese) (Yese/No) Final 574.8 573.1 425.5	EYELON	IES Contains Prepared Contains (Ko.)	
(Yese) (Yese/No) Final 574.8 573.1 425.5	EYELON	IES Contains Prepared Contains (Ko.)	
Finat 574.8 573.1 425.5		Prepared Contains (No.)	
Finat 574.8 573.1 425.5		Prepared Contains (No.)	
Finat 574.8 573.1 425.5		(ko.)	
Float 574.8 573.1 425.5			
Float 574.8 573.1 425.5			
Final 574.8 573.1 425.5			
Finat 574.8 573.1 425.5		_	
Float 574.8 573.1 425.5			
Float 574.8 573.1 425.5			
574.8 573.1 425.5			
573.1 425.5			
425.5	 *		
	9		
	9		
591.5	9		
594.9	9		
460.2	9		
· · - · · - · · - · · · · · · · · · · ·	9		
		Firel	
	9 796.5		
9		<u> </u>	
9	_		
	9 9		

PLANT: 1	Builler		DATE: 08/2.5/83
LOCATION: U	UITO8 OHT	てぇナ	TIME: 1630
ΔPick:	Amb P:	Amb T. 82	PROBE ID.
	"		

[POINT .	POR	T)	POF	₹T 2	POF	1T 3	POR	7.4	POF	IT S	POF	17 B
1 1	NO.	ΔPV	7	ΔP _V	Ŧ	Δεν	Т	ΔPV	Ţ	ΔPV	т	Δe _V	T_
u psor	t t	190	-	192	314	. 73	310	.72	345	.75	£	.85	370
* [2	192		193		175		,75		180		. 88	
_	3	1.2		1.4		. 88		78		ځځه .		48	311
	4 _	1.9		4.7		120		. 89		1.1		1.4	310
į	5			 '				_		[Ħ	
]	6												
ĺ	7]					
	8												
	9		· -										
	10												:

POINT	POR	T 7	∯ 90F	IT 8	POF	Tθ	POR	T 10	POR	IT 11	POR	T 17
NO.	ΔΡ	т	ΔPV	Ť	ΔP_V	Ť	ΔP _V	Т	ΔP _V	T	ΔP _V	-
1	ļ, į											
2									[
3					Ţ							
4												
5	Π											
6								_				
7								· -				
8												
9												
10	\blacksquare	. _ .	1	•	<u> </u>		1		1			_

	8.25-	93	STAC	K VELOCITY	
Роят	1			sp	TEMP
Poi	47	1	(118")	. 30	133
		2	(77.75")	. 26	132
PORT	z				
		I		.30	(33
		2		. 24	133
PORT	3				
		1		. 30	133
		2		. 28	133

Method 2 Data Sheet

Plant:		<u>Bai</u>	<u> L Ly</u>						<u>-</u> ,			Da te	: I	8/6	7/	<u>93</u>	,	
Locati	on: _	<u>ur</u>	<u>:.₩</u>	7	out	tes	<u>+</u>					Time	·	<u> 7</u>	30'-	10	00	
*O ₂ =			#N2=	_		400	2 *			\$C00			_ •	Ħ ₂ 0−				
P _{amb} (HG }=				;	Ł∆P _{st}	ack (II ₂	o)=	+ -	7.6	3	_ т	amb (°	F)=	9	00	<u>τ</u>	
Pi tot	Const	an t=	_5	32	_(B1	anka	lian	17-	4)	4	- LA	K64d	P _c					
Point	18	1	Post	; 2	Port	: 3	Por	: 4	Port AP _v	; 5	POF	‡ 6		7 7	Por AP _v		Por:	
	,45		.38		,40		. 38		.30		 					,		<u> </u>
2	95		.38		,38		.38		, 36									
3	54	—	,34		,38		, 34		.35									
4	.48		,28		,32	:	, 38		.53				<u>.</u>		<u></u>			
5													 					
6																		
7												·					 	
в		_													L		 	
9	_						_								_		<u> </u>	
.10 Avg.*											-							
* ****			π= −		_													

Averages are √Δp, not Δp.

AVERAGE DUCT VELOCITY =

AVERAGE DUCT TEMPERATURE - 312 0F

Mess: 13'4" norme Co pout X 4 point traverse unit 36" popular

4 3/1, 6'91/2", 9'31/2", 11'9 1/2

8 ESP OURAT

1.94-實3(

24 wide X13'6" deep
-2 fe deep nipples
Oport x 4 point travene

3'8", 6'3", 9'2", 12'1"

UNIT 7 ESP ONDER 16 Wide X 13 6 deep

5 ports 2' deep nipples
5 port x 4 point traverse
mark public like Unit 8 overst.

ITINBRARY

Bu HAINJON

HAME: Vann Bush. Joe McCain. With Merchant. Steve Piccot* *(botel only) Trip Dates: 5/11 - 5/13/93

Conf #85201A7B4E7

Charge: 7960,11.6

Purpose: pre-test site visit - Bailey Gener. Stat.

Contact: Bath Wrobal, NIPSCO

		LEAVE			ARRIVE	}	Car			
Day/Date	City	Flight #	Time	City	Time	Accommodations				
Tues. 5/11	Birmingham	SW-134	D_11:05am	Chicago	A 1:25mm		YAS			
	Chicado		D D M	Porter. IN	A P. D.	Spring House Inn \$62	1			
	ļ		<u> </u>			303 North Mineral Springs Rd.	<u> </u>			
	<u> </u>					Porter, IN 219/929-4600	<u> </u>			
Thurs. 5/13	Chicago	\$W-758	D 5։55բառ	Birmingham	A 8:15pm	Rooms guaranteed by P.J. for				
<u> </u>					<u>. </u>	PVB, JDM, GHM, SDP MDPR 45/26	<u>, </u>			
					i		<u> </u>			
							<u> </u>			
·					i		<u> </u>			
	<u></u>		<u> </u>		_ <u>i</u>		<u>i</u>			
							i			
		\neg			}		1			

Toll Free Phone Mumbers for Hotels:

ash Advance <u>\$:</u>	250,00 (P	VB)	Best Western Bilton	800/528-1234 800/445-8667	LaQuinta Quality Inn	800/531-5900 800/228-5151
onfirmations:	Flight:	Brownell - Cheryl	Holiday Inn ^a Howard Johnson	800/465-4329 800/654-2000	Ramada Inn Sheraton	800/228-2828 800/325-3535
	Botel:	a	Byatt	900/225-9000		·
Rent	al car:	" Hertz. Full-size (PVB)	*Holiday Inn Co	rporate Account (501220	

*Hollday Inn Corporate Account #501220 " Hertz. Full-size (PVB)

8/27/93 (UNIT 7 24/44) 3 (LAKE side) ,3**8** , 40 ,38 POINT#1) ,45 ,38 Pitst C.F. 832 .38 .38 .34 ,35 34. ,38 3),54 ,38 ,53 .32 148 ,28 .

AP STR + 7.63"HaD

2446 John Good

CFAX TIME SHERT 5012448 12369

DROBER BOOKS FROM ACTIONS LIST

Pic

RAY'S #5 NIPPLE + DUCT = 194 makes
JiMMY 5 #5 Nipple - = ... Nipple = 31 inches

> 173 5/8 CAN'T REACH MAX IND DUCT \$ 132 7/8 92 1/8 51 3/8

PLANT: BAILLY CENERATIAL ST	v. 48. In.	DATE: 8 25/93
LOCATION: INLET TO		TIME: 1630-1750
APRIL: - 20° 420 AMB P: 9	AMD T. 98° -	PROBE ID. 12
Piror I		

POINT	POI	17 1	POI	1T 2	POI	₹ 3	POR	T 4	PO	₹T 5	PO	9T 6
NO.	∆P _√	T	ΔP _V	٦	ΔP _V	T	ΔP _V	т	ΔPV	7	Δέν	T
t	-83	32Z	180	325	1-45	332	1.65	324	1:5s	326	1.25	319
2	135	526	1.04	334	1.20					329	1:30	32 6
3	130	344	-02	300	1.25	<u>3</u> 52	1.40	343	1-25	34 ○	1.35	335
4 1	R	346	210	331	165	329	•54	342	-7/	328	• 73	329
5	193			_								i
. 6]							•			'	
7]											
8	\mathbb{H}^{-}	-										
9												
10												

POINT	 		POR	t T 8	POR	IT 9	POR*	T 10	POR	rf 11	₽OR	Ŧ 12
NQ.	ΔP _V	т	ΔΡγ	T	ΔPV	Т	ΔPV	Ť	ΔΡ	τ	ΔP _V	Ť
1											-	
2							,			_		
3	\mathbb{T}							· · · · ·				
4						-				_		
6	1					-						
6	_	_										
7	1 1		<u> </u>							_		
8	Ţ											
9			1								Ĭ	
10	1	•	1		1							

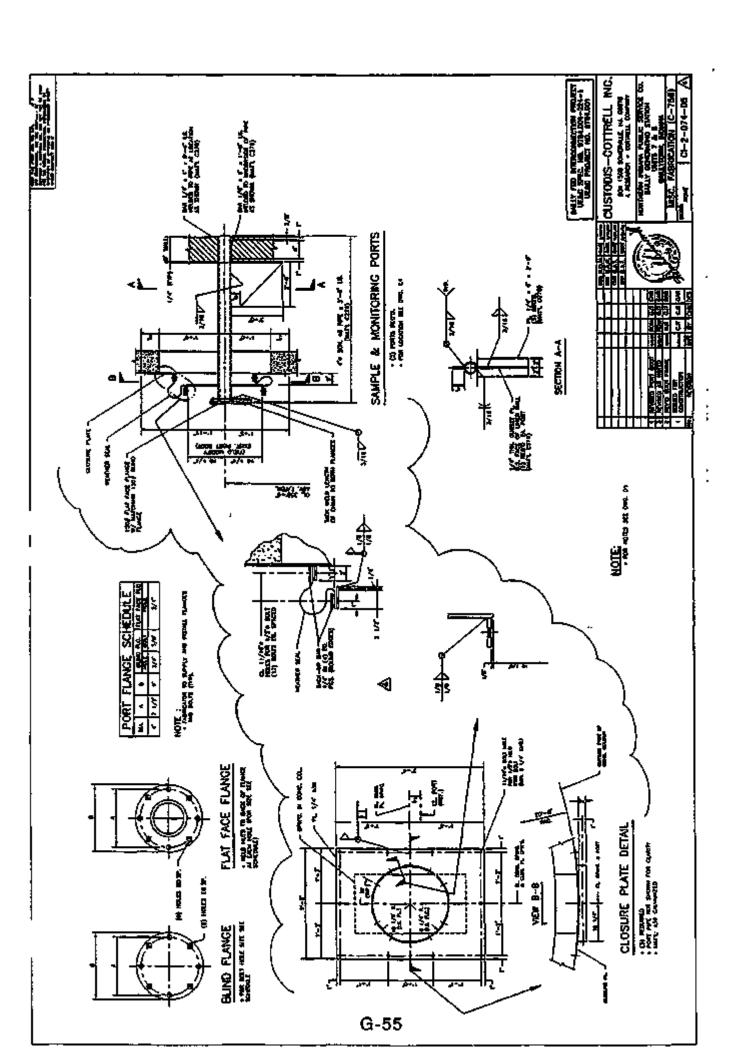
Test Name:	801/14	
Sample Loca	ation:	

	<u> </u>]]		4	Calibratio	n Check		ā	tack Ana	eievı	
Dote	Operator	Time	Zero (/)	Oxy Source	en Reading	Carbon Source	Diomide Reading	Zero (/)	o _z	co²	Comments
8/27	M. Coule	1130	L				72-8	~	6.2	12.8	#7 at flet
			r	turbent	20.8	sunkrent	0.0	<i>v</i> .	6.2	12.8	'
	j			-							1
		1135						v	6.4	126	#8 outlet
		<u> </u>						V	6.4	12.6	
											i
		1150					·	V	6.4	12.8	STOCK
<u>\</u>	V							<u></u>	6.0	12 8	{
	<u></u>						·				4 07.16.4
		1240							4.6	14.2	# gInlet
	V							<i>''</i>	4.8	14 Z	<u> </u>

PLANT: BALLY			DATE: 9-2-93
LOCATION: STACK			TIME: 13:45
APHIL: + 0.78"HEO	Amb P:	Amb T.	PROSE ID. GABROAN

Stk = 137%=

POINT .	POR	τt	+OR	T 2	POF	IT 3	PORT	Г4	POF	IT 5	POF	1Τ 6
NO.	ΔPV	τ	ΔP _V	7	ΔP _V	T	ΔP _V	т _	ΔP _V	7	ΔP _V	T
1	.40		.41		.37		.37					
2	.40	•	.40		-35-		.42					
3	.34		.33		<u>بع</u>		30			·		
4												
6							1					
ß												
7			\parallel $_{-}$									
8												
9												
10	11		1. 1		1							


Port # 1 Next to elevator - Port 2 + hen 4 Numbered Clockwise.

POINT	POR	7 7	PORT 8		PORT 9		PORT	T 10	_ POF	स स	POR	T 12
NO.	ΔΡγ	Ť	ΔΡν	т	ΔΡ _V	т	ΔP _V	Ť	ΔP _V	Т	ΔP _V	ī
1												
2												
a							<u> </u>					
4												
5						. <u>.</u> .						
đ][
7			}							!		
8										· -		
9									1			
10	1						1		1			

Plant:														•		19-	3		
Locati	оп: _		!!	115		<u>. بسادري</u>	TLE	<u>* </u>				Tine		<u> </u>	0				
10 ₂ =			•N2=			- NCO	2=			1C0=			_ •	H ₂ 0=					
Panh (HG)=		20	1.2	;	ŁΔP _{st}	ack ^{(H})	20)-		•		4	ankb (°	F)=					
Pi tot											<u> </u>	_							
Point	Por	t 1	Por	t 2	Por	: 3	Por	ţ 4	Por	t 5	Por	ŧ 6	Por	t 7	Por	 է 8	Por	t 9]
No.	Δp _y	Ŧ	ΔP _V	Ŧ	ΔPy	T	ΔP _y	Ŧ	ΔP _V	Ţ			ΔP _V	Ŧ	ΔP _V	T	ΔP _V	T	Ì
1	. 53	100	.74	365	168	3Q2	,75												
2	.68	•							<u> 164</u>										
3	97	403							.66										[
4	94		68		.52	[1		[I	302		 					 		
5	1	-70.4	<u> </u>	- ' ' '	1			<u>=1</u> 7	• <u>×</u> _	-850									
									********					······	 		 		
7		H			<u> </u>						<u> </u> -	\vdash	 			~·~··			
8	 				 		· ··		1		 -				<u>-</u>		╟─		Sin
9	 														 		 -		5t2t 1-7,8
		\vdash	-				\vdash								 		 		47,8
Avg.*																	ļ		,
* Ave	rages	are	<u>Δρ.</u> ι	ιοt Δι	p.							•	_						1
	AVER	AGE DI	UCT V	BLOC I	FY ≠						Q	1 c	Bi)({	<u>#</u>	-1	1/2	u o p	3 €

AVERAGE DUCT TEMPERATURE -

Pitats + 5.0 /

Method 2 Data Sheet

Plant:			Beck	664								Da te	: _	<u> </u>	10:	<u> </u>	<u> </u>	
Locati						<u> </u>	0,4	+ <u> </u>	<u> </u>			Time	·	110	5	11	50	
* 0 ₂ =			W ₂ =			_ \ CO	2°			*CO-			_ •	4 ⁵ 0~				
Pamb (HG }=		24. 3	<u></u>	· · · · · ·	≜ AP _{st}	ack (H	(O)=		<u> </u>	᠘ ᡒ	<u>ා</u>	emb (*	F)=				70
Pi bot	Const	an t=			-													
Point No.			Port		Por åP.,		Por åP.,		Por		Por	† 6 †	Por		Por åP _v	8 T	Por	9
,	II—	I ——1			· ·		که									<u></u>	<u>- ¥</u>	===
2	EI .				r		.77	•		_								
3		ł 1	!	1			.55			1 1		:]		_				
4	1.8	339	1,4	3 3 9	41	3.23	.9z	3 /2	1.6	304	1,8	305						
5	<u> </u>				ļi					<u> </u> _			<u> </u>					
6											<u> </u>							
7	<u> </u> -	-	<u> </u>		 		h: 1- t-r		-	l∙	<u></u>	٠						
9		-			-	\vdash								·· -				
10	\vdash			·														
Avg.*										·		^						
* Ave	rages	are v	Δö, r	iot Ai	P.													
	AVER	AGE 10	JCT VE	STOCI.	T =													

AVERAGE DUCT TEMPERATURE =

9.7.93

	02
#8 out tet 12 6/ 2.6	5.0 5.6
# 7 out let 12.0 / 50	5.8 6 €
5/2K 12.8 12.8	6.2 6.2

Bailly Unit 7 ESP outlet prelim vel. 9/2

%02 :	6.2	%H20	7.0	AMB	PAESS,	Hg:	29.20	PITO	T CAL:	0.832
%CO2:	128			STAG	CK dP. H	20:	7.5	DUCT	f #2:	216
					-					
	PORT	1	PORT	2	PORT	3	PORT	4	PORT	15
	VEL P	TEMP	VELP	TEMP	VEL P	TEMP	VEL P	TEMP	VEL P	TEMP
POINT 1	0.38	301	0.76	300	0.68	302	0.75	300	0.31	302
POINT 2	0.68	303	0.78	302	0.61	304	0.68	298	0.64	300
POINT 3	0.97	303	0.6	304	0.59	303	0.44	301	0.66	303
POINT 4	0.94	304	0.68	304	0.52	302	0.48	304	0.58	302
POINT 5										
POINT 6	0	O	0	0	0	0	0	_0	0	0
	PORT		PORT		PORT		PORT		PORT	
	VELP	TEMP	VEL P	TEMP	VELP	TEMP	VEL P	TEMP	VEL P	TEMP
POINT 1										0
POINT 2										0
POINT 3										O
POINT 4			_				_	_	_	0
POINT 5	_	_	0	0	0	0	0	0	0	0
POINT 6	0	0	0	0	O	0	0	D	0	0
	PORT	COMPU	POST		PORT		PORT		000	
		TEMP		TEMP		TEMP		TEMP	PORT	TEMP
POINT 1	40.9	301	57.8	300	54.7	302	57.4	300	36.9	302
POINT 2	54.7	303	58.6	302	51.9	304	54.6	298	53.0	300
POINT 3	65.4	303	51.5	304	51.0	303	44.0	301	53.9	303
POINT 4	64.4	304	54.8	304	47.8	302	46.0	304	50.5 50.5	302
POINT 6	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
POINT 6	0.0	ŏ	0.0	ŏ	0.0	ŏ	0.0	ō	0.0	õ
AVERAG	56,3	303	55.6	303	51.4	303	50.5	301	48.6	302
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00,0		00.0	-	5 •	-	00.0		40.0	502
	PORT	-	PORT		PORT		PORT		PORT	
		TEMP	VELg		-	TEMP		TEMP	VELg	TEMP
POINT 1	0.0	D	0.0	0	0.0	0	0.0	0	0.0	0
POINT 2	0.0	O	0.0	0	0.0	0	0,0	0	0.0	0
POINT 8	0.0	O	0.0	0	0.0	0	0.0	o	0,0	0
POINT 4	0.0	0	0.0	Đ	0.0	0	0.0	Đ	0.0	0
POINT 5	0.0	0	0.0	D	0.0	0	0.0	0	0.0	0
POINT 6	0.0	0	0.0	٥	0.0	0	0.0	0	0.0	0
AVERAG	0.0	0	0.0	0	0.0	0	0.0	o	0,0	0

AVG STACK VELOCITY, It/s: 52.5 GAS VOL FLOW, kecfm: 680.2 AVG STACK TEMPERATURE, F: 302 GAS VOL FLOW, kdscfm: 435.8

AVG SQRT(VELP): 0.791

EXCESS AIR, %: 40.832

9/2 Bailly Unit 8 ESP outlet prefim vel.

%Q2:	6,0	%H20	7.0 AMB PRESS, Hg: 29.20				PITO:	T CAL:	0.632		
%CO2:	13.0			STA	CK dP, H	20:	7.0	DUCT	Γft2:	324	
	PORT		PORT		PORT		PORT 4		PORT		
	VEL P	TEMP	VEL P		VE L P		VEL P		VEL P		
POINT 1	0.5	332	0.52	332	0.64	313	0.65	304	0.7	298	
POINT 2	9.8	339	0.85	340	1.1	321	0.77	306	Q.7B	303	
POINT 3	1.5	342	1.4	338	1.2	325	0.95	312	1.1	306	
POINT 4	1.8	339	1.4	334	1.1	323	0.92	312	1.6	306	
POINT 5											
POINT 6	0	0	0	0	0	0	0	0	0	Đ	
	PORT	ß	PORT	7	PORT	Ŕ	PORT	'A	PORT	10	
	VELP		VELP		VELP		VELP		VELP		
POINT 1	0.73	300		144711		14417			***	0	
POINT 2	0.85	300								Ŏ	
POINT 3	1.4	303								ō	
POINT 4	1.8	305								ō	
POINT 5	0	0	0	Ď	0	0	0	0	0	ō	
POINT 6	ō	ō	0	Ō	Ō	ō	ō	0	ō	0	
		COMPU	TED VEL	OCITY)	DATA						
	PORT	1	PORT	2	PORT	13	PORT	4	PORT	RT 5	
	VELg	TEMP	VELg	TEMP	VELg	TEMP	VELg	TEMP	VELg	TEMP	
POINT 1	47.8	332	48.8	332	53.5	313	53.6	304	55.4	298	
POINT 2	60.8	339	627	340	70.5	321	58.5	308	58.6	303	
E TRIOS	83.4	342	80.3	339	73.8	325	65.1	312	69.8	306	
POINT 4	91.2	339	80.1	334	70.5	323	64.1	312	84.2	306	
POINT 5	0.0	O	0.0	0	0.0	0	0.0	0	0.0	0	
POINT 6	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	
AVERAG	70.8	338	68.0	336	67.1	321	60.3	309	67.0	303	
	PORT	6	PORT	7	PORT	81	POR1	9	PORT	10	
		TEMP		TEMP		TEMP		TEMP		TEMP	
POINT 1	56.6	300	0.0	0	0.0	0	0.0	0	0.0	0	
POINT 2	61.1	300	0.0	0	0.0	0	0.0	0	0.0	0	
POINT 3	78.6	303	0.0	Ō	0.0	0	0.0	o	0.0	0	
POINT 4	89.2	305	0.0	0	0.0	0	0.0	0	0.0	0	
				0		0	0.0	0	0.0		
POINT 5	0.0	0	0,0	·	0.0	·	Q.Q	v	v.u	0	
POINT 6	0.0 0.0	0	0.0	ŏ	0.0	Ö	0.0	ŏ	0.0	0	

AVG STACK VELOCITY, N/s: 67.4 GAS VOL FLOW, kacfm: 1310.6 AVG STACK TEMPERATURE, F: 318 GAS VOL FLOW, kdscfm: 821.4

AVG SQRT(VEL P): 1.005

EXCESS AIR, %: 39.002

Bailly Unit 8 ESP inlet prelim vel.

%02 : %002 :	6.0 13.0	%H20	7.0		PRESS, CK dp. H	~	29.40 -20.0	PITO1	0.808 146.7	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,4,4			4	p. (4, ,		-	-		
	PORT	1	PORT	2	PORT	a	PORT	4	PORT	5
	VELP	TEMP	VÉL P	TEMP	VEL P	TEMP	VELP	TEMP	VEL P	TEMP
POINT 1	0.83	322	1.5	325	1.45	332	1.65	324	1.65	32 6
POINT 2	1.35	326	1.04	334	1.2	346	1.55	329	1.1	329
POINT 3	1.3	344	1.02	340	1.25	352	1.4	343	1.25	310
POINT 4	0.93	346	21	331	0.65	329	0.54	342	0.71	328
POINT 5										
POINT 6	0	Q	0	D	0	0	-0	0	0	0
	PORT	6	PORT	7	PORT	8	PORT	9	PORT	10
	VELP	TEMP	VEL P	TEMP	VELP	TEMP	VEL P	TEMP	VEL P	TEMP
POINT 1	1,25	319								0
POINT 2	1.3	326								0
POINT3	1.35	335								0
POINT 4	0.73	329								0
POINT 5	0	O	0	0	0	0	0	0	0	0
POINT 6	0	0	0	0	0	0	O	0	0	0
***			TED VEL					_		
	PORT		PORT		PORT		PORT		PORT	
		TEMP		TEMP	_	TEMP	_	TEMP		TEMP
POINT 1	61.3	322	82.6	325	81.6	332	86.6	324	B4,0	326
POINT 2	78.4 77.8	326	69.2	334	74.9	346	84.2	329	70.9	329
POINT 3	77.8	~		~ ~ ~				040		~4~
		344	68.8	340	76.7	352	80.7	343	74.7	310
POINT 4	65.9	346	98.1	331	54.5	352 329	80.7 50.1	342	74.7 57.0	328
POINT 5	65.9 0.0	346 0	98.1 0.0	331 0	54.5 0.0	352 329 0	80.7 50.1 0.0	342 0	74.7 57.0 0.0	328 0
POINT 5 POINT 6	65.9 0.0 0.0	346 0 0	98.1 0.0 0.0	331 0 0	54.5 0.0 0.0	352 329 0 0	80.7 50.1 0.0 0.0	342 0 0	74.7 57.0 0.0 0.0	328 0 0
POINT 5	65.9 0.0	346 0	98.1 0.0	331 0	54.5 0.0	352 329 0	80.7 50.1 0.0	342 0	74.7 57.0 0.0	328 0
POINT 5 POINT 6	65.9 0.0 0.0 70.9	346 0 0 335	98.1 0.0 0.0 79.7 POR1	331 0 0 333	54.5 0.0 0.0 71.9 PORT	352 329 0 0 340	80.7 50.1 0.0 0.0 75.4 POR1	342 0 0 335	74.7 57.0 0.0 0.0 71.7	328 0 0 323
POINT 5 POINT 6 AVERAG	65.9 0.0 0.0 70.9 PORT VELg	346 0 0 335 6 TEMP	98.1 0.0 0.0 79.7 PORT	331 0 0 333 7 TEMP	54.5 0.0 0.0 71.9 PORT VELQ	352 329 0 0 340 8 TEMP	80.7 50.1 0.0 0.0 75.4 POR1 VELg	342 0 0 335 9 TEMP	74.7 57.0 0.0 0.0 71.7 PORT VELg	328 0 0 323 10 TEMP
POINT 5 POINT 6 AVERAG	65.9 0.0 70.9 PORT VEL9 75.1	346 0 0 335 6 TEMP 319	98.1 0.0 0.0 79.7 PORT VEL9 0.0	331 0 0 333 7 TEMP 0	54.5 0.0 0.0 71.9 PORT VELQ 0.0	352 329 0 0 340 8 TEMP 0	80.7 50.1 0.0 0.0 75.4 POR1 VELg 0.0	342 0 0 335 9 TEMP 0	74.7 57.0 0.0 0.0 71.7 PORT VELg 0.0	328 0 0 323 10 TEMP 0
POINT 5 POINT 6 AVERAG POINT 1 POINT 2	65.9 0.0 70.9 PORT VEL9 75.1 77.0	346 0 0 335 6 TEMP 319 326	98.1 0.0 0.0 79.7 PORT VELg 0.0	331 0 333 7 TEMP 0 0	54.5 0.0 0.0 71.9 PORT VELQ 0.0	352 329 0 0 340 8 TEMP 0 0	80.7 50.1 0.0 0.0 75.4 PORT VEL9 0.0	342 0 0 335 9 TEMP 0	74.7 57.0 0.0 0.0 71.7 PORT VELg 0.0 0.0	328 0 0 323 10 TEMP 0 0
POINT 5 POINT 6 AVERAG POINT 1 POINT 2 POINT 3	65.9 0.0 70.9 PORT VEL9 75.1 77.0 78.9	346 0 0 335 6 TEMP 319 326 335	98.1 0.0 0.0 79.7 PORT VEL9 0.0 0.0	331 0 0 333 7 TEMP 0 0	54.5 0.0 0.0 71.9 PORT VEL9 0.0 0.0	352 329 0 340 340 8 TEMP 0 0	80.7 50.1 0.0 0.0 75.4 PORT VEL9 0.0 0.0	342 0 0 335 9 TEMP 0 0	74.7 57.0 0.0 0.0 71.7 PORT VELg 0.0 0.0	328 0 0 323 10 TEMP 0 0
POINT 5 POINT 6 AVERAGE POINT 1 POINT 2 POINT 3 POINT 4	65.9 0.0 70.9 PORT VEL9 75.1 77.0 78.9 57.8	346 0 0 335 6 TEMP 319 326 335 329	98.1 0.0 0.0 79.7 PORT VEL9 0.0 0.0 0.0	331 0 333 7 TEMP 0 0 0	54.5 0.0 71.9 PORT VEL9 0.0 0.0 0.0	352 329 0 340 340 8 TEMP 0 0	80.7 50.1 0.0 0.0 75.4 PORT VEL9 0.0 0.0 0.0	342 0 0 335 9 TEMP 0 0	74.7 57.0 0.0 0.0 71.7 PORT VELg 0.0 0.0 0.0	328 0 0 323 10 TEMP 0 0
POINT 5 POINT 6 AVERAG POINT 1 POINT 2 POINT 3 POINT 4 POINT 5	65.9 0.0 70.9 PORT VEL9 75.1 77.0 78.9 57.8 0.0	346 0 0 335 6 TEMP 319 326 335 329 0	98.1 0.0 79.7 PORT VEL9 0.0 0.0 0.0	331 0 333 7 TEMP 0 0 0	54.5 0.0 71.9 PORT VELg 0.0 0.0 0.0	352 329 0 340 340 8 TEMP 0 0 0	80.7 50.1 0.0 0.0 75.4 PORT VEL9 0.0 0.0 0.0	342 0 0 335 9 TEMP 0 0 0	74.7 57.0 0.0 71.7 PORT VELg 0.0 0.0 0.0	328 0 323 10 TEMP 0 0 0
POINT 5 POINT 6 AVERAGE POINT 1 POINT 2 POINT 3 POINT 4	65.9 0.0 70.9 PORT VEL9 75.1 77.0 78.9 57.8	346 0 0 335 6 TEMP 319 326 335 329	98.1 0.0 0.0 79.7 PORT VEL9 0.0 0.0 0.0	331 0 333 7 TEMP 0 0 0	54.5 0.0 71.9 PORT VEL9 0.0 0.0 0.0	352 329 0 340 340 8 TEMP 0 0	80.7 50.1 0.0 0.0 75.4 PORT VEL9 0.0 0.0 0.0	342 0 0 335 9 TEMP 0 0	74.7 57.0 0.0 0.0 71.7 PORT VELg 0.0 0.0 0.0	328 0 0 323 10 TEMP 0 0

AVG STACK VELOCITY, ft/s: 73.5 GAS VOL FLOW, kedfm: 648.1 AVG STACK TEMPERATURE, F: 332 GAS VOL FLOW, kdscfm: 375.1

AVG SQRT(VELP): 1.087

EXCESS AIR, %: 39,002

9/2 Bailly stack prelim vel.

			16.							
%O2 :	7.8	%H20	_20:0	AMB	PRESS.	Ha:	29.40	PITO	T CAL:	8.0
%CO2:	12.0		•		CK dP, H	_	0.0	DUC	Γf(2:	855.3
	PORT	1	PORT	2	PORT	3	PORT	4	PORT	5
	VEL P	TEMP	VEL P	TEMP	VEL P	TEMP	VELP	TEMP	VELP	TEMP
POINT 1	0.4	137	0.41	137	0.37	137	0.37	137		
POINT 2	0.4	137	0.41	137	0.35	137	0.42	137		
E TAIQE	0.34	137	0.33	137	0.28	137	0.3	137		
POINT 4										
POINT 5										
POINT 6	Ð	0	0	0	0	0	0	0	0	0
		_			-	•-	2007			
	PORT		PORT		PORT	-	PORT		PORT	
	VEL P	TEMP	VEL P	IEMP	VEL P	(EMP	VEL P	IEMP	VEL P	
POINT 1										0
POINT 2										0
POINT 3										0
POINT 4	_	_	_	_	_	_	_	_	_	0
POINT 5	0	0	0	0	0	0	0	0	0	0
POINT 6	Q	0	0		0	0	0	Q	0	0
	PORT	COMPU	PORT		POR1		PORT	Γ <i>α</i>	POR?	•=
		TEMP		TEMP				TEMP		TEMP
POINT 1	37.0	137	37.4	137	35.6	137	35.6	137	0.0	0
POINT 2	37.0	137	37,4	137	34.6	137	37.9	137	0.0	Ò
POINT 3	34.1	137	33.6	137	30.9	137	32.0	137	0.0	ō
POINT 4	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
POINT 5	0.0	0	0.0	Ö	0.0	0	0.0	0	0.0	0
POINT 6	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
AVERAG	36.0	137	36.1	137	33.7	137	35.2	137	0.0	Ö
	PORT		PORT		PORT		PORT	F9	PORT	10
	V€Lg	TEMP	VELg	TEMP	VELg	TEMP	VELg	TEMP	VELg	TEMP
POINT 1	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
POINT 2	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
POINT 3	0.0	0	0.0	0	0.0	0	0.0	Ď	0.0	0
POINT 4	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0
POINT 5	0.0	0	0.0	0	0.0	0	0.0	D	0.0	0
POINT 6	0.0	0	0.0	0	0.0	Ò	0.0	0	0.0	Ģ
AVERAG	0.0	0	0.0	0	0.0	0	0.0	O	0.0	0

AVG STACK VELOCITY, ft/s: 35.3 GAS VOL FLOW, kacfm: 1809.1 AVG STACK TEMPERATURE, F: 137 GAS VOL FLOW, kdscfm: 1257.7

AVG SQRT(VEL P): 0.603

EXCESS AIR, %: 58.327

IMPACTOR D50 EXPLORATION PROGRAM, VERSION 10

INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC

DATE OF TEST: 6/3/93

TIME OF TEST:

TEST DESIG.: ind

OUTLET TEST TYPE

RUN NUMBER: 0-FILE NAME: TindRO.OT

RUN REMARKS: springerville stack setup

IMPACTOR TYPE:

BAILLY

RAPC 3 4 5 7 9 11

WATER VAPOR 14.00% VATER VAPOR 14 CO2 12.00% CO O2 7.00% N2 H2 0.00% CO 0.00% N2 81.00% CH4 0.00%

SUBSTRATE MATERIAL: F

GAS METER VOL 0.000 cf

IMPACTOR DELTA P
ORIFICE DELTA P
ORIFICE DELTA P
STACK PRESSURE
BAROMETRIC PRES
0.00 IN. HG. (0 for calc. from theory)
0.00 INCHES H20
-1.0 INCHES H20
29.95 INCHES HG

STACK TEMP 127 DEGREES F 85 DEGREES F 175 DEGREES F METER TEMP 85 IMPACTOR TEMP 175 DEGREES F
SAMPLE TIME 1.00 MINUTES
AVG GAS VEL 33.00 FEET/SEC
ORL P WRT PBAR 0.00 INCHES HG

33.00 FEET/SEC 0.00 INCHES HG 0.188 INCHES 0.000 INCHES NOZZLE DIA PITOT delta P

WATER VOLUME 0.0 CC METER FACTOR 1.0000

RESULTS

ACTUAL FLOW RATE 0.411 CFM FLOW RATE AT STANDARD CONDITIONS 0.293 CFM

PERCENT ISOKINETIC 100.002 %

189.6E-06 GM/CM-SEC VISCOSITY CALCULATED IMPACTOR DELTA P = 1.55 IN. HG

STAGE	CUNN.	D50	D50	INLET	RE.	V*D50	NO.	JET DIA.
	CORR.	(CLAS AERO)(IMP AEI	RO) PRES.	NO.	UM-M/S	JETS	CM
1	1.016	10.148	10.231	29.8765	1076	14.4	1	1.2700
2	1.036	5.071	5.163	29.8765	438	17.5	12	0.2438
3	1.066	2.814	2.905	29.8734	180	12.4	90	0.0790
4	1.111	1.671	1.761	29.8688	229	14.5	110	0.0508
5	1.214	0.867	0.955	29.8503	340	16.5	110	0.0343
6	1.405	0.468	0.555	29.7592	466	16.1	105	0.0262
7	1.796	0.254	0.340	29.4573	874	16.5	56	0.0262

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

1

IMPACTOR DSD EXPLORATION PROGRAM, VERSION 10

ENPUT DATA

```
CLASSICAL ASRODYNAMIC
   PART. DIAMETER
   DATE OF TEST: 8/27/93
TIME OF TEST:
   TIME DE TEST.
TEST DESTO.: mip
OUTLET
   RUN HUMBER: G-FILE MAHE: ThipRO.OT
   RUN REMARKS: springerville stack setup
   IMPACTOR TYPE:
RAPC 3 4 5 7 9 11
   WATER VAPOR
                        20.00X
                        CO 0.00%
    CO2 12.00%
    οż
          7.00%
        0.00X
                          CN4 0.00%
    H7
   SUBSTRATE MATERIAL: F
   GAS METER VOL
                          0.000 cf
                        0.00 LN. HG. (0 for calc. from theory)
0.00 (MCNES H20
   IMPACTOR DELTA P
   ORIFICE DELTA P
                       0.5 INCHES H20
   STACK PRESSURE
BARCHETRIC PRES 29.57 INCHES 133 DEGREES F
                        29.57 INCHES NG
                      95 DEGREES F
160 DEGREES F
   METER TEMP
   IMPACTOR TEMP
                        1.00 NINUTES
32.00 PRET/SEC
   SAMPLE TIME
   AVG GAS VEL
ORI P WAT PBAR
                          0.00 INCHES HG
                       0.193 INCHES
0.000 INCHES
   ND2ZLE DIA
   PITOT delta P
WATER VOLUME
                       0.0 00
                      1.0000
   METER FACTOR
            RESULTS
ACTUAL FLOW RATE
                            D.408 CFM
FLOW RATE AT STANDARD CONDITIONS
                                         0.275 CFM
                        100.002 X
PERCENT ISOKJMETIC
VISCOSITY 182.3E-06 GN/CH-SEC
CALCULATED IMPACTOR DELTA P = 1.52 IN. HG
```

STAGE	CUSEN.	DSD (CLAS AERO	OSO	INLET	RE. MO.	V*050 UN-6/5	NO. JETS	JET DIA.
1	1.017	10,145	10.229	29.6068	1070	14.7	1	1.2700
ż	1.036	4.992	5.081	29.6068	447	17.2	12	0.2438
3	1.065	2.762	2.850	29.6038	184	12.1	90	0.0790
4	1.110	1.638	1.725	29.5993	234	14.1	110	0.0508
5	1.212	0.850	0.936	29.5813	347	16.1	110	0.0343
6	1.400	0.460	0.545	29.4923	476	15.7	165	0.0262
7	1.781	0.251	0.335	29.1975	892	16.2	56	0.0262

STAGE OUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

IMPACTOR D50 EXPLORATION PROGRAM, VERSION 10

INPUT DATA

```
PART. DIAMETER CLASSICAL AERODYMANIC BATE OF TEST: 8/27/93
TIME OF TEST: 7EST DESIG.: DEP
TEST TYPE OUTLET
TEST TYPE OUTLET
RUM HUMBER: O-FILE NAME:ToppRO.OT
RUM REMARKS: ESP Outlet setup
IMPACTOR TYPE:
RAPC 3 4 5 7 9 11
```

WATER	VAPOR		1.00	X
C02	12,00x	CC)	O.OOX
02	7.00%	N/2	? ?	51.00X
#2	0.00%		CH4	0.00%
SUBSTI	RATE MAT	ERIAL:	F	

GAS METER VOL	0.000 cf
IMPACTOR DELTA P	0.00 MM. NG. (O for calc. from theory)
ORIFICE DELTA P	0.19 INCHES H20
STACK PRESSURE	6.0 INCHES #20
BAROMETRIC PRES	29.57 INCHES NG
STACK TEMP	300 begrees F
HETER TEMP	100 DEGREES F
IMPACTOR TEMP	300 DEGREES F
SMPLE TIME	1,00 MINUTES
AVO GAS VEL	62.00 FEET/SEC
ORT P WRT PBAR	0.00 TACHES AG
MOSSIE DIY	0.135 INCHES
PITOT delta P	0.000 INCHES
MATER VOLUME	0,0 CE
NETER FACTOR	1.0000

RESULTS

ACTUAL FLOW RATE 0.370 CFM
FLOW RATE AT STANDARD CONDITIONS 0.237 CFM
FLOW RATE AT STANDARD CONDITIONS 0.237 CFM
FLOW RATE AT STANDARD CONDITIONS 0.237 CFM
FLOW RATE AT STANDARD CONTINUES 0.257 CFM VIBCOSITY 222.2E-06 CM/CM-SEC CALCULATED IMPACTOR DELTA P = 1.05 IM. 4G

STAGE	CUMM.	050	050	INLET	RE.	V*050	NO.	JET DIA.
	CORR.	(CLAS AERO)(IMP AE	NO) PRES.	NO.	UH-11/5	JE78	OH.
1	1.025	9.386	9,502	30.0112	667	12.9	1	1.2700
Ź	1.040	5.806	5.921	30.0112	290	18.1	12	0.2438
3	1.067	3.495	3.609	30,0091	119	13.8	90	0.0790
4	1.109	2.145	2.258	30.0058	152	16.8	110	0.0508
5	1.209	1.120	1.231	29.9932	225	19.2	110	0.0343
ā	1.405	0.589	0.699	29.9313	30B	18.2	105	0.0262
7	1.830		0.415	29.7268	576	17.9	56	0.0262

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

Test Name:	<u> </u>
Sample Location:	A) Nito

Sept. T.R. 9/3/5.3

				4	Calibration	n Check	·	5	tack Ans	lyeis	
Date	Operator	Time	Zero (/)	Cxy	Reading	Carbon Source	Dioxide Reading	Zero (/)	o _z	CQ ⁵	Comments
9/1/50	1072	1500							6.2	125	12.2
	}	<u> </u>	<u> </u>						62	12.5	12.2
									6. 4	12.5	li .
9/3/53		1833		:					<i>د.</i> ،ک	138	Smck.
									6.4	125	[
ļ					:				64	12.5	
										į	
									_		

G-65

Test Name: 14101 11115 - 0540-1115

Sample Location: Smith Rig - Striple Set Commels

all Spagie Librar 9/3/23

, ,,,,,					Calibratio	n Check	:	s:	tack Ana	lyels	[]
Date	Operator	Time	2ero (/)	Oxy Source	gen Reading	Carbon Source	Dioxide Reading	Zero (/)	0,	co²	Comments
9/3/55	4072	/55C	55.00	5.64	5.0	15.2	157.1	225	- زيم	13.5	HILLY MEBES
	<u> </u>			5.04	د≎و	1572	15.2		5.5	13.4	6540-1115
	}			5.04	5.0	15.2	15.1		5.5	13.4	<u> </u>
											[]
•		1625						540	1435.7	13.3	0.1741 # 3" BJP
		j							سي بح	13.2][~~
									5.7	133	
	<i>!</i>						·			·	
	, ,	1745				i		12.0	5.3	13.7	1535-1554
	j		•					<u>}</u>		13. 7	1535-1554
	•								5,4	13.6.	!!

G-86

Talet Acid

Appendix G2 September 4 Tests

HEIMOD 5 FUELD DATA

Plant/Location#7 outlet
Operator Kirby
Date 9-4-43
Test No./Run No. 2 Make
Meler Box ID Nurech #3
Gas Meler Cal Factor
Orifice ID
Orifice Dillip 1.50

Pitol Coefficient, Cp
Nozzle D. Taa
Average Nozzle Din., inches 22
Barometric Pressure, in Ilg 69.40
Ambient Temp., deg. F 85°
Assumed Moisture, % 10.0
Filer D
Stack Pressure, in 1120 75

ist Miller: Leak Rate, cfm, Pretest <u>:00</u>	3
izakrate, cfm, Post-test .0 2nd Filter (if used):	
leak Role, cfm, Prelest leaknale, cfm, Post-lest	 -

GAS	METER	START,	ef:	662.496
	er we	٩	:21	

gas meter end, of <u>780,094</u> End time <u>13:40</u>

Clock	Tra	vese	Sample	Vacuum	Stack	Pilot	Orifice	Meler	Tempera	tures (des	, F)			·
Time		oint <u>mber</u>	Time	in. Ilg	Temp deg F	DP In. 1120	0f1 in. (120	Vol cí	Probe	Filter	Sorts.	lmp. Oullet	DGM in	DCM aut
	匚			<u> </u>				662.496			ļ. <u>-</u>			<u> </u>
م عد	34	1	12	2.0	317	<u>ک</u> ھا۔	.71	(468.3	279	aus		66	94	91
		2	<i>2</i> 4	2.1	לונ	.75	.82	6743	309	<i>Q</i> 54		53	98	୍ୟ ଥ
		3	31.	2.\	316	.75	Q	680.4	305	248		52	100_	93
		4	Ч \$	2.0	31b	1.10	1.20	₆₈ ₹.Φ1	85J	249		<i>5</i> 5	102	95
	۵	1	12 60	2.5	<u>کاح</u>	7.00	1.09	684.8 <u>.</u>	<u>عاما 2</u>	248		62	104	98
		2	2 ∀ 12 .	<u>25</u>	314	1.00	1.09	701.7	2)0	ગ્રુક્ય		55	106	99
		G	D6 34	25	33	1.00	1:09	708.6	ત્રવા	asa		56	105	99
			Total	Max	Avg.	Avg sqrt	Avg.	Total	Avg.	ÁVØ.	Max	Max.	Avg.	Avg.
		•	!		313	0,835	0,77	ļ i ⊧	l i			i	 	l ヘノ

G-68

100.7

	5 Field Da							كأمطيم				Operator	Kirby _
Clock Time	Point	Sample Time	Vacuum In. Hg	Temp	Pllot DP	Onitice DH	Meter Vol		tures (deg		lmp.	DGM	DGM
	Number			deg, F	in. H20	in. H20	_ લ	Probe	Filter	Sorts.	Outlet	in	out
	4,4	48 24	2.5	313	95	1.03	715.290	249	дчэ		56	102	98
	C_ 1	12	2.0	32	.50	.54	720.3	271	250		66	98	96
	2	ρŶϤ	2.0	311	-55	凝	725.5	308	254		w	994	96
<u></u>	3	3 Jo	21	312	.60	کیا.	730.9	2011	249		54	100	96
	4	પુર્દ	a. \	312	.65	.71	736.678	252	248		5 3	103	97
:	41	13	2,0	311	.W	.65	742.1	274	250		57	103	99
<u> </u>	J	វុ	2.0	311	.60	.65	747.7	307	₂ ऽप		49	105	100
	_3	36	2.0	3//	.55	Col.	752.9	285	aus		51	106	101
	, ч	48	2.0	311	.50	.54	757.920	<i>a</i> 51	љ <u>п</u>		51	107	102
	<u> ទេរ</u>	ıg	2.5	2/9	. าร์	£8,	数 ?	265	252		60	10)	104
	ચ	37	2.3	312	יי.	.76	770.0	307	as 4		SO	110	JUS
ļ 1	3	ملات	2.0	312	.50	. 54	775.O	289	247		49	108	104
	ч	чř	20	3 15	.50	.54	780.044	251	248		52	106	103
	-)							

Pitot hat 1@ + 420 - 6.6 " Had

Final leak & 5 "Hg.

G-69

TRAIN OPERATION	7 Out	dp PITOT	dP ORI	do PITOT	180 4b
***********	******	******			
EAS AMALYSIS - 02 :	6.2	0.500	0.54	1.400	1,52
CO2 :	12,8	0.550	0.60	1,450	1,58
#20 t	10,0	0.600	0,65	1.500	1.63
AND PRESS, In Hg :	29,40	0.650	0.71	1,550	1.69
STACK dP, in R20 :	7.5	0,700	0.76	1,600	1.74
Enter Gas vel., fps		0.750	0.82	1.650	1.80
or AVG SOR ROOT d :	0.79	0.800	0.87	1.700	1.85
MENIMUM PETOT OP :	0,50	0.850	0.93	1.750	3.90
de increvent :	0.050	0.900	0.98	1.800	1,96
		. 0.950	1,43	1,850	2.01
STACK CAS TEMP, 9 :	312	1.000	1.09	1.900	2,07
GAS NETER TEMP, F :	67	t.050	1.14	1.950	2.12
·		1.100	1.20	2.000	2.18
PITOT CONSTANT #	0.82	1.150	1.25	2.050	2.23
OREFICE CONSTANT :	1.89	1,200	1,31	2.100	2,29
Nutech 3		1,250	1.36	2.150	2.34
MOZZLE DIA, in :	0,202	1,300	1,41	2.200	2.39
SYSTEM FLOW, acfm :	0,695	1.350	1.47	2.250	2.45
do:	0.63				
FLOW, setm	0.4203				
Terget volume	100	100.9	predicted	vol.	
Minutes to Vol.	237,94		nozzle 122	:	
hours to val.	3.9657				
Ma. of points;	20	· •	ports X	4 points/po	rt
Read Min./point	11,897	9/4/93 1	Inst 7 Dut	let metals	train ope
Use Minutes/point	12				

705

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

	7 3 4 7 5		
Calculations & Report Reviewed By		Report Da	to
• • •			
FILTERS USED	 	FYELO	HES
	_	lsed ts/No}	Prepared Container (No.)
Filter No. 30145	10 µ		· · · · · · · · · · · · · · · · · · ·
	5 μ <u></u>		
Rorbent Trap Ho	2.0 μ		<u> </u>
Consienser No.	0.5 <u>k</u>	 	-
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•
MPINGER SOLUTIONS:		nel	Çain
first _		<u>4.7</u> 9	(79.9
econd		<u>909</u> ,	
Mird	427.0 9 <u>4</u>	27.2. •	2.2
OUT THE STATE OF THE MANAGEMENT -	<u>661-2</u> 4 <u>6</u> 5	5 7 . 47 9	
ifth _	<u> </u>	<u>74.6</u> 9	***************************************
fath -	·	04,9 g	<u> </u>
eventh		9	
TLICA_SEL_MELGHTS;	Initial		Final
	824.2	·	849.6 2
		0	
Tetals		a	
			to Zo

DRY MOLECUL	AR WEIGHT	DETERMINATIO	I
-------------	-----------	--------------	---

IN CAR GAS

MANT BALLY STEA PLANT	COMENTS:		a.
BASE 9/4/53 TEST NO 92		ω_{-}	14.9-15.2-15.5
SAMPLING TIME (21 Ar DL OCID / 0.20			111 - 514
SAMPLUG LOCATION CAT CATALOGUE BAS SAMPLE TYPE (BAG, INTEGRATES, CONTENUOUS) BAS		C.	4.94-5.04-5.14
AMALYTICAL METHOD ORSA 7	•		t1%
AMBLENT TERMERATURE 75			
OPERATOR LUCE 14.6 14.4 16.4 16.4 16.4 16.4 16.4 16.4			

RUN		i		1		3	AVERAGE		MOLECULAR HEIGHT OF
GAI	ACTUAL AEADING	net	ACTUAL READING	MET	ACTUAL READING	AL NET INVEST	NET	MULTIPLIER	STACK GASIONY BASISI Mg H h wite
coş	15.2	15.2	15.2	15.2	15.2	15.2	15.2	44/808	
O ZUNET 27 ACTUAL OZ MEANNIG MINUT ACTUAL COZ MEANNIG)	203	5.1	20.3	5.1	20 3	51	5./	Right	
COINET IS ACTUAL, CO REASURE MINIS ACTUAL OF REASURES							,	29/104	
Mainet is the minus Actual co reaching								29-780	

TOTAL

GUARDIAN SYSTEMS

· DRY NOLECULAR WEIGHT

3000

<i>,</i>	205/698-6647
PLANT BALLLY Stem Stimt	D. INLEY METALS UNIT 8
8416 9/4/9 7 TE \$7 NO &	
SAMPLING TIME (11 to ELOCH) 0 904 - 1/05	PORTS 1-5
SAMPLING LOCATION 1000 1000 1000 1000 1000 1000 1000 10	rok's ' w
SAMPLE FYPE IRAG, INTEGRATER, CONTURIOUS BOTH (AND AND TOTAL)	0904 - 1105
AMALYTICAL METHOD	1-1-4
AMMENA DEMPERATURA 75	SAMPLED KILL HAR
arenales <u>L. 72</u>	DATE 1/7/ 100 TIME BY: UTU MAGE
ADEAS A SAM SUSCESSO 2. K - 15. 4 L	•

RUN	ACTUAL,	NET	ACTUAL.	HET	ACTUAL	MET	AVERAGE HET VOLUME	MULTIFLIER	MOLECULAN REIGHT OF STACH GASIONY BASIO; Mar In moin
GAS	NEVOINE		READING	""	AEABING		FOLUME		
Cos	132	13.9	14.6	14,0	14.0	14.0	13,97	16/100	6.15
Ozmet is actual of nearing minima actual co _t reading)	19.2	5,7	19.2	5,72	19.1	5./	57.2	R ₄₀₀	1.66
COMET II ACTUAL CO READING MINUS ACTUAL OF READINGS						,		27/106	
National or beyond							80.83	# _{TM}	2763
								TOTAL	7. U.S.

G-73

· DRY NOLECULAR WEIGHT -

P.O. BOX 190 LEEDS, ALABAMA 35094 205/689-6647

PRANT BALLY STEET 12 CON- 1-1 CON-T	BANPLE # 7 Outlat Motals Tigin
SAMPLING TIME (N & CLOCK) 9 2/	PARAMETERS:
SAMPLE TYPE (DAG, INSEGRATED, CONTINUOUS) IN-TENTIFIC BY- AMALYTICAL METHOD OLSAT	Run #2
	DATE 9-4-93 TIME: BY:
DRSAF LEAK CHECKED 18.6 15.4	

RUH		1		1	,	J	AVERAGE		MOLECURAN BEIGHT OF
GAS	ACTUAL AEAOING	HET	ACTUAL READING	NET	ACTUAL READING	MET	AOTAME	MULTIPLIER	STACK GAS (ORY BASIS) Mg. R. D. anis
COZ	12.6	124	12.6	/2. ų	12.6	12.4	12.60	44/100	5.544
OZINET IS ACTUAL OZ MEADING WINES ACTUAL COZ MEADING)	19.4	68	13.4	6.8	19.4	6.5	G. F :	32-q16	2.176
COINET IS ACTUM, ON MEANING WHUS ACTUM. Of READING								29/2005	
PSUMER IS 100 MINUS ACTUAL CO BEAGINGS							F: 6	31-186 SEL-RE	12.568
								TOTAL =	فمدر

Mary 30.50

· DRY MOLECULAR WEIGHT DEFERMINATION

MINI BALLY Steen- 1: Comt	COMMENTS:
OATE 2/4/52 TE 11 NO 2	
SAMPLING FINE (21 to CLOCK) CS-4/-1460	
SAMPLING LOCATION # 8 UNIT LOCAL METERS TOREN SAMPLE TYPE HAM, INTEGRATED, CONTINUOUS INTEGRATED RES	
AMALYTICAL DE INOD CASA 7	,
AMBIENT TEMPERATURE 75	
OPERATOR Lo72-	
ORSAF LEAK CHECKED 15.4 - 18.2	

I	1	ł	*		1	AVERAGE	1	MOLECULAR MEIGHT OF
ACTUAL READING	HET	ACTUAL REABING	MET	ACTUAL MEADING	MÉT	NET YOU.WWE	MALTIPLIEN	STACK GASIORY BASIS
12.5			124	12.5	12.5	12.8	10,00	5,652
192	6.4	15.2	6.4	15.2.	6.4	6.4"	H-100	2 (48.
							29/164	
						80.8	25 '(10)	22.624
	12.5	12.7 /2 r	PEADING TEI REABING 12.5 12.5 12.5	PEADING TEL REABING TEL 12.F 12.F	READING TEL REABING THE REABING	READING TEL REABING TEL 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	RETURNS HET READING HET VOLUME 12.5 125 125 125 125 125 12.5 12.5	ACTUAL READING NET ACTUAL READING NET VOLUME MILTIPLIEN 12.8 128 12.5 12.5 12.5 12.5 12.5 12.6 14.100 15.2 6.4 15.2 6.4 6.4 6.4 18.100 28/100

TOTAL

30,304

GUARDIAN SYSTEMS INC

· DRY MOLECULAR WEIGHT DETERMNATION

MANS BAILLY STEEN FLAT	COMMENS.
MIN 4/4/79 TEST NO Z	•
SAMPLINE THRE (18 in CLOCK) 07. 1 - 15 2)	
SAMPLING LOCATION STOCK METOLS IRANS	•
SAMPLE TIPE (DAG, MTEGRAFES, CONTINUOUS) /NRVATES BOT	
AMALYTICAL DETHOD CONST	•
AMBIGNET FEMPERATURE 75	
OPERATOR	
DASAT LEAK CHECKED 16,4 17.2	

	•	·	*	<u>. </u>	1	AVERAGE		WOLECULAR VEIGHT OF
GAS ACTUAL READING	MI	ACTUAL READING	MET	ACTUM.	MET	MET	MULTIPLIER	SFACK GAS (ONY BASIS) Mg. IS IS and S
12.5	12.5	12.8	125	125	12 r	127	16/100	5.632
15:Y	6.6	15. ¥	6.6	15.4	6.6	6.6	12- <u>198</u>	2.//2
							25/100	
						Si.6	28- ₁₀₄	22,160
	PEADING 12.5		READING READING	12.8 12.8 12.8 12.8	READING READING READING		READING NET READING NET VOLUME 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	ACTUAL READING NET READING NET WILLIAME NULTUPLIER 12.8

TOTAL 30312

* DRY MOLECULAR WEIGHT DETERMINATION

nus Bailly Stew Mont	CÓMMEN (3:
ALLE S/4/57 TEST NO B HEIGH C	instant former Lead
SAMPLING LOCATION JAILOTES ACIO FORI - PLE 2 3 44 CM	BAY - PATA DIE, MET
SAMPLE CYPE CARE, CATEGORATED, COMIT MUNUTA	Super the Fix
ANALYTICAL METHOD	
OPERATOR	
ORSAT LEAK CHECKED 19.2	

RUM	1	1		1	Ţ	1	AVERAGE		MOLECULAR DEIGHT OF
GAS	ACTUAL NET	NET	ACTUAL READING	HET	ACTUAL READING	HET	AOTANE	AUA TIPA IÉM	STACH GAS (BAY BASIS) Mg. M. m-mile
CO1	14.3	14.5	14.3	14.3	14.3	14.3	14.3	44/100	6.292.
OZMET IS ACTUAL OZ MEAQUIS MINUS ACTUAL COZ READING)	19.2	4.9	18. L	4.5	19. L	4.9	4.5	11-916	1.568
COMET IS ACTUAL. CO READING MINIST ACTUAL. OF READINGS						,		29/146	
VSTATEL IS 100 MURA							Fe j-	29 1100	22.624
			·			•		TOTAL	30,464

· DAY MOLECULAR WEIGHT O

Guardian Systems

P.O. BOX 180 LEEDS, ALABAMA 35094 205/699-8647

PLANT BAILLY STEAM FLANT BATE 914/53 TEST NO.	, a	PARAMETERS:
SAMPLING FINE (24 to CLOCH) 1524-1610 LOUPLING LOCATION #7 WILE T ALLE TRACE LANGLE TYPE MAG, INTEGRATED, CONTINUOUS) LATER AND BOS AMALYSICAL METHOD ELASAT	•	Ru Tol Acids
AMERIT TENDERATORE 73 OPERATOR LEAK CHECKED 20.0 11.0		DATE 1-4-93 TIME INTO BY:

]	•	l	1	·	1	AVERAGE	MOLECINA	MOLECULAR REAGNE OF
ACTUAL READING	MET	ACTUAL READING	HÉT	ACTUAL READING	ACTUAL HET HET		MULTIFLIER	SCACH GAS (DAY BASIS) Mg. & M 4414
12.4	/2 4	12.4	124	12. ¥	i /2 4	12.4	14/100	5.45%
15.6	7.2	يو .5/	プと	بي .75	7.2	7.2	12-186	2.2.4
					,		39/10 6	
						50. y	31-100	22 5/2
	READING	72. 4 /2. 4	12.4 12.4 12.4	READING TET READING TET	READING TET READING TET READING	READING TEST READI	READING MET READING MET READING MET VOLUME 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	ACTUAL READING HET ACTUAL READING HET WOLLINGE MULTIPLIER 17.4 124 12.4 12.4 12.4 12.4 12.4 12.4 12.

TOTAL 30,272

G-78

GUARDIAN SYSTEM

	Ū
	r
	t
	J
•	ì
1	۵
	L
1	₹
1	р
1	6
4	e
•	
1	ή
1	IJ
•	٠
1	Ĥ
-	1
•	
ı	Į
7	ř
-	3

PLANT BACK STE-PLONT	COMMENTS:
941E 9/4/9/3 TE 17 NO	
SAMPLING TIME (#4 & CLOCK) 1605 - 1700	 .
SAMPLING LOCASION # 8-007/8#	· · ·
SAMPLE TYPE IRAO, INTEGRATED, CONTINUOUS) [NE: 10056]	
AMALYTICAL METHOD	<u> </u>
AMOIENT TEMPERATURE7)	<u></u>
APERATOR Z.TV	
ORSAT LEAK CHECKED 11.44 18.6"	

AUN	Ī	•		1	ļ .	,	AVERAGE		MOLECULAR TEACHT OF
GAS	ACTUAL READING	het	ACTUAL READING	HET	ACTUAL READING	MÉT	AOTANE	MULTIPLIER	ETACK GALJORY BARISI Mg M D mide
COŽ	17.7	12.8	12.5	12.5	pr	125	12.5	H-180	5,612
Ozmet is actual oz Rearing minus actual Coz rearings	15.4	7.4	15.4	7.4	15 y	7. /	7.4 .	12/100	2.365
COMET II ACTUAL CO READING WHUS ACTUAL OF READING								29/166	
NZINET IS 900 MINUS ACTUAL CO READINSP		· · · · · · ·	,				80.6	37 ₇₀₀	22.565
								·····	

TOTAL

30.568

ī

. DRA MOTECATAB MEICHT DELEBRINGLION

PLANS BALLY STL PLANT	COMMENT
ONTE 9/5/97 TEST NO	
SAMPLING FINE AND ELOCH) 1605 - 165)	 .
SAMPLING LOCATION 5700C	<u> </u>
SAMPLE TYPE IDAG, INFEGRATED, CONTINUOUS INTERNAT	
ABMANTICAL METHOD CASA 7	·
AMMERI TERFERATURE 73	
oreanide Lu72	
DRSAT LEAK CHECKED 16.2 15.4	

RUN		ł		1	,	ı	AVERAGE		MOLECULAN NEIGHT OF
GAS	AGTUAL AEADWG	héi	ACTUAL MEADING	NET	ACTUAL READING	HET	NET	AULTIPLEA	STACH GALLORY BASILI Mark & male
Coz	128	128	12.5	128	12.5	125	125	64,000	5.612
OZMET IS ACTUAL OZ REMANS MAUS ACTUAL COZ REMING)	15.6	4.8	19.4	6.6	19.4	6.6	6.67	11-14	2.134
CORRET IS ACTUAL, CO READING MINUS ACTUAL OF READING								25/100	<u> </u>
MZARET W TOO MUNUS ACTUAL CO READING							Si.s3	77 TAN	22.5°F

TOYAL 30, 314

GHARDIAN SYSTEMS

G-80

00110 -

どろうだ

METHOD 5 FIELD DATA

Plant/Location_BAULY Gas Meter Cal Factor Test No./Run Meter Box ID Oritics ID Operator _

<u>6</u>50 (-19.5) ∾ hverage Nozzie Dia, inches Stack Pressure, in 1120 -Ambient Temp. deg. F. Assumed Moisture, % Pilot Coefficient, Cp Barametric Pressure, Pler 6 Notate ID.

teak Inte, ofm, Pretest -000 centuring of Leok Rale, clin, Pretest 4/14 Leokrale, clin, Post–Lest 4/14 2nd Pitter (if used): lst Filter

				•		_					₹			
	'n		ICH	18	8	71	69	69	1/		73	74	W.	_ 、
	૭		DCM	5	B	70	74	74	78		81	\$ 3	Avg.	- !
\$95	±		inp.	Outer	19	2 4	49	μq	bħ		/s	52	Mox	_
GAS METER END. of 5559.895 END TIME 1/48		4		Sart	-	1		ı	1		١	1	hax	_
9 (ONS) :	s)	Temperatures (deg.		Filter	582	280	€02	213	209		217	922	YAG.	
GAS MECTE	Ŋ	Temperat		Probe	250	244	208	802	220				Ave.	_
		Meter		۵	J	008:30h	472.880	8+.927	480.26S	483.770	122 050.484	488.83 228	Total	_
\$ 80Q		Ordige	Ħ	ln. 1120	Ţ	119.	22.	.77	£9°		£6.	.93	Avg.	8.75
IR. et. 469.800		PILO	2	h, 720	١	-83	2%.	0.	3%.		1.25	7.30	Ave sairt	6.478
213	רו	Jan 1	Temp.	3	18 ST ST ST ST ST ST ST ST ST ST ST ST ST	320	\$2.2	343	356		320	337	AVE	341
GAS METER STA Sylpt trail		Vacinim	in Me	?	1	-3.0	-3.5	-40	-4.0356		-4.0 320	·4.5 337	Slax	
		Countle	Time		0	Ø	16	24	32		40	48	Total	
		Twoore	Deferi	Number		1-1	1-2	1-3	4-1		1-2	12		—
		Charle	S Care	2	800	7580			5539	5060	2000			

G-81

(#1) START BNG SALTRE

(٠.					- 1												_
	77	DGM	75	76		76	76	25	77		78	84	78	b#		78	76	_
	Operator 1)	DGM	28	/8		8	83	83	83		85	るく	84	83		18	08	_
		dent	±9	52		25	3 4	95	SS	 	56	26	28	58		SS	58	_
		E 438	4			1		-				/		/	1	/	1	-
1847 Z	7	Temperatures (deg Probe füter	228	226		230	23/	232	233		241	63	239	0+ <i>2</i>		239	237	
	# STAT	Temperat Probe	229	226		222	6/2	222	622	t t	221	220	≱82	230		225	227	
METALS	WET PRIN No METALS # 2	Meter Vol.	CH-764	080.96 7	499.74B	36.00	3011/30	SS.805	C1-215	222-5/9	5/5.390	29.615	523.805	527.500	530.535	530.125	534.745	
といって	NLET PR	Orifice DH In 120	79,	. 7d		76.	.93	3/2.	Ŗ		76.	-89	.76	83.		18.	69.	
H	163 Location	Pitot DP In. 1920	9%.	.95		1.25	1.20	8,	ô		1.25	1.15	86.	29.		1.05	, 89	
	9/4/63	'Slack Temp deg. F	345	352		328	344	358	2%3		ist.	350	3%2	362		318	356	
	Field Data Continued Date 9/4/62	Vacuum in. Hg	-4.0	5.4-		-4.5	57	5.0	ņ		1.50	-50	. S.o	2.4-		-50	·	
Ŋ	la Conlin	auri) aldusS	56	79		2 <i>t</i>	ಶಿ	88	96		104	112	02/	86)		136	144	
ژ ا	5 Field Da	Travese Point Number	2-3	4-2		3-1	3-5	3-3	34		1-4	2-4	4-3	4-4		5-1	2-5	
3.00	Method 5	Clock	9760	1260	835	\$E/so	-	2500	1000	100	0/0/				1043			
-											G-82	2						

27

#2 Maves by shrifts hinds to Poccon defining Pens

G-82

NETRUS DAYZ	
N WY	
Ч	' '
2 2 41	

Operator WIT		DGM	3%	77		77	77	2%	77					
Operator		SG E	å	š		8	28	18	\$3					
		lmp. Outlet	65	9		19	09	29	(A)				l	
	E	South	1	/										
2 - 2	mes (deg	Filter	238	238		5#2	247	239	239					
7786	Temperatures (deg. F)	Probe	123	230		232	235	22 H	227					
7/4/93 Location INCE Run No. METACS	Meter	g '5	538. 3 00	541.950	S45.32	148.8C	8+5	5× 86	556,350	568.655				
INCET	Office	DH in. H20	.72	ot:		,s.ç	18.		,64					
Location	Pitot	DP in 1120	-92	06.		02.	/.os	\$\$.	. 32					
2/4/63	Stack	Temp deg. F	348	351		3/9	72E	148	347					
ued Date	Vacuum	tn. Hg	0.5-	9.5-	j	-5.0	-5.0	٥,٤٠	5.0				 	
ta Contin	Sample	Time	251	160		891	176	184	192		ļ			
Method 5 Field Data Continued Date	Davese	_	5-5	4-5		1-9	6-2	6-3	7-9	9745				
Method	Cock	Time				1124	32 .	140	1148	.:				}

TNIGT METALS

MASS TRAIN OPERATION	Inlet 8	dip PITOT	dP ORE	do PLTOT	de one
***************************************			****		*****
GAS AWALYSES - 02 :	5.5	0.500	0.39	1,400	1,08
C02 :	13.4	0,550	0,43	1.450	1.12
H2 0 :	10.0	0.600	0.46	1.500	1.16
AND PRESS, in Mg :	29.45	0.650	0.50	1.550	1.20
STACK dP, in H20 :	-20.0	0.700	0.54	1,600	1.24
Enter Ges vel., fps		0.750	0.58	1,650	1.28
or AVG SOR ROOT d :	1.09	0,800	0.62	1.700	1.32
MINIMUM PITOT dP 2	0.50	9.850	0.66	1.750	1.35
dP INCREMENT :	0.050	0.900	0.70	1.800	1.39
		0.950	0.74	1.850	1.43
STACK GAS TEMP, F 1	335	1.000	0.77	1.900	1.47
BAS HETER TEMP, F :	82	1.050	0.81	1.950	1.51
		1,100	0.85	2,000	1.55
PITOT CONSTANT :	0.81	1.150	9.89	2.050	1.59
ORIFICE CONSTANT :	1.87	1.200	0.93	2.100	1.63
Hutach 4		1.250	0.97	2.150	1.66
HOZZLE DIA, in :	0.192	1.300	1.01	2.200	1.70
STSTEM FLOW, acfm :	0.895	1.350	1.04	2.250	1.74
ф.	1.18			•	
FLOW, acfm	0.5265			-	
farget volume	100	101.1	predicted	vol.	
Hinutes to Vol.	189.95	i	nozzle T39		
hours to yet.	3.1658				
Ho. of points:	24				
Rend Min./point	7.9144	9/4/93 1	inlet mets	ls train op	eration
l Utes/point	8			·	

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

tane South					_	
eapling Location Thick Unit 8			·	Rum Wo		
et up by VLOX / DWS	Pate	<u> 109/24/9</u>	3	Aun Date	09/04/9	<u> </u>
ormanica Multiple Metals	26/ 71					
nalyst Responsible for Recovery 74	_					
stcutacions & Report Reviewed By	· · · · ·			Report Dat	*	
	··· ·					
FILTERS LISED				CYCLO	Æ\$	
			Used (Tes/No)		Prepared Con	
(Lter No. 39134 4014	49	10 -			(Na	•
		_				
orbent Trap No.						
orbent Trap No					-	
ondenser Ho.				_		
		_				
				•		
PUNER SOLUTIONS:	<u>loitial</u>		Final		Gal	_
rst	4.110		764.0			
cond _	5984	-° —	616.3		<u> 17.</u>	
nird _	1421	_ _	463.8			 -
weth _	609.9	- °	607.		2,	-
(fth _	<u> 577.2.</u>	_ 9	<u> 577. a</u>			
ixth _	488.8	_9	<u>490.0</u>	9		<u>2 </u>
eventh		_ 9		g		9
	<u> </u>				a+	
ILICA GEL WEJEHTS:	· - · ·	Initial			F#RBt_	
• ,		795.0	_		4176	g
•		<u> </u>	⁹	<u> </u>	. 87.6.2	
			9			y
otale			\$			9
7419						
					22.59	·
DIRECTS:						1
plan of Silica Sel: = 14 pank						TOTAL
encription of impinger Water:						
				· · ·	··· '- · ·	
	•					
						
	 					
·						

METROD 5 FIELD DATA

	VIDITIOD O LIECO DINTA
Plant/Location # 8 Outlet Operator PNC Date 09/04/93	Pitot Coefficient, Cp Nozzle (D Average Nozzle Dia., Inches
Test No./Run No. # 2 ACIO	Batometric Pressure, in fig
Meter Box ID Gas Meter Cat. Factor	Ambient Temp., deg. F <u> </u>
Orifice ID	Füter ID
Orifice Dife	Stack Pressure, in 1120 777
GAS MICTER START	. nt 759.58 GAS I

1st Filter: Ist Filter.

Leok Rale, cfm. Prelest ______ 10"115,000

Leakrate, cfm. Post-test ______ 2nd Filter (If used): 10"145,000 Leak Rate, clin, Pretest Leakrate, cfm. Post-test

START TIME 1405

GAS METER END. et <u>784.08</u> DND TIME <u>/700</u>

Travese	Sample	Vacuum	Stack	Pilat	Orifice	Meler	Tempera	lures (deg	. F)			
Point	Time	in. Hg	Teinp	DP	DII	Vol.				lmp.	DGM	DGM
<u>Number</u>	<u> </u>	<u> </u>	deg. F	in. 1120	<u>in. 1120</u>	લ	Probe	Filter	Sorb.	Outlet	<u>ín</u>	oul
6-1	z	1.5	3/0	,70	152/	759.98	280	240		63	86	88
6-2	4	1.5	310	. 73	. 60	760,95	240	24 12		63	४८	8 8
6-3	6	2	311	1.1	1,0	761.79	250	243		63	87	89
6-4	8	2	3//	1.5	1.25	762.89	260	242		63	87	८०
		ОИ	\mathcal{T} . α	St	3/1-	764,10		<i>3</i> 3				
5-1	2	1.5	3/2	, 7a	158	764.24	280	245	- 	67	89	90
5-2	4	15	3/3	,70	158	765.09	302	245		65	88	90
5-3	6	1,9	312	,90	75	765.94	310	245	•	63	88	90
	Total	Max	Ave.	Ave sont	Avg.	Total	Ave.	AVE.	y[əx	<u> Max</u>	Avg.	Arg.
!	[[احردا	GAZ	0.81	[l	ı			l	
			023	, , .	U.	÷				1		~
•		:				•					89	5
	Point Number 6-1 6-1 6-3 6-4 5-1	Point Number 6-1 z 6-1 z 6-2 4 6-3 6 6-4 8 5-1 z 5-2 4 5-3 6	Point Number 6-1 z 1.5 6-1 z 1.5 6-2 4 1.5 6-3 6 Z 6-4 8 2 04 5-1 z 1.5 5-2 4 1.5 5-3 6 1.9	Polal Time in 11g Temp deg. F 6-1 z 1.5 310 6-2 4 1.5 310 6-3 6 Z 3// 6-4 8 2 3// 047. 5-1 z 1.5 3/2 5-2 4 1.5 3/3 5-3 6 1.9 3/2	Point Number in 11g Temp DP deg. F in 1120 6-1 z 1.5 310 .70 C-2 4 1.5 310 .73 6-3 6 Z 3// 1.1 6-4 8 2 3// 1.5 5-1 z 1.5 312 .70 5-2 4 1.5 313 .70 Total Max Ave. Ave supt	Point Number In the In	Point Number in 11g Temp DP DII Vol. 120 of deg. F in 1120 in 1120 of	Point Number in 11g Temp DP DII Vol. Probe	Point Number Time In. 11g Temp DP DII In. 1120 Cf Probe Filter 6-1 Z 1.5 310 .70 .52 759.98 280 240 C-2 4 1.5 310 .73 .60 769.95 280 242 6-3 6 Z 3//	Point Number in lig Temp deg. F in 1120 in 1120 of Probe Filter Sorb. 6-1 z 1.5 310 .70 .52 759.98 250 240 6-2 4 1.5 310 .73 .60 769.95 250 242 6-3 6 Z 3// 1.1 1.0 761.79 250 243 6-4 8 2 3// 1.5 1.25 767.89 260 242 5-1 z 1.5 312 .70 .58 764.10 23 5-2 4 1.5 313 .70 .58 765.09 302 245 5-3 6 1.9 312 .90 .75 765.94 310 245 Total Max Avg. Avg. synt Avg. Total Avg. Avg. May	Point Number Time in 11g Temp deg. F in 1120 in 1120 of Probe Filter Sorb. Outlet 6-1 z 1.5 3/0 .70 .54 759.59 250 240 63 6-2 4 1.5 3/0 .73 .60 769.95 250 242 63 6-3 6 2 3// 1.1 1.0 761.79 250 243 63 6-4 8 2 3// 1.5 1.25 762.89 260 242 63 5-1 2 1.5 3/2 .70 .58 764.10 23 5-1 2 1.5 3/3 .70 .58 764.24 280 245 67 5-2 4 1.5 3/3 .70 .58 765.09 302 245 65 5-3 6 1.9 3/2 .90 .75 765.94 3/0 245 63 Total Max Avg. Avg. smt Avg. Total Avg. Avg. Max Max	Point Number Time in 11g Temp deg. F in 1120 bin 1120 cd Probe Filter Sorb. Jump. DGM in 1120 cd Probe Filter Sorb. Jump. DGM

Jock Time	5 Field Da Travese Point Number	Sample Time	Vacuum in. Hg		Pliot DP	Orifice DH In, H2O	Meter Vol.	Tempera Probe	tures (deg		lmp. Outlet	DGM in	DGM out
1622	5-4	8	2,0	3//	1,3	1.08	766.92	3/0	249		61	87	ક્રિક
- ,			<u></u>	out	ל <u>סדל</u>		768.02						
· · · · · · · · · · · · · · · · · · ·	4-1	2	1.8	3/7	,80	167	768.02	294	255	·	66	89	90
	4-2	ef	1.8	3/7	,80	,67	768,95						
	4-3	۶	1.9	3/8	190	175	769.87	3/°	260		64	90	91
	4-4	4	1,9	3/7	180	167	770.82	,	265		65	91	۲/
					<u></u>		771.74						
	3-/	2	1.9	332	.85	,7/	771.78	30z	260		68	91	91
	3-Z	4		332	185	,71			·		_		
	3-3	6	ス。	5380	6 1,1	, ५ ट	77366	320	262		66	91	9/
	3-4	8	2.0	329	,90	ر کر	774.68	320	26/		65	90	91
643		_	c	47	5701	•	775,67		<u> </u>		<u> </u>		
	2-1	2	2.0	336	.85	,7/	775.69	29.4	256		69	90	91
	2-2	¥	2.0	336	185	171	776.66	294	256		69	90	9/
	2.3	6	2.4	343	1,5	1.25	777.61	330	751		68	90	90

G-87

1 age 3 01 3-

				0 <i>9/00</i> Stack			<u>Run No. 🗡</u> Meter		≠ 2 ures (deg	F)		Operator	Phe
Tune	Point Number	Time	in. Hg	Temp deg. F	0P in. H20	DH <u>(n. 1920</u>	Vol ef	Probe	filer		bnp. Quitel	DGM In	DGM out
	2-4	g	2.1	340	1.1	,92	778.77	3 <i>2</i> 0	ح توج		67	90	50
	<u> </u>			6-11 ²	t 80	9	779.82			· .			
 	1-1	2	1,9	337	185	.71	779.8 ₂	289	250		68	85	90
<u> </u>	1-2	4	20	338	, 85	185	780.85	300	249		68	89	90
	1-3	6	716	343			78176	3/6	Z48		68	89	٤a
700	1-4	8	2.2	340	1,2	1,0	782.9 <u>5</u>	780	248		68	89	90
P —					<u></u>		784.08				<u> </u>		
<u> </u>			<u></u>	· -		• •					<u> </u>	ļ	
<u></u>	<u>. </u>				<u></u>						<u> </u>	<u> </u>	ļ <u>.</u>
		i				!			<u> </u>		<u> </u>	:	
<u>-</u>	ļ				<u>-</u>	 _i	<u></u>				<u>-</u> -		
	<u> </u>										<u></u>		
·	ļ			<u>-</u>						. -	<u>-</u> ·	 `	
*****	ļ				*- -							<u></u>	
 	 	 -				-		<u></u>				<u> </u>	

	
FILTERS USED	CTCLOWS Used Prepared Centainer
20 147	(Yes/Ho) (No.)
itter No. <u>30 47</u>	
anticat Tara (la	
terbent Trap He.	2.0 µ
Condenser No.	0.5 μ
<u>,</u>	
PROTOGER SOLUTIONS:	tfel Final Cain
	10.8 6609 20.
	84.7 , 595.3 , 10.
hird <u>4</u>	79.2 482.3 s 3.
ourth	
ifth	
fath	<u></u>
eventh	- s
FALICA GEL VELGITS:	Initialfigs
_	787.5 . 796.6
Totals	9

MASS TRAIN OPERATION 8	Ourt	4 0 P1T0T	dP ORI	ф P1107	dP DRI
				******	*****
EAS AMALYSIS - 02 :	5.7	0.500	0.42	1.400	1.17
co2 :	13.3	0.550	0.46	1.450	1.21
HZO :	10.0	0.600	0.50	1.500	1.25
AMB PRÉSS, In Hg :	29,40	0.650	0.54	1.550	1.29
STACK dP, in H20 :	7.5	0.700	0.56	1.600	1.35
Enter Gas vel., fps		0.750	0,62	1.650	1.37
or AVG SOR ROOT d :	1,01	0.800	0.67	1.700	1.42
HINCHIPP PETOT OF :	0,50	0.850	0.71	1.750	1.46
de (HOREMENT :	0.050	0.900	0.75	1.800	1.50
		0.950	0.79	1.850	1.54
STACK GAS TEMP, F :	320	1.000	0.83	1.900	1.58
GAS HETER TEMP, F :	90	1.050	0.67	1.950	1.62
		1.100	0.92	2.000	1.67
PITOT CONSTANT :	0.81	1.150	0.96	2.050	1.71
ORIFICE CONSTANT :	1.87	1.200	1.00	2.100	1.75
Kutech 1		1.250	1.04	2.150	1.79
WOZZLE DIA, in :	0.190	1.300	1.08	2.200	1,83
SYSTEK FLOW, octob :	0,781	1.350	1.12	72.250	1.87
dp	1.01				
FLOW, sefm 0	.4673				
Target volume	20	22.4 (predicted :	vol.	
	2.803		nozzle 148		
	.7134		•	-	
No. of points:	24				
Read Hin./point 1	,7835	9/4/93 (Duttet 8 m	otalo troin	operatio
t stes/point	2				

8 OUT 9,4 ALID

METHOD 5 FIELD DATA

Plant/location BAILLY STACK
Operator CAH
Date 9-4-93
Test No./Run No. METALS Z
Meter Box ID 71-16
Gas Meter Cal. Factor
Orifice ID
Orifice DHO

Pitat Coefficient, Cp ________ Nozzle ID. SHANK 21 Average Nozzle Din., inches . 255 Barometric Pressure, by Ilg 29.20 Ambient Temp, deg F 70 Assumed Molsture, 7 18 Filler ID

fat Füleç leak Rate, cfm. Pretest of 670 610 2nd Filter (if used): Leak Rate, ofm. Pretest leakrate, cim. Post-test ____

GAS METER START, cf. 282.77 START TRÆ 9:00

Clock	Travese	Sample	Vecuum	Stock	Pilot	Orifice	Meter	Tempera	lures (des	. n			
Time	Point Number	Time	br. Hg	Temp deg. F	DP in. 1120	DII in. 1120	Vol. ef	Probe	Filler	Sorb.	lmp. Outlet	DCM	DGNE
START 0900	PORT-	0	-	118	. 32	. 94	282.17	245	247	`	60	74	72
<u> 5الاہ</u>	1- 1	15	2.6	115	. 3 2	.94	290.64	246	252		49	78	7.3
ج <u>ود وہ</u>		30	2.8	121	. 36	1.06	298.64	253	2 <u>54</u>		49	79	<u>73</u>
0945	2	45	2. B	125	.36	1.06	307.14	239	252		<u>2 کر</u>	80	73
1000	S	60	z. <i>B</i>	125	.36	1.06	315.62	212	253		56	80	74
1015	3	75	2.7	127	, 3Z	. 94	323.41	216	251	 -	57	79	73
1030	3	90	2.7	126	. 32	-94	<u> 331, 25</u>	213	253		57	78	73
		Tolol	1600		Ana said		Shell al		1	Mor	L	410	- Ava
	(Total	Max	la7	0.581	AYR.	Total	Avg.	ΛVg.	Max	Max	Avg.	Ayr.

78.2

10 7 alle

#				72	7.1	13	7.3	74	75	16	76	7,	77	77	77			
Operator	٠ ١	DG 45		7.7	2	79	80	81	18	82	3.5	28	63	83	83			
		Imp. Outlet		57	56	53	54	18	49	51	25	54	25	55	56			-
		Sort									-					<u>-</u>		_
	anes (deg	Filler		254	152	256	452	253	254	254	253	256	254	251	254	•	•	- -
2 5/23011	Temperatures (deg.	Probe		67 -4	211	203	204	422	2 23	425	522	205	20 T	212	212			_
Run No. 174	Meler	Vol.	331.25	339.25	347.25	355.52	363.81	372.21	390.10	393. 15			412.52	120 63	428.70			
	Orifice	DET in. H20	1.00	1.00	1.00	1.06	1.06	1.00	1.00	1.00	.94	1.06	1.06		00.			
	절	DP in H20	, 34	4	34	.36	36	. 34	. 34	, 3.4	!U	.36	.36	34	. 34			
9-4-93 Location	Stack	Temp deg. F		811	911	<u>~</u>	- 30	121	130	(30	130	130	131	132	128			_
ued Date	Vacuum	in. Hg		2.8	28	2.9	6.2	2.9	2.9	2.9	5.9	3.0	3.0	3.0	ъ. О		_	
la Conlin	Seinple	fure		301	130	135	150	165	180	195	210	522	240	255	270			
Method 5 Fred Data Continued Date	Travese	Point Number		2-1	-	2	Ŋ	3	3	2 -1	-	2	t/2	3	3			
Method	Clock	Tune	85.00	1053	8011	£21;	11.38	11.53	1208	£ Z 2 I	12 38	(253	1308	1323	(338			

<u>dethod</u> Jock	5 Pield Da	la Contin					Run No. Met			EA .		Operator	- 1-74
ime	Point Number	Sample Time	Vacuum in. Hg	Stack Temp deg. F	Pilot DP In. H20	Onitice DH In. H20	Meter Vol ef	<u>Tempera</u> Probe	tures (deg Filter	Sort.	lınıp. Outlet	DGM in	DGI out
start 315			2.9	124	.32	. 94	428.70 46	249	z <u>5</u> 8	<u> </u>	62	81	77
<u> 400</u>	3-1	285	2.9	131	.32	. 94	136.56	2.55	257		16	<i>8</i> 3	77
15	12	300	3.0	130	.34_	1.00	144.78	Z58	2 <u>53</u>		46	83	77
430	22	315	3.0	131	. 34	1.00	452.6B	260	254		46	84	76
445	2	330	3.0	130	. 32	. 94	460.76	264	253		47	84	79
500	3	345	3.0	130	. 32	. 94	467.82	259	2 <i>55</i>		48	84	79
575	3	360	3.0	129	- 3 <u>2</u>	. 94	476.51	Z <i>55</i>	253	. <u> </u>	19	84	79
			. <u>. </u>					<u> </u>			 		<u> </u>
								 -				ļ	ļ <u> —</u>
					. — — — .						-		
										_			
													1

HASS TRAIN OPERATION	Stack	dp P1701	dP ORE	dp PITOT	(dP OR)
		+			
CAS ANALYSIS . 02 :	6.4	0.100	0.29	0.460	1.35
CO2 :	12.8	0.120	0.35	0.480	1.41
H2O :	18.0	0.140	9.41	0.500	1.47
AMB PRESS, in Hg :	29.20	0.360	0.47	0.520	1_53
STACK dP, in H2D :	0.7	0.180	0.53	0.540	1.58
Enter Gas vel., fps		0.200	0.59	0.560	1.64
or AVG SOR ROOT d :	0.60	0.228	0.65	0.580	1.70
HIMIMUM PITOT dP :	0.10	0.240	0.70	0.600	1.76
dP INCREMENT :	0.020	0.260	0.76	0.620	1.82
		0,280	0.82	0.640	1.88
STACK GAS TEMP, F :	133	0.300	0.88	0.660	1.94
GAS METER TEMP, F :	80	0.320	0.94	0.680	1.99
		0.340	1.00	0.700	2.05
PITOT CONSTANT :	0.80	0.360	1.06	0.720	2.11
ORTFICE CONSTANT :	1.94	0.380	1.11	0.740	2.17
CAE 71-16		0.400	1.17	0.760	2.23
MOZZLE DIA, in :	0.255	0.420	1.23	0.780	2.29
STSTEM FLOW, acfm :	0.742	0.440	1.29	0.800	2.35
du	0.36				
FLOW, sefin	0.5287				
Target volume	185	790.3	predicted	vol.	
Minutes to Vol.	349.93	-	nozzle TŻ		
hours to val.	5.8322				
No, of points:	12	4			
Read Min./point	29.161	9/3/93	Stack mete	ils train op	ecation
L sutes/point	30	,		•	

STACK METALS

tent Da(IIV		
emoting Location Stack	 	Run #e
et Up By Zuca / a u 2	Dete 09/04/93	Run Date
oments <u>Waltiple Metals</u>	/// / - / - /	
melyst Responsible for Recovery 2		
iculations & Report Reviewed By		Report Date
FULTERS USED	 	CYCLONES
		seci Prepered Container s/No) (No.)
iter No. 3 0.137 36	1 1 5 27	······
rbent frap No.		
Menaer No.	0.5 g	
PINGER SOLUTIONS:		
'51 <u> </u>		<u> 5.4 </u>
cond	569,0 9 596	
-	The second second second second second second second second second second second second second second second s	<u>.4 </u>
<u>-</u>	<u> 583.5</u> , <u>582</u>	
_	66.7 9 66.4	
	<u>475.4</u> s <u>47</u> 7	<u>6.1</u> s
enth _		<u> </u>
JCA GRL WEIGHTS:	Initiai .	Final
	820.7	<u> </u>
		. 9
		10.0.01
tals		. Nex 35.18
		70 TA
MENTS:		
or of Silica Get: /3 P	<u> </u>	<u></u>
eription of Impinger Water:		

METHOD 5 FIELD DATA

Plant/Location BAILLY STACK
Operator _ CAN
Dale 9-4-93
Test No./Run No. Acio 2
Meter Box ID
Gas Meter Cat. Factor
Orifice ID
Orifice DING / 9.5

Pital Coefficient, Cp <u>.80</u>
Nozzle ID. GRANIC &
Average Nozzle Dio., inches . 251
Darometric Pressure. In Ilg 22.20
Ambient, Temp., deg. F
Assumed Moisture, % 189
Filter ID
Stack Pressure, in 1120 85

fol Filter:
Leak Rate, cfm. Pretest 4.01 cfm
Leakrate, clim. Post-test of cfm
2nd Filter (if used):
Leak Rate, crim, Pretest
Leakrate, c/m. Post-test

GAS	METER	START,	cf:_	477.00
STAF	T TREE	160	۔ 'دَد	

gas meter end, et <u>501.88</u> End time <u>1700</u>

Clack	Travese	Sample	Vacuum	Stack	Pilol	Orifice	Meler	Tempera	ures (dea	. F)		_	
Time	Point	Time	in. Hg	Temp	DP for USA	i iii	Vol	Paulia	Pethan		inp.	DGM	DCM
FART.	Number Post -	·		deg. F	in. 1120	in. 1120	<u>cf</u>	Probe	Milter	<u>Sortu</u>	Outlet	<u>in</u>	out
M05	POINT	0		119	. 36	. 99	417.00	241	212		72	76	75
1609	3-1	4	3.1	L20	. 36	.99	479. Z3	247	7 <i>35</i>		66	77	76
1613		B	3.1	120	. 36	. 99	481-46	250	255		63	79	76
1617	3	12	3.0	120	.30	.83	483.35	253	256		62	79	76
1617	<u></u>	— <u></u>											
1521	2 ⊢(16	3.0	153	. 36	. 99	485.47	249	2 <i>5</i> 2	-	61	79	76
25.61	2	20	3.0	125	36	. 99	487.61	248	2 <u>5</u> 2		61	81	76
1629	3	24	2.8	128	. 78	,77	489.51	2 <i>55</i>	254		64	82	76
		Total	Max	Avg.	Avg sopt	Avg.	Total	Avg.	<u> Aya.</u>	llax.	Max.	Avg.	Avg.
				127	0.5771	0.91	 }	i I	ı			 '	 -

G-96

133

7 7

Method Clock	5 Field Da Travese	la Contin Sample	ued Date Vacuum		Lucation :	STACIA Orifice	Run No. Act		tures (deg			Operator	Su-
Time	Point Number	Time	in. Hg	Temp deg F	DP in. H20	DH in. H20	Val. ef	Probe	Filter	-	inų. Outlet	DGM in	DGM out
97ART 1636			3.0	·28	. 30	.83	189.51	737	253		74	79	77
640	1-1	28	3.0	128	. 30	. <i>8</i> 3	191.51	244	2.56		69	81	77
1644	2	32	3.0	132	. 34	. 94	493.59	243	2.56		68	81	77
16 48	3	36	3.0	132	.32	.88	495.71	228	754		66	82	77
52.61	1-1	40	3.0	132	.36	. 99	197. 72	535	7 <i>51</i>		66	<i>B</i> 3	78
1656	2	44	3.0	132	.36	.49	199.88	238	253		66	83	78
70C	3	48	3.0	134	.30	. ∂3	501.88	242	2 <u>55</u>		86	24	79
-			-						· - ···	· · · · · ·			
										····			:

G-97

MASS TRAIN OPERATION Stock	dip PETOT	de ost	dp P1TOT	de ort
***************************************	*******	*****		
EAS ANALYSIS - 02 : 6.4	0.100	0.28	0.460	1.27
CO2 : 12.B	0.120	0.33	0.480	1.32
H20 : 18.0	0.340	0.39	0.500	1.38
AMB PRESS, in Mg : 29.20	0.160	0.44	0.520	1.43
STACK dP, in H20 : 0.7	0,180	0.50	0.540	1.49
Enter Gas vel., fps	0.200	0.55	0.560	1.54
or AVE SOR ROOT d : 0.60	0.220	0.61	0.580	1.60
MINIMUM PETOT dP : 0.10	0.240	0.66	0.600	1.65
dP INCREMENT : 0.020	0.260	0.72	0.620	1.71
	0.250	0.77	0.640	1.76
STACK GAS TEMP, F : 133	0.300	0.63	0.460	1.82
GAS HETER TEMP. F : 80	0.320	0.88	0.680	1.87
·	0.340	0.94	0.700	1.93
PETOT CONSTANT : 0.80	0.360	0,99	0.720	1.98
ORIFICE CONSTANT : 1.94	0.380	1.05	0.740	2.04
CAE 71-16	0.400	1.10	0.760	2.69
10221.E DIA, in : 0.251	0.420	1.16	0.780	2.15
SYSTEM FLOW, actor : 0.719	0.440	1.21	0.800	2.20
do 0.36				
FLOU, sefm 0.5122				
Target volume 20	24.6	predicted	vol.	
Hinutes to Vol. 39.046	1	nozzle T2		
hours to vol. 0.6508				
No. of points: 12				
Read Min./point 3.2538	9/4/93	Stack meta	ls train op	eration
t stee/point 6				

C,TACK A-4 ACID

· · · · · · · · · · · · · · · · · · ·	Run Yo	<u> </u>
Date 9-4-4	2 Run Date	9-4-4.3
		<u></u>
	Aspert Det	·
		
	ere o	* E0
		Prepared Container
(Te	#/Ro)	(No.)
		· - · - · -
0.5 µ		
		
		· - ·· ·
. Iniziat Fi	nat	Gein
		71.9 .
		4.3
	92.3 s	1.3
g	g	
g	g	9
		g
9	9	9
	 	First
_		
. 240.1	8	848.1 NL
	9	9
	⁹	
	g	9
	s	-17AL 8
	10 a	CYCLO Used (Tes/No) 10 a 5 p 2.0 u 1.0 u

BAILLY
Plant/Location WLET UNIT8
Operator WTP/DT/M
Date
Test No./Run No. ACLO = Z
Heter Box ID Nevect 4
Cas Meler Cal. Factor
Orblice ID
Orifice DNG 1.87

METHOD 5 PIELD DATA

Pitot Coefficient, Cp -8/
Nozzte ID. 7-45
Average Nozzie Dia., Inches
Barometric Pressure, In 11g Z2
Ambient Temp., deg. F 29-40
Assumed Moisture, %
Filter 10 <u>- 49 - 143</u>
Stack Pressure. by 1120 - 19 5

Izak Role, cfm. Pretest _____ Leakrate, cfm. Post-test ____

GAS METER START, cf: 443 560 895 START TIME 2403

Clock Travese		lloek	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempera	lures (de	. ក			
Time	Point Number	Thne	in ilg	Temp deg. F	Dr	011 <u>br. (120</u>	Vol.	Probe	Filler		linp. Outlet	BCM In	bGA1 out		
					-85	-63	560-895				<u> </u>				
403	1-1	Z	3.5	Z1 8	.85	-63	560.875	23/	247		80	80	78		
	1-2	14	3.5	<i>329</i>	•92	-69	561.90	226	236	,	6 3	80	78		
	/-3	6		339	1.0	•74	562.86		233	1	63	8/	78		
	1-4	8		3 <i>52</i> .	-98	.72	563.76								
14.11							564.69								
	2-1	10		310	1.1	- 82	564.925	220	247	X	61	<i>8</i> Z	78		
	Z- Z	12		335	1.2	89	565.88	ZZ/	Z 5 7		63	82	79		
		Total	Max	Avg.	Avg sqrt	ATG.	Total	Avg.	Avg.	Max	Max	Avg	Avg.		

827

10,16012

*	ا ب کے 1 <u>5 Pteld</u> <u>D</u> a		and Date	9/4/2		NET	Run No. A	-20	#2			Operator	م کلد
Clock Time	Travese Point	Sample Time	Vacuum in. Hg	Stack Temp	Pilot DP	Ordice DH	Meter Vol.	Tempera	lures (deg	. F)	lmp.	DGM	DGM
	Number 2 -3	14	-3 5	den F 345	in H20	in. H20	ct 566.89	Probe	Filler	Sorb.	Outlet	<u>in</u> 83	out & Ø
	2-4	16	-4.0		.93		567.75	200	266		62	83	80
			7.0		/ 62		568-64		200				
-	3-1	12	4.0	323	120	-89	568 880		261		63	83	80
	Z				1-10	-82		189	281		66	84	30
 L	3	22	74.0	356	198	. 76	570.985		1	1	_	82	81
	4	24.	-4-0	362	•65	-48	571.391	1861	291	1	67		81
_	<u> </u>						572-630	<u></u>			 -		
 	4-1	26	-4.0	332	1.2	· · · · · ·	572-970	<u> </u>			67	85	82
	2	28			1.1		573.870			_	67	85	22
	3	30	-4.0	359			574.84		Z86		66	85	82
	4	32	-40	364	-46		575.185				66	86	82
		-					576.595						
	5 -/	34	-4-5		1-05		36. 110				~		
	5-2	34	-50	335	•90	.61	577.65	200	Z90		66	86	83
	1 !		, ,		· !	,	j [ļ	· I		I I		I

10gx 5 01 5

~g` -	01			-1.6	_ /	メレモナ		ب ۱۰	6				
Method	5 Field Da	la Contin	ued Date	9/4/2	Location	8 1	Run No. A	Z/D #	=			Operator	WJP.
Clock	Travese	Sample	Vacuum	Stack	Pitot	UTHERCE	Metet.	Tempera	<u>lures (deg</u>	. F)			!
Tune	Point	Time	in. Hg	Temp	DP	DH	Vol	١	 		Insp.	DGM	DGM
	Number	_		deg. F	in. H20	in. 1 1 20	G,	Probe	Filter	Sort.	Outjet	<u>jn</u>	out
	5-3	38	-40		-88		578.675		291		65	87	83
	5-4	40	-40	352	-86	-64	57 9,5 60	194	294		66	87	83
		 		-		<u>.</u> .—.	580.47		-		 -	<u> </u>	
	6-1	4-2	-4.0	318	-75	.56	580.750	198	293	-1	66	87	83
	6-2	44			.98		581.690		-				
	6-3	46	-4.0	338	-89/85	·6'3	582-S/S	199	290		66	88	84
	6-4	48	-4.0	346	-80		58 <i>3-39</i> 5			-	66	88	84
	ENT						747-250	wyo	7				·
1503	,						584.2 5 0						
							·			• • • •	<u> </u>		
<u> </u>													
<u> </u>		.	<u></u>	<u> </u>			ii				į		
										_			
<u> </u>													

G-102

JASS TRAIN OPERATION	Inlet 8	de Pltor	dP ORS	dp PLTOT	dP ORI

GAS AMALYSIS - 02 :	5.5	0.500	0.37	1,400	1.04
cos :	13.4	4.550	0.41	1.450	1.08
K20 ±	10.0	0.600	0.45	1.500	1.11
AME PAESS, in Hg :	29.40	0.650	0.48	1.550	1.15
STACK dP, in #20 :	-20.0	0.700	0.52	1.600	1,19
Enter Gas vel., fps		0.750	0.56	1.650	1.22
or AVG SQR ROOT d :	1.09	0_800	0.59	1.700	1.26
MENJAUM PETOT dP :	0.50	0.850	0.63	1.750	1.30
dP INCREMENT :	0.050	0.900	0.67	1,800	1.34
		0.950	0.71	1.650	1.37
STACK GAS TEMP, F :	332	1.000	0.74	1.900	1.41
GAS METER TEMP, F :	80	1.050	0.78	1.950	1.45
		1,109	0,82	2.000	1.48
PITOT CONSTANT :	0.81	1,150	0.85	2.050	1.52
ORIFICE CONSTANT :	1.87	1.200	- 0.89	2.100	1.56
Nutech 4		1.250	0.93	2.150	1.60
ROZZLE DIA, in :	0.190	1.300	0.94	2.200	1.63
SYSTEM FLOW, action :	0.875	1.350	1.00	2.250	1.67
d¢	1.18				
FLON, scfm	0.5161				
Target volume	20	24.8	predicted	vol.	
Winutes to Yol.	38.751		nozzle 143	i	
hours to val.	0.64 5 9				
No. of points:	24				
Read Min./point	1.6146	9/4/93	intet mete	als train op	erstion
Use Minutes/point	2				

Plant Bailly		_	_	
	11.18	Run Ho		
t up By		Run Date	9.4.	4)
ments And Train	er . of			
ulyst Responsible for Recovery 💯		 		
toutations & Report Reviewed By		Report Sa	ite	
-				
FILTERS USED		CYCL		
4		red r/No>	Prepared Conti	
ter No. 10 123				•
chent Trap No.			 · ·	
ndenser No.				
·			. 	
PINGER SOLUTIONS:	Fin	ωį	. Qpin	
rat		و		18.2.
cond	605.0 9 613	و		7.5
ird	478.8 9 480	9 · 8		2.0
rth _	g			
fth	g			
xth		<u></u> g		
venth		•		
TOTAL DESCRIPTION		· ·	Final	
LICA GEL WEIGHTS:				
	<u> </u>	g	x)91.3	hit
		_ s		
		_ s		
tals				
tals		- - 		

Operator Zuc

Orifice (Mile

Orifice ID

Plant/location Bailly DUT

Date <u>09/04/93</u>
Test No./Run No. #2 Metals
Weler Dox ID <u>Futack #/</u>
Gas Neter Cat Factor_____

METHOD 5 FIELD DATA

4	
-	Pilot Coefficient, Cp
	Nozzle D. T40
	Average Nozzle Dio., Inches
	Batometric Pressure, in Hg
	Ambient Temp., deg P 700
	Assumed Moisture, %
	Filter ID
	Stack Pressure in H20 7 cm4

	Prete	57 F	(1) 2:5	6,50	11 120 1420
m.	Pretest	من	7	o"He	^ -دون م

1st Filter:	4
Leak Rate, cfm. Pretest * 1014	5 200
Leak Rate, cfm, Pretest <u>*</u> 10"4 Leakrate, cfm, Pust-test <u>*</u> 10"4 2 nd Filter (if used): Leak Rate, cfm, Pretest <u></u>	H.
2nd Filter (if used):	,000/
Leak Rate, cfm, Pretest	144
leakmte, cîm. Post-test	

DOTH " LEGK CHE = HORIZ + VENT.

CAS METER START, cd: 603, 44 START TIME 0848 GAS METER END. of 729,66 END TIME 1403

ock	Travese	Sample	Vacuum	Stack	Pilol	Orifice	kieter	Temperal	lures (deg.	F			
me	Point	Thrie	in. Hg	Temp	DP	DII	Vol	•			նոք.	DGM	DGM
	Number	MIN	<u> </u>	deg. F	in 1120	<u>in 1120</u>	<u> </u>	<u>Probe</u>	Fülter	Sortu	Outlet	<u>in</u>	out
641	6-1	10	1.8	310	.8Z	,70	603.44	332	248		54	72	72
	6-2	20	1.8	310	٤٤,	73.	608.07	345	251		51	74	73
	6-3	30	2.0	3//	1.2		612.76	332	250		50	79	75
	6-4	40	3.5	3/0	1/5	129	618,24	270	252		5 3	8/	77
	:			٠,			6.24 .5 2						
946	5-1	10	1. 4	3//	130		624,5 Z	3//	248		54	76	76
[5-2	20	1.9	312	175	165	628.90	320	254		53	79	77
乔	5-3	30	2.1	3//	105	~ ~ ~ .		315	253		54	80	78
L		Tolei	Max	AVg.	Avg sort	Avg.	Total	Avg.	AVg.	Mox.	Max.	Avg.	Avg.
1./	1	ı	,	3a5	1.014	0.90		l	اِ	1		ı	
	me	Point Number 844 6-1 6-2 6-3 6-4	Point Three Number 4111 10 6-2 20 6-3 30 6-4 40 5-1 10 5-2 20	Point Number 410 1.8 6-2 20 1.8 6-3 30 2.0 6-4 40 \frac{2}{2.5} 6-4 40 \frac{2}{2.5} 746 \frac{2}{5}-1 10 1.4 5-2 20 1.9 75-3 30 2.1	me Point Number μ_{ID} in Hg Temp deg. F 844 6-1 10 1.8 310 6-2 20 1.8 310 6-3 30 2.0 311 6-4 40 $\frac{2.5}{2.2}$ 310 $\frac{2.5}{3.2}$ 310 $\frac{2.5}{3.2}$ 310 $\frac{2.5}{3.2}$ 310	me Point Time in Hg Temp DP deg. F in H20 848 6-1 10 1.8 310 .82 6-2 20 1.8 310 .85 6-3 30 2.0 31/ 1.2 6-4 40 312 375 746 5-1 10 1.4 31/ 375 5-2 20 1.9 312 .75 775 30 3.1 31/ 405 Total Max Avg. Avg. sqrt	me Point Number 411 in the table temp of the table of the table of the table of the table of the table of table	The Point Time in the deg F in the in the deg F in the in the deg F in the in the deg F in the in the deg F in the in the deg F in the in the in the deg F in the i	me Point Time in Hg Temp DP DII Vol. Number 4111 10 1.8 310 .82 .70 603.44 332 6-2 20 1.8 310 .85 .73 608.07 345 6-3 30 2.0 311 1.2 1.03 612.76 332 6-4 40 25 3/0 1/5 1/29 618.24 270 946 5-1 10 1.4 31/ 25 624.52 31/ 5-2 20 1.9 312 .75 .65 624.90 320 PT 5-3 30 2.1 31/ 1/25 .75 .65 624.90 320 PT 5-3 30 2.1 31/ 1/25 .75 .75 .75 .75 .75 .75 .75 .75 .75 .7	me Point Number 4111 in the table of Probe Filter but 10 1.8 310 .82 .70 603.44 332 248 6-2 20 1.8 310 .85 .73 608.07 345 257 6-3 30 2.0 31/ 1.2 (.03 612.76 332 250 6-4 40 272 310 1127 1129 (18.24 270 252 6-4 5-7 10 1.4 31/ 129 (18.24 270 252 7465-1 10 1.4 31/ 129 (18.24 270 252 7465-1 10 1.4 31/ 129 (18.24 270 252 7465-1 10 1.4 31/ 129 (18.24 270 252 7465-1 10 1.4 31/ 129 (18.24 270 252) 7465-1 10 1.4 31/ 129 (18.24 270 252) 7465-1 10 1.4 31/ 129 (18.24 270 252)	Point Number HIME Number HIME Number HIME HIME HIME HIME Number HIME HIME HIME Number HIME HIME HIME Number HIME HIME Number HIME HIME Number HIME Numbe	Time Number 41 Number 41 No. 18 Temp DP in 1120 in 1120 cf Probe Filter Sorth Outlet 10 1.8 310 .8 .73 608.07 33 24 34 54 6-2 20 1.8 310 .8 .73 608.07 34 35 250 550 6-3 30 2.0 31 1.2 1.03 612.76 33 250 550 6-4 40 31 31 31 31 31 31 31 3	The Point Number HIN In Its Temp DP deg F in It20 in It20 cd Probe Filter Sort Outlet in Its Its Its Its Its Its Its Its Its Its

78.4

1 age 1 01 3

5 Field Da	la Contin	ued Date	08/04			Run No.	2 M.	ta. 6	<u> </u>		Operator	ZIE.
Point Number	затърне Тъпе	in. Hg	Stack Temp deg. F	PROC DP in. H20	Orance DH in, H20	Apr Apr Merea.	Probe	Filter	- F7	linp. Outlet	DGM in	DGN out
5-4	40	2.2	3/0	1,4	1,2	638.63	250	247	 -	سوسى	76	77
	Change	l Port	:	78 P		644.56				İ		
4-1	10	20	3/5	.90	.77	644.58	290	250		60	77	76
4-2	20	20	3/6	190	.77	649,41	318	246		5-9	78	76
4-3	30	20	315	.97	184	654,21	315	253		59	77	76
¥-¥	40	2.0	315	85	٠73	659.25	756	255		56	72	76
			STOP.	OUT		663.90						
3-1	10	20	330	.95	182	663.90	306	348		59	77	76
3-2	20	۵.٥٠	330	.94	181	668.85	325	254		57	78	76
3-3	30	22	332	1./	,95					60	79	77
3.4	40	20	328	,90	,77	679.13	284	25-6		62	80	78
ou	Τ		- 57			683,98						ļ L
2-1	(0	2.1	<i>33</i> 7	· 68	175	683.98	3/4	245		64	80	79
2.2	zo	2.0	337	185	,73	688.89	335	246		62	80	79
2-3	<u>ን</u> ፬	,	343	.85	,73	693.57	333	254		65	82	80
	1 Travese Point Number 1 1 1 2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Travese Point Number 3-4 40 4-1 10 4-2 20 4-3 30 4-4 40 3-1 10 3-2 20 3-3 30 3-4 40 0u7 2-1 10 2-2 70	Travese Point Time In. Hg Number 3-4 40 2.2 Charge Post 4-1 10 2.0 4-2 20 2.0 4-3 30 2.0 4-4 40 2.0 3-1 10 2.0 3-1 0 2.0 3-2 20 2.0 3-3 30 2.2 3-4 40 2.0 0ut 2-1 0 2.1 2-2 20 2.0	Travese Point Time Time in Hg Fearp dea F 3-4 40 2.2 3/0	Travese Point Number Number	Travese Point Number Time Time in Hg Temp dec F in H20 in H20 5-4 40 2.2 3/0 1.4 1.2 Character Point 4-1 10 2.0 3/5 .90 .77 4-1 10 2.0 3/5 .90 .77 4-3 30 2.0 3/5 .97 .84 4-4 40 2.0 3/5 .85 .73 578. 041 3-1 10 2.0 330 .95 .92 3-2 20 2.0 330 .94 .81 3-3 30 2.2 332 1.1 .95 3-4 40 2.0 328 .90 .77 047 047 2-1 10 2.1 337 .95 .82 2-2 20 2.0 337 .95 .73	Point Number in IIg Fearp dea F in II20 in II20 of in II20 in II20 of in II20 in II20 of in II20 in II20 of in II20 in II20 of in II	Point Number Time in Hg Teap dex F in H20 in H20 cl Probe 5-4 40 2.2 3/0 1.4 1.2 638.63 250 Charlet Port — 578 P — 644.56 4-1 10 2.0 3/5 .90 .77 644.58 290 4-2 20 2.0 3/6 .90 .77 649.41 318 4-3 30 2.0 3/5 .97 .84 654.2/ 315 4-4 40 2.0 3/5 .85 .73 659.25 256 578. 041 663.90 3-1 10 2.0 330 .95 .82 663.90 306 3-2 20 2.0 330 .94 .81 668.85 325 3-3 30 2.2 332 1.1 .95 673.78 335 3.4 40 2.0 328 .90 .77 679.13 284 047 - 578 P — 683.98 2-1 10 2.1 337 .85 .73 688.89 335	Point Number Time in fig Temp DP DH in H20 cl Probe Filter 5-4 40 2.2 3/0 1.4 1.2 658.63 250 247 May 10 20 3/5 .90 .77 644.58 29. 250 4-7 May 10 2.0 3/5 .90 .77 649.41 318 246 4-3 30 2.0 3/6 .90 .77 649.41 318 246 4-3 30 2.0 3/5 .97 .84 654.2/ 3/5 255 255 970. 047 663.90 306 248 3-2 20 2.0 330 .95 .85 .73 659.25 255 255 255 270 2.0 330 .94 .81 668.85 325 254 3-3 30 2.2 332 1.1 .95 673.78 330 262 3.4 40 2.0 328 .90 .77 679.13 284 256 047 - 578 - 683.98 3/6 245 2-1 (0 2.1 337 .95 .95 .73 683.98 3/4 245 2-2 20 2.0 337 .95 .73 683.98 3/4 245 2-2 20 2.0 337 .95 .73 683.98 3/4 245 2-2 20 2.0 337 .95 .73 683.98 3/4 245 2-2 20 2.0 337 .95 .73 683.98 3/4 245	Travese Point Number Time in fig bear in field of the probleman in fig bear in field of the probleman in field of the pro	Point Number Time in lig leap Number Teap De dex F in H20 in H20 of Probe Filter Sorb Outlet Time in H20 in H20 of Probe Filter Sorb Outlet Time outlet Time in H20 in H20 of Probe Filter Sorb Outlet Time outlet	Point Number Time in Hg Temp DP dex F in H20 in H20 cl Probe Filter Sorb Outlet in Simple Post Four — 578 P — 644.58 29.0 247 55 76 Unique Post — 578 P — 644.58 29.0 250 60 77 4-1 (0 2.0 3/5 .90 .77 644.58 29.0 250 60 77 4-2 20 2.0 3/6 .90 .77 649.41 318 246 59 78 4-3 30 2.0 3/5 .97 .84 654.21 315 253 55 77 4-4 40 2.0 3/5 .85 .73 659.25 256 255 56 77 978 .045 .045 .663.90 306 248 59 77 3-1 (0 2.0 330 .95 .82 663.90 306 248 59 77 3-2 20 2.0 330 .95 .81 668.85 325 254 57 78 3-3 30 2.2 332 1.1 .95 673.78 32 262 60 79 3-4 40 2.0 328 .90 .77 679.13 284 256 62 80 0ut — 578 P — 683.98 2-1 (0 2.1 337 .85 .73 683.98 314 245 64 80 2-2 20 2.0 337 185 .73 688.89 335 246 62 80

NOTES PRIPOTS Clogged BLEW OUT

Bul putat 10 10 2 01 3

v <u>Meliod</u>	5 Field Da	<u>la Contin</u>	ued Date	04/04	Location	74 G 047LET	Run No. #	21	Mez	96	<u>.</u>	Operator	RK
Clock Time	Travese Point	Sample Time	Vacuum in Hg	Stack Temp	Pilot DP	Orifice DH	vol.	Tempera	ures (deg	. f)	lmp.	DGM	DGNI
	Number			deg. F	in. H20	in, 1120	લ	Probe	filler	Sorb.	Outlet	in	out
<u> </u>	2-4	40	(8.3)	339	4.5	23	699.43	3∞	245	,	73	82	8/
					.572	ام - ع	707,52						
	-	10	2.0	338	,90	٠27	707.52	274	248		67	81	8/
335	1-2	20	2.0	340	. 85	,73	7/2.41	338	248		67	83	82
	2-3	30	2.2	344	1.4		717.14	342	255		69	84	83
	7-4	40	2.8	348	1,8	1.33	723, 12	250	250		76	86	84
403 4 0 0	At		70	رار_			729,66		<u> </u>				
Ì	Not a] 	
·	2/1												
	2 tz						4						
	2/4	-					_	:					
	ark			_		:			-				
	12/3												
	2 3												
	2/3											<u> </u>	
<u> </u>						 ·							

NOTE o Found Petet melted Seak Mucked System 10" 45= .005" before starting rund 10" 45= .005"

MASS TRAIN OPERATION	8 O ut	do PITOT	dP ORI	do PETOT	. dP ORI
******************	,,		*****		
GAS ANALYSIS . DZ :	5.7	0_500	0.43	1.400	1.20
CO2 :	13.3	0,550	0,47	1,450	1.25
1 OSM	10.0	0.600	0.52	1.500	1.29
AMB PRESS, In Hg :	29.40	0.650	0.56	1.550	1.33
STACK dP, In H2D :	7.5	0.700	0.60	1.600	1.38
Enter Gas vel., fps		0,750	0.65	1.650	1.42
or AVS SOR ROOT d :	1.01	0.800	0.69	1,700	1.46
HINIMAN PITOT &P :	0,50	0,850	0,73	1.750	1.51
de increment :	0.050	0.900	0.77	1.800	1.55
		0.950	0.82	1.850	1,59
STACK GAS TEMP, F :	320	1,000	0.86	1.900	1.63
GAS METER TEMP, F :	85	1.050	0.90	1.950	1.68
		1,100	0.95	2.D0D	1,72
PITOT CONSTANT :	0.81	1.150	0.99	2.050	1.76
ORIFICE CONSTANT :	1.87	1.200	1.03	2.100	1.81
Wytech 1		1.250	1,08	2.150	1.85
MOZZLE DIA, in :	0.192	1.300	1.12	5~500	1.89
SYSTER FLOW, acfm :	0.797	1.350	1,16	2.250	1,94
ф	1.01				
fLON, sofm	0.4771				
Target volume	110	714.5	predicted	vol.	
Minutes to Vol.	230.54		nozzle T40	+	
hours to vol.	3.8423				
No. of points:	24	4			
Rend Bin./paint	9.6058	9/)(/93 (Dutlet 8 n	etels troin	operatio
rutes/point	10	,,			

8 005

THE C
mer
nec
nec
nec
nec
ner
nec
ner.
7 ,
7
7 =
9
5.
s
s

MENTOD 5 FIELD DATA

Plant/Location <u>#70v4le4</u>
Operator Kirby Sanderford
Date 9-493
Test No./Run No. 2 Acids
Meter Dox ID Nuse h #-3
Gas Meter Cal Factor
Orifice ID
Orifice DHS / 23

Pilot Coefficient, Cp <u>-82 </u>
Nozzle ID. T2
Average Nozzle Dia., Inches <u>190</u>
Barometric Pressure, in ilg <u>27.4</u> 0
Amblent Temp., deg. F
Assumed Moisture. % 10.0
Paler ID
Stock Pressure in 1120 7.5

ial Alter
Lenk Rale, cfm. Prelest _000
leakible, clim, Post-lest 200
2nd Filter (if used):
leak Rate, chn. Pretest
leakrate, cint. Post-test

GAS	H	eter	START,	cf:_	780,431	
STAF	Ŧ.	TIME	153		-	

GAS METER END, of <u>805, 744</u> END TIME <u>1640</u> 25,513 cf mx. - 20

k	Travese	Sample	Vacuum	Stock	Pitot	Orlfice	Meler	Tempera	(ures (deg	. f)			
2	Point Number	Thne	in. Hg	Temp deg. F	DC br. 1120	DH <u>ing 1120</u>	cf Vol.	Probe	Fäler	Γ''''	lmp. Outlet	DYM —In	DCM DCM
	<u> </u>		ļ. <u>-</u>				780.231						<u></u> _
	Α,	3	1-8	<u>310</u>	. مع	50	781,51	ارو	235		62	101	иŌ
	Q	ط	1.8	310	<i>Od</i> ,	.5D	782.6	289	عدد		60	110	100
	3	9	18	310	. 6 0	.50	783,9	287	246		56	100	100
	У	ış	15	310	,SD	43	785.017	251	248		55	101	100
	В	15	1.4	310	.હર્ડ	.54	786.2	256	<i>25</i> D		61	101	100
	Q I	18	18	310	.165	.54	787.5	270	251		56	10)	KO
	3	a.	1.5	310	.50	42	788.6	211	355		53	102	lao
		Total	Max	Ayr.	Avg sort	Ave.	Total	λvg.	Ava.	Max.	Max	Avg.	Arg.
	ا د ا			_			Total	AVI.		Max			

G-110

45.3

त । त

Number Nacroun Stack Pitot Oritice Number Three In. High In. High In. High Number Three In. High In. High Number Three In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. High In. High Number In. Hi		Method 5 Fed Data Continued Dates 4-73	da Contin	ued Date		lucation \$	- Jouthers	Inculion to 7 outstar lan No. of Achds	Sp4-3	ļ	1		Operator Date	15.64
1 34 (1.5 3)10 50 42 789,183 240 355 53 (120 1 1 2 1 2 2 3)10 50 42 789,183 240 355 53 (120 1 1 2 1 2 2 3)10 50 42 789,183 240 355 50 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S S S	Thavese Foint	<u>නී</u>	Vacuum in. Ek	Stack Temp	15 Gt	Oritice DH	Mefer Vol	Temperat	nres (deg		din	DGM	DCM
4 34 1.5 310 50 48 781.783 840 355 53 102 2 20 20 311 .80 15 781.0 345 349 555 102 2 30 20 311 .80 15 7824 311 341 35 103 3 3 3 1.5 311 .50 .40 7824 311 341 35 103 3 3 3 1.5 311 .50 .40 784.683 845 341 53 103 3 1 1 34 .15 311 .50 .40 784.683 845 341 53 103 3 1 1 34 .15 311 .50 .40 784.683 845 341 53 103 3 1 1 34 .15 311 .50 .17 784.0 387 345 53 103 3 1 1 34 .15 31 .15 31 .15 31 .10 31 31 31 31 31 31 31 31 31 31 31 31 31		Number			<u>ا</u>	02H uj	्या व	J J	Probe	Filer.	•	Butter	ş	ont
2 30 2.0 31. 36 1.62 30. 345 346 347 55 100 2 30 2.0 31. 380 1.57 72. 42 327 347 55 100 3 32 1.5 31. 380 1.50 72. 42 32. 347 55 100 3 13 1.5 31. 380 1.50 1.42 348 348 341 55 100 3 14 2 1.5 31. 380 1.5 1.7 77. 77. 1.6 343 55 100 3 14 2 1.5 31. 380 1.5 1.5 346 345 346 345 3 14 2 2.1 30 30 30 1.5 30 30 30 30 30 30 30 30 30 30 30 30 30		7	78	1.5	3/10	50	F.	789.783	$\overline{}$	क्ष		53	3	Q
3 33 1.5 310 .80 .60 7924 220 240 53 102 3 33 1.5 31 .50 .40 744.683 845 244 55 103 4 36 .50 .40 744.683 845 244 55 103 4 1 1 34 .41 30 .75 74.1 847 243 53 100 4 1 2 21 311 .85 .71 77 77.1, 285 246 53 103 4 1 40 .21 311 .85 .71 77 77.1, 285 246 53 103 4 1 40 .21 310 .75 .74 .74 .26 236 536 4 1 51 .20 311 .65 .54 801.0 .24 .25 .25 103 5 1 20 313 .15 .54 801.0 .24 .25 .25 103 5 1 20 313 .15 .54 801.0 .24 .25 .25 103 5 1 20 313 .10 .85 .24 .24 .25 .24 .25 .25 .10 .25 5 1 20 313 .10 .25 .24 .25 .24 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25		_ _ J	רב	2.0	σ١κ	.75	ડું.	791, C	_	200		28	102	QDI
3 33 1.5 311 .50 .40 7255 276 247 5.2 108 4 36 1.5 310 .50 .40 724683 245 349 55 100 8 1 1 37 .20 .30 .30 .40 724183 245 349 55 100 8 1 1 37 .20 .31 .30 .75 726.1 242 245 249 8 2 45 .21 .31 .55 .21 .77 .77 .77 .438 246 53 100 8 2 45 .21 .31 .55 .21 .77 .77 .77 .438 246 53 100 8 2 45 .20 .31 .55 .31 .78 .78 .28 .24 .25 .20 8 2 54 .20 .31 .55 .54 .801.7 .27 .25 .25 .10 8 2 54 .20 .31 .65 .54 .801.7 .27 .25 .25 .10 8 2 54 .20 .31 .65 .54 .801.7 .27 .25 .25 .10 8 2 54 .20 .31 .65 .54 .801.7 .27 .25 .27 .10 8 2 54 .20 .31 .55 .54 .803.0 .20 .20 .20 .20 8 2 54 .20 .31 .55 .54 .803.0 .20 .20 .20 .20 8 2 54 .20 .31 .55 .50 .50 .50 .50 .20 8 2 55 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20		8	30	2.0	311	·8	Cd.	Ţ.	A.	CH,		53	101	QJI
1 36 1.5 310 .50 .40 724.683 245 249 53 101 2 1 1 37 . 2.1 31 .90 .75 72.1 347 243 59 100 2 1 12 2.1 31 .90 .75 721.1 387 224 524 2 2 12 311 .85 .71 722.2 324 523 101 2 3 45 .2.1 31 .85 .71 722.2 324 2 45 .2.1 31 .85 .71 222 224 2 51 .2.2 31 .65 .54 801.2 27 251 53 101 2 51 .2.2 31 .65 .54 803.0 244 267 53 101 2 51 .2.2 313 .65 .63 804.3 244 256 53 103 2 52 .2.2 31 .65 .63 804.3 244 256 53 103 2 52 .2.3 31 .65 .63 804.3 244 256 54 103		3	33	1.5	711	B.	3	735	206	ঠ		zs S	8	4
1.1 37. 41 31 310 .75 726.1 343 59 100 2.1 311 39 .75 797.1 38 345 53 101 2.3 45 21 311 .85 .71 779.1 38 346 53 101 5.3 46 21 313 .40 .75 800.1 38 38 101 6.1 20 311 .65 54 801.7 375 35 102 8.1 57 20 311 .65 54 803.0 344 35 53 102 8.4 57 30 30 .75 .63 804.3 344 35 53 103 8.4 57 32 30 .17 805.74 344 35 103 8.4 57 32 30 .17 805.74 34 34 103 8.4 57 32 30 .17 805.74 34 35 103		7	36	1.5	310	0¢'		Z891742		الهلي		E)	Q	86
21 22 31 30 77 77 38 345 35 101 X3 45 21 31 56 21 77 77 38 346 38 34 38 101 X3 46 21 33 50 77 37 38 30 101 38 101 X3 46 21 30		1 1 0	34 .	2.7	K	ರ್ಡಿ		1.96		243		હ	Ø	8
X3 45. 21. 35. 17. 35. 17. 53. 17		χ.	42	. ત	31/	<i>ab</i> :	36			St.		દ્	(33)	H
Xo 440. 27. 343. 540. 350. <t< td=""><th></th><td></td><td></td><td>3.</td><td>311</td><td>8</td><td>ار. اد:</td><td>ļ</td><td>285</td><td>346</td><td></td><td>ß</td><td>101</td><td>26</td></t<>				3.	311	8	ار. اد:	ļ	285	346		ß	101	26
101 52 375 286 7 108 425 31. 115 53 108 8 1 1 2 2 1 3 5 7 1 1 2 2 3 1 1 1 2 2 3 1 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1		×		7.	313	ar ₅	75.		Z	351		53	10/	36
19 57. 20 311 . 65 54 603.0 244 205 57 182 026 4 57 . 64 804.3 0244 2056 59 103 103 103 103 103 103 103 103 103 103		7	6.1	2,0	3/	73	£6.	801.7	295	25%		53	102	26
4 60 J. 30 20 20 00 00 00 00 00 00 00 00 00 00 00		\$ 3	54 ,	2.6	31	10	94	B3.0	264	257		53	101	36
101 HS HES WHO HINS THIN ASH (N. O8c & C) dia		N. W.	57	20	8	Sr.	Ż	.		256		λ,	123	B
		ž	32	<u></u>	38	18b	رم.			SZH		36	101	20
				3	l							•		
										_		_		_

G-111

MASS TRAIN OPERATION	7 Out	dp PITOT	dP ON	dp #1707	de ort

GAS AMALYSIS - OZ :	4,2	0,500	0.42	1.400	1.17
C02 :	12.8	0.550	0.46	1.450	1.21
W20 :	10.0	0.600	0.50	1.500	1.25
JUNG PRESS, In Hg :	29.40	0.650	0.54	1.550	1.29
STACK dP, in H20 :	7.5	0.700	0.58	1.660	1.33
Enter Gas Vol., fps		0.750	0.62	1.650	1.37
or AVG SOR MOOT d :	0.79	0.800	0.67	1,700	1.42
HINIMAN PITOT de :	0.50	0.850	0.71	1,750	1.46
dP JUCKEMENT :	0.050	0.900	0.75	1,800	1.50
		0.950	0.79	1,850	1.54
STACK GAS TEMP, F :	312	1,000	0.83	1,900	1.58
GAS NETER TEMP, F :	75	1.050	0.87	1,950	1.62
•		1.100	0.92	2.000	1.67
PLTOT CONSTANT 1	0.82	1.150	0.96	2,050	1.71
ORIFICE CONSTANT :	1.89	1.200	1.00	2.100	1.75
Mutech 3		1.250	1.04	2.150	1.79
MOZZLE DIA, in :	0.190	1.300	1.08	2.200	1.83
SYSTEM FLOW, Bofm :	0.615	1.350	1.12	2.250	1.87
de	0.63				
-	0.3718				
Target volume	20	22.3	predicted	vol.	
•	53.789	,	nozzle TŻ		
	0.8965				
No. of points:	20		porte X	4 points/po	rŧ
· · · · · · · · · · · · · · · · · · ·	2.6894			let metals	

utes/point

-100T 9.4 ACID

lank		Run ko	
t Up By Dies / h DK	Date <u>9-4</u> -	43 Run Cate	9-4-4)
monts Aud Truin			
lyst Responsible for Recovery Wille 1.	dha	 	
culations & Report Reviewed By	<u></u>	Report Date	·
FILTERS USED		CYCLON	
		Upacj (Yes/No)	Prepared Container (No.)
tzer No. 3Q 148	10 д		
rbent Trap Ro.			
whenser No.			
		-	
			
theer solutions: Initi	al	Final	Gaig
sc <u>6.3</u>	6.8	964.l s	a2.3_
	 •	593.a	9.5
rd <u>47</u>	7.0 0 1	79.O 9	<u>β-</u> υ
	0	g	
<u></u>	g	g	
th	g	D	
enth	+	₽	
ICA GEL WEIGHTS:	Initial		Finel
The est delenis:	1/1(1)41		
	236.4	a 8	744.7
			
			
rals			
	<u>.</u>		<u>1705/3℃</u>
MENTS;			
or of silica Gel: No Kaible C	Changel		
cription of Impinger Water:	7		
	· · · · · · · ·		
			<u> </u>

Appendix G3 September 5 Tests

METHOD 5 FIELD DATA

Plant/Location # 7 Outles
Operator Kirby
Date <u> </u>
Test No./Run No. 3 wests
Meter Box ID Notes # 3
Gas Meter Cat. Factor
Ortfice ID
Orifice OHD 1.25

Pilot Coefficient, Cp
Nozzle ID. T 22
Average Nozzle Dia., Inches 202
Datometric Pressure, in Hg 29.30
Ambient Temp., deg. F _75"
Assumed Moisture, % 10.0
Filter ID
Stock Pressure, in 1120 7-5

1st Filler: Leak Rate, Leaktate, 2nd Filler	cim	Post-test	
Icak Role. Leakrole,	efm.	Pretest	

GAS	METER	START,	ef:	8D6.794
STAI	et time	্	:42	3

GAS METER END. of <u>921,733</u> END TIME <u>13:51</u>

312 .75 311 .75 317 .100 317 .200	in. 1120 .82 .83 .1.09	806.796 812.8 818.8 818.8	265 307 296	Piller 232 253 247	:	68 53 50	85 95	83 85
311 ,75 317 1.00	. 82 . 20.1	812.8 818.8 825.8	307	<i>2</i> 53		5 <u>1</u>	90	85
311 ,75 317 1.00	. 82 . 20.1	518. S 825.8	307	<i>2</i> 53		5 <u>1</u>	90	85
201 1.00	1.09	825.8					1	
			296	<i>2</i> 47		50	93	86
317 Car	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
	/ 1 1	832,284	<i>25</i> 0	252		51	97	89
317	<u> </u>	2 38.5	<i>2</i> 70	<i>8</i> 50		56	95	90
318 .85	.93	845.0	312	<i>2</i> 53		≤3	97	91
318 .65	′،ر. ک	850.6	292	249	•	53	97	91
	nt Avg.	Tolai	Avg.	Ave	Max.	Max	Áyg.	Avg.
	318 165 Ava Ava s	318 .65 .71 Ave Ave sout Ave	318 .65 .71 850.6 Ave. Ave sent Ave. Total	318 .65 .71 850.6 39Q. Ave Ave sout Ave Total Ave	318 1.55 .71 850.6 290 249 Ave Ave still Ave Total Ave Ave	318 .65 .71 850.6 292 249 Ave Ave still Ave Total Ave Ave Max	318 .65 .71 850.6 292 249 53 Ave Ave sout Ave Total Ave Ave Max Max	318 .65 .71 850.6 292 249 53 97 Ave Ave sout Ave Total Ave Ave Max Max Ave

G-116

48.4

Γ		<u> </u>	· - <u>. T</u>	—-	- -	 -	· -		, 1				-	Т	- 1			- ć
61.12	E SCH	ă	F	સ	93	E	E	&	农	8	B	83	8	$\overline{\infty}$	۶			_ o
Operator Kicky	VCM	=	47	95	3	38	8	S	ဍ	8	Š	8	9 <u>8</u>	∑				_ 4
	um T	Outlet	55	53	47	H,	9/2	25	45	45	Lh	2	цJ	7	5		!	
	- 1	SOL SOL								:	:			•				- (
ļ	ap) sain	Piller	23	20	855	2419	245	244	25	<u>بح</u>	SHO	िरु	954	3	574	•		
76.645	Temperatures (deg	F.rolle	Ş	200	310	28.5	%H%	265	310	₩ ₩	SH7	ĘŞ	33					- / - c
_ ₹	£.	5	158,853	S. C. 248	869.2	874.2	او_	F84.4	S.E. C	8751	9the Day		911.8	8.916	931,733			_ c
۱ I	\$ 55 E	120 120 130	نح	(%	نع	15	-S4	Ś					.75		JSU			
Location# 7 out	Pilot OP	11 HZ0	$\vec{\mathcal{S}}$.80	8	50	.50	55	.55	٥٩.	.50	.75	.10 L	50	25			<u> </u>
\$	Stack Temp	<u>.</u>	13	316	ઝુવ	308	30	30	313	314	315	344	314	314				
ala Date	Vacuum in 11g		2,2	2,5	25	20	20	0.g	2.0	23	2.0	2.5	9.5	α.ε	0.0			
a Contin	Sample Time		ر	4	70	36		12		75	学		1		تو			
Alethod 5 Flekt Data Continued Date 25.5	Travese Point	Number	5	۔ ن	۲۵,	٤,	7	1 4	٦	'n	7	1 12	-4	n	5			Γ
Alelbod	Clock Time							- -					•					

1 mg 2 c 1

& TRANK OPERATION	7 Out	ф РІТОТ	dP 081	dp P1107	dP ORI		
***********			*****				
GAS AMALYSIS - 02 :	6.2	0.500	0:54	1,400	1.52		
C02 :	12.8	0.550	0.60	1.450	1.58		
HZO :	10.0	0.600	0.65	1,500	1.63		
AND PRESS, in Hg :	29.30	0,650	0,71	1.550	1.69		
STACK of, in #20 :	7.5	0.700	0.76	1.600	1.74		
Enter Cas vel., fps		0,750	0.82	1.650	1,80	1.45	
ar AVG SOR ROOT of :	0.79	0,800	Q.87	1.700	1,85		
HINIMUN PLTOT OF :	0.50	0.850	0.93	1,750	1.90		
de INICREMENT :	0.050	0.900	0.96	1.800	1.96		
		0.950	1,03	1.850	2.01		
STACK GAS TEMP, F :	312	1.000	1,09	1,900	2.07		
GAS HETER TEMP, F :	. 87	1.050	1.14	1.950	2.12		
		1.100	1.20	2,000	2,18		
PITOT CONSTANT :	0.82	1.150	1.25	2.050	2.23		
CREFICE CONSTANT :	1.89	1,200		2,100	2.29		
Hutech 3		1.250	1.36	2.150	2.34		
	0.202	1.300	1.41	2,200	2.39		
SYSTEM FLOW, action :	0.696	1.350	1.47	2,250	2.45	*·-	
φ	0.63						
fLOV, scfm	0.4195						
Target volume	100	100.7	predicted	vol.			
Minutes to Vol.	238.35		nazzle 72			-	
hours to val.	3.9726			-			
Ho. of points:	20		S porte X	4 points/po	ft		
Read Min./point	11,918		•	tlet metals			_
Use Minutes/point	12						
11111-31-3 F-1111							

700T 9/5/53

Plant Datilly		_
simpling Location Outlet Unil 7		Run Ho
SAT UP BY PLOK DWD	Date 04/05/43	Rum Cate
commence Multiple Metals	· <u>. </u>	······································
Amelyst Responsible for Recovery 🛂	OKIKDIALB	
Calculations & Report Reviewed By		Report Date
		
CIA TERRO ANORES		OVA nuCe
FILTERS USED	Vee	CYCLOHES Prepared Container
20140	(Yes/	
Filter No30140		
Sorbent Trap No		
Condenser No.	a.5	
		
· · · · · · · · · · · · · · · · · · ·		
INPINGER SOLUTIONS:	Fina	:L
First	<u>610 9 8 218</u>	<u> </u>
Second	<u>576.1</u> s <u>5</u> 7	88.3 0 12.2
Third .		27.6 : 0.7
Fourth		4.8 1 1.2
Fifth .		90.4 1 1.9
Sixth _	967.5 9 46	2.8 9 0.3
Seventh _		 ,
		
SILICA GEL METGHTS:	Initial	· final
	000 5	874.2
	<u>844.5</u>	s <u>8/4.~</u>
		- [*]
	•	
Totals		_ 9
		4)170-
	 	
		20574
COMMENTS: 17		
Color of Silica Gel: 14 fold		·
Description of Impinger Water:		
		
· _ · _ · _ · _ · _ · _ · · _ · · _ · · _ · · · _ · · _ ·	 	

METROD 5 FEELD DATA

Plant/Location#7 October
Operator Kirby
Dale 9-5-93
Test No./Run No. #-3 Acads
Heler Box ID Notes #3
Gas Meler Cal. Factor
Orifice ID
Orifice DIED 1.89

Pitot Coefficient, Cp <u>.82</u>
Nozzle D. T 2
Average Nozzle Dia., Inches ./90
Barometrie Pressure, In ilg 22,36
Ambient Temp., deg. F 70'
Assumed Molsture % 10.0
Filler ID
Stante Drawners In 190 7 5

ist filter:
Leak Rale, cim. Pretest <u>.000</u>
Leakmie, cim. Post-test <u>.000</u>
2nd Filter (if used);
Leak Rale, cim. Pretest _____
Leaknale, cim. Post-test ____

GAS METER START, el: <u>421.867</u> START TIME <u>15:29</u> gas meter end, of $\underline{955.254}$ end thee $\underline{-/6:58}$

Clock	Travese	Sample	Vacuum	Stack	PHot	Orifice	Meter	Tempera	tures (dea	. F)			
Time	Point Number	Time	in. Hg	Temp dex F	DP In 1120	DII In, 1120	Vol.	Probe	Füler	Sorb.	Imp. Ouliel	DGM in	LXGAI out
							921.867	<u>. `</u>				<u> </u>	<u></u>
	٤ ١_	ч	21	313	.70	.58	723.5	عاماتك	252		65	76	74
	ચ	8	2.\	314	.7₺	.58	925.2	279	247		54	76	74
	3_	19	2.0	214	1.00	.83	O.D. Q	281	aw	<u> </u>	<u>52</u>	80	75
	4	i de	2.8	314	.95	.79	929,234	219	259	· .	57	81	76
	<u> 4 1</u>	٦	D.O.	312	.55	ط۵.	930.7	273	240		56	79	75
	2	8	2.0	312	.55	.૫6	932.2	298	<i>33</i> 91		52	80	76
	3	B.	2:0	312	.55	.46	933.7	295	247	! !	51	81	76
		Total	Max	Avg.	Avg spil	ATR.	Total	Avg.	Avg.	Max	Max	Avg.	Avg.

G-120

1070 2 01 =

<u>necood</u> Clock	Travese	<u>ta Contin</u> Somple	Vacuum		Pilot	Ortice	Run No. 74-3 Neter		tures (deg	. F)		Operator	Kirby
Time	Point Number	Tune	in. Ifg	Temp deg. F	DP In. H20	DH In. 1120	Vo). ef	Probe	Filter	Sort.	imp. Outlet	DGM in	DGM out
	4	طا	2.0	<u>313</u>	.50	<u>.45</u>	935,252	247	250		51	SI	76
	BI	4	2.5	313	ρþ	.58	936.9	262	250		55	79	76
	2	8	2.5	314	.70	.5%	9386	286	256		<i>5</i> 2	30	76
	3	ı2	2.0	314	.50	.42	940.0	295	256		51	<u>জ্</u> য	76
	4	ال	2.0	313	.50	<u>.42</u>	941.541	257	252		51	୧୦	76
	C 1	4	2.5	314	.75	.62	943,3	267	241		55	78	75
	2	8	35	314	,75	ي م	945.0	280	248		51	79	775
	3	ıλ	21	ŽI4	كا .	·5()	946.6	BAI	246		51	79	75
	. ų	ı	2.0	314	.50	.42	948.046	246	251		57	79	75
	D 1	4	2.8	314	.85	.71	949.9	266	ઝપ૩		SG	77	ブ
	a a	8	סג	314	90	.75	751.8	292	246		52	78	74
	3	12	Q.\	234	.70	58	9535	286	252		51	80	75
	4	16	25	74	પ્	3	955,251	<i>3</i> 47	જિ		52	80	75
							•						
· · · · · ·						-							
						-	_						

Pitot lest / Final lest / 955 285 +963" HaD 5" Hs. 955 285 -@ 6.3" HaD

G-121

		_	
			
	Share Co		
			
. 4 4 4 .			
	Report	t Date	
 			
		TCLONES	
	Used	Prepared Contain	ner
40 .			
	—		
			
		-	
	Final	Gain	
<u>625.0</u> 9	669.8		
<u> </u>	602.7	s <u>5.</u>	<u> </u>
<u>478.8</u> 4	480.3	s <u>f. 5</u>	<u> </u>
9		9	g
	<u> </u>	9	9
	<u> </u>	g	8
g		9	<u> </u>
	<u> </u>	•	
<u>Initial</u>		Final	
can d			apsk '
<u></u>	⁹ _	<u> 9:5 2 - 0</u>	
			s
	_		
	9 _		s
	10 10 2.0 2.0 3.0	Date Df AS O	Date Disciple Date Disciple

				'	
HASS TRAIN OPERATION	7 Out	dp PITOT	qb 061		
15 AHALYSIS - 02 :	6.2	0,500	0.42	1.409	1,17
, coz :	12.8	0.550	0.46	1.450	1.21
#20 :	10.0	0.600	0.50	1.500	1,25
AMB PRESS, in Hg :	29.30	0.650	0.54	1,550	1.29
STACK of, in H20 :	7.5	0.700	0.58	1.680	1.33
Enter Gas vel., fps		0.750	0.6Z	1.690	1.37
or AVE SOR ROUT d :	0.79	0,800	0.67	1,700	1.42
HINIMAN PITOT OP :	0.50	0.850	0.7t	1.750	1.46
de luckement :	0.050	0.900	0.75	1.800	7.50
		0.950	0.79	1.850	1.54
STACK GAS TEMP, F :	312	1,800	0.83	1.900	1,58
GAS HETER TEMP, F :	75	1.050	0.87	1,950	1.62
		1.100	0.92	2.000	1.67
PITOT CONSTANT :	0.82	1.150	0.96	2.050	1.71
ORIFICE CONSTANT :	1.89	1.200	1.00	2.100	1.75
Hertech 3		1,250	1.04	2.150	1.79
MOZŽLE ČÍA, IN :	0.190	1.300	1.08	2.200	1.63
SYSTEM FLOW, acfm :	0.616	1.350	1.12	2.250	1.87
ф	0.63				
FLOW, sefm	0.3712				
Target volume	20	22.3	predicted	vol.	
Minutes to Vol.	53.882		nozzle f2		
hours to val.	0_898				
No. of points:	20		5 ports X	4 points/po	ct
Read Min./point	•		•	tet mainte	
Usa Kinutes/paint	b		·	,3	-

PI tOT LEAF CHE	
·	+=7.5"Hzc
1000 - P	7.5"Nzc

Plant/location Backly outlet
Operator RNC / T.C.
Dale 09/05 / 93
Test No./Run No. # 7 Metals
Heler Box 10 # / Natech
Gos Meter Cal. Factor
Orlifice ED
Onifice DND

Pilot Coefficient, Cp
Nozzle (D).
Average Nozzle Dia., inches
Barometric Pressure, in: fig
Ambient Temp., deg. F 76 6 57427
Assumed Moisture, %
Filter ID
Stock Pressure, in: 1120 7, 0 1420

Ist Filter: Leak Role, cfm. Pretest Leak Role, cfm. Post-test 2nd Filter (if user): Leak Role, cfm. Pretest Leak Role, cfm. Pretest Leak Role, cfm. Post-test
POST PITOT: +

123456

GAS METER START, cd: 806.30 START TIME 0930 GAS METER BND, of 924,60 END TIME +300 1540

<u> </u>	204										, .		
Clock	Travese	Sample	Vacuum	Slack	Pilot	Orifice	Meter	Tempera	tures (deg	n .			
Time	Point	Time	in. Hg	Temp	DP	DIT	Vol		i [իութ	DGM	DGM
<u> </u>	Number			dea F	in, (120	in. 1120	<u>ef</u>	Probe	Filter	Sorts.	Outlet	h	out
0930	6-1	10	21	3/0	.80	.69	806.30	300	0 240		63	76	77
	6-2	20	<u>ک. /</u>	3/0	80 ء	.69	811.10	505	242		54	77	77
 	6-3	30	2.8	308	1.3	44	815.56	300	248		5-5	79	77.
	6-4	40	3.2	309	1,9	1.6	821,26	273	250	i_,	54	82	79
1010			570	b .			827.86				<u> </u>		
10//	5-1	10	2.1	3/2	180	, 69	827.88	286	<u> 253</u>		58	84	80
	5-Z	20	2.1	312	,80	.69	832,54	300	251	<u> </u>	56	83	81
	5-3	30	2.4	3/4	1.1	195	837.16	3/6	258		57	87	₹83
		Total	Max	Avg.	Ave soit	<u>Ave.</u>	Total	Avg.	Aya	llar	Max	Ave	Avg.
			ļ,	,,,	1.026	0.84	ļ ,	l i	l !		} ;		ı į
				325 '	Long	* - 1	;					<u></u>	\sim

3-124

Travese	Sample	Vacuum	Slack	Pitot	Orifice	Meter				1 1		iz juc /
Number	imie	Tr. 11g	deg. F	In. H20	in, (120	Ct Not	Probe	Füler	Sorb.		in in	out
5-4	40	2.9	3/0	1.5	1.3	842.54	250	257		58	88	85
		5 TOP	OUT			848.76	<u> </u> 					
4-1	10	2.0	3/8	185	. 73	849,00	221	253		60	8.6	85
4-2	20	20	319	195	,73	853.73	308	757		61	87	85
4-3	30	2.2	316	1.05	.90	858.58	295	252		66	90	88
4-4	40	2,2	312	.91	,78	863.8 Z	240	25°2		67	90	89
	5	100	047	1405		868.67						
3-1	10	2.5	<i>3</i> 30	1.05	.90	868.67	280	250		65	89	88
3 - 2	20	2.6	33/	1.05	.90	873.91	3/7	251		60	90	89
3 · 3	30	2.9	332	1,2	403	879,16	3/3	צנב.		61	90	8-5
3.4	40	3,9	334	. 98	2,84	384.67	250	758		58	85	86
	5	10P	04.7			889.56						
2-1	10	4.8	336	,85	73	484.65	250	258	!	62	83	85
2-2	20	5.9	337	85	. 73			253		60	8 73	84
2-3	70		342	1.4	1.2	898.91	296	760		5-7	83	83
	Travese Point Number 5'-4 4-1 4-2 4-3 4-4 3-1 3-2 3-3 3-4 2-1 2-2	Travese Point Number 5-4 40 4-1 10 4-2 20 4-3 30 4-4 40 3-2 20 3-3 30 3-4 40 5 2-1 10 2-2 20	Travese Point Number Foint Number 5-4 40 2.9 5-4 70 2.0 4-1 10 2.0 4-2 20 2.0 4-3 30 2.2 4-4 40 2.2 5707 3-1 10 2.5 3-2 20 2.6 3-3 30 2.9 3-4 40 3.9 5707 2-1 10 4.8 2-2 20 5.9	Travese Point Number Sample Point Number Stack Temp deg. F	Travese Point Number Time Time in lig Temp DP In H20 5-4 40 2.9 3/0 /.5 5-4 40 2.0 3/8 185 4-1 10 2.0 3/9 .95 4-3 30 2.2 3/6 /.05 4-4 40 2.2 3/2 .9/ 5707 047 145 3-1 10 2.5 330 /.05 3-2 20 2.6 33/ 1.05 3-3 30 2.9 332 1.2 3-4 40 3.9 334 .98 5707 047 2-1 10 4.8 336 .85 2-2 20 5.9 337 .85	Travese Point Number Time Time in lig Temp deg. F In. H20 DH In. H20 5-4 40 2.9 3/0 /.5 /.3 5-4 70 0007 4-1 10 2.0 318 185 .73 4-2 20 2.0 319 .95 ,73 4-3 30 2.2 316 /.05 .90 4-4 40 2.2 312 .91 .78 570 047 100 3.2 20 2.6 33/ 1.05 .90 3.3 30 2.9 332 1.2 .90 3.4 40 3.9 334 .98 2.84 570 047 2-1 10 4.8 336 .85 .73 2-2 20 5.9 337 .85 .73	Travese Point Number Time Time in Hg Slack Temp DP DH In H20 cf 5-4 40 2.9 3/0 /.5 /.3 842.54 570P OUT 448.76 4-1 10 2.0 3/8 185 .73 849.00 4-2 20 2.0 3/9 .95 .73 853.73 4-3 30 2.2 3/6 /.05 .90 858.58 4-4 40 2.2 3/2 .9/ .78 863.82 570P 047 Less 868.67 3-1 10 2.5 330 /.05 .90 869.67 3-2 20 2.6 33/ 1.05 .90 873.9/ 3-3 30 2.9 332 /.05 .90 873.9/ 3-4 40 3.9 334 .98 8.84 884.67 570P 047	Travese Point Time in Hg least Pitot DP DH In H20 Cf Probe 5-4 40 2.9 3/0 /.5 /.3 842.54 250 5-4 40 2.9 3/0 /.5 /.3 842.54 250 5-4 40 2.0 3/8 185 .73 849.00 271 4-2 20 2.0 3/9 .95 .73 853.73 308 4-3 30 2.2 3/6 /.05 .96 858.58 295 4-4 40 2.2 3/2 .9/ .78 863.82 240 5-70 047 1-65 .90 868.67 3-1 10 2.5 330 /.05 .90 868.67 3-2 20 2.6 33/ 1.05 .90 873.9/ 3/7 3.3 30 2.9 332 /.05 .90 873.9/ 3/7 3.3 30 2.9 332 /.2 // 03 875.16 3/3 3.4 40 3.9 334 .98 8.84 884.67 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250 5-70 047 250	Travese Point Number Time in lig levup deg. F In. H20 Driftice DH	Point Number Time in. Hg Temp in. Hz0 lin. Hz0 cf Probe Filter Sorth.	Travese Point Time Number Num	Travest Point Thine Thine Th

Ħ
5
γ
ج د:

1	ຸ່ງ														1//11/10
(boys) or Deschool		DGN ont	84		λ X	8	%	87	_	-	:				Post Leak all 16", 45: 101"/4111
thumping or	Norman I	DGM	24		1.18	84	9,8	28						_	- 1 " + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
		lmp Outlet	9		63	29	67	67							
	E 3	Soute						_		- 30					- A
7	Tenweratures (der. F)	Filter.			253	755	260	254		Vac 4000					~ K _
#3 Motols	Tennera	Probe	25%		270	250	272	250	4	COUNTED C D L					- 60 50
	1 5	. ₹	904.16	909,22	909.22	913.53	917.49	921.19	920,60	1					
DW TRET	Orifice Mete	in ERO	1.00		45.55	逐	146	140	Ĺ	DO MOKE					_
Jenedian	Plat		1.2	,	587	185	1.4	7,3	no de) 4					_
16 1.1	Y Services	Temp deg. F	340	001	338	338	344	342	d. 25	13.5%	1				
5	Travese Sample Vacuum Stack	th Hg	12.9	500	501	6.01	13.5	13.5		9 11					_ <u> </u>
o Confin	Sample	Time	do		ره/	20	30	0/1		100					
6 53-kl (h.)	Traves	Point Number	2.4		1-1	1-2	1-3	1-4		Mo X					
U Lifethand A	Clock	Tune			*	*	*	ENLANCE	C. 101.5	 *		<u> </u>			

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Plant Bailly	·		
Sampling Location Usuf & Outle	d	Run No3	
Set Up By DOC / Das	Date <u>09/05/43</u>	Run Date <u>09/05/43</u>	
commences Multiple Metals			<u></u>
Analyst Responsible for Recovery &	<i>(</i>		
Cataulations & Report Reviewed By		Report Date	
	· · · · · · · · · · · · · · · · · · ·		
FILTERS_USED		CYCLORES Prepared Cont.	
	_	Mad Prepared Cont me/No) (No.	
Filter No. 30141		4	<u>J</u>
Surbent Trap No.			
Condenser No.			
			
	<u> </u>	 	
HEPTHEER SOLUTIONS:		nel <u>Gain</u>	
First			4: <u>2-</u> ,
Second .			ه کیا
third.		27.8	<u> </u>
Fourth			<u>3.1.</u> 9
Fifth		<i>58/. 5</i> g	ه ــــکِي۲
Sixth		<i>105.4</i> ,	<u>1.3 </u>
Seventh	9		9
	· · · · · · · · · · · · · · · · · · ·		
SILICA GEL METCHTS:	Inizfat	<u> Firali</u>	
	7812	8/2.2	
	1012		⁹ '
		•	 \$
Totals		9	•
			<u></u> ,
			25 348V
		•	
COMMENTS:	// . /		
Color of Sitics Sel: Bottom.	13 penk		
Description of Impinger Water:			
			
		·	
		· · · · · · · · · · · · · · · · · · ·	
			
¥/ 4/	ייי איני איני		
* NOTE le mas c	hipsed; appearant of	4	
should at affe	.	_	
		7	
	D LJ 4-5-43		
		<u> </u>	

METHOD 5 FIELD DATA

Plant/Location Barry TNGT U-8
Operator BD DT
Date ACO + B
Test No./Run No.
Meter Box D NoTE-CH U
Oas Meter Cat Factor
Orifice D
Orifice DIP 1.87

Pitot Coefficient, Cp <u>8</u>
Nozzle ID. <u>7-45</u>
Average Nozzle Dia, inches <u>190</u>
Borometrie Pressure, in Ilg <u>29.35</u>
Ambient Temp., deg. P <u>7/°/</u>
Assumed Moisture, % _____
Filter ID <u>49-144</u>
Stock Pressure, in 1120 <u>-19.5</u>

GAS METER START, of: 676.280 START TIME 1430

Clock	Travese	Sample	Vecuum	Stack	Pilot	Orifice	Meler	Tempera					
Time	Point Number	Tune	in. Elg	Temp deg. F	0f In. 820	DH In. 1120	Vol. <u>ef</u>	Probe	Filter	Sorta	lmp. <u>Outlet</u>	DGM in	DGM gut
	•	0		-	•							82	80
1430	1-1	3	-4.0	320	- %0	حۍ-	676280	228	257		62	82	58
	1-2	6	-40	330	•92	-69	677.670	201	259		62	82	81
	1-3	9	-4.0	339	.98	-72	67 9.00 0	200	උපුව		62	82	81 -
	1-4	12	-4.0	3 52.	· \$ 5	-63	680 ·390	183,	271		60	83	81
1442							681-680						
	2-1	15	-4.0	323	1.05	.78	681.880	185	272		57	84	81
	2-2	18	-4.0	338	1-00	.74	683.340	187	268	1	5 7	85	81
		Total	Max	Ave	Ave sort	Ave.	Total	Avg.	Луд.	Max	Max	Ayg.	Avg.
	1			340	0.939	0.63] !						. 1

' STAKE BAG SAMPLE

84.4

· # #	8 Out	dp PITOT	dP OR1	dp P1TOT	dP Ok1
:		0.500	0.43	1.400	1.2D
, a Z :	13.3	0.550	0.47	1.450	1.25
H2O ±	10.0	0.600	0.52	1.500	1.29
Hg z	29.30	0.650	0.56	1.550	1.33
420 :	7.5	9.700	0.60	1.600	1.38
el., fps		0.750	0.65	1.650	1.42
: b 7009 k	1.01	0.800	0.69	1,700	1,46
PITOT dP :	0.50	0.850	0.73	1,750	1,51
CREMENT :	0.050	0.900	0.77	1.800	1.55
		0.950	0.82	1.650	1.59
STACK GAS TEMP, F :	320	1.000	0.86	1.900	1.63
GAS HETER TEMP, F :		1.050	0.90	1,950	1.68
_		1.100	0.95	2.000	1.72
PITOT CONSTANT :	0.81	1,150	0.99	2,050	1.76
ORIFICE CONSTANT :	1.87	1.200	1.03	2.100	1.81
Mutech 1		1.250	1.08	2.150	1,85
MOZZLE DIA, in :	0.192	1.300	1.12	2.200	1.89
SYSTEM FLOW, actin :		1.350	1.16	2,250	1.94
ф	1.01		·		
FLOW, softs	0.4763				
Target volume	110	114.3	predicted	wel -	
Minutes to Val.	230.94		nozzle T40		
hours to vol.	3.849	'		•	
No. of points:	24				
Regd Min./point	9.6225	Oris rest	~+6++ & +	etals trein	
lice Minutes/mint	10	772113	vuttet 0 F	**************************************	- Abeletic
U38 81/3/028/0019C	111				

8 OUT 915

<u> </u>					- 1				-				 ,				
A	DGN	18	381		82	8%	88	83		28	8	28	83	:	83	83	
Operator	DGM in	86	8 G		86	86	87	87		87	88	88	83		89	89	
	Imp. Outlet	53	57	•	25	52	53	58		56	56	56	56		56	56	
	 			_ - -		-						•		• •			
~	Temperatures (deg. F) Probe Filter S	269	269		167	290	299	287		295	2%	284	284		284	280	
Acio + 3	Probe	80	8		185	189	189	190		181	1 78	180	181		5±1	ા⊋લ	
Mar No	Meter Vol.	4C.489	86589	061 189	087.400		£2.069	079 .b9	077.569	46.269	@##69	Det 989	30.1€ 9	80.869	082-869	699.89	
MÆ7	Orifice DH THEO	₽ġ.	Ŗ	•	32-	45€	12.	43	,	-82	7t-	\$63	36		<i>ት</i> ቲ·	32,	
calina	Pilot DP in H20	24.	-80	•	1.05	1.00	-96°	ېې		-:	86.	\$\$	640		1.0	020₹	
a/5/43	Slack Temp deg. F	346	356		325	338	35.5	360	;	320	348	363	362		3.68	335	_
, Jed. Date	Vacuum fn. Ilg	0.4-	Ф ђ —		٠٠٠	Q + -	₹. •	5-h-		-5.0	٥٠٥٠	-S:0	-5.0		0.3	ارة 0	
・ c 年 之 . Feld Data Continued Date	Sample Time	12	52		12	30	33	36		39	24	45	8 7		2	118	
		2-3	2 - 4		3-1	3-2	3-3	3-4	:	1-4	2-1	4-3	カーカ		5-1	2-5	
Agethod 5	Clock Time																

9/5/93

INLE: ACID #3

	5 Field Da				Location		Run No.	1				Operator		٦
Clock Time	Travese Point Number	Sample Time	Vecuum in. Hg	Stack Temp deg. F	Pilol DP in. H20	Orifice DH in. H20	Meter Vol. ਵੀ	Tempera Probe	lures (deg Filter		lmp. Outlet	DGM in	DGM out	
	5-3	57	-50	347	-83	-61	7/0.03	179	2 9 3		57	88	83]
	5-4	60	-5.0	320	-75	-56	702.30	179	762		45	89	84	
	 						703.560]
1537	6-1	63	-5.0	316	•76	.57	703.810	199	Z96		57	89	84]
	6-2	66	-s 0	326	•91	.68	705.06	Z O(2.94		<i>5</i> 9	28	84]
	6-3	69	-5 o	340	-73	٠54	706.41	1793	296		28	८४	84]
	64	12	-5.0	341	•70	-52	707.625	185	2 9 1		\$ 9	89	84	≱ ≥
							708.785			<u>'</u>]
1549	G√D													
]
]
				:]
]
								•						
				- · · - · · ·									:	1
		'	——		<u> </u>						<u> </u>	····-		ا 1

(#2) BAGSANGE SAID &KABOONTS COCKEYED THING

New OVERAT RAGE BURST. I Sure por Res 1 lead in cracked probe orandropred gluss file. There bulk head 11/11/2

Acio RUN#3 INLET U-8.

NASS TRAIN OPERATION	Inlet 8	do PITOT	d≥ ORt	do PITOS	de ort
****************		4			*****
GAS AMALYSIS - 02 :	5.5	0.500	0.37	1.409	1.04
C02 :	13.4	0.550	0.41	1.450	1.08
H2D :		0.600	0.45	1.509	1.11
AMB PRESS, In Ho :		0.650	0.48	1.550	5.15
STACK dP, in #20 :		0.700	0.52	1,600	1.19
Enter Ges vel., fps	2210	0.750	0.56	1.650	1.22
or AVE SAR ROOT d :	1.09	0.800	0.59	1,700	1,26
HINIMAN PITOT OP :		0.850	0.63	1.750	1.30
dP 1NCREMENT :		0.900	0.67	1.800	1.34
OF INCREMENT	2,435	0.950	0.71	1.850	1.37
STACK GAS TEMP, F :	332	1.000	0.74	1.900	1.41
GAS HETER TEMP, F :		1.050	0.78	1,950	1.45
and welch temp.	~	1,100	0.82	2.000	1.48
PITOI CONSTANT :	0.81	3.150	0.85	2.050	1.52
DATE CONSTANT :		1.200	0.89	2.100	1.56
Nutech 4	1.er	1.250	0.93	2,150	1.60
	0.190	1.300	0.96	2.200	1.63
		1.350	1.00	2.250	1.67
SYSTEM FLOW, acfm :	1.18	1.390	1.40	2.274	1.01
dp	0.5157				
FLOW, acfm	20	2/ 8	predicted	ual.	
Terget volume	38.782	-			
Minutes to Vol.			nozzle T49	,	
hours to vol.	0.6464 24				
No. of points:	1.6159	0.6.00	TRIA*		
Read Min./paint	1.6137 Má21	412142	THEFT BEE	<u>als</u> train op	el ar i ou
Use Hinutes/point	125/-				
	~ 7		Lean!	Pull	
	5	MACAG	, 5.0.7	1.0100	
				•	

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

tone Bailly				
ampling Location Inlet Unit:	9	Re	m **o. <u>_ 3</u>	
et up By Y. OX - Dw >	Cate Of	05/43 R	ET COTO _09/05	-H3
ommente Acces		·		
malyst Responsible for Recovery				
alculations & Report Reviewed By		Ac	port Date	
			-	
ETA TERRO ALPER			5751 AUG.	
FILTERS USED.		Used	CYCLOMBS Prepare	d Container
40.44		(Tes/Ho)	-	(No.)
ilter 110. <u>40.144</u>				
orbent Trep No.		2.0 µ		
		1_9 #		
andenser Ko.		0.5 #		
			-	
MPTHGER_SOLUTIONS:	Initial	Final		. Gain
Irst	641.4 9	687.1	- 4	US. 7 9
econd	607.4	6/2.2	_; _	9.8
hird	474.5	477.9	. 9	3,5
curth	-	_		- ,
ifth	;		_ •	 9
inch				
eventh			•	
ILICA GR. Utlants:	loi tia	<u> </u>	<u> </u>	<u>ut</u>
	-40.			_
	<u> 798.4</u>	9	\$07.	<u> </u>
otals		9	 	g
				+8.70
·				
				Total 67
CHMEHTS:				10700
otor of Silica Gel:			 -	
escription of Japinger Weter:			 ··	
				
				
				
				

MEILIOD 5 FIELD DATA

Plent/Loc	alion BA	TA CA	<u> </u>
Operator	CA	Д	
Date	9-5-9	 ≱`	
Test No./I	lun No.	ACID	3
Meter Box			
Gas Meter	Cal. Faci	or	
Orlice ID			
Orifice Off	<u> </u>	94	

Pilot Coefficient, Cp80
Nozzle ID. <u>Smank 6</u>
Average Nozzle Din., Inches <u>(2.5</u> 1
Barometric Pressure, in lig 2210
Ambient Temp., deg. P <u>57</u>
Assumed Moisture, % 18
Filler ID
Stack Pressure, In. 1120 8

Ist Filter:	
Leak Rate, cfm.	Prefest <u>.or</u> e Fm
Leokrale, cfm,	Post-test
2nd Filter (if use	xI):
leak Rate, cfm.	Prefest
Leakrate, cfm.	Pust-test

gas meter	START, c	1: 691.0B
START TIME		

GAS METER END, of 721.51 END TIME 1748

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempera	Lures (deg	. ក			
Time	Point Number	Time	in. Ilg	Temp deg. F	0r In. 1120	OII in. H2O	Vol.	Probe	Filter		Amp. Outlet	DGAC in	(XGA)
57487 164 8	PORT - POINT	0		113	. 32	.88	691.08	229	2 25		67	70	69
16 4 68	3-1	-4-5	5.0	118	. 32	.88	693.94	245	2.54		63	72	70
165 03	2	#10	4.8	115	. 34	. 94	696.52	<i>255</i>	250		60	73	70
16 58 8	3	4Z 15	1.1	124	. 26	. 72	698. 80	254	251		59	73	70
1703	3 2 - l	20 +6	4.8	(50)	. 32	.88	701.42	244	2 <i>58</i>	 	59	74	70
1708		25	4.5	123	. 30	.83	703.71	210	<u> </u>		59	74	70
17.13	3_	24 -	4.1	128	.26	.72	<u>706 00</u>	240	250		59	74	70
		Total		Åvg.	Avg sort	Āvg.	Total	Àvg.	Avg.	kiaz.	ikar	Avg.	Avg
					0.505		<u>.</u>	1				, ,	

7225

G-134

,

Method	5 Field Da	<u>ta Contin</u>	wed. Date	9-5-93	Location	STACK	Run No. Ac	10 3				Operator	Au
Cłock	Travese	Sample	Vacuum	Stack	Pitot	Orifice	Meter	Tempera	tures (deg	, F)			, ,,
Time	Point	Time	ln. Hg	Temp	ÐP	DH	Vol				[mp.	DGM	DGM
<u> </u>	Number	<u> </u>		deg. F	in. H20	in. H20	eſ	Probe	Fitter	Sort.	Outlet	in	out_
START	13017-							1			i T		(
1718	AUN7										<u>L</u>		
1					, ,]			Γ		
1723	1-1	<u>35</u>	5.0	125	136	. 29	70B.13	233	2 <i>5</i> 3		63	73	10
		١,	ا ـ سا	أيسا	ا. م		200					_,,	
1728	. 2	10	5.0	156	. 34	. 94	111-28	233	252		.59	74	71
1733	3	45	4.9	127	, 32	.88	713.77	236	256		59	75	71
1723	 	~	7.7	7 - 1	, , , ,	.00	113.77	630	620		127	1/2	
]												}
	1				·						1	1	
1738	12 - (5 <u>0</u>	50	128	. 34	. 94	716.36	730	251		59	76	71
											[[
1743	2	<u>.55</u>	5.0	129	. 34	.94	719.00	235	751		59	76	71
زمی	3	60	,	120	. 34	2.5			7.7		1,	77	71
1748		00	5.0	130	, 27	. 94	721.51	230	253		60	1.55	
											[1	
-	··										 	 	
	l	i		.								ŀ	
												-	
		i									<u> </u>		
								<u> </u>			<u> </u>		<u> </u>
İ				- 1									1
<u> </u>					·· _	 -		 					
				 ¦									-
				1									i I
										 · · ·	<u> </u>	 	
			, ,	ļ				•	, ,		1	ı	1

1 TRAIN OPERATI	CN	Stack	dp PITQT	190 °th	dp Pitot	de gri
	•••	******			******	
GAS AWALYSIS - 02	‡	6.4	5,100	0.28	0.460	1.27
CO2		12.8	0,120	0.33	0.480	1.32
1120	:	18.0	0.140	0.39	0.500	1.35
AMB PRESS, in Hg	;	29,10	0.160	0.44	0.520	1.43
STACK dP, in H20			0,180	0.50	0.540	1.49
Enter Gas vel., fp	6		0,200	0.55	0.560	1.54
or AVG SOR ROOT d	•	0.60	0.220	0.61	0.580	1.60
HINDHUM PLTOT &P	;	0.10	0.240	0.66	0.600	1.65
OP INCREMENT	•	0.020	0.260	0_72	0.420	1,71
			0.280	0.77	0.646	1,76
STACK GAS TEMP, F	1	133	0.300	0.83	0.660	1.82
CAS NETER TEMP, F	#	80	0.320	0.88	0.680	1.87
·			0.340	0_94	0.700	1.93
PITOT CONSTANT	•	0.80	0.360	0.99	0.720	1.98
CRIFICE CONSTANT	‡	1.94	0.380	1,05	0.740	2.04
CAE 71-16			0.400	1.10	0.760	2.09
MOZZLE DIA, in	•	0.251	0.420	1.16	0.780	2.15
SYSTEM FLOU, acto	:	0.720	0.440	1.21	0.800	2.20
ф. ·		0.36				
flau, scim		0.9113				
Target volume		20	24.5	predicted	vol.	
Minutes to Val.		39,113	í	nazzte 12		
hours to vol.		0.6519				
No. of points:		12				
Read Him./point		3.2594	9/5/93 :	Stack meta	le trein op	eration
Use Kinutes/point		1	•		•	

STACK AGIO

5 minutes/ punt

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

5 μ	Sain 82.5 6 2 9 17.3 9 5 9 2.5 6
### Comments ####################################	### CYCLONES Prepared Container (No.) Gain
### Calculations & Report Reviewed By	CYCLOMES Prepared Container (Na.) Gain 9 83.5 9 17.3 9 3 9 2.5 9 9 9 9
Filter No. 30 5	CYCLOMES Prepared Container (Na.) Gain 9 83.5 9 17.3 9 3 9 2.5 9 9 9 9
	### Prepared Container (No.) Gain
Timed (Tes/No) 10	### Prepared Container (No.) Gain
	### Prepared Container (No.) Gain
	### Prepared Container (No.) Gain
Sorbent Trap No. 10 µ 5 µ	Sain 82.5 6 2 9 17.3 9 5 9 2.5 6
5 μ	Gain 9 83.5 6 2 9 17.3 9 5 9 2.5 9
2.0 μ	Sain 9 82.5 6 2 9 17.3 9 5 9 2.5 6
1.6 μ	Sain 9 82.5 9 17.3 9 5 9 2.5 9
Condenser No.	Gain 9 82.5 6 2 9 17.3 9 5 9 2.5 6
Interest Interest	Gain 9 82.5 6 2 9 17.3 9 5 9 2.5 6
First 636.1 s 718.6 Second 591.7 s 609.1 Third 491.0 s 493.1 Fourth 9	8a.5 0 2 0 17.3 0 5 0 2.5 0
First 636.1 s 718.6 Second 591.7 s 609.1 Third 191.0 s 493. Fourth 9 - 9 - 9 Sixth 9 - 9 - 9	8a.5 0 2 0 17.3 0 5 0 2.5 0
First 636.1 9 718.6 Second 591.7 9 609.1 Third 491.0 9 493.1 Fourth 9	8a.5 0 2 0 17.3 0 5 0 2.5 0
Second	2 17.3 5 2.5
Third	25
Fourth 9	
Fifth 8	
Sixth g g	99
Seventh 9 F.	9
SILICA GEL MEIGHTS: Initial	
RILICA GEL MEIGNIS: Initial	
	<u> </u>
	798.4
<u> </u>	798.4
9	9
Totals 9	9
	TOTAL (100.256
COMMENTS: Color of Silics Gel: <u>Ko Change</u> .	
· · · · · · · · · · · · · · · · · · ·	
Description of Impinger Mater:	

1-138

Plant/Location BAILLY STACK
Operator CAH
Date 9-5-93
Test No./Run No. METALS 3
Meter Dox ID 71-16
Gas Meter Cal Factor
Orifice LD
Orifice DHP 1.94

MENTIOD 5 FIELD DATA
Pilol Coefficient, Cp 80
Nozzle B). SHANK 21 King to 1
Average Nozzle Dia., inches Darometric Pressure, in Hg
Amblent Temp., deg. F 75 1 1 Assumed Moisture, % 18
Filter ID
Stack Pressure, br. 1120 <u>85</u>

ist F	ijlen ligio, jeim, Prelest <u>4.</u> 0 i ple, cim, Post-lest <u>4.</u> 0	ol CEM
Marke Seed	ple, c/m, Post-test <u>4.</u> c Pil ter (if used):	سرع ۽ او
lesk	inte, clim, Prelest	
Leakt	hie cim. Post-lest	

GAS METER STAIRT, cl: 502.58 START TIME _ 0925 GAS METER END, of <u>690.76</u> END TIME <u>1540</u>

Clock	Travese	Sample	Vacuum	Steck	Pilot	Orifice	Meler	Temperat	ures (deg	. กั			
Time	Point	Tune	lin. Flg	Tèmp	DP	OTI	Vol	Ţ			linp.	OYAL	TXGM
	Number			deg. F	in. 1120	<u>in. 120</u>	લ	Probe	<u>Filter</u>	Sortu	Outlet	iln 🗼	oul
START	PORT-	0	7 7	131	الما		Can 50	-//	765	,	17:	79	74
2925	<u> </u>	 ~ 	7.7	121	.34	1.00	<u>502.58</u>	268	700		<u>61</u>		<u> </u>
2940	1-1	15	2.6	13 <u>Z.</u>	. 34	1.00	510 57	264	256		51	<i>8</i> 3	76
09.55		30	2.6	132	.34	1.00	5 18.53	266	253		<u> 53</u>	<i>85</i>	77
010	ح	15	2.5	130	عدر	.94	576.30	308	253		55	85	78
10 25	2	60	2.5	131	.32	. 94	534.19	3 <i>08</i>	250	· <i>-</i>	53	84	78
<u> 640</u>	3	75	2.5	130	.30	. 88	5A1.65	305	z43		54	80	76
055	3	90	2.5	129	.30	· <i>8</i> 8	549.21	300	251		56	<u>78</u>	76
	<u></u>	Total	Max	ñvg.	Avg sgrt	Ávg.	Total	λvg.	Avg.	Max	ilar	Avg.	_Avg.
				130	0.571	0.96	,		l			ŀ	ļ

76.8

					Location	STACK 1	itun No. 🙀	E-MALS	3			Operator	Ast _
Clock Time	Point	Sample Time	Vacuum in 11g	Temp	Pilot DP	Orifice DH	Meter Vol.		ures (deg.		pub	DGM	DGM
	Number			deg. F	in. H20	in, 1120	र्टा	Probe	filter	Sort	Oullel	<u>in</u>	<u>out</u>
9744 T 1055						 	549.21						
11 10	1-1	105	⋧. 7	129	. 34	1.00	557. i9	266	757		54	78	74
11 25	1	130	2.8	130	.34	1.00	565. 26	769	253		57	78	74
1140	2	135	2.8	130	.34	1.00	573.34	304	253		56	77	73
1155	2	150	2.8	158	.34	1.00	581. 35	Z98	252		55	77	72
1210	3	145	2.8	129	. 34	1.00	<u> 589. 35</u>	282	251		54	77	72
1725 51487	3	180	2.8	129	. 34	1.00	597.36	286	252		<u>53</u>	77	72
1234	! .—. —										<u> </u>	<u> </u>	
1249	1-5	195	3.0	129	. 36	1-06	605.45	243	25Z		64	74	72
1304		. <u>210</u>	3.0	129	.36	1.06	613.61	234	252		50	79	73
1319	<u>z</u>	275	3. <i>0</i>	130	. 36	1.06	621.77	210	25Z		16	78_	73
1334	2	240	3.0	129	. 36	1.06	630.01	218	<u>254</u>		47	80	73
1349	3	2 <i>55</i>	2.9	129	, 3z	. 94	637.8T	231	254		49	80	74
1404	3_	270	3.0	130	. 34	1.00	645.87	233	252	 —	49	81	7.5
	·· _ [-	_						<u> </u>	<u> </u>	
	'		1	,		1		• •	• •		•	•	•

M
5
W
3,0

		동국			10	7.5	<u>ښ</u>								_
1	:	DGM		75	7.5	, ,	7.5	7.	74	7.4					L
Operator	. •	줥	. ,	78	79	80	79	18	48	77					
	:	imp. Ogliet			18	49	49	49	50	50	·				
:	E	Sort			•										
:1)	untures (deg. F)	. Eller	:	- T	345	252	252	251	152	252				}	
4		Prophe		244	239	241	237	242	240	250					
Rum No.	Meler W	Vol. cf		165.87	653.50	661.37	668.90	676.42	$\overline{}$	620.76					
		DH in ER20		88	46.	. 94	88	. 88	.82	92.					
Location	Pitot	Temp DP DH deg. F in H20 in H20		35	. 32	ы. М	30	.30	82.	8				<u>.</u>	
9-5-03	Stack	Teamp deg. F			130	(<u>3</u>	(31	130	82	128					
ued Dale	Vacuum	in. Hg			3.0	3.0	6.2	2.9	2.9	2.6				-	
ta Contin	Sample	Thne			2%5	300	315	330	345	360					
Method 5 Fieki Data Continued Date 9-	Travese	Point Number			3-1	-	Ŋ	2	3	M					
Method :	Clock	Time	a	57.A18T	14 25	1460	1,55	15,0	75.57	1540		:			

MASS TRAIN OPERATION		dip PITOT	dP CR1	ф РЭТОТ	dP ORI
GAS AMALYSIS - 02 :	6.4	0.100	0.29	0.460	1.35
CO2 :	12.8	0.120	0.35	0.480	1.41
H2O :	18.0	0.140	0.41	0.500	1.47
AND FRESS, in the :	29.00	0.160	D.47	0.520	1.53
STACK dP, in H20 :	0.7	0.180	0.53	0_540	1.58
Enter Gas vel., fps		0.200	0.59	0.560	1.64
or AVO SOR ROOT d :	0.60	0.220	D.65	0.580	1.70
KIHIMUM PITOT OF :	0.10	0,240	0.70	0.600	1.76
dP INCREMENT :	0.020	D. 260	0.76	0.620	1.82
_ ,		0.250	0.82	0.640	1.88
STACK CAS TEMP. F :	133	0.300	0.88	0.660	1.94
GAS METER TEMP, F :	# 0	0.320	0.94	0.680	1.99
		0.340	1.00	0.700	2,05
PITOT CONSTANT :	0.60	0.360	1.06	0.720	2.11
ORIFICE CONSTANT :		0.380	1.11	0.740	2.17
CAE 71-16		0.400	1.17	0.760	2,23
WOZZLE DIA, in ;	0.255	0.420	1.23	0.780	2,29
SYSTEM FLOW, acfe :	0.745	0.440	1.29	0.800	2.35
ф	0.36	*****			
FLOU, ecfm	0.5269				
Target volume	185	189.7	predicted	vol.	
Minutes to Vol.	351,14	ï	nozzle T2		
heurs to vol.	5.8523	_	•		
We. of points:	12	5			
Rend Min./point	29.261	9/#/93	Stack mete	ls train op	eration
tinutes/point	30	•			

5 km/4 6/5

METHOD 5 FIELD DATA

Plant/Location Bailly UNITE
Operator 2NC
Date 09/05/93
Test No./Run No. ACID = 3
Weter Box D #/ NUTELH
Gas Meter Cat Factor
Orifice ID
Outra Mia

Pitot Coefficient, Cp Nozzie ID.
Average Nozzle Bia., Inches
Darometrie Pressure, In 11g
Ambient Temp., deg. P
Assumed Moisture, %
Filler ID
Stack Pressure, in H20 _ 7, o

1st Filter: Lenk Rule, clim. Pretest / 12 1/5 - 01/2
Leakrate, clim. Post-test 2 9" H5 = .00
lesk Rate, cfm, Pretest Leskrate, cfm, Post-test
PITOT 7"HO + 1000

1000

GAS METER START, cf: 954.82 START TIME 052 15 25 GAS METER END. of 992.31 END TIME .../70/

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempera	lures (dec	F			
Time	Point	Tone	in Hg	Temp	pr	DH	Vol				lmp.	DGM	DGM
ļ	Number			dea F	In. 1120	in 1120	<u>cí</u>	Probe	Filter	Sort	<u> Outlet</u>	in	OBL
1526	1-1	3	4.2	338	1.0	.83	954.82	250	26Z		77	76	76_
2	1-2	6	4.2	340	1.0	183	GE7,30	255	262		77	77	76
	1-3	8	51	340	7.0	1.2	958.78	255	266	<u> </u>	70	76	76
<u> </u>	1-4	12	6.5	347	1,9	1,58	960.43		260		67	76	76
			<u>.</u>	57			962.30		_				
	3-1	3	4.1	330	, 95 +++	.79	962.41	307	259		67	77	76
	3-2	6	4.1	3 <i>30</i>	195	199	963,90	310	256		67	22	76
	3-3	9	4.4	324	1.1	.92	965,38	3/0	257		46	77	76
		Total	Max	Avg.	Avg sout	۸٧g.	Total	Avg.	Avg.	Max.	Mnx	Avg.	Avg.
	ı	1	i 1	324	1.037	0.8%		 	· •		j l	!	

-142

75.5

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Cent <u>BAILLY</u> Ampling Location <u>STACK</u>		Run V	տ. <u>3</u>	
et Up By <u>\LAK / DWS</u>		45/95 Run D	ate 09/05/93	
omments Multiple Me	tals			
velyet Responsible for Reco				
olculations & Report Review	wed By	Repor	t Date	
	··			
FILTERS USED			YCLONES	
		(Yes/Ho)	Prepared Conta (No.)	
Ilter Ho3Q 143	2_			
тем» нв. <u>эсэ т т -</u>	-	10 μ		
orbent Trep Ko		2.9 g		
andanesa Un		1.0 μ		
ondenser HD.		V43 P		
	·			
· · · · · · · · · · · · · · · · · · ·				
HPTHCER SOLUTIONS:	<u>Intrial</u>	Final	a (a) 8	
Irst	945.7 500.2	1614.3		
econd	<u> 566.3</u> .	<u>601.8</u>		~
hird	<u>416.7</u> 9	<u> 418.7</u>	•	. <u>O</u> 9
ourth	665.8 666.3 4	<u> 568.5</u> 665.0		<u>0</u> 9
ifth		476.8		
ixth	<u>475.5</u> s			
eventh	,	_ 	·	<u> </u>
JUICA GRU WEIGHTS:		ai	finai	
	805.	<u>t </u>	8 41.5	<u> </u>
		9		9
otale .				s
				DAY J
				OK No.
COMENTS:				
ioLor of Silica Gel: <u>y</u>	2 Pin14			
escription of Impinger Wat	ef:	<u> </u>		

v						A STUB	/-						
	5 Field Do							3 AC				<u>Operator</u>	2K
Clock		Sample	Vacuum		Pilol	Ortfice	Meler	Tempera	tures (deg	. F)			
Time	Point Number	Time	in. ilg	Temp deg. F	DP in. H20	DH	YoL	- Bucha	Filter	O. I	Disp	DGM in	DGM
	MIN		5.	WER. F	TIL DECO	in 1120	ef	Probe	rucer	Sorb.	Outlet	<u>m</u>	pul
	12	3.4	5,0 12,0	328	.98	. &/	966.94	285	256		59	75	75
											<u> </u>		7/
 -	<u> </u>	14	578	1			968.42					73	7/8
1604	3	3.1	3.9	B) →	.90	175	964.42	310	260		60	75	76
	1	\$ -2	.,	217	<i>~</i> .		l						
├─	6		·····	3/7	.90	.7 <i>5</i>	969.83	315	261		60	75	76
<u> </u>	9	3-3	4,8	3/6	1,05	,87	971.24	3/8	262		58	76	75
	12	4-4	4.2	315	.90	ر ا	972.79	ţ			59	75	75
				570	٥		, -						
	<u> </u>	3-		370	/		974. 24	 	-		1	<u> </u>	 -
	3	#/	4,0	3//	.84	.70	974.17	304	266		62	75	75
	. 6	5- 74-2	40	3//	84	,70	975,57	304	266		61	76	75
	ĝ	34.2	5.1	3/0	1,1	,92	976,99	305	264		0 6	ا در	75
	12			309	1.4	1.17	978.5%				5.2	76	75
					<==== A)							
					5706		990,25	-14	238		29	72	-21/2
	3	5-1	4,0	306	.40	.67	980,25	294	25¥		59	75	74
	6	5-2	4.0	308	,80	167	981.62	Z90	255		59	75	74
	9	6-3	5.9	307	1.3		982.94		253		59	75	24
						,, - 0	1000	J - 7					

Clock Time	Travese Point Number	Sample Time	Vacuum in Hg	Stack Temp deg. F	Location Pitot DP in. H20	Orifice DH in, H20	Run No. ## Meter Vol. cr	Temperal Probe	tures (deg		inp Outlet	Operator DGM in	DGM out
	6-4	12	6.1	307	1.5	1.25	984.65	300	254	<u>.</u> .	58	76	75
			<u>. —</u>		70P		986.40				<u> </u>	 	
48	2-1	3	5.0	338	,48	.81	986.40	315	253		59	75	74
	6-2	6	5.0	339	, 98	.81	987,92	315	<i>25</i> 3		59	76	74
	6-3	Ŷ	6.5	344	1.5	1.25	989.41	3/8	258		58	フフ	76
	62,4	12	6.1	339	1.3		991.15				57	76	76
170		· - ·		Z YO F	,	·	992.81						
Ì												_	
	,	- 											
													
					·			·+- , , , ,			į		
												·••-	
													
							i				 -		

, TRAIN OPERATION	8 Out	dp PITOT	dP ORT	dp PLTOT	dP ORE
***************************************					*****
GAS ANALYSIS - OZ ;	5.7	0.500	0.42	1.400	1.17
COŽ z	13.3	0.590	0.46	1.450	1.21
: 05#	10.0	0,600	0,50	1,500	1.25
AMB PRESS, In Hg :	29.30	0.650	0.54	1.550	1.29
STACK dP, in M20 :	7.5	6,700	0.58	1.600	1.33
Enter Gas vel., fps		0.750	0.62	1.650	1.37
or AVG SQR #007 d :	1.01	0.800	0.67	1,700	1.42
MINIMUM PITOT dP :	0.50	0.850	0.71	1.750	1.46
dP INCREMENT :	0.050	0.900	0.75	1.600	1.50
		0.950	0.79	1.850	1.54
STACK GAS TEMP, F :	320	1.000	0.83	1.900	1.58
CAS METER TEMP, F :	90	1.050	0.87	1.950	1.62
		1.100	0.92	2.000	1.67
PITOT CONSTANT :	0.81	1.150	0.96	2.050	1.71
CALFICE CONSTANT :	1.87	1.200	1.00	2.100	1.75
Nutech 1		1.250	1.04	2.150	1.79
MO22LE DIA, in :	0.190	1.300	1.0B	2.200	1.63
SYSTEM FLOW, BOTTO :	0.782	1.350	1,22	2,250	1.87
de .	1.01				
FLOW, softm	0.4664				
Target volume	20	22.4	predicted	vol.	
Minutes to Vol.	42,878		nozzle 146	1	
hours to vol.	0.7146				
No. of points:	24				
Read Min./point	1.7866	9/5/93	Outlet 8 m	etals train	operatio
Use Minutes/point	**				•
	3				

8 OUT ACID.

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

priant Builty		•
Sampling Location Dutlet Unit	F 8	
ior up by LEDIL 10NS	Date <u>09/05/49</u>	Run Date <u>09/05/43</u>
toments Lido		
inelyst Responsible for Recovery 💆	Till I Sha	
Calculations & Report Reviewed By	-	Report Date
FILTERS USED		CYCLOVES
	Uga	ed Prepared Container
20,50	(Yes,	·
ilter No. <u>30 150</u>		
	5 <u>#</u>	· · · · · · · · · · · · · · · · · · ·
orbens Trep No		
enderser No	0.5 #	
HPTHEER SOLUTIONS:	Inicial Fina	f Spin
irst	635.3 g 678	··
econd		1,5
hird	479.6 . 49	 -
ourth		
ifeh		·
istb		 ;
eventh		 ;;
LICA CEL WEIGHTS:	Initial	figal
	<i>157.</i> 4	9 _769.9 9
		9
	- -	-
otals		
otals		100AL 73

NATION CAE Cods

CO__ 14.5 - 15.2 -15.5

C) 4.54-5.04-5.14

MANT BRIGH Stem Flort	COMMERCIAL:
PAPE 9/5/53 1EST NO 3	
SAUPL THE (THE (THE CLOCK) 545	
SAMPLING LOCATION CAL CALL	•
SAUVLE TYPE (BAR, INTEGRATED, CONTINUOUS)	•
AMALYTICAL NETHOR	•
ANGIENT SERFERATURE	
ORSAT LEAK CHECKED 16.4" 21.4"	

AUN	<u> </u>	ŧ		1		3	AVERAGE		MOLECULAR REIGHT OF
GAS	ACTUAL READING	HÉT	ACTUAL READING	MÉT	ACTUAL, AEADING	MET	AGT MME IME L	MULTIPLICA	STACK GAS-IDRY BASHS
coş	15.2	15.2	13.72	11.2	/J. L	//.2	15. L	44/100	6.655
O JUNET IS ACTUAL OF READING MINUS ACTUAL COT READINGS	-W. L	7	14 բ	STa .	26,2	5.0	ا ن نځ	17: _[66]	1.600
COUNT IS ACTUM, CO READING WINES ACTUM. OF READING								37/140	
Marter of the months actival on Readings							79.j	39·10¢	22.344

TOTAL 30,672

· DRY MOLECULAR WEIGHT DETERMINATION

no Bris Ster Purt	coments:
BARE 9/5/53 TEST NO 2	•
SAUPLINE TIME (14 In CLOCK) That Should	-
SAMPLING LOCATION PLACE INTERPROPER CONTUNIONS 6	
APALYSICAL BETHOS Co. Sa 7	
AND ENTERATURE 7	
DEMINE LETZ	
ORSAT LEAK CHECKED 24 24 6 14 6	

RUN		i		1		1	AVERAGE		MOLECULAR DEIGHT OF	
GAS .	ACTUAL READING	NET	ACTUAL READING	NET	AGIUM. AEADING	NET	NET VOLUME	MOLTIPLEA	EFACE GALLOST GASIEL	
COS	5.0	ن.ز	ر. ي	5.0	5.1	87./	5.03	(0 ₎ 186	2,213	
D _{ZI} MET IS ACTUAL D Z MEADWE MINUS ACTUAL CO _Z AEADWG)	15.0	10.0	15.1	10.1	15.6	9,9	10.0	12/106	720	
COMET IN ACTUM. CO REASONS MINUS ACTUM. OF REAGINGS								29/100		
Ngalet is too minus Actual co beachies					· · · · ·			29-169		
								TOTAL		

· DRY MOLECULAR WEIGHT DETERMINATION

MANY BAILY STEEN PENT	Comments:
0418 45/9.3 1856 NO. /	Zeri A-AT CAS
SAMPLING LOCATION PORCE AND TO SEASON	وروع دامه در در وروع
SAMPLE STIPE (BAQ, COREGRASED, CONTINUOUS) 130 4	- £1547
ANALYTICAL METHOD CASA 7 ANALEM TEMPERATURE 70	
wenth Lore	• -
ORSAT LEAK CHECKED 24.0 24.0	-

AUN		1		1		1	AVERAGE		MOLECULAR DEIGNE OF
GAS	ACTUAL READING	NET	ACTUAL READING	MET	ACTUM, AEABING	NET	HEL AOTANE WEL	MULTIPLIER	SEACH GAS (DRY BASIS) Mg. III III we'r
COĮ	0.0	0,0	C.0	60	C.0	٥,٥	C. C.	14/100	
Ogines is actual og Readur Hunde Actual Eog Readurch	C.0	<i>C</i> . 3	C 0	℃ ℃	٥.٥	0.0	ر د د '	184 66	
COMET M ACTUAL CO READING MINN ACTUAL OF READING						,		29/705	
N ^S (IPEL 10 100 MW/N)								59 -194	

TOTAL

₽

GUARCIAN SYSTEMS

ORY MOLECULAR WEIGHT DETERMINATION

PLANT BAILLY STEM 12, 3x+	Criments:
SAMPLING TIME (20 TO CLOCK) O 9 37 - SAMPLING LOCATION 5 77 C.C.	Colly one son Suggest
SAMPLE TYPE (DAG, INTEGRATED, CONTUNUOUS)	•
AND LENT TEMPERATURE 70	1/12/2 Style
MOCAT A FAM CHECKEN 22 44 28-24	•

RUN		AVENU	AVERAGE		MOLECULAR DEIGNT OF				
GAS	ACTUAL READING	MET	ACTUAL READING	HET	ACTMAL READING	MET	NET	AULTHLIER	STACK GASIONT WASHI
CO2	12.5	12.5	12.5	125	12.7	12.5	12.5	14/100	5.676
Ozinet is actual oz Reading white actual Cozineading)	19.4	6.5	19.4		19.4		6.5	12 _{7[6]}	2.08
COINET IS ACTUM. CO REMAINS MINUS ACTUAL OF REMAINS		·				,		20 _{/100}	
ASTRET SI THE WHITH			· · · · · · · · · · · · · · · · · · ·				Fzi, 6	20·100	22.508
,	-	•		-	,			TOTAL 5	0,314

GUARDIAN SYSTEMS no

· DRY MOLECULAR WEIGHT BETERMINATION

MANT BAIL STE REAL	COMMENTS:
DATE 7/5/5 3 TEST NO 3	•
SHAPLING FINE (FI IN CLOCK) <u>C5 42 -774 7</u>	
SAMPLING LOCATION # TOUTLET METAL	•
MALYTICAL WETHOD COST TO	
AMMENT TEMPERATURE 20 1	
OPERAICH <u>4:72</u>	
DASAF LEAK CHECKED 18-2" 26 6 9	

GAS		ŀ	1	1)	AVERAGE		HOLECULAR HEIGHT OF STACK GASIONY MASSIN M _g to to only
	ACTUAL PHIDAS	HEF	ACTUAL READING	HET	ACTUAL READING	MET	AGTIME	MULTIPLIER	
CO3	13.0	138	130	/PJ	/3 C	13.0	13.0	15/800	5,72
O JUNET IS ACTUAL OF MEADING MUNUS ACTUAL CON MEADINGS	19.4	6.4	19.5	6.)	15.4	6.4	6.43	1140	2.058
COINET IS ACTUM, CO REMOVE WITH ACTUAL OF READING								29/200	
M _Z INET IN 100 MINUS ACTUAL CO-READING				·			R157	29 -100	22,500

TOTAL 30.335

ORY MOLECULAR WEIGHT DETERMINATION

nmi Brian Stew Port	coments
AU 2/1/2 11 17 80 5	•
SAMPLINE THIS (11 LA CLOCK) 0 5 30 - 1340	
TANTUM LOCATION # 8 Charle / Me TOLS	•
TAMPLE TYPE APAR, INTEGRATED, CONTINUOUS	
AMATTICAL METNOB CIRSIT 7	
MANERY TEMPERATURE	
OFFRATOR	
ORSAY LEAK CHECKED 14.2" IF. 2	

GAS		1	ļ	1		1	AVERAGE		NOTECOTIVE SEIZH COL
	ACTUAL READNIG	MET	ACTUAL READING	HET	ACTUAL READUIG	HET	NET	MULTIPLIER	STACK GALIDRY BASIS
COŞ	12.5	12.8	127]		128	134	14,100	5,632
O JUNET IS NOTWAL O J MEANING WINLES ACTUM. CO J. MEANING)	190	<u>ن</u> . ک	15.1	6.3	15.0	6.2	6.17	H-100	1.574
COMES IS ACTUAL ON REASING MINUS ACTUAL OF REASINGS								25/100	
NSTREE IS SOO WHARE							81.3	30 '100	22.655

TOTAL 30 314

4

* DRY MOLECULAR WEIGHT DETERMINATION

MAN BALLY Ster Flort	COMMENTS:
0418 57/57/53 1E 17 NO 3	•
SAMPLINE TIME (34 to CLOCK) / Oct -/205	
SAMPLING LOCATION INSTANCE MOTION THE SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) (AND GOOD TOO)	-
AMALYTIKAL METHOD	•
AUDIENT TEMPERATURE	•
OPERATOR	ı
ORSAF LEAK CHECKED 25.0 12.6	

AUN	Ī	1]	1		1	AVERAGE		MOLECULAR DEIGHT OF
GAS	ACTUAL READING	HET	ACTUAL READING	HET	AGTUAL READING	NET	HET VOLUME	MULTIPLIER	STACK CASIORY BASIS
CO2	/4.3	14.0	ن .74	ن 9%	140	14.	143	11/100	نيا رايا نيا رايا
O PINET IS ACTUAL OF READING MINUS ACTUAL CON READINGS	19-3	Šī.	18.0	ل : ۲	19.0	٤.ر	£10°	Rept	1.60
COMET IS ACTUAL OR BEADING WHOM ACTUAL OF REACHING								²⁰ /300	
Nguiet is too muus actumi co reading							S1. I	31.100	22.68
,								TOTAL.	7 >!

30.44

· DRY MOLECULAR WEIGHT DETERMINATION

PLANT PROCE	COMMENTS:
0418 5/57'5 7 1EST NO 7	,
ANDLING THE AND CLOSH)	
SAMPLING LOCATION # 7 Gottet /tc/ps	
SAMPLE TYPE (BAG, MITEGRATED, CONTINUOUS) ANALYTICAL METHOD	
AMORAL TEMPERATURE 70	
OPERATOR 4372	
ORSAT LEAK CHECKED 74. t 22. 44	

RUN	<u> </u>	ŧ	l	1	•	1	AVERAGE		MOLECULAR RESONT OF
GAS	ACEUAL READING	NET	ACTUAL READING	HET	ACTUAL READING	NET	NET VOLUME	MULTIPLIEM	STACK GASIDAY BASISI Mg. 48 M made
COS	12.5	118	128	/2 f	128	/2 J	123	11/200	5.632
O PINET IS ACTUAL OF READING MINUS ACTUAL COF READINGS	19.4	6.6	15.4	6,6	15.4	6.6	6.6	H-186	2/12
CONTEX 21 ACTUAL CO READING MINUS ACTUAL OF READINGS								29 _{/108}	
VCLANT CO BEVINED ASWELS IN 100 MAINE							80.6	29 '160	22545
•								TOTAL	30,312

GUARDIAN SYSTEMS INC

DRY MOLECULAR WEIGHT DETERMINATION

MANT Bacco Ste- Plant	ÇÇIMÊNTS:
DATE 9/5/52 TEST 00	
SAMPLINE TIME (28 to ELECTI) / 52 Se	
SAMPLING LOCATION AT COSTET	
ANALYTICAL NETHOD CASAT	•
MINIENT TEMPERATURE 70	
OPERAISE 4-72	
ORSAT LEAK CHECKED 186 2424	

GAS RUM		•	ļ	1			AVERAGE	1	MOLECULAR VEIGHT OF
	ACTUAL MENDING	HET	ACTUAL READING	NET	ACTUAL READING	HET.	AOLUME	MULTIPLIER	STACH GAS LIMIY HASISS Mg. 40 B made
COŽ	143	v. c	14 c	4.0	14.0	14.0	14.0	H _{/100}	6.16
O PIMET IS ACTUAL OF WEARING MICHOLOGY	19.4	5,4	19.¥	5.4	19.4	5.4	2.4	12:100	1.728
COLUET IS ACTUAL, CO READING MINUS ACTUAL OF READINGS	,							29/tot	
NZIVEL IS TOO WHITE VELLEY IS USE WHITE							62.6	2 ·100	22.568

TOTAL 30.45%

· DRY MOLECULAR WEIGHT DETERMINATION

MANY ROLLY STEE Plant	COMMENTS
DATE 7/5/53 1838 NO.	
SAMPLING FINE (11 to CLOCK) 10 TO -16 TO -16 TO THE SAMPLING LOCATION HE FORMS A FT - 15 102 THE	7710
TAMES & STOPE STARE, INTEGRALIES, CONTINUOUS	
AMALYNICAL WE THOU CASA 7 AMALYNICAL WE THOU CASA 7	
eremited Lore	
GREAT LEAK CHECKED 14.6" 15.6"	

i		1		<u></u>	,	AVERAGE	Ì	MOLECULAR REIGHT OF	
ACTUAL READING	HET	ACTUAL READING	NET	ACTUAL BEADING	HET	NET VOLUME	MULTIPLIER	STACK GATIONY BASIST M _C in its mode	
14. 2	14.6	14.2	142	14.2	14.2	14.2	16,306	6.245	
19.2	5	15. L	ن . ً ک	19.2	57. <i>u</i>	3)	\$\$-[00	1.6 00	
					,		25/100		
						سے بہم	29 (10)	22.624	
	JY, 2	/4. 2 /4. c	19. 2 14. 4 14. 2	14. 5 14. 6	14. 2 14. 4 14. 2 14. 2 14. 2	READING READIN	READING NET READING NET READING NET VOLUME 19. 2 14.4 14.4 14.2 14.2 14.4 14.4	ACTUAL READING NET ACTUAL NET VOLUME NULTIPLIER 19. 2 14. 2	

TOTAL 30472

AETHOD 5 FELD DATA

Plant/location BAILLY INLET OF Operator LATED DATED

Date 9 5 93

Test No./Run No. METALS #3

Meler Box ID NOTECH 44

Cas kieler Cat Factor

Orifice ID

Orifice DIA

Pilot Coefficient, Cp <u>-81</u>
Nozzle ID <u>7-39</u>
Average Nozzle Dia, inches <u>-192</u>
Barometric Pressure, in fig <u>29.30</u>
Ambient Temp., deg. F <u>75°F</u>
Assumed Molsture, Z
Filter ID (4°)
Stock Pressure, in 1120 - 19.5

Ist Filter:

Leak Rate, clm, Prefest -000/min @ 10" Hz C

Leakrate, clm, Prefest -000/min @ 8" H

20d Filter (If used): No Not

Leak Rate, clm, Prefest --
Leakrate, clm, Post-lest --
Prot Leak Check @ 10" H

NSF 85" Hz O OK

GAS METER START, ct: 585.550 START TIME _ 0927

CAS METER END. of <u>675.520</u> / END TIME (243 *

Clock Travese		Sample	Vecuum	Slack	Pilol	Orifice	Meler	Temperatures (deg. F)					
Time	Point Number	Time	in, Hg	Temp deg. F	; DP <u>ln. 1(20</u>	01) .in. 1120	YoL cí	Probe	Filter	Sort	lmp. Outlet	DGM in	DGM out
0925	-	0			• 8-4	- 65	 	248	249	.——	73	84	8/
	1-1	8	-3.5	324	-84	-65	282 220	215	225		57	86	81
	1-2	16	-4.0	332	•93	·72	589.125	211	214	_	57	රි 9	83
	1-3	24	-4.0	340	.96	•75	592.800	227	22.1	_	56	92	8 5
	1-4	32	-4.0	348	-86	·67	596.6_	226	<i>2</i> 23	_	56	93	85
09.50	1		_				600. i50						
1000	2-1	40	-4.0	327	1.15	·\$9	600.38	234	246	j	<i>5</i> 8	97	89 (
	2-2	48	-4-0	338	1.10	.85	604.510	232	246		56	98	90
 -		Tolai	урх	Ávg.	Avg sqt1	Avg.	Total	ATR.	Avg.	Max	Max	Avg.	Avg.

(A)START BAG SAMPLE PORT / WILL FOLLOW PORT TO PORT SAMPLE TRAIN

926

ĢΡ	
<u>.</u> .	
75	
ž.	

() Method	5 Field Da	la Contin	used Dale	9/5/93	Location :	6-5 المالية	} Run Na. Mẽ	70. 0	#3			<u>Operator</u>	with
Clock	Travese	Sample	Vacuum	Stack	Pitot	Ortfice	Meter		tures (des	, F)			
Tune	Point Number	Time	in. Hg	Temp deg. F	DP in. H20	DH in. H20	Vol.	Probe	Filler	Sort.	bnp. Outlet	DGM In	DGM out
	2-3	56	-4.0	346	·72	. 56	60 \$.500	235	24 9)	_	55	100	91
	2-4	64	-4.0	358	•90	•7C	6/1.875	235	254		57	100	93
1032				ĺ	į	}	615520		_	-			
	3-1	72	-4.0	77 C	1.20	^{,9} 3	615.745	234	251	ĺ	57	100	94-
	3-2	80	-4.5	3 48	1.20	·98	620.00	234	اڭ2	į	57	७७	94
	3-3	88	- 2∙0	356	1.00	-77	624-225	231	251	1	5,9	9	94
	3-4	96	-5.0	363	-62	-48	628.110	226	248	<u> </u>	5 9	99	94
1105		-		1	_	-	631.19				,		i
1106	4-1	104	- 5.0	320	1.25	<i>-9</i> 7	<i>63 3</i> 95	229	248	<u></u>	59	<i>9</i> 9	94
	4-2	112	-2.0	351	1./5	· 85	635.60S	223	251	-	5 9	97	93
	4-3	120	اہ ف	361	1.0	.77	639	<i>2</i> 23	25/		59	96	93
	4-4	128	- 5.0	364	.60	.46	643 600	229	253	-	61	96	92
(138	·	_	_		 -		646.640			_	_		
	5-1	136	-\$.O	322	1.1	.85	646-785	232	2 59		62	95	<i>9</i> 1
	5-2	144	, -{5,- <u>5</u>	334	-80	.62	6 <i>5</i> 0.865	235	253		63	96	91
						····							

DAY S METALS MET UT

1 4/1 5 01 3 ake

•	0			. 9	<i> </i> 5/93		J~ U-8				>		<u>Operator^f</u>	976
	<u>месорд</u> Clock	5 Field Da Travese	ta Contin Sample	Vacuum	Stack	Location Pitot	Orifice	Run No. M	Tennem	Lures (deg	<u>~</u> . 的		<u>Operator</u>	
	Time	Point Number	Time	hı. Hg	Temp deg. F	D₽P	DH D. H2O	Vol. ef	Probe	Filer	Sorts	Imp. Outlet	DGÁÍ in	DGM out
		5-3	152 -	5.0	347	90ء	-70	654-375	229	254	_	<i>6</i> 2	95	90
		<u>5</u> -4	160	5.0	35(-77	•6O	658.030	229	251	ļ	62	93	89
	1210				ļ			661.480	<u>:</u>]		-
	<u> 2</u>	6-1	168	-50	315	7 1	4	661.680	225	255		63	92	88
		6-2	176	έ	<i>3</i> 23	-81		665 -3 10	211	247	-	62	93	88
		6-3	184	-5.6	<i>3</i> 38	-80	-62	668.785	223	250		62	93	88
		6-4	192	-5.0	346	• 72	-56	672.185	219	291		62	93	88
	1243	かてひ						675.520	1			1		
٠								,						
												:		
							-						·	
				· · · · · · · · · · · · · · · · · · ·							:			
				;										
				,								-		

DAY 3 - METALS TRAIN UNIT 8 INLET

MASS TRAIN OPERATION	Inlet 8	dp PITOT	dP ORE	dp PLTGI	dP OR1

GAS AHALYSIS - DZ :	5.5	0.590	0.39	1.400	1.08
co2 :	13.4	0,550	0.43	1.450	1.12
H2O :	10.0	0.600	0.46	1.500	1.16
AND PRESS, in Mg :	29.30	0.650	0.50	1.550	1.20
STACK dP, in 120 :	-20.0	0.700	0.54	1.690	1.24
Enter Gas vel., fps		0.750	0.58	1.650	1.28
or AVG SOR ROOT d :	1.09	0.800	0.62	1.700	1.32
MINIMUM PITOT dP :	0.50	0.850	0.66	1.750	1.35
dP INCREMENT 1	0.050	0.900	0.70	1.600	1.39
		0.950	0.74	1.850	1.43
STACK GAS TEMP, F :	335	1.000	9.77	1.900	1.47
GAS METER TEMP, # :	82	1.050	9.81	1.950	1.51
•		1.100	0.85	2.000	1.55
PITOT CONSTANT :	0.81	1.150	0.89	2.050	1.59
ORIFICE CONSTANT :	1.87	1.200	0.93	2.100	1.62
Mutech 4		1.250	0.97	2.150	1.66
NOZZLE DIA, in :	0.192	1.300	1.01	2.200	1.70
SYSTEM FLOW, acfm :	0.897	1,350	1,04	2.250	1.74
ά ρ	1.18				
FLOW, sefer	0.5252				
farget volume	100	100,8	predicted	vel.	
Minutes to Vol.	190.41		nozzle 139	•	
hours to vol.	3.1734				
No. of points:	24				
Bead Hin./point	7.9336	9/5/93	Iniet seti	els train op	eration
l inutes/point	8				

G-161

Buch P

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

			Oate
FILTERS USED			CLOKES
المد حد		(Yes/No)	Prepared Container (No.)
lter No. <u>40 141</u>		10 д	
erbent Trap No			
ndenser No.		0,5 ¢	·
PINSER SCHUTIONS:	Initial	final	Gain
ret	<u>584.8</u> g	748.8	/64
ord	649.3666-2265	680.1	10, 6
rd	427.6 9	427.6	2.5
e-ch	<u> </u>	<i>598.9</i>	· <u>- · · · · · · · · · · · · · · · · · ·</u>
fth	<u>567.0</u> •	<u> 565.0</u>	<u> </u>
r th	<u>461.8</u> g	1137 463-6	i <u>- 19</u>
enth	#		<u></u>
ICA GEL VETGITS:	Initia	 	Final
	793.	<i>9</i>	817.3

Sock !

Appendix G4 September 6 Tests

METIND 5 FIELD DATA

Plant/Location# 7 Out/#
Operator Kitha
Date 9-693
Test No./Run No. # / Junein Cravile
Heter Box D Nutsah #3
Gos Meter Cal. Factor
Orifice ID
Orline Distr. 1 55

Pilot Coefficient, Cp Nozzle ID
Average Nozzle Dia., inches
Barometric Pressure, in ilg 27.40
Ambient Temp., deg. F
Filter ID
Stack Pressure, in. 1120 7. 5

	Filter:				
eal	k Rate,	elm,	Pretest	_യാളം	- 'A
cal	krale,	efm,	Past~test		_
Sud	Filter	(If tist	xl)t		
			Pretest		
			Post-test		

GAS	METER	START,	cf:	87.603
STAF	T TBE	1630	3.3	

GAS METER END. of 113,004 END THE

	Sample	Vacuum	Stock	Pilol	Orlice		Temperatures (deg. []					
Point <u>Jumber</u>	Time	in. Hg	Temp deg. F	10. IEO	DH <u>by 1820</u>	Vot ef	Probe	Filter	Sorta	knp Outlet	DGM DGM	DGM out
غائيم ليع					[87. 603			<u> </u>			
פועב	5	3.0	30		1.2	من.پ	داما لات	234		68	81	79
	10	30	313		1.2	93.7	287	230		64	84	79
	岭	.3.0	<u>3\3</u>		١٠a	97.1	<i>ડ</i> વય	<i>a</i> 40		61	87	80
_	80	0.5	313.		ı. ي	1004	295	252		62	89	80
	્	3.0	313		1,2	103.3	296	25/		60	90	80
	30	3.0	313		1.8	106.3	Alp	3418		69	89	68
	35	3.3	313		1.0		297	248		54	89	80
	Total	líox	Avg.	Avg sqrt	Ave.	Total	Avg.	Avg.	Max	klax.	Avg.	Avg.
		55 10 15 40 25 30	5 3.0 10 3.0 15 3.0 25 3.0 25 3.0 30 3.0 35 3.3	5 3.0 310 10 3.0 313 15 3.0 313 80 3.0 313 30 3.0 313 35 3.3 313	5 3.0 310 — 10 3.0 313 — 15 3.0 313 — 25 3.0 313 — 30 3.0 313 — 35 3.3 313 — Total Max Ave Ave soit	5 3.0 310 — 1.2 10 3.0 313 — 1.2 15 3.0 313 — 1.2 25 3.0 313 — 1.2 30 3.0 313 — 1.2 313 — 1.2 314 315 3.3 313 — 1.2 Total Max Ave Ave soit Ave	5 3.0 310 — 1.2 90.4 10 3.0 313 — 1.2 97.1 25 3.0 313 — 1.2 100.4 25 3.0 313 — 1.2 105.3 30 3.0 313 — 1.2 106.3 Total Max Ave soit Ave Total	5 3.0 310 — 1.2 90.4 240 10 3.0 313 — 1.2 93.7 287 15 3.0 313 — 1.2 97.1 294 20 3.0 313 — 1.2 100.4 295 25 3.0 313 — 1.2 105.3 296 30 3.0 313 — 1.2 106.3 296 35 3.3 313 — 1.2 108.3 397 Total Max Ave Ave sqit Ave Total Ave	5 3.0 310 — 1.2 90.4 260 234 10 3.0 313 — 1.2 93.7 287 230 15 .3.0 313 — 1.2 97.1 294 240 26 3.0 313 — 1.2 100.4 295 252 26 3.0 313 — 1.2 103.3 296 251 30 3.0 313 — 1.2 106.3 296 248 35 3.3 313 — 1.2 104.3 297 248 Total Max Ave Ave sqit Ave Total Ave Ave	87.603 5 3.0 310 — 1.2 90.4 260 234 — 10 3.0 313 — 1.2 93.7 287 230 — 15 .3.0 313 — 1.2 97.1 294 240 — 25 3.0 313 — 1.2 100.4 295 252 — 25 3.0 313 — 1.2 106.3 296 251 — 30 3.0 313 — 1.2 106.3 296 248 — 35 3.3 313 — 1.2 104.3 397 248 Total Max Ava Ava sqirt Ava Total Ava Ava Ava sqirt Ava Total Ava Ava Ava sqirt Ava Total Ava Ava Ava sqirt Ava Total Ava Ava Ava sqirt Ava Total Ava Ava Ava Sqirt Ava Total Ava Ava Sqirt Ava Total Ava Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total Ava Total Ava Ava Sqirt Ava Total	5 3.0 310 — 1.2 90.4 260 234 — 68 10 3.0 313 — 1.2 93.7 287 230 — 64 15 3.0 313 — 1.2 97.1 294 240 — 61 20 3.0 313 — 1.2 100.4 295 252 — 62 25 3.0 313 — 1.2 103.3 296 251 — 60 30 3.0 313 — 1.2 106.3 296 248 — 69 35 3.3 313 — 1.2 102,3 397 248 54 Total Max Ave Ave sort Ave Total Ave Ave Max Max	5 3.0 310 — 1.2 90.4 260 234 — 68 81 10 3.0 313 — 1.2 93.7 287 230 — 64 84 15 3.0 313 — 1.2 97.1 274 240 — 61 87 20 3.0 313 — 1.2 100.4 275 252 — 62 87 25 3.0 313 — 1.2 103.3 296 251 — 60 90 30 3.0 313 — 1.2 106.3 296 248 — 69 89 35 3.3 313 — 1.2 104.3 197 248 54 89 Total Max Ave Ave sqrt Ave Total Ave Ave Max Ave

166

837

Method	5 Field Da	<u>la Contin</u>	ued Date	9-6-93	Locations	1 Outles	Run No. # 1 Heter	America	اس کری	حلم		Operator	Kirbu
Clock	Travese	Sample	Vacuum	Stack	Pilot	Ortlice	Heter	Tempera	tures (deg	. F)			/
Tune	Point	Time	in. Hg	temp	<u>υ</u> ξ'	DH	Vol]			Imp.	DGNI	DGM
<u></u>	Number			deg. F	in. H20	in. H20	<u>cſ</u>	Probe	Filler	Sorb	Outlet	in	out
	Belve-			i			<u> </u>	1		,			
	Polive	.444											
	[]	٠		A . A								0.0	
		40	3.0	3\3		1.2	112.3	297	241	1	55	89	8/
	\		ا ا		1	أميا		الممما	المحدا			\\\alpha_1 \	o/
<u> </u>		4100	3.17	<u> </u>	<i>[</i>	1.2	113,004	<i>6</i> 298	251		57	91	81
ĺ	1		i						ł l				.
<u> </u>													
1					:								
										<u> </u>			<u> </u>
1												i	
<u> </u>													
]	;												
 	 	<u></u>									<u></u>	 	
			,									.	
		· · ·											
}			ĺ								į į	i	
	,									 -	 		
	,		i										
							j						
		—··										i——	
1											ŀ		1
	-			· · · · · · · · · · · · · · · · · · ·				 -					
]													
					··- · <u>-</u> -···								
							•						
							i						
[.						į			i			
• '	' '	,	,	,		•	•	. 1	,	'	•	, ,	' ''

Final leak @ 113.130 15 "Hg. 13.130

9-16

METHOD 5 FEELD DATA

Plant/Location #7 Out 100
Operator Kirky
Date
Test No./Run No. + Allahada
Meler Box ID Armach 4-3
Gas Meter Cat Factor
Orifice (D
Orlifice INNO LSA

Pilot Coefficient, Cp Nozzle ID.
Avenge Nozzie Dia, inches
Barometric Pressure, in 11g 27.44
Ambient Temp., deg. F 750
Assumed Motsture, % (0.0
Filter 10
Stack Pressure in 1120 >> <

Ist Filter: Leak Rate, cfm. Pretest con & (5)	į.
Lenkrate, cfm. Post-test .co.	'n,
2nd Filler (if used):	•
leak Rate, cfm. Pretest	
leokrale, cím. Post-test	

GAS METER START, cf. 113,436 START TIME 17:27 CAS METER END, & 163.606 END TIME 18.48

Clock	Travese	Sample	Vacunim.	Stock	Pilol	Ortfice	Meler	Tempera	tures (deg	. F)			 .
Time	Point Number	Time	in. Hg	Temp deg. F	DT in. 1120	011 <u>in. 1120</u>	Vol. ef	Probe	Filter	Sorts.	limp. Outlet	DGM in	DGM out
	Singha. Potente				·		113436						
		5	3.0	<u> </u>		12	116.6	253	244		67	86	23
		10	3.0	313	بم	1.2	19.8	281	<i>-</i> 244		গ্ৰ	90	83
		15	\$ 25	313		1.2	122.8	086	850		50	92	83
		30	25	314.	,	1.2	132. L	286	254		50	93	84
		4	25	313	~	1.2	141.3	291	246		54	95	85
	_	\$	25	313		1.2	150.6	æ1	247		54	94	85
		3 0	25	313		1.2	160.0	3	251		55	93	84
		Total	Max	Avg.	Avg sqrt	Avg.	Total	Avg.	Avg.	Max	ihr	Avg.	Avg.

	_	_		 ,			 ,								 -ヶり/
	¥1.164	, 152	NE NE		82			,					•		- - - - - - - - - - - - - - - - - - -
	Operator K, Aby		in ii		83				- !					į	
			ontel Outlet		S										Find lest D
		Œ	Sort		-								_		Fisal 1
		ures (deg	Filter		3n										
	Lebyda 1	Tempirat	Probe		Mr.								-		 _
	In No. 4-1	Fe ler	Time Point Time in Hg Tennp DP DH Vol Filter Muniber Of Probe Filter	160.0	(63,606 233										_
,	JONE PA	Orifice	년 1월 1월		2								į		 _
	Lucation	Pitot	면 명 83	!						 	·				_
	1.6-23	Slack	Tell p		3,2										
	od bale	Vacuum	in. Hg			_ 		-						-1	
ᅰ	a Continu	Sample	Time		- 3						-	_			
5 [k	5 Feb Da	Travese	Point Number	377	8							ŧ			_
, j.	Method	Gock	Time	:							 				

FILLELL MEHIOD 5 FIELD DATA

Plant/Location Stock
Operator 2. 6/.
Date 9-6-9 3
Test No./Run No. /
Meter Box ID 5728
Gas Meter Cat. Factor
Orifice ID
Orifice Dilip

Pilot Coefficient, Cp
Nozzle ID.
Average Nozzie Dia., Inches
Dorometric Pressure, in ilg
Ambient Temp., deg. F
Assumed Moisture, %
Filler ID
Stock Pressure, in. 1120

lat Filter:	
Leak Rote, cin	n. Pretest <u>ACA</u> r(1/14 ₁)
Leakrale, cfm,	Post-lest
2nd Füter (if t	ised):
Look Rate, cin	n.Pretest
Leskible, cfm	Post-test

GAS METER START, cl. 224.357 START TIME 10/2 GAS METER END. et 404,244 END TUBE 1645

Clock		Sample	Vecuum	1	Pilot.	Orl(ice		Tempera	ures (dea	, fi		· · · · · · · · · · · · · · · · · · ·	1
Time	Point Number	Time	in. ilg	Temp deg. F	pr. 1120	110 in. 1120	Vol.	Probe	Filler	Sort	imp. Quile t	DGM in	DCM
10/2	3//	0	4.0	/28	÷28	.69	226.357	229		K/#	NA	62	62_
\vdash	3/1	15	3.5	129	- 28	.69	233,4	2.32	२७८	1-	-	75-	6.3
	3/2	30	4.0	/3/	.3٤	79	241. [231	293			95	73
<u> </u>	3/2	45	3.5	131 -	٠٧٤	-64	247.9	२४८	285	1		99	77_
	3/3	60	3.5	13/	. 28	.69	522.0	502	282			101	85
	3/3	75	3.5	/3/	. 28	.69	262./	183	281	16. 1	1100	103	84
		<u>Tolal</u>	<u> </u>	Avg.	Ayr sint	ATR.	Tolai	Avg.	<u>^va.</u>	Mar	Max.	<u>Дуд.</u>	Ave.

* Point #1; Ptobe all,

91.8

Method	5 Field Da	<u>la Contin</u>										Operator	T.H.
Clock		Sample	Vacuum		Pitot	Orifice	Meter	Tempera	tures (deg.	<u>P) </u>	· · · · · · · · · · · · · · · · · · ·		
Time	Point Number	Time	in. Hg	Temp	DP IIO	DH	VaL d	D	Pen	O	Imp	DGM	DGM
-		 	 	deg. F	in. H20	ln. H20	<u> </u>	Probe	Filler	Sorts.	Outlet	in	oul
	3/1	90	3.5	131	-32	.79	269.4	282	146			103	82
	3/1	105	4.0	137	<u>،3</u> ک	79	277.1	213	284			105	86
	} 										<u> </u>	<u> </u>	
	3/2	120	4.0	13/	,3٤,	٠٦٩	284,7	228	284			103	86
	ے	135	40	/3/	.3 د	.79	292.5	22.7 2 8-5	583	·	 	10 /	87
											ļ	-	
	3/3	150	3.5	ع 3/	-28	.69	300, 1	223	285-			100	87
····	3	165	3.5	130	. کا ا	-69	307,5	2//	29/			98	୧୯
/3 ₂ C	<u>.</u>	180	4.8	129	<u>,32</u>	•79	315.20	189	302		<u> </u>	92	86
	a //	195		130	ع د .	79	α,Σ 5.	193	296			102	87
					· 								<u> </u>
		210	5.0	129	-34	- 84	3 ≥ 9.8	186	297			104	88
	2 /2	<u> </u>	\$.0	130	,34	184	337.7	180	293			106	88
					į								<u> </u>
		-	·										

المراجعة والمراجعة

Method 5	5 Rel B	da Contin	Field Data Continued, Date 7.6-93	r	Location 574C/K		Run No. 07	STACK #				Operator	
¥ 00.	13 West	Sample	Vacuum	Nar.	Fig.			tembera	temperatmes loeg	=			1
Time	Point Number	Time	in. Hig	Temp deg. F	EPP in, HZO	DH. in. 1720	Vot.	Probe	Filter .	Sorb	ump Outlet	E DOM	out L
	3/3	240	35	05/	42.	1	346,5	771	262			104	88
	8/3	255	3.5	621	∱ 2.1		352.4	75/	162			501	88
							-						
	7/4	270	5.0	130	,34	₽8,	355.9	209	293			96	သ 00
	11/4	285	5.0	130	45,	,84	367.1	145	2%			106	જ
	•					•		,					
	4/2	300	ە:ك	/30	.32	96.	375.6	5.5.3	562			109	9.
	2/2	315	5.0	130	76	64	382.5	942	962			109	¥
			-										
	14/5	330	よい	130	42.	799,	390.6	238	298			109	93
	\S\4	345	4.5	181	92.	<i>h</i> 9	398.4	232	295	:		107	42
													-
stop	X	3%					404.244						
					<u> </u>								
												!	
		1	1 6. 64 4	,	62 43	26	- 3(2005)S			638 7 Fee	1 100 July 12/2	_ * - - - -	
L ×				į	7 7 1	,	•	. !	! '	Ţ		-	ſ
ř,	Loured un	+ 40/27	70 10 10 10 10 10 10 10 10 10 10 10 10 10		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, o y d	₹	827.6	ŧ.	8 6 8 6 8 7	8 70.0		
\ \							ĺ			İ	o li		

Š

MASS TRAIN OPERATION		do P(TOT	de os:	dp P1TQT	dP OR!
S AMALYSIS - 02 1	6.4	0.100	0.25	0.460	1.14
COZ ;		0.120	0.30	0.480	1,19
H20 :		0.140		0.500	
AMB PRESS, in Hg :		0.160	0.40	0.520	1.29
STACK dP. in H20 :	0.7	0.180	0.45	0.549	1.34
Enter Gas vel., fps		0.200	0.50	0.560	1.39
or AVG SAR ROOT d :	0.40	0.220	0.55	0.580	1.44
HINIMUN PITOT dP :	0.10	0.240	0.59	0.600	1.49
dP ENCKEMENT :	0.020	0.260	D.54	0.620	1.54
		0.280	0.69	0.640	1.59
STACK GAS TEMP, F :	133	0.300	0,74	0.660	1.64
CAS NETER TEMP, F :	80	0.320	0.79	0.689	1.69
		0.340	0.84	0.700	1.74
PITOT CONSTANT :	0.80	0.360	0.89	0.720	1.78
ORIFICE CONSTANT :	1.75	0.380	0.94	0.740	1.83
RAC 5728		0.400	0.99	0.760	1.88
MOZZLE DIA, in :	0.251	0.420	1.04	0.780	1.93
SYSTEM FLOW, outm :	0.719	0.440	1.09	0.800	1.98
do	0.36				
FLOW, scfm	0.5119				
Torget volume	185	190,4	predicted	vol.	
Minutes to Val.	361.42		nozzle 12		
hours to vol.	6.0237-				
Ho, of points:	12				
Read Min./point	30,118	9/6/93	Stack Radi	ionuclides t	rein oper
Use Minutes/point	31				-

METITOD 5 FIELD DATA

Plant/Loca	tion Bailey Stack
Operator	CAH
Date	9-6-75
Test No./Ro	un No. MM5 1
Meter Box	D 71-16
Gns Meter (Cal. Factor
Orifice ID _	
Ordice Mig	1.94

Pital Coefficient, Cp80
Notale ID. Silvin 2!
Average Nozzle Dia. Inches - 2.5.5
Darometric Pressure, in fig 27.14
Amblent Temp., deg. P 37
Assumed Moisture, % B
Filler ID
Stack Pressure, in 1120 . 8

tol Filler: Lenk Rate, clim. Preto	nd -02 cfm
Leakrole, cfm, Post-1 2nd Filter (if used):	
teak Rate, cfm. Prote Leakrate, cfm. Post-1	sl esl

70.3

gas meter :	START,	d: <u>73), 40</u>
START THE	10:	25

GAS METER END. of <u>928.95</u> END TIME <u>1646</u>

Clock	Tiravese	Sample	(Vacuum	Stock	Pilol	Orifice	l leter	<u>Temperal</u>	<u>lures (deg</u>	<u>. f)</u>			
Time	Point	Time	bi. Hg	Temp	DP 10	DH	Vol				ling.	DGM	IXCM
	Number	<u></u>		dea F	<u>in. 1120</u>	in 1120	더	Probe	<u>Filler</u>	Sorb.	<u>Outlet</u>	in	out
704T	PURT-				۸		,	1					
025	FONT	0	ļ. <u> </u>	129	.40	1.17	731.40	253	262		ے تھے	6/	60
040	_11	15	5.0	128	140	1.17	734.73	Z60	253	<u> </u>	50	625	3 ن
255	. 1	341	5.0	130	.40	1.17	748.03	268	25(47	71	64
11 10	г	45	5.0	130	.40	1.17	756.38	7 55	251		18	73	65
וכב וו	S	60	<u>سر ت</u>	122.	. 44	1.29	765.00	247	<i>750</i>		50	73	66
140	3	75	5.0	9	.30	1.06	773.17	242	249	·	48	72	66
1155	3	10	5.0	129	36	1.06	781.21	259	257		47	72	66
	:	_Tolai	_Minx_	Ave.	Avg sgrt	Avg.	Total	Ävg.	Avg.	Nex	Max.	Avg.	Átg.
			- -	السيريا	0.600	1,08]					1	

	ethod 5 Field Data Continued. Date 1-6-93 Location & TACK Run No. 11115 Operator Action Continued Date Policy Operator Opera														
Clock		Sample	Yacuum	Stack	Pilol	Ortfice	Meter	Tempera	tures (deg	F)			<u> </u>		
Time	Point	Time	in fig	Temp	DP	DH	Vol	l	l		lmp.	DGM	DGM		
	Number		<u></u>	deg. F	in H20	in. 1120	લ	Probe	Filter	Sort	Outlet	in	out		
START		1	1 '			Ì		1 .	1		ŀ		ŀ		
1155						,	781-21					ļ <u> </u>	<u> </u>		
1210	1-1	105	5.Z	121	.40	1.17	789.82	273	251		48	73	67		
1.4.0		10.5		 -	· · · · · · · · · · · · · · · · · · ·		10,10	-	<u> </u>		<u></u>		 		
1225		120	5.4	125	-40	1.17	798.38	279	750		19	75	67		
1240	\$	135	5.6	126_	, 42	1.23	807-17	277	250		50	76	69		
	S				4-1										
1255		150	5.6	126	.42	1.23	B16.02	270	250	·	5Z	77	69		
1310	3	165	5.0	127	. 32	- 94	823.71	256	249		53	76	70		
1325	3	180	5.0	128	. 32	. 94	831.67	741	25°Z		54	75	70		
START											,	_			
/335											<u> </u>	<u> </u>			
1350	3-1	195	5.9	173	. 36	1.06	839-29	199	249		<i>5</i> 2	74	69		
1405	_1	ZIO	5.9	124	. 36	1.06	848.60	203	250	·	51	74	68		
1420	S	225	5.3	129	.34	1.00		207	751		52	74	68		
1435	z	Z 40	<i>5</i> .5	128	. 31	1.00		206	- 2 <i>53</i>		51	73	68		
1450	3	255	5.1	126	.30		812.19	194	250		49	73	68		
· ·				1			<u> </u>								
1505	3	270	5.1	126	, 30	.88	819. TB	195	750		48	72	68		
[}												
									-						

3-175

4 12 Km C1 130

_	,	<u> </u>				-1-		- ,	 ,				_		 	
	1	ğ		89	89	69	5	20	69				;			
Operator	35 ·	s		11	14	75	75	92	75			L.		 	•	
	dmi :	Outlet		50	50	51	53	53.	5,2							
Œ	ļ .	g R											:			
poly saut		Mer		250	252	250	251	152	250	;						
15 1 Tennershine (dec		- Luge		2(3	215	216	102	205	210							
Run No. 74775		5	819.18	387.95		904.31	912.76	921.25							 	
STACI C	Ħ	D 1320		1.06	1.06 896.11	1.06	1.17	. 94	.94							
	2	10° 1820		.36	.36	.36	.40	35	.32	_				 -		
26-6-9-8	Jem d	7 . 7		111	21	521	123	127	126							
Warmum Warm	in Jig			5.9	5.9	6.0	6.0	5.6	5.6	<u>-</u>					ľ	
Sample	Time			582	300	315	330	345	360	· - ·	. "					
Method 5 Feld Data Continued Bate 9-6-99 Chok Traves Samule Varum Stack	Point	Number		2-1		2	2	W	ų							
Section Constitution	Filme i	CTARK	1516	15.31	1546	1091	9171	16 31	1646							

MASS TRAIN OPERATION	Stack	de PETOT	de osi	op PITOT	de ORI
***************************************	*****	*******	******	*******	P444
GAS ANALYSIS - DZ 1	6.4	0,100	0.29	0.460	1.35
: 200	12.B	0.120	0.35	0.480	1.41
H20 1	18.0	0.140	0.41	0.500	1.47
MIS PRESS, In Ho :	29.16	0,160	0.47	0.520	1,53
STACK OP, in H20 :	0.7	0.180	0.53	0.540	1.58
Enter Gas vel., fps		0.200	0.59	0.560	1.64
or AVS SOR ROOF d :	0.60	0.220	0.65	0.580	1.70
HINTHUM PITOT OF :	0.10	9,240	0.70	0.670	1.76
OP INCREHENT :	0.020	0.260	0.76	0.620	1.82
		0.280	0.82	0.640	1.88
STACK GAS TEMP. F :	133	0.300	98.0	0.660	1.94
GAS METER TEMP, F :	80	0.320	0.94	0.680	1.99
		0.340	1.60	0.700	2.05
PITOT CONSTANT :	0.80	0.360	1.06	0.720	2.11
DRIFTCE CONSTANT :	1.94	0.380	1.11	0.740	2.17
CAE 71-16		0.400	5.17	0.760	2.23
MOZZLE DIA, in :	0.255	0.420	1.23	0.750	2.29
SYSTEM FLOW, acfm :	0.742	0.440	1.29	0.800	2.35
ф.	0,36				
FLOW, sefa	0.5283				
Terget volume	185	190.2	predicted	vol.	
Minutes to Vol.	350.17		nozzle TZ		
hours to vol.	5.8362				
No. of points:	12				
Read Min./point	29,181	9/6/93	Stack 1965	train opera	tion
U imstes/point	30			•	

· DRY MOLECULAR WEIGHT DETERMINATION

MAT BALLY STEL Floor	COMMENS:	(M. Cies
DATE 9/6/57 TEST NO. 4	•	102-153-
SAMPLING FIND APP IN CLOCK	(°c2	14.9-13.2-15.5
SAMPLE TYPE HAS, INTEGRATED, CONTINUOUS) 346-	· -	454-5.04-5.14
AMALYTICAL DETHOD COLS.4	L 2	•
AMORENA TEMPERATURE 60 COTE		
ORSAT LEAK CHECKED 15.2 17.4		

RUN		1		1	,	1	AVERAGE		MOLECULAN DEIGHT OF
GAS	ACTUAL READING	HET	ACTUAL READING	HET	ACTUAL READING	MET	NET VOLUME	WLTGLER	STACK GALIORY BASIS)
¢02	14.5	149	15.6	1. J.	15.6	15.0	14.97	61/200	4.547
O ₂ INET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	200	[20. G	1		14/100	1.600
COINET IS ACTUAL, CO READING MINUS ACTUAL OF READING		,			- "-			25/166	
NZATET IS 100 MINUS ACTUME CO REABING)							£7)	# ₁₁₀	22,40

TOTAL 30577

,- --

G-179

· DRY MOLECULAR WEIGHT DETERMINATION

MMT BAILL Steam Plant	COMMENTS:
DATE 9/6/9/3 TEST NO.	•
SAMPLING TIME (20th CLOCK) 9360 1AMPLING LOCATION 77.7 COUTLET 1979.5	•
SAMPLE TYPE (BAG, MITEGRATES, CONTINUOUS) //- 76 5-7-7-0	
ANALYTICAL METHOD ORSAY	
ANDIENT TEMPERATURE 67	i,
DEBANDA LC. 72	
OBSAT LEAK CHECKED 16.4	

RUN				ŧ	<u>l</u>	1	AVERAGE		MOLECULM TEXALE OF	
GAS	ACTUAL BEADING	HET	ACTUAL READING	MĒŦ	ACTUAL READING	MET	NET VOLUME	MULTIPLIEM	STACK GALIDAY BATIS) De to the sale	
Cež	12.5	128	12.8	12.5	12.8	12.5	128	14/106	5.632	
OZINET IS ACTUAL OZ MEARING WINUS ACTUM. COZ MEARINGS	19.4	6.4	15.4	6.6	15. y	66	6,6	12 ₍₁₈₈	2.112.	
COINET IS ACTUAL CO READING MINUS ACTUAL D _E MEADING)								20/106		
(SCHEEL IR 100 MINIST							80.6	25-710p	22.568	
								2024	* > . 7	

FOTAL

30 31R

· DRY MOLECULAR WEIGHT BETERMHATION

MMT Boilly Ste Plant	COMMENTAL A COL
041E 9/6/20 1E IT NO	Change of Garage Col
SAMPLING LOCATION #5 OUTLET MMS TRANS	Chrone Water S. W. S. W.
SAMPLE TYPE (BAG, INTEGRAPED, CONTINUOUS)	130
AMALYTICAL METHOD OBST AMALENT TEMPERATURE 66	
OPERATOR Little	
MASAF I FAK CHECKED /8 2 /6.4	

RUN		1	l	t		1	AVERAGE	i	MOLECULAR MEICHT OF	
GAS	ACTUAL READING	HET	ACTUAL REASING	MÉT	ACTUAL READING	het	ANT ANT.	MULTIPLIER	STACK GASIONY BASINS , M _p . B. D. ande	
CO2	10.2	10.2	162	10.2	/o. z	Æ. L	10,2	H _{/300}	4,488	
OZMET IS ACTUAL OZ MEADING MUNUS ACTUAL COZ MEADING)	16.8	4.6	168	6.4	16.5	66	4.6	12/668	2.112	
COMET IS ACTUAN, CO READING WHUS ACTUAL OF READING		,						29/394		
NZINET 21 COO MINUS ACTUAL CO REASONIO							83,2	23 (10)	23.294	

TOTAL 29.896

. ---

· DAY MOLECULAR WEIGHT

Guardian Systems

P.O. BOX 190 LEEDS, ALABAMA 35084 205/899-6447

HANT Brilly Steam Rost	205/689-6647
MAFE 9/6/5/3 18 17 110 5	EN MM5 . I INLET U.
AMPLING TIME (24 to CLOSH) 1015 - 1300 AMPLING LOCATION #5 1005 7 1003 7600 AMPLE TYPE (BAG, HITEGRAFEO, CONTINUOUS) 1005 - 3000 2000 HALVITICAL WETHOO 6-3577	10/5 -/300
MANTAN TEMPERATURE 6 7 MENATAN FAK CHECKED /2 v c /f.2"	DATE 7/6 TIME SAMPLED (A.)

RUN		1		1		1	AVERAGE		MOLECULAR REIGHT OF
	ACTUAL READING	HET	ACTUAL READNIG	HET	ACTUAL READING	HET	NET YBLUME	MILTIPLIÉR	SEACH GASIONY BASIN
COS	14.4	14.4	/4 4	14.4	J4 4	14 Y	144	64/100	6.334
OZINET IS ACTUAL OZ NEAGUS HIMUS ACTUAL COZ AEADUSG)	190	4.6	19.3	4.6	193	46	.Ψ.; _e *	N-100	1,474
COMET IS ACTUAL CO READING IMUS ACTUAL Of BEADING)								25/100	
STATE IN 100 WINNES			· · · · · · ·				S/ 8	29-209	22 65
								TOTAL,	3C 488

* DRY MOLECULAR WEIGHT DETERMINATION

PLANT BACK. STEW PLINT	COMMENTS:
ONTE 9/6/97 PETT NO 5	1
SAMPLING FINE (1) In CLOCK)	
SAMPLING LOCATION STOCK SAMPLE TYPE (MAG, INTEGRATED, CONTINUOUS) 10.75 20175 2	
ANALYTICAL METHOD CASA?	. •
AMARENT TEMPERATURE	L.
OPERATOR ACT 2 ORSAT LEAK CHECKED 15.2 12.4	

	1	1	·	t		1	AVERAGE	MULTIPLIER	NOCECULAR DESCRIT OF 18 ACH GALIARY BASISS Mg. Ib II, HORE
	ACTUAL READING	HET	ACTUAL READING	HET	ACTUAL READING	MET	AOTANE		
CO2	/3 C	13 8	1300	ن 13	/3 c	17:	/7 S	44/100	5.72
Ozmet u actual oz Readur mous actual Cozmeadag)	19.4	64	19.4	6.4	: 19.4	6.4	6.4	18,400	2.048
Cumet 11 Actual, co Reading whus actual Of Reading								29/100	· · · · · · · · · · · · · · · · · · ·
VCLAWY TO BEVOING							× 6	Zi 'Ne	22 568
								TOTAL	

TOTAL

33.336

· DRY MOLECULAR WEIGHT DETERMINATION

nm BAU Stan Mot	COUNCETT:
DATE 3/49 TEST NO.	
tomoral Table 20 to 20 16 20 - 17 CT	-
TAMPLING LOCATION #8 INTET Day May Page now	MON PL
SAMPLE TYPE (BAG, MIEGRATES, CONTINUOUS)	_
ANALYTICAL METHOD CASAT	- , ^
AMBERT TEMPERATURE	→ ''
OPERATOR 1572	_
ORSAF LEAK CHECKED 18.45 26.4	→

		l		ŧ	<u> </u>	J	AVERAGE		MOLECULAR HEIGHT OF STACK GAI JORY BASIS) Ng. N pools
	ACTUAL READING	het	ACTUAL READING	HET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	
coz	14.6	14,4	14.4	14,0	14.6	14.6	14.6	94/100	6.424
OZMET W ACTUAL OZ MEANING MINUS ACTUAL COZ MEADINGO	19.4	4.0	15.2	Γ	J	4.6	4.6.	H/106	/. ¥72
COMET IS ACTUM. CO READING WHOIS ACTUAL OF READING		,						²⁰ /664	
HZOTET IS NO MINUS ACTUAL CO READING)							to s	27·100	22,624

TOTAL

3052

DRY MOLECULAR WEIGHT DETERMINATION

Spiles Ster Purt	COMENTS:
041F 9/4 /5 7 TEST NO	•
SAMPLING TIME (11 to CLOCK) 1732-1742 SAMPLING LOCATION -5777-C/C	
EARDI & PIPE INTO MITEGRATES, CONTUNOUS)	• ,
AMALYTICAL METHOD CONST	
SEEFFICE TO THE PARTY OF THE PA	•
ORSAU LEAK CHECKED	•

GAS	· · · · · · · · · · · · · · · · · · ·	1		1	,	1	AVERAGE		MOLECULAR REIGHT OF
	ACTUAL READING	HET	ACTUAL READING	HET	ACTUAL READING	NET	AGFAME NEL	NULTIPLIER	THACH CALIDOR BASIS
COZ	10.5-	12.5	12.5-	سر 27	13.1	12.0	12.1	44 _{/100}	5.632
OZINEL R YCLAYF OF BEYNNE MWINY YCLAYF BEYNNE!	19.4		·5 7	6.6	15. 4	6. 6	6.6	32,q06	2.112.
COINET IS ACTUAL CO READING WHAT ACTUAL OF READING								29/566	
NSGMEE IN THE MINING							F0.6	28- ₁₈₀	22.568
<u></u>	<u> </u>	1		,	•			TOTAL	25 12 / z

TOTAL 50.3/2

.

!

· DRY MOLECULAR WEIGHT DETERMINATION

MAN BALLE STEE SCAL	COMMENTS:
DATE 9/6/53 TEST NO.	• • • • • • • • • • • • • • • • • • • •
SAMPLINE THRE (18 & CLOCH)	
SAMPLING LOCATION #7 7 C-7Cs.T	
TANPLE FIVE MAG, INTEGRATED, CONTINUOUS	
ANALYTICAL PETHIO	1.
AMPLENT TEMPERATURE 6.7	-1
OPERATOR LATE LATE LATE LATE LATE LATE LATE LATE	
UKSAT CEAR CHECKED 23.4	

	l	l	ł		1	AVERAGE	MULTIPLIEM	MOLECULAN SEIGHT OF STACK GAS HONY MASIS) Mg. 16 46 444
ACTUAL READING	HET	ACTUAL AEADING	HET	ACTUAL READING	HET	NET VOLUME		
12.5	12,5	12.5	125	12.5	12.5	12.5	44/100	5.632
17.4	6.4	174	6,6	184	6,6	1.6.6	12/106	2.112
		<u> </u>					27/404	
						50,6	39.10 0	22565
	J2.F	PEADING PET	READING READING	12. F /22 /25 /25	READING READING READING 12.5 12x 12x 12x 12x	READING READIN	ACTUAL READING NET ACTUAL READING NET VOLUME 12. F 12x 12x 12x 12x 12x 12x 12x 12. F 17. 4 6.0 174 6.6 12x 6.6 1.66	ACTUAL MET ACTUAL MET ACTUAL MET VOLUME MULTIPLIEM 12. F 12x 12x 12x 12x 12x 12x 12x 12x 12x 14/100 17. 4 6.9 17y 6.6 12y 6.6 1.66 14/100

TOTAL 30,312

....

ñ

G-186

GUARDIAN

· DRY MOLECULAR WEIGHT DETERMINATION

MANT BALLES Tem Plant	COMENTS:
0416 9/6/9/3 TE 11 NO	British get return
SAMPLE CUPE (DAG, INTEGRAFED, CONTINUOUS)	
ANMITTICAL METHOD CECLOT 7 ANDIENT TEMPERATURE 6 7	, : :
OPERAION LOTE ORSAF LEAK CHECKED 26. 4 2.2 4	

<u></u>	1		ŧ	<u> </u>	1 AVERAGE	AVERAGE		MOCECULAR SEASH F OF
ACTUAL READING	HET	ACTUAL READING	NET	ACTUAL READING	HÉT	AOT PAGE	MULTIPLIER	STACH GASIANY BASIS
12.8	125	12.5	125	12.5	125	12.5	16/100	5,632.
19.6	6.4	15 .	6.4	/5 a	6.4	6.41	12/10	2.645
				: :	,		25/164	
						fir. sm	59-700	22624
	reading 12.8	READING CET	READING CET READING	READING	READING	READING TEL READING TEL READING TEL 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	READING HET READING HET VOLUME 12.8 125 125 127 12.5 125 125	ACTUAL READING HET ACTUAL READING HET VOLUME HULTIPLIER 12.8

FOTAL 30 30y

METHOD 5 FUELD DATA

Plant/Location Bailly 047778 Operator 12 12 Date 09/06/93 Test No./Run No. 41 MM 5	Pilot Coefficient, Cp Nozzle ID Average Nozzle Dis., inches
Test No./Run No. // / / / / / / / / / / / / / / / / /	Barometric Pressure, In. 11g Ambient Temp., deg. F 68 500er Assumed Moisture, % Filter ID Stock Pressure, In. 1120 7.0 N2

GAS METER START, cf: 0/ 7.79 START TIME 1007 GAS METER END, of 166.95 END TIME 1459

Clock	Travese	Sample	Vacuum	Stock	Pilot	Orlice	Meler	Temporo	lures (deg.	<u> F) </u>			
Time	Point Number	Time	in. 11g	Temp deg. F	Dr in. 1120	in. (120	Vol.	Probe	Filler		lanp. Outlet	DCM In	OCM out
1007	6-1	17	3,/	3/2	, 82	.71	5799ET	283	240		50	65	64
	6-2	24	3.1	308	,82	171	023.27	290	241		51	67	65
	6-3	36	6:0	309	1.4	1,2	READING MISSED	290	247		62	70	66
	6-4	48	5,5	304	1,3	1.1	035.46	Z50	241		60	73	68
<u></u> .			5001	<u> </u>			042,50						
	5-1	12	4.1	308	.88	,75	042.50	269	246		56	74	69
	5-2	24	4,4	308	. 84	175	048,17	308	253		57/	72	69
	5-3	36	5.1	310	1.1	. 95	053,78	308	248		51	ファ	69
		Total	Max	Avg.	Avg sort	Avg.	Total	Avg.	Ayg.	Max	Nax.	Avg.	Arg.
				325	1.037	0.94	 :		· •		1 1	 	-

24 1-9 2

69.2

V						Day T				_			
	5 Field Da				_		,, _,	#/2				Operator	RP
Clock Time	Travese Point Number	Time	Vacuum in. Hg	Stack Temp deg. F	Pilol DP in H20	Orilice DH in, H20	Meter Vol ef	Tempera Probe	i <u>ures (deg</u> Filter		limp. Outlet	DGM in	DGM out
	5-4	48	5.2	306	1.3	1.1	060,06	250	240		50	71	69
1145			5	TOP	<u> </u>		066.67	<u> </u>					
7	4-1	12	4.5	321	.85	,73	066.89	l	258	ı	53	7/	69
	4-2	24	4.6	32z	.86	.74	072,39	300	249		49	71	69
	4-3	36	5.1	319	195	195	077.98	302	241		49	72	20
<u></u>	4-4	48	4,2	323	95	169	084,29	250	247		50	74	70
			_	101			089.79						į
1235	3-1	12	استح	343	- 1.1	.95	089.79	207	261		50	73	ام7
	3-2	24	5-1	342	1.1	کو?،	096.14	275	247		5-1	74	7/
	3.3	36	511	328	1.25	.50	102,42	294	243		57	73	7 9
	3-4	48	4.8	325	,40	. 77	108.58	270	242	,	53	73	70
1323			57	OP			114.30		 		· . ,	-	
	2.1	12.	4.5	337	900	7- 7 -	114.30	313	240		54	7/	70
	Z - Z	24	4.5	336	46	.74	120.02	326	259		50	7/	70
	2-3	36	7.0	343	1.9	1.6	125.65	3/2	246		50	72	70
1												i	l

Today 1	Sample	Vacuum		Pitol	Orifice	Run No. #	<u>Tempera</u>	wes (deg	_D	T down	tune -	DGM
Number	TUTIE	ai. (18	deg. F			<u>र</u> ्ग रहा	Probe	Miler	Sorts.		in .	out
2,4	48	5.0	336	1.1	195	133,45	250	238		5 Z	73	70
			TOP	_								
1-1	12	4.9	338	.95	, 82	139.82	284	240		5 Z	72	70
1-2	24	4.4	334	.95	182	145.74	330	240		52	7z	70
1-3	36	6.1	344	1.5	1.3	51.62	292	263		52	73	70
1-4	48	7.0	₹341	200	47	158.90	2-50	268		53	74	7/
:			78F)		166,95	-					_
				<u>-</u>	·		LR	ch	K/	0 /1	Hr. =	- 0 <mark>0 €</mark>
				··-								
			<u>-</u> .		·							
_,,												
	2.4 1-1 1-2 1-3	1-1 12 1-2 24	Number 2.4 48 5.0 1-1 12 49 1-2 24 49 1-3 36 6.1	Number deg. F 2.4 48 5.0 336	Number deg. F In. H20 2.4 48 5.0 336 1.1	Number deg. F In. H20 In. H20 2.4 48 5.0 336 1.1 ,95 1-1 12 49 338 ,95 ,82 1-2 24 49 339 ,95 ,82 1-3 36 6.1 344 1.5 1.3 1-4 48 7.0 \$341 2.0 1.7	Number deg. F In. H20 In. H20 of 2.4 48 5.0 336 1.1 ,95 133,45	Number deg. F In. H20 In. H20 of Probe 2.4 48 5.0 336 1.1 .95 133.45 250 1-1 12 4.9 338 .95 .82 139.92 284 1-2 24 4.9 339 .95 .82 145.74 330 1-3 36 6.1 344 1.5 1.3 1.5 1.62 292 1-4 48 7.0 331 2.0 1.7 158.90 2.50 5736 166.95	Number deg F In. H20 In. H20 of Probe Filler 2.4 48 5.0 336 1.1 .95 133.45 250 238	Number deg. F In. H20 In. H20 cf Probe Filler Sorts. 2.4 48 5.0 336 1.1 .95 133.45 250 238	Number deg. F In. H20 In. H20 of Probe Filler Sorth Outlet 2.4 48 5.0 336 1.1 .95 133.45 250 238 52	Number deg F In. H20 In. H20 of Probe Filler Sorb Outlet In 2.4 48 5.0 336 1.1 .95 133.45 250 238 5 z 73

MA 4 OPERATION	8 Out	dp PITOT	dP ORI	dp PITOT	dP ORI

GAS AMALYSIS - 02 :	5.7	0.500	0.43	1.400	1.20
co2 :	13.3	0.550	0.47	1.450	1.25
H20 :	10.0	0.600	0.52	1.500	1.29
AMB PRESS, in Mg :	29.45	0.650	0.56	1.550	1.33
STACK dP, in H20 :	7.3	0.700	0,60	1.600	1.38
Enter Gas vel., fps		0.750	0.65	1.450	1.62
or AVE SOR ROOT d :	1.01	0.800	0.69	1.700	1.46
MENJAUM PETOT dP 1	0.50	0.850	0,73	1.750	1.51
de sucrement :	0.650	0.900	0.77	1, 8 00	1.55
		0.950	0.82	1,850	1.59
STACK CAS TEMP, F :	320	1.000	0.86	1.900	1.63
GAS METER TEMP, F :	85	1.050	0.90	1.950	1.68
		1.100	0.95	2.000	1.72
PITOT CONSTANT :	0.81	1_150	0.99	2.050	1.76
ORIFICE CONSTANT :	1.87	1_200	1.03	2.100	1.81
Autech 1		1.250	1.06	2.150	1.85
NOZZLE DIA, in :	0,192	1.300	1.12	2.200	1.89
SYSTEM FLOW, acfm :	0.796	1.350	1.16	2.250	1.94
do	1.01				
fLOV, acfa	0.4776				
Target volume	110	137.6	predicted	vol.	
Himutes to Vol.	230.3		nozzle 140	ı	
hours to vol.	3.0303				
No. of points:	24				
Regd Min./point	9.5958	9/6/93	Outlet 8 H	MS teain op	noizans
Use Himutes/point	12				

METHOD 5 FIELD DATA

Plant/Location Berling 0472 eff Operator <u>RNC T.C.</u> Date <u>09-06-53</u> Test No./Run No. # ALDENIOE Meter Box ID # NATECH Gas Aleter Cat Factor Orifice ID Orifice DIMP	Pilot Coefficient, Cp Nozzle ID. Average Nozzle Dio., Inches Darometric Pressure, in lig Ambient Temp., deg. F Assument Moisture, % Filter 10 Stock Pressure, in 1120 7.0	leak linte, cfm. Pretest
gas meter stant	1 df 203.6	GAS MIETER BND, & <u>254.49</u>
start time _2_	23.60-1730	DND TIME

Clock Time	Travese Point Number	Sample Time	Vecuum in. Hg	Stock Temp deg. F	Pilol DP In. 1120	Ortfice Oil by fi20	Meter Vol. ef	Tempero Probe	lgres (deg Filler	F) Sorts.	imp. Quliel	DGM br	DGA out
	Single	0		3/0			203,60				66	74	74
	PoiNT	l		311		1.2	216.30		251		64	75	74
		40	4.5	3/0		1.2	228,37	305	263				
/430		60	4.7	310		1,2	240.52	307	265		54	77	75
		80	4.8	3/0		/,2	252.66	308	238		54	76	74
		83	5+0	P			254.49			 '			
	<i>V</i>												
		ليبيب	<u> </u>							 '			<u> </u>
	ſ	<u>Total</u>	klax f	310 T	Ave soit	Ave.	Total	Aye.	Avg.	Max.	<u>kloz</u>	Avg.	ASA.

HERMON & BREEN NAME

•	WIND COMPANY	-//
#		15-145= .000
Plant/Location #8 OcaTLet	Pilot Coefficient, Cp	1st Filler:
Operator Syl	Nozzie ID.	l <i>e</i> ak Rale, cfm, Prelest <u>~</u>
Pale 09/06/93 Test No./Run No. #1 Anguma ayan.da.	Average Nozzle Dia., Inches	Icakrale, chn. Past-lest 📈
Test No /Run No. #1 Amount ayen da	Barometric Pressure, In. ilg	2nd Filter (if used): ・・ まっぴゃっこ
Meter tox ID Dateck F/	Ambient Temp., deg. F	Leak Role, c/m, Pretest
Gas Meter Cat Factor	Assumed Molsture, %	Leakrale, efm. Post-test
Orifice: ID	Filler ID	
Orifice DNP	Stock Pressure, in 11207, 5"	NOTE 2112" 420 @ for 25 C4. FT.
CAS METER START,	cl: 1-76.95 + 77.0 GAS N	OCTER END. of 204, 10

7/19	, H	+ POPT	7	GAS METT START TO	er start, VDE <u>//</u>	ef: <u>/-7</u>	76. € 6.1	77.0		er end.	_	04.10		4. r 2 s
1111112	Clock		Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempera	lures (deg	. F)			
11 13 6	Time	Point	Time	in Hg	Temp	90°	(† bil	[Vol.	,			ևոր	DGM	DCM
1/1/2	<u> </u>	Number			deg F	In. 1120	In. 120	el	Probe	Filter	Sorb	Outlet	<u>bı</u>	oul
		Surge	0	2.1	3//		/ ₁ z	176.90	260	225		67	75	69
1		POID	10	21	3//		1.2	183.03	288	230		63	74	69
G-192			20	2.1	3//		1.2	188.04	292	238		63	74	7/
92			30	2.1	3//		1,2	195.10	294	235	- - — ···	66	75	7z.
			40	2.1	310	<u> </u>	1.2	201.13	286	242		67	75	72
570 5-	-/70	3	45	2.1	310		1,2	204,10	289	239	<i>ــــــ</i>	67	75	72
		\mathbb{V}												
		ı	Total	Max	Avg.	Avg sut	AVR.	Total	Avg.	Aya.	<u>klax</u>	Max	Avg.	Avg.
		i		: I	311		1.2	; I		1		l !	\	, ,

72.7

Plant/location BALLLY INLET U-B

Ist Filter:
Lenk Rote, cfm, Pretest -000 cen/min \$13.4.
Leokrote, cfm, Post-test ___

2nd Filter (If used):
Leak Rote, cfm, Pretest ___
Leakrote, cfm, Post-test ___
Leakrote, cfm, Post-test ___

GAS METER START, cf: 761.990 START TIME 0933 PROT LEAK CHECK

Clock	Travese	Sample	Vacuum	Stack	Pllot	Ortifice	Meler	Tempera	tur <u>e</u> s (dea	: f)			
Time	Point Number	Time	les. Hig	Temp deg. F	Dr 10, 1120	DII in, <u>(120</u>	et Aof	Probe	Filter	Sorb.	lmp. Outlet	DGM <u>In</u>	OGA oot
		0					761.990	249	259		57	71	69
<u>09</u> \$3	1-1	10	÷	323	•87	-67	766.300	202	254		52	73	41
	2	20	-4.0	3 32	-91	e71	₽ 7 6.780	186	281		50	75	71
	3	30	-5.0	349	•92	-72	775.340	190	268		50	76	71
0 ;	4	40	-6.0	355.	•88	.69	772 \$00	161	272		5Z	77	71
						•	l						
1014	2-1	50	-6.0	\$2 <i>5</i> 5	1:15	-89	780.090	169	269		54	78	71
	Z	60	60	337	1.20	.93	785-185	:81	275		55	78	ZZ
		Total	Mox	AVR.	Ave sut	AYR.	Total	Avg.	Avg.	Max	Max	Ayg.	Avg.
		l	1 1	, גע (0940	6.33	<u> </u>				l j	j	

345, 0328, 035

76.0

TEST DAY #4

n In

Page 2 0F

Method	Method 5 Field Data Continued Date Check Traves Samula Varuum	da Contin	Vacanta	` ∟	Iceation .	0-tille	Location wer 0-8 Run No. Meder Tenn	5 - / Tennem	5 - / Tenneminimes (des	E		Operator 157	e die
Time		Tine	in He	Termo	2	麦	Į.	200			inb	, RDQ	750 000
	Number			deg. F	ID. 1120	in. 1120	' 5	Probe	Filter	Sorb.	Outlet	th	out
	3	70	-6.0	348	26.	- 72	~\$~0£_	8'±1	272		54-	6 Z	72
	+	80	9	358	•93	.72	88.462	691	222		54	6 2	7 J
							799.49						•
1057 1623	3-1	90	-4.S	331	21-1	68.	799.990	771	7+5		25	78	2 5
	2	00/	÷ 6.5	350	1.1	-85	\$04.910	58 }	ħL2		25	4.	22
	3	110	5.9-	83	.93	. 72	68.608	111	112		75	49	73
	ክ	120	0.9-	3.65	59.	QS:	314.416	261	122		25	7.9	73
			120	919	1.20	3/2	818.29	831	222		245	12	72
	1-h	30	-1.0	319	027	.93	818.39	891	922		25	22	75.
	2	₹	-6.5	348	o -	n.	528	070	212		8 7	28	22
<u> </u>	8	$\bar{\mathscr{B}}$	5-9-	3%	26.	ንኒ		541	273		グナ	78	22
_	カ	09/	5.9-	267	79.	.48	982.96	521	273		≈ +	٦ ا	22
							836.695		,				
	1-5	130	5.9-	81€	1 '1	-85	837.040	ħL]	275		۲5	% %	73
	2	081	309-	£\$\$	21.	. 59	842-04	661	276		8 +	2	73
			_						_	_	_		

WA AND

* LEAK CHECK @ 10' OK.

Tock Tune	5 Pield Da Travese Point Number	Sample Time	Vacuum in. Hg		Pilot DP	Orifice OH in. H20	Run No. M Meter Vol. ef		ures (dea Filter		lmp. Outlet	Operator DGM In	DGM out
HELE	3	190	-6.5	35O	-ъ 9 ;	-69	846-190		277		48	82	74
	4	200	-6.5	346	.\$7	-67	850,620	179	276		48	82	75
							85 ₹03						
301	6-1	210	-6.0	320	•78	-60	855 40	186	274		49	82	77
	2	220	-6.0	327	-85	.66	859,650	185	275		وہا	82	77
	3	230	-6.0	340	-82	.63	864.06	181	278		49	82	77
	4	240	-6.5	345	-74	-57	868-35	169	280		49	83	77
341	END	1					\$72.445						
		_	 -							•			
·													
													
								•					
· -										• • • • • • • • • • • • • • • • • • • •	-		
											 		

LEAR CHECK OK. @ 12-44.

SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

coments MMS	Un. + 8	104/2	Aun No	01/06/93
venera /-////)	Vecc Py	10-14 3	KUN DECE	_01/00/43
nalyst Responsible for Recovery	V		<u> </u>	
Iculations & Report Reviewed By			Report Ont	·
·				
FITTING LICEN			C C C C	-
FILTERS USED		Used	CLOTON	Prepared Container
		(Yes/No)		(Ko.)
iter to. unweighed				
	- 4			
urbent Trap NoH590-53	5.8			
		•		· · ·- ·-
ndenser Ho.	· · · · · · · · · · · · · · · · · · ·	A+3 h		
		·		•
PINGER SOLUTIONS:	Inixial	final		Sain
rat	<u>438.0</u> ,	631,8		193.8
eand	<u>577.5</u> e	580-	 -	5.0
ird	<u>580.5</u> a	582.5		<i>J - B</i>
erth	<u>489.6</u> ,	141.7 491 6	. <u> </u>	
fth	q		9	
xth			9	
venth	g	<u> </u>	9	
tea sel netshirs:	initi:			Final
ACK DEC MUNITER	307419	·		
	826.0	, ,		855,0
tat s				
				-DSAL
		_		~ T N T AL

METHOD 5 FIELD DATA

Plant/Location BALLY JULE TO A Operator WSP (CA DS)

Date 9/6/93

Test No./Run No. Morean 4 A 9215

Meter Box ID Aem Cyamos.

Meter Box ID Aem Cyamos.

Orifice ID

Orifice INIO 1.87

GAS METER START, et: \$74.100 START TIME _ 1548 GAS METER END. of 899.100 END TIME _________

Clock	Travese	Sample	Vacuum	Stack	Pitot	Oridice	Meter	Tempera	lures (dea	. F)		···········	
Time	Point Number	Time	in. Hg	Temp dex F	DP in. 1120	DH in, (120	Vol.	Probe	Filler		lmp. Qutlet	DCAI in	DCM out
1548	3-2	0	·5·0	3 55	1	1.2	874-100	240	250		<u> </u>	72	70
	<u> </u>	11/2	50	355 35	Į	1.2	881-020	204	226			77	72
		20	-5.0	3 55	-	1.2	883.9/5	205	231	1		7 9	7z
		30	- 5.0	355	1	1-2	891.650	207	235	· · · · · · · · · · · · · · · · · · ·		82	74
		40	-5.0	355 .	-	1.2	897-495	206	236	·		83	75
1631	でとり	42.8					899.100			-			
		(42 %)											
													··
	·	Total	Max	Ave.	Ave sert	Avg.	Total	Avg.	AYR.	Mny.	Max	Äyg.	Avg.
			' '	355	! !	1.3 1] ;	1			ł I	! I	י ס

G-197

TEST DAY #4

METHOD 5 FIELD DATA

949.980

Plant/location Banky 0-8
Operator LST DS
Date 9693
Test No./Rum No. ALDEHYDE # 1
Heter Dox ID NOTSCH # 4 A 9215
Gos Meter Cal Factor
Orifice ID
Orifice DHO 1.87

ist Filter:

Leak Rate, cfm. Pretest ODcem/Man.

Leakrate, cfm. Post-test Ocean/Man.

2nd Filter (if used):

Leak Rate, cfm. Pretest N/A

Leakrate, cfm. Post-test N/A

GAS METER START, cf: 899.980 START TIME 1644 GAS METER END, of >8949.980 END TIME ... 1809

Clock :	Travese	Sample	Vecuum	Stack	Pilot	Orifice	Meler	Tempera	tures (dea	. F)			
Time	Point Number	Time M.A	in Hg	Temp deg F	DP _ln. 1120	011 in. 1 12 0	16t c[Probe	Filter	Sorb.	imp. Outlet	DGM In	DGM out
1644	3-2	0	-5.0	3 <i>5</i> S	-	1.2	899.980	230	249	6	66	80	75
1700		16	-5.0	<i>35</i> 5	-	1.2	909 3 43	209	243		63	83	76
1707		23	-5.0	355	_	1.2	913.425	209	243		66	84	77
1716		32	-ა.⊙	۔ کئڈ		1.2	918.650	210	242		65	85	78
1726		42	-60	355.	-	1-2	924-400	209	246		64	86	7 9
1734		50	-6.0	356	-	1-2	929.100	208	246		63	87	80
1748		65	-40	356		12	937.89	207	246		61	87	81
1809		85.6	8.0	~			949.980	-			61	87	80
, ,		Total	Max	Avg.	Avg sqrt	Avg.	Total	Avg.	Ayg.	Max	Max	Avg	Avg.

s5 %

113

M~

81,6

198

MASS TRAIN OPERATION	Inlet 8	dp Plifot	de ori	dp PITOT	dP OR1
***************************************		*******			
GAS ANALYSIS - OZ :	5.5	0.500	0.39	1.400	1.05
COS :	13.4	4.550	0.43	1.450	1.12
H2D :	10.0	0.600	0.46	1.500	1.16
AND PRESS, in Hg 2	29.46	0.650	0.50	1.550	t.20
STACK db. in #20 :	-20.0	0.700	0.54	1.600	1.24
Enter das vel., fps		0.750	0.58	1.650	1.28
or AVG SOR ROOT & :	1.09	0.800	\$4.0	1,700	1,32
t da Tofig MUMIKEN	0.50	0.850	0.66	1.750	1,35
dP INCREMENT :	0_050	0.900	9.70	1.800	1.39
		0.950	0.74	1.85D	1.43
STACK GAS TEMP, F :	335	1.000	0.77	1,900	1.47
CAS HETER TEMP, F :	62	1.050	0,81	1,950	1.51
		1.100	0.85	2.000	1.55
PITOT CONSTANT :	0.61	1_150	0.89	2.050	1.59
ORIFICE CONSTANT :	1.67	1,200	0.93	2,100	1.63
Nutech 4		1.250	0.97	2.150	1.66
NOZZLE DIA, in :	0, 192	1.300	1.01	2.200	1.70
SYSTEM FLOW, acfm :	0.895	1.350	1.04	2.250	1.74
ф	7,18				
FLOV. Actin	0.5266		-		

100

24

189,92

3.1653

7,9131

Target volume

hours to vol.

No. of points:

Read Min./point
' Yinutes/point

Minutes to Vol.

126.4 predicted vol. nozzle T39

DAY 4 OF TEST

9/9/93 Inlet MMS train operation

WEEE MANNING THE BIG BUCKS TODAY

polo

9/6/93

874.1

G-199

METHOD 5 FIELD DATA

Operator CAN Date 9-6-93 Ave Test No./Run No. Allaha / CYSNADE Meter Box ID 71-16 Gas Meter Cel. Fector Assi Orifice ID Filt	orage Nozzle Dia. Inches ometric Pressure, in Hg blent Temp., deg. P	Ist Filter: Lenk Rote, cfm. Pretest <u>A - OK</u> Lenkrote, cfm. Post-test 2nd Filter (if used): Loak Rote, cfm. Pretest Lenkrote, cfm. Post-test
---	--	---

GAS METER BND, cf <u>955. z. 4</u> END TIME <u>. 185 z.</u>

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meter	Tempera	lutes (deg	F			.,
Time	Point Number	Time	in. fig	Temp deg F	DT In. 1120	130 110	Vol.	Probe	Filter	Sorts.	linp. Outlet	DGM In	OOF DCM
1817_		!	6.3	118		1.2	979.13	240	215		67	69	62
185Z			6.5	132		! 	955.00	240	251		66	77	10
<u> </u>	·											<u></u>	
	<u> </u>										<u> </u>	! 	<u></u>
<u> </u>			 										
									· · · · ·	<u> </u>			
								· 			 	<u> </u>	<u> </u>
		Total	. lux	hve.	Avg squt	Avg.	Tolal	Avg	AVE.	Max	Max	Avg	Ave.
	ı	tátái	****		KIK SILL		totat		178	ним	PHASE.		
	•		1	(1925)		1. 🛩	,	-				7	Ī

3-200

کے کر

METROD 5 FIELD DATA

Plant/Location_BAILLY STACK	Pitol Coefficient, Cp	fat fülter:
Operator	Nozzie ID.	izak Rale, cim. Pretest
Date	Average Nozzle Dia., Inches	Leakrate, cfm, Post-test
Test No./Run No. A Weh, Je 1	Barometric Pressure, in lig	2nd Filter (if used):
Meler Box ID 11-16	Ambient Temp., deg. P	Leak Rote, cfm, Pretest
Gos Meter Cat. Factor	Assumed Moisture, 72	Leakrate, c/m. Post-test
Orifice ID	Filter ID	
Orifice DHA 1. 24	Stock Pressure, in H20	
		ele el mil

			GAS METT START 111		et: <u>95.</u> 706	<u>5,21</u>		GAS MET END TIAD	er end.	or	J. 21	-
Clack Time	Travese Point Number	Sample Time	Vacuum in. Hg	Stack Temp dea. F	Pilot DP In. 1120	Orifice DH in. 1120	Meter Vot ef	Temperat	lures (deg Fijter	. F) Sorb.	imp.	_ [
1306			5.0	132	7- 1-0	2 1 2	255 21	739	249	655	65"	Γ.

DENICE	1101636	l-seculars.	Lacturit	Julick	l Lime	OHILE	MEGGET	remherni	rance fact	· • • • • • • • • • • • • • • • • • • •			
Time	Point Number	Time	in. Hg	Temp deg. F	DP In. 1120	DH in. 1120	Vol. cf	Probe	Filter		imp. Outlet	DGM in	DGM aut
1906	_		5.0	132			955.21	739	249	635	65	73	70
1920		<u> </u>	5.0	132			966.00	210	2 <i>50</i>		58	78	10
1940		<u> </u>	5.0	132			982.15	236	7.5Q	· 	57	76	70
1957		ļ					995.21				 	<u> </u>	
				· · · · · · · · ·				_ _	<u> </u>				
	. !						<u> </u>			· 			
					· 	·	·				·-·		
		Total	llax 1	Avg.	Avg sqrt	ÅTE.	995.21 Total	Ävg	ÅVÆ.	blax.	Max	ÁVg.	Arg
				133	****	ا کی ا	, , , , , , , , , , , , , , , , , , ,	,					
			;	1 7 6-		· · · · ·	•				•		

Prepared Container (No.) Gain 7 93.8 9 4.9 9
Prepared Container (No.) Gain 4.9 9
Prepared Container (No.) Gain 7 B3.8 9 4.9 9
Prepared Container (No.) Gain 4.9 9
Prepared Container (No.) Gain 4.9 9
Prepared Container (No.) Gain 4.9 9
Gein 93.8 9
(No.) Gain 7 13.8 9 4.9 9
7 83.8 9 4.9 9
7 <u>83.8</u> 9
7 <u>83.8</u> 9
7 83.8 9 4.9 9
7
7 <u>83.8</u> 9
7 <u>83.8</u> , 4.9
4.9
1.9 -
9

9
Firmt
12,6 Mgt
<u> </u>
¥
<u></u> #
-tenac 108.5

lant Kaully			_	
empting cocation <u>Intel</u> Unit	8	, R	an Ho/_	
at up by thind saits	<u> </u>	06/73 R	an Dete	· - · · · ·
omments <u>Aldelydes</u>			·	
nelyet Responsible for Recovery .				
alculations & Report Reviewed By ,		R	port Date	
FILTERS USED			CYCLONES	
1111247 0-367		Used		ed Container
		(Yes/Ho)		(No.)
ilter Ho.				
	···-			
drivent Trap No	 			
				
onderser No.		D.5 #		
· · · · · ·	 			
MPTNEER SOLUTIONS:	initial	Final		Gain
irst	DEC4.4-6356	688.3	<u> </u>	Baha
econd	604.4	609.8		44 9
hied	473.9	415.8	_; _	1.4
oue th	,			
ifth				9
isth				9
eventh				9
ILICA GEL WEIGHTS:		ı -		inal
		•	,	18 7 pe
	_ 	<u>801.3 </u>	819.5	
otels				1
otels		•		———.° ———∖о∩.Ч ^л

eampting Location Ocalet	0. LD			
منطقات المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المستحدد المس	Dete _65	Ru	n Ho,/	
manes Aldehudes			n Cate	·
nalyst Responsible for Recove				
alculations & Report Reviewe		•	port Dace	
remerinate a suboit sustained	· *F			··
	<u> </u>			
FILTERS USED			CYCLONES	
		Used (Yee/Ho)		d Cantainer (No.)
(Iter No		19 р		•
orbent Trep No.		2.0 μ		
		1.0 µ		
endenser Ho.		0.5 µ		
	-			
				
PINGER SOLUTIONS:	Inittal	Final 7		Spirit .
rst	593.1	623.7	9	20.lo _
cond	<u>652.6</u> a	657,9	9	
ird	<u>.500,5</u> .	<u> 502 7</u>	_	<u> </u>
urth	·····		_	
fth			_ °	
xth	9	 	— • —	
venth	9		_ ⁹	
ICA GEL WEIBKTS:	Init.	at ~	Fir	ua!
	0117		828	الأم كا
		<u>\$</u>		~
	 	s		
tals	•	_		
Kais		9	-	
				L-Ch

Plant Darlly			,		
Sampling Location Stock		Rty	n 40. <u>/</u>		
See Up By Mound of retty	Date <u>68/06</u>	<u>/9.1 </u>	n D4te		_
comments Attehudes				<u> </u>	_
Analyst Responsible for Recovery _					_
Calculations & Report Reviewed By _		Re	port Date		_
	<u>-</u>				_
FILTERS USED			CYCLOVES	<u> </u>	_
		Used (Yes/Ko)	Prepare	(No.)	
ilter No.		•	·•· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		_
orbent Trap Ho.					_
					-
Condenser No.					_
		<u> </u>			_
MOTHER CONTITIONS	(místa)	#ical		ceto	
MPTMGZR SOLUTIONS;	10isial 577.5	683.60		inla-Ì	_
iecond	633.0	6 58.3	9 <u></u>	24.7	9
bird	491.7	196 3	*	4,0	a
oueth	609.7	612.0	_ *	2.3	4
ifth AD	546 -5103	5/1.5		1,2	9
ixti			_ 9		g
Seventh					9
	 -				
ILICA GEL WEIGHTS:	Initial		Fin	el	7
	7613		11000	. 1	- 13.7
	<u>791.7</u>	e	805.4	<u></u>	g.
		g			9
					9 15 2TA-H
fotals		9			9 1
				-49	ot Act
			·· ·-		_
	a				
COMMENTS: Cotor of Silica Gal: <u>No G</u>	Rames (
		_			_
description of Impinger Water:					-
		 -			-
					
					_
					-

Total Light S Date O9 06 93 Run No.	tent Bailly			
Annoxio Canide alyst Responsible for Recovery (Allerts) CYCLORES Report Reviewed By Report Date Filters USED CYCLORES Used Prepared Container (No.) Toent Trap No. 2.0 \(\mu \) Toent Trap No. 2		3	Run No	
Report Park Report Reviewed By Report Date	or Up By ZLOK	Date 09/06/93	Rum Date	09/06/43
CYCLORES Prepared Container CYCLORES Prepared Container CYCLORES Prepared Container CYCLORES C	ammes <u>Ammonia Cyanide</u>			<u> </u>
FILTERS USED CYCLOMES Used Prepared Container (Yea/No.) 10 μ	malyst Responsible for Recovery 🜿	Chart		
	alcutations & Report Reviewed By		Report 0a	te
	·			
Crest No. 10 g 10	FILTERS USED		CYCLO	MRS.
10 p				
S	ilsan No.			·
1.0 μ	orment Tree No.			
PINGER SOLUTIONS: Initial Final Gain ret 591.5 9 640.5 9 449.0 9 cond 588.5 548.4 9 591.1 9 ind 479.6 9 480.9 9 1.3 9 turch 585.9 9 586.4 9 0.5 9 fth 594.9 9 594.8 9 wenth 470.1 9 491.7 8 LICA DEL URIGHTS: Initial Final 8 30.1 9 8.37.6 101.5 8 30.1 9 8 8 8 30.1 9 8 8 8 30.1 9 9 8 30.1 9 9 8 30.1 9 9 8 30.1 9 9 8 30.				
PINGER SOLUTIONS: Initial Final Gain ret 591.5 9 640.5 9 449.0 9 cond 588.5 588.4 44 9 591.1 9 8.6 9 ind 479.6 9 480.9 9 1.2 9 turch 585.9 9 586.4 9 0.5 9 fth 594.9 9 594.8 9 -0.1 9 xth 470.1 9 471.7 9 1/1/2 9 LICA DEL VEIGHTS: [eltist] Final	ondenser Hs.			
Second S				
Second S				
Second S		3-44-1	67	.
SEST SHET AND STOP				
1rd				2/4
SSS SSI		4		1.3
### ### ### ### ### ### ### ### #### ####				0.5
### ##################################				
CA DEL METONITS: Toltiel Final				
<u>830.1</u> , <u>837.6</u> PJ. s	-			
	ILICA GEL VETGHTS:			
		00.		
		8 30. 1	•	<u>837.6 Pr</u> i
tals g g			\$	9
tels 0 9				
	otels			9
				787
	LICA DEL VE GHTS:		_ , _	8.37.6 P
-1 P1*				
	CHALLENTS:	con of hotter		
NOLENTS:		TEAT IN WOLLDAN		
HENTS: Lor of silies cel: Pink circle seen at bottom	escription of Impinger Water:			
NOLENTS:	 · ·			
HENTS: Lor of silies cel: Pink circle seen at bottom	 .		 	
HENTS: Lor of silies cel: Pink circle seen at bottom				
HENTS: Lor of silies cel: Pink circle seen at bottom	 			
HENTS: Lor of silies cel: Pink circle seen at bottom		····		

TABLE TO A CARACTER AND LEGAL A CONTACT		A		
empling coording Unit 8 Outlet				
ments Arrenonta /Cyanide	Dete <u>09/06/</u>	Run Dat	e	
- F				
malyst Responsible for Recovery _				
lculations & Report Seviewed By _		Report	Date	
FTLTERS USED	<u> </u>		LONES	
-		(Vead (Yes/No)	Prepared Containe (No.)	r.
ilter No.	10			
orbent Trap No.	—			
ondefiser No.		ř		
				
IPINGÉR SOLUTIONS:	<u>Initial</u>	final	Gain	
irst	590.8 s	634.2	43,	<u> </u>
cond	606.4 g	6/0.9	4.	ه ک
rird	474.7 8	476,5		<u>g</u> ,
unth	<u>581.2</u> 9 _	<u>584.5</u>		<u>3</u> ,
fth	562.2 9	<u>563, /</u> ,	<i>o,</i>	9_0
ath	492.9 9	494.5- 0		<u>.</u>
winth	9	9		e
ICA GEL NEIGHTS:	Initial		. Figat	
				1
	<u> 775.6</u>	0	785.3	g
		* _		9
		_		√M,
tels		#	·	

Plant Bailly				
Sampling Location 5-444L			Rum No	
Set Up By 1/04	Oste _	<u>05 lp6 f13</u>	Rum Date _	
coments				· · · · · · · · · · · · · · · · · · ·
nalyst Responsible for Recovery	4415			
iculations & Report Reviewed Sy				
		· · · · · · · · · · · · · · · · · · ·		
FILTERS USED		Used	CACFORE	S Prepared Conzalner
		(Yes/M		(No.)
Lter No.		10 #		
<u> </u>		5 #		
orbent Trap No				
ndenser Ho,				
			<u> </u>	
PTHGER_SOLUTIONS:	initial 	Finat A.A.	Va	Gain GFG
rst	<u>604.3</u>	77	<u> 8.9</u> .	
sond .	<u>608.9</u>	700	وسيون	<u>aa.g</u>
írð	480.3	74		4.8
ırth	598.8		0.9.	<u>a.</u> j
fth	605.6			-0.5
xth	<u> </u>	, <u>50</u> ;	<u>57</u> 9	
/en th		<u> </u>	9	
LICA GEL VETGATS:		<u>triat</u>		Finel
	~ .	a a		799,D 9,
	78	9.9	9	<u> 299,D 9.</u>
			g	
tels			9	
				-18
	-			-(19
wents:				
lar of Silica Gel;	•			
scription of impinoer Waters			_	
scription of Impinger Water:	•			
scription of Impinger Water:		· - · - · - · · · · · · · · · · · · · ·		
scription of Impinger Water:				

Plant Bailly			
isopling Location <u>(Init 7 Out</u>		Run Ho	<u> </u>
let up by 1/2 OK	Date <u>#9/04/93</u>	Run Date	09/04/93
manes Immonia / Cyanide			_ -
maiyet Responsible for Recovery	`		
alculations & Report Reviewed By		Report Da	te
_ 	<u>. </u>		· · ·=
FILTERS USED		CYCLO	
		Used (Yes/No)	Prepared Container (No.)
ilter Na.	10 p	<u></u>	<u></u>
	5 <u></u>		
orbent Trep No.			· · · · · · · · · · · · · · · · · · ·
	1.0 μ	<u> </u>	
emplement to,	ير ٥,٥		
	 		· · · · · ·
PINGER SOLUTIONS:	Initial	Final	Gein .
ísi		<u>6/7.9</u> ,	<u> 30.1</u> 3.4
eond		<u>78.8</u> ,	
ird		57.4	1, 1
wrth	<u>668.1</u> 9 6	<u>60,5</u> 9	0.2
fth	<u>-577.1</u> • <u>-5</u>	77.4	
xth		<u>72.5</u> 9	1,5
wench	 •	 9	 _
LICA GEL WEIGHTS:	Initial	· -·· -	finat
			786.4
	777.4	9	106.4
	 	9	
otals		·	
			-10TA-

FILTERS U	<u>\$60</u>	 -	Vaed	CACTO	es Prepared Container
	and a A		(Yes/No		(No.)
filter Ho. <u>Unu</u>	veighed				
orbent Trap No	590.65.3	 ,			
otosas insh so	310-33-J				
Condenser Ho.		-	ι.5 μ		
	<u> </u>				
MPTHREA SOLUTIONS:		i i a L	Final		Gein
irst	447,8-45			<u>0,3</u> .	3777
econd		<u>01.2</u> 9	<u> 569.</u>		<u>8.⊃</u>
hird		81.0 g	<u>58</u> 5	8 /	1.9
ourth Ifth		<u> </u>		<u> </u>	 _
i ren Ei reth				— <u> </u>	-
ieventh	 :-	 ;			
				<u> </u>	
ILICA GEL MERGNIS:		<u>Initial</u>			Final
		845,4	<u>.</u>		885.3
	· -	873,4	<u></u> 9		002.0
		•	•		-
otala			9	·	
	_				
					1

UP BY WEEK / DWS	2-1- de la les	-	o. 01/06/97	
MM 5	Onte 09 /06/53		V17 V V V V	
slyst Responsible for Recover	y wol			
Louistians & Report Beriowed		Repor	Date	
	<u> </u>			
FILTERS USED		c	YCLONES	
			. Prepared Contain (No.)	er
eter no. <u>unweighee</u>	30 #	(144)1107		
	5 %			
orbent Trap No				
ordenser Ho.	م د.ه			
	<u> </u>			
	·····			
PINGER SOLUTIONS:	Initial	Final	GAIR	
irst	451.5 9	648.6	· 1971	g
cond	592.9	609.8	s <u>''4.9</u>	g
ird	605.2	606.4	g <u> 1,4</u>	<u></u> 9
arth	<u>489.7</u> •	491.1	• <u></u>	<u> </u>
fth	<u> </u>		, <u> </u>	g
iath	9		* <u>-</u>	g
venth			• 	9
LICA GEL WETGHTS:	initial		Firet	_
770 420 421 411			1 11242	pet 3
	<u>81+./</u>	s _	877.5	hr4 3.
				9
tal B				g
				18KA

lant 13.4.7.1.9		_	_
ampling Location <u>5 t a c fc</u>		_ Rum Mo	<i>)</i>
rt Up By 1/10/ 17/05	Date <u>04/66/93</u>	Rum Date	09/06/93
ments MM5			
elyst Responsible for Recovery 🔔			
loutations & Report Reviewed By _		Report Date	
			•
FILTERS_USED	Use	CACTON	ES Prepared Container
/	A /Van/	_	(Ho*)
server no. un weighed	10 #		
	5 # <u></u>		
orbent 7rap Ho. <u>H.590-55</u>	-9 2.0 #		
	1.0 p		
ondenser Ho.	0.5 g		
			· · · · · · · · · · · · · · · · · · ·
PINSER SOLUTIONS:	initialFina	<u>. </u>	Geto
irst	<u> 780.4</u> • <u>145</u>	<u> 25 </u>	المكرما
cond		2. <i>0</i> 9	
ird			-1.3
urth	471.6 3 47	<u>14.8</u> a	3.2
fth		9	
xch	*	g	
renth.	<u> </u>	9	
ICA DEL MEIGNIS:	Initiai	 	Final
	<u> </u>	_ g	925.0 pt
tais		. s	-10

Code: o.	Z	/- - MT	Ate:	9/6/9	2	Location	RT.	540	→			
			Box Ha:			Holder No	11 T /	-FI CR	GAS AN	ALY818 - 02 :		6.0
Plant:	AILLE	1 B	tun	9 738					!	C02: H2O:		13.0 9.5
		4 - TL	line: 7	<u>경 ele</u>	3 /pt	Probe ID:		mT3	AMD DO	120. E88, in Hg :		29.58
Pre-Test Lask the			Poet-Test Leek Check			Duct Star Press, "				£P, in H2O :		-20.0
Start Ti				ter No.	78		****	Hazzle		RROOT OF :		1.000
SCAPE II	Final									GAS TEMP, F:		332
1010		ial Ut <u>. 807</u>	<u>کا و۔</u> 11ء	tal Ut.	6.07	13		<u> </u>	GAS ME	TER TEMP, F:		90 (
End Time	_		161	itiel Ut.	2.21	54		1.5717		ONBTANT :		0.78
	•	ило нго: <u> 63</u>								CONSTANT:		1.71
1129				loz, Lt.						DIA, in :		0.188
	TOT 1			GAIN	5-4-	*****			STRIEN	i FLOW, ectin :		9,806
Port/Pt	Time (ain)	Resolng	4P Pitot	AH Orifice	System System	Stack Temp	inlet	Cutlet	e#Des	dPo	dPo	dFo
• 7	9	914.596					,	1	dPp	-	urp	- G-V
Pr//	J	85.6	.97	554	4.6	337	63	62	0.30	0,16	1.00	0.59
12		217.4	/.20	17/	5,4	216	66	7.8	0.32	0.19	1.02	08.0
1/3	12	9/5:8	1,35	.92	5.4	337 276	72	44	0.34	0.20	1.04	0.61
/		l'					<u> </u>		0.38	0.21	1.06	0.63
6/1	75	942.1	1.70	1.00	6.1	300	72	65	0.36	0.22	1.08	0.64
72 /3 /3	21	}	1.40	.54	5.6	7/5	<u> Z</u> y	66	0.40	0.24	1.10	0.65
74	34	925.3	1.05	÷ 50	1 .0	340	76	62_	0.42	0.25	1.12	0.66
c ./									0.44	0.26	1.14	0.07
cu	* 70	92F. 4	1.70	7.60	<u> </u>	<u> </u>	77 78	67	0.46	0.27	1.15	88.0
/4	33	981.7	1.76	100	<u>6.7</u> 6.7	2. \$ 7	73	70	0.46	0.28	1.18	0.70
14	34	911.60		.50	4.6	3/2	79	70	0.50	0.30	1,20	0.71
		-	ļ.,	422					0.52	D.3t	1.22	0.72
10/1	34	934.7 936. 2	1.50	-98	4.8	27/ 284	77 7 9	70	0.54	0.32	1,24	0.73
75	45	927. 9	/, Yo	283	6.0	269	80	Z /	0.50	0.33	1.26	0.74
	46	939, 108	.80	.47	4.5	294	80	7/	0.58	0.34	1.28	0.78
2/1	*1	790.8	7170	185	6.0	744	73	72	0.60	0.35	1.30 1.32	0.77 0.78
72	£y.	942.3	7.40	195	4.0	240	8/	72	0.62 0.64	0.37 0.38	1.34	0.79
73	£7	944.8	7.20	177	5.6	257	P/	74	0.66	0.39	1.36	0.80
1,4	60.	745.332	11.15	99	6.6	358	8/	7.5	0.86	0.40	1.36	0.61
27 /	63	94.8	1/35	1.74	5.7	245	75	72	0.70	0.41	1.40	0.63
12	66	2484	732	.77	5.7	243	8/	73.	0.72	0.43	1.42	0.84
13	7.	9429	1,35	180	28	257	82	73	0.74	0.44	1.44	0.86
- / / / -	-/- <u>z</u>	717.376	1.10	14.2.	2.5	742	8/4	7-3	0.78	0.45	1.48	0.86
7									0.78	0.46	1.48	0.87
/			+	 _		1			0.80	0.47	1.50	0.00
 /-	 	 	+			 		 	0.62	0.48	1.52	0.80
		1	1						0,64	0.50	1.54	0.91
<u>'</u>							<u> </u>		0.86	0.51	1,58	0.92
 		 	+	 -	 	 -	 	+	0.86	0.52	1.56	0.93
	<u> </u>	<u> </u>	<u>.L</u>	<u> </u>	· · · · ·	<u> </u>	<u> </u>		0.90	0.53	1.50	0.94
- 7									0.92	0.54	1.52	0.98 0.97
 		 	- 	 	 	! 	 -	 -	0.94 0.98	0.56	1.54 1.56	0.98
 - /		<u> </u>	+	\vdash	 	 	 -	+	0.98	0.57 0.58	1.68	0.99
7		<u> </u>							1.00	0.50	1.70	1.00
			ļ .	ļ		ļ <u> </u>			1.00	UAD.	1,70	
-/-	 	 	╬	┼──	 	 	 -	+	1			
<u> </u>	<u>.</u>			ì					1			
7			1,814	1	7711111	1 2212222	/ / /	4	1			
TOTAL	1111111	mounn		4 <i>/////////</i>	777711	,,,,,,,,,	NAS.	Avg	1			
	.,,,,,,,	12.17.27.17.17								THERN BESEA		

METHOD 17 MASS TRAIN DATA REDUCTION - Page 1 Initial Colouistions and Input Data

Runk	noithealthne		BAILYSIE-1-N	FT .	Run Date	***************************************	9/6/93
Amble Stack	ni Pressure dP. in H2O	, in Hg	29. 5 6 -20.0		Duct Area,	ft2	146.7
		h	0.188		Gas Meter	Vokene	
		HI41444444	0.76		Finel Volum	ne. 23	951,398
		ilon	0.990		Initial Valu		914.548
		in	72		Volume 8a		36,860
Partic	e Maus, m				Weter Col		
	Filter	Nozzie	Total		Final Dryn		819.2
Final	6071.300	- administration 2			Initial Drysl		807.0
<u>Inital</u>	2215,400				Volume HZ		63.0
Total	3955.900	121.700	3977.600		Total Wote	t, mi	75.2
	Pitot dP.	Sq. Root	Orifice dP.	Stk Terrep.	GM Inlet.	GM Outlet.	Onygon,
Point	In H2O	Phot dP	in H2O	deg F	deg F	deg F	*
1	0.91	0,954	0.54	317	63	62	6.0
2	1.20	1,005	0.71	316	66	78	6.0
3	1.55	1.245	0.92	337	68	64	6.0
4	1.35	1.162	0.80	336	72	64	6,0
5	1.70	1.304	1.00	300	72	65	6.0
6	1.60	1.265	0.94	313	74	66	6.0
7	1.35	1.162	0.80	330	76	67	6.0
8	1.05	1.025	0.62	340	77	67	6.0
9	1,70	1,304	1.00	272	77	88	6.0
10	1.70	1.304	1.00	287	78	69	6.0
11	1.35	1.162	0.80	317	79	70	6.0
12	0.84	0.917	0.60	312	79	70	6.0
13	1.65	1.285	0.98	271	77	70	6.0
14	1.50	1.225	0.89	284	79	71	6.0
15	1,40	1.163	0.63	280	80	71	6.0
18	0.00	0.894	0.47	284	80	71	6.0
17	1.50	1.225	0.89	264	79	72	6.0
18	1.40	1.183	0.83	200	81	72	6.0
19 20	1 <i>2</i> 0 1.15	1.095	0.71	257 268	81	73	6,0
21	1.15	1.072 1.118	0.68 0.74	203	81 79	73 72	6.0
22	1,30	1.140	0.77	263	81	73	6,0 6,0
23	1.35	1.102	0.6	254	82	73	6.0
24	1.10	1.049	0.65	247	85	73	6.0
25	1.10	1,040	0.00	441	60	13	0.0
20							
26 27							
20 20							
20							
28 29 30							
31							
32							
e	4 000	445	0.005				
Avg	1.329	1.147	0.825 Ave GM To	290 1700. dea F	77 	. 70 73	6.0

METHOD 17 MASS TRAIN DATA REDUCTION - Page 2 Calculation Results

Run identification	Run Dute
Flue Gas Composition	Dry MW, ###-male
0235	Wet MW, ##F-mole
CO211.0 Calculated % H2O9.0	Stack Pressure, in Hg 28.09
lecidnetic Agreement, % 99.6	Particle Mass Loading
Avg Gas Velocity, ft/s71.7	gateof 1.0800
Avg Ges Temperature, F 290	guidect
Gas Volume Flow	mg/decm 3029.59
ecfm 631,438	
decim 379,496	Particle Emission Rate
weckra	Ib/E6-Biu
decfm (0% O2)315,944	Ibhour5674.525

рлел⁻ 24 ' х /3.5

Code: BAICY				-1.		_						
POINT	* 67.77	[- MY	Dete:	9/5/93		Location	800	ti.ET	ŀ			
Plants /			Sax No:			Holder H	o 6		GAS AN	ALYSIS - C2 :		6.0
Plants B				A 8647		<u> </u>				CO2:		13.0
Operators:	10W	52.RB	Time: /	144 min	6 100			mT 2	48000	H2O: XE88, in Hg :		9.5 29.56
Pře-Jest Lesk Check	-6	160	Pest-Tel			Duct Stat Press, "I		J^{α}		dP, in H2O :		7.0
				Filter Ho.	_///		2	Mozzie	r	RROOT dP:		1.005
Stert Time	1000					 -				GAS TEMP. F:		318
A02 7	17 STARL	ut. <u>895</u>	7-7 8-1	final Vt.	108.	<u>(42 / c</u>	1.066	58.592		TER TEMP, F:		95
083Z	1	et ut <u>.870</u>		taitial Ut.	101.4	134 100	5. 164	55.047		CONSTANT :		0.78
End Time	Vt. 6		9+1							CONSTANT:		1.77
1120		H20: 12-		Noz. Wt.						EDMA, in :		0.186
	TOT H			IT. BALH		4		-	SYSTE	M FLOW, actin:		0.715
	ime (ain)	Meter Reading	Pitoi	t Orifice	System Vecuum	Stock Temp	Inlet	Temp Outlet	! <u></u>			_
	0	628,427			4.5	302	63	67.	d₽p	dPo	q , Dp	æ
72	₹	63/10.	7,00		4.0	306	70	63	1.90	- D.66	~ -	1.67
/31/	12_	633.8	7.3	5 ,92	6.5	323	33	.63	1.05	D.71	2,75 2.80	1.00
-/ 4! /	15	637.0	1.44	6 1.09	30	336	83	65	1.10	0.75	2.65	1.93
5/1/2	24	640:Z92	192	2 .62	4,5	334		69	1.15	0.78	2.90	1.97
/2	30_	642.8	.99	161	5.0	332	88	70	1.20	0.81	2.95	2.00
	3 <i>6</i> 42	645,4	1/3/		3.0	3/4	21	33	1.25	0.85	3.00	2.03
- / 47 1	72	27.P.17	- 447 9	×		-3/4	77	7-7	1.30	0.88	3.05	2.07
	48	651.769			5,5	3/8	90	76	1.35	0.92	3.10	2.10
7/2	24 	154,4	19		5.5	3/9	97	23	1.40	0.95	3.15	2.14
-74 1	26	657.1	1//5		4.5	3/6	107	79	1.45	0.98	3.20	2.17
				-					1.50	1.02	325	2.20
3/1/3	7.	662.56			619	33/	94	80	1.55	1.05	3.30	2.24
	28 94	665.3	1//2		7.0	33 <u>t</u>	107	82	1.60	1.09	3.35	2.27
	10	671.	198		5,5	327	103	23	1.85	1.12	3.40	2.31
2//4	96-	673.874	1/1/2	5 185	7.0	347	73	23-73	1.70	1.15	3.45	2.34
	02	676.8	1/2		3.0	341	102	85	1.75 1.60	1.29 1.22	3.50 3.55	2.37 2.41
/31/	108	479.8	1/,30	1.15	10.0	344	99	83	1.85	1.25	3.60	2.44
- / 4 1	14	483.7	1/.3:	5 192	8,5	339	102	83	1.90	1.29	3.05	2.48
7/1/	20	586,363	1.29	5 185	7.4	343	98	73	1.95	1.32	3.70	2.51
7217	_	689.3	17.70	2 , 8/	3.5	34/3	105	84	2,00	1.36	3.75	2.54
	32	697.3 695.8	74.3	<u> </u>		343	105	84-	2.05	1.30	3.60	2.58
-/7- -/	22.	.677.IB	12.0	O 7.36	72.0	-2-75	109	<u> </u>	2.10	1.42	3.85	2,61
POP I	44	699,39	/					.	2.15	1.40	3.00	2.65
/			 			}	<u> </u>	 	2.20	1.49	3.95	2.68
- /- -				·		 	-	 	2.25	1.53	4.00	2.71
/	·	·		1					2.30	1.56	4.05	2.75
			- 	1		-		!	2.36	1.50	4.10	2.78
/ 			+			 	 -	;	2.40 2.45	1,63 1,66	4,15 4,20	2.81 2.85
									2.50	1.70	4.25	2.88
/			4						2.55	1.73	4.30	2.00
-/- -			+-					 	2.60	1.76	4.35	2.95
. 7									2.65	1.80	4.40	2.98
/			 -						2.70	1.63	4.45	3.02
			+			├ ╌───	 	+	2.75	1.87	4.50	3.05
7									i			
								ļ	1			
 	· · · · -		- 	+	 	+	-	} 	1			
TOTAL			.√aP)e	vg //////	///////////////////////////////////////	11111111	Avg	Avg	1			
AVG //	//////	mmmin	7		11111111		<u> </u>		<u> </u>			

METHOD 17 MASS TRAIN DATA REDUCTION - Page 1 initial Calculations and Input Data

Run Id	entification.		BAILYBO-1-MT	•	Run Date		9/6/93
	nt Pressure dP, in H2O				Duct Area,	ft2	324
	: Diameter, i				Gas Meter	Veteno	
	onstant				Finel Volum		699.391
	eter Caïbra				Initial Volum		6 28.422
	eter Calbra Sampled, mi				Volume Sa		70.969
IMINE C	sanigneo, cir	# # .	. 144		A ORTHUR OR	mpied, to	10.505
Particle	e Mass, mg			_	Water Col		
	Filter	Nozzte	Total		Final Drynt		895.9
	209.208	58.392			Initial Dryrit		87 6 .1
Inital	201.598		12338		Volume H2		127.0
Total	7.610	2.725	10.335		Total Wate	r, mi	146.8
	Citati ali	C- B-st	0	Oth Tawa	COM Indah	CN Code	O
Dolat	Pitot dP,	Sq. Root	Orifice dP,	Stk Temp,		GM Outlet,	Oxygen,
Point	In H2O	Pitot dP	in H2O	deg F	deg F	deg F	<u>%</u>
1	0.99	0,985	0.67	302	63	62	6.0
2	1.05	1.025	0.71	306	70	63	
3	1,35	1.162	0.92	323	77	63	
4	1.60	1.265	1.09	336	83	65	
5	0.92	0.959	0.62	339	81	69	
6	0.90	0,949	0.61	332	88	70	
7	1.30	1.140	0.88	316	91	72	
8	1.40	1.183	0.95	314	94	74	
9	0.98	0.990	0.66	318	90	76	
10	0.96	0.980	0.65	318	97	77	
11	1.15	1.072	0.78	316	101	79	
12	0.87	0.933	0.59	316	102	8 t	
13	1.10	1.049	0.75	331	94	80	
14	1.10	1,049	0.75	331	101	81	
15	1.20	1.095	0.81	332	102	82	
16	0.98	0.990	0.66	327	103	83	
17	1.25	1.118	0.85	341	93	82	
18	1.20	1.095	0.81	341	102	83	
19	1.70	1.304	1.15	344	98	83	
20	1.35	1.162	0.92	339	102	63	
21	1.25	1.118	0.85	343	98	83	
22	1.20	1.095	0.81	343	105	84	
23	1.70	1.304	1.15	347	105	84	
24	2.00	1.414	1.36	349	109	85	
25							
26							
27							
28							
29							
30							
31							
32							
A	4.000	4 400	0.600				
Avg	1.229	1.102	0.690	329	94	77	6.0
			wall dw Le	mp, deg r.		. 65	

METHOD 17 MASS TRAIN DATA REDUCTION - Page 2 Calculation Results

Run Identification	BAILY80-1-MT	Run Date	9/6/93
Fixe Gas Composition		Dry MW, #/#-mole	30.00
02.,	6.0	Wet MW, #/#-mole	28.93
CO2	11.0	Stack Pressure, in Hg	30.07
Calculated % H2O	6.9		
		•	
Isokinetic Agreement, %	99.4	Particle Mass Loading	
Avg Gas Velocity, ft/s	70.0	gr/acf	0.0014
Avg Gas Temperature, F	329	gr/decf	0.0022
		mg/acm	
Gas Volume Flow		mg/dscm	
acfm	1,360,300	_	
dscfm	833,387	Particle Emission Rate	
wscim	•	6/E6-Btu	0.0044
dscfm (0% O2)		lb/hour	

										- //	() X /3	-1		
ı	Code: 20		I-MT Da	te: 9	6/93	, 1	Locations	7 00	riet		* X /3	.7		
	Plent:				8 443		Holder He	7 00		GA8/	WWLYSIS -	02:		6.2
1							Probe 10:	9.2			C02: H20:			12.8 9.5
	Pres 1861	79: 1- <u>32</u>	UA WANDO	mer / 4	0		Duct Stat	/ Ø. FP	T-1	AMB	PRE88, In i	to :		29.56
	Leak Che	ek: . 0	/4/*] / 10		1 0.0h	*** <u></u>	PF456, "	120:		STAC	KotP, In H2	0:		7.5
	Start Ti	Tube	No		ter Ho.	2 MT	<u></u>	<u> </u>	Mozzte		SOR ROOT			0.791
	1333	Finel	Ut. <u>858.</u>	3 9. Fin	wel Mt.	17/.0	85 102	2,771 S	6.452		X GAS TEN VIETER TEN			302 90
	End Time		iei et <u>. 230.</u> Min	ini	itial ¥t.	90.0	34 /02	.013 5	2.349		CONSTA	-		0.83
		_	H20: /7/0	#1. + 1	iez, Wt.						CE CONST	-		1.76
	1735	7 707 (_	CALL.	,					LE DVL in EM FLOW,			0.185 0.587
	- -	Time	Hoter		AH	System	Strek	Meter	Temp		EMILOW,	-		0.001
	Part/Pt	(min)	Reading 490,985		Orific o	VOCAS	3/G	Inlet	Octor	i I	d Pp	Фo	Œ₽	dPo
·	$\frac{3/2}{2/2}$	72	495.50	.67	.49 -51	N. 1	3/4	86	70 70			_	~~	~
	2/3	27	500.25 593.99	_	30.4	~.7	31	73	74	0.20	0.15 0.17		0.90 0.92	0.68 0.70
i	2/4	36 48	273.77	-40	30	~,/	3/0	94	79	0.24	0.18		0.94	0.72
	2/2	0	307.42	.60	.46	A.1	10,000	98	82-	0.28	0.20		0.96	0.73
. 10	_	72	572.25	.60	44	-2. 1	309	ial	-	0.28	0.21		0.98	0.75
. 17		36	510.90	. 78	-29	20	408	103	88	0.30	0.23 0.24		1.00 1.02	0.78 0.78
) ·#		48	524.73	1.77			3-4	70.3		0.34	0.20		1.04	0.79
	3/2	0	52-7.74	.625	.48	2.25	3/5	104	90	0.36	0.27		1.06	0.61
130 18		12	529.20	.625	.48	2.4	316	107	7/	0.36	0.29		1.06	0.82
200 1.11	3/3	36	538.63	.55	142	2.4	3/8	10 F	43	0.40	0.30 0.32		1.10 1.12	0.84 0.85
2.'*	7	48	544.740					722.		0.44	0.32		1.14	0.85
<u>.</u> 24	4/2	0	542.730	.70 234- 3	. 	2,25 2002	320	103	97	0.46	0.35		1.18	0.20
2 %	4/2	12	547.96	70	.53	3,25	320	99	9/_	0.48	0.37		1.18	0.90
48 30	4/4	34	557.54	100	55	3.0 4.D	320	98	84	0.50	0.36		1.20	0.91
ş.••	7	48	362.120							0.52 0.54	0.40 0.41		1.22 1.24	0.93 0.94
-,2	2/2		562,170	. 62	1.07 F	3.8	322	104	85	0.56	0.43		1.26	0.96
:24	3/2	72	566.8R	10.5	1495		320	101	25	0.56	0.44		1.28	0.97
16	3/7	36	377,0	.84	.68	6.0	321	154	9/	0.00	0.48		1.30	0.99
טט	7	48	377.0 582.55							0.62	0.47 0.40		1.32 1.34	1.00 1.02
	一一	 		<u> </u>				 	1	0.86	0.50		1.36	1.03
	7									80.0	0.52		1.38	1.05
	- / -							<u> </u>	\leftarrow	0.70	0.53		1.40	1.07
	-			. <u>.</u>			ļ <u> </u>		<u> </u>	0.72	0.55 0.56		1.42 1.44	1.08 1.10
	1									0.76	0.58		1,46	1.11
	-/-	\leftarrow							·	0.78	0.59		1.48	1.13
	7		1							0.80	0.61		1.50	1.14
	+	 				-				0.62 0.64	0,62 0.64		1.52 1.54	1.16 1.17
	7					<u> </u>				0.98	0.65		1.56	1.19
	-/-		 	<u> </u>		—	-		1	0.88	0.67		1.58	1.20
	7					<u> </u>				0.90	0.68		1.60	1.22
	 	 	 	-	 				ļ·	1				
					ļ. <u></u>				<u> </u>	1				
	TOTAL	240.	+	<i>√4</i> 2)avd	(1(111)	1111111	min	Avg	AVG	4				
			uuniini			mm								

* RAM port # 2 Twice, port # , plussod

SOUTHERN RESEARCH INSTITUTE

RAN POINT & TWICE, PORT &) PLUSSED G-219

RAN POINT & TWICE SOUTH PRODE WILL Not ARACH POINT # 1.

METHOD 17 MASS TRAIN DATA REDUCTION - Page 1 Initial Calculations and Input Data

Run Id	entification,		BAILY70-1-M	τ .	Run Date	***************************************	9/6/93
Amble	nt Pressure	, in Ho	. 29.56		Duct Area,	ft2	216
	dP, in H2O						
	Diameter,				Gas Meter	Volume	
	onstant				Final Volum		582.550
	eter Calibra				Initial Votus		490.985
	ampled, m				Volume Sa		91.565
Derfiel	e Mess, mg				Water Coll	ented	
Failuca	Filter	Nozzie	Total	•	Final Cryrit		858.3
	273.856	56.452	graver Character		Initial Dryst		830.1
Inital	192,047	52.369		1	Volume H2		170.0
	81.809	4.063	85.892	•	Total Wate		198.2
Total	61.008	4.003	03.092		i orai vyare	ar, ma	180.2
	Pitot dP,	Sq. Root		Stk Temp,		GM Outlet,	Oxygen,
Point	in H2O	Pitot dP	in H2O	deg F	deg F	<u>deg F</u>	<u>%</u>
1	0.64	0.800	0.49	316	86	70	6.2
2	0.67	0.819	0.51	314	86	70	
3	0.40	0.632	0.30	311	93	74	
4	0.40	0.632	0.30	310	94	79	
5	0.60	0.775	0.46	309	98	82	
6	0,60	0.775	0.46	309	101	85	
7	0.38	0.616	0.29	308	102	86	
8	0.37	0.608	0.28	308	103	88	
9	. 0.63	0.794	0.48	315	104	90	
10	0,63	0.794	0.48	318	107	91	
11	0.55	0.742	0.42	318	108	92	
12	0.41	0.640	0.31	320	107	93	
13	0.70	0.837	0.53	320	103	91	+.
14	0.70	0.837	0.53	320	99	91	
15	0.50	0.775	0.46	318	100	87	
16	0.72	0.849	0.55	320	98	84	
17	0.62	0.787	0.47	322	104	85	
18	0.65	308.0	0.50	320	101	85	
19	0.83	0.911	0.63	320	104	86	
20	0.89	0.943	0.66	321	114	91	
21	0.03	0.545	0.00		1,4	٠.	
22							
23 24							
25							
26							
27							
28							
29							
30							
31							
32							
Avg			_				
****	0.600	0.769	0.500	316	101	85	6.2

METHOD 17 MASS TRAIN DATA REDUCTION - Page 2 Calculation Results

Run Identification BAILY70-1-MT	Run Date9/6/93
Flue Gas Composition	Dry MVV, ##8-mote 30.01
02 6.2	Wet MW, #/#-mole 28.85
CO211.0	Stack Pressure, in Hg 30.11
Calculated % H2O 9.5	
Isokinetic Agreement, % 102.0	Particle Mass Loading
Avg Gas Velocity, ft/s 51.5	gr/acf 0.0094
Avg Gas Temperature, F 316	gr/dscf 0.0151
	mg/aom 21.48
Gas Volume Flow	mg/dscm 34.70
acfm 667,850	•
dscfm	Particle Emission Rate
wscfm	Ib/E6-Stu
dscfm (0% O2) 290,686	lb/haur 53.6161

METHOD 5 FIELD DATA

Plant/Location # 7 outlet
Operator K: Ly
Dale <u>9-6-93</u>
Test No./Run No. #/ MM 5
Meler Box ID Nutseh #3
Cas Meter Cal Factor
Orifice ID
Orifice DND 1.89

Pitol Coefficient, Op82
Nozzie (D. T.22
Average Nozzle Bia., Inches 202
Barometric Pressure, In. lig <u>29,46</u>
Ambient Temp., deg. F 68"
Assumed Moisture, % 10.0
Filler ID
Stack Programs in \$120 7 cc

Ist Miler: Leak Rate, cfm. Pretest <u>.00</u> 3 © 15 ⁴¹ 45 Leakrate, cfm. Post-test <u>.0</u> 86 © 20° 4 2nd Miler (if used):	5
leak Rate, cfm, Pretest Leakrate, cfm, Post-test	

GAS METER START, cd: 955.448 START TIME 9:36

GAS METER END. of 1087, 157 END THIS 14128

Time Point Number In the In th	luies (deg. F)			
21 j4 3.\ 325 .75 .82 9628 A84 . 2 8 4.0 325 .70 .76 964.5 319 3 42 4.5 321 .65 .71 976.0 300 . 4 56 4.7 320 .75 .82 983.037 248 A 1 14 .45 318 .75 .82 989.9 270 . 2 28 4.0 320 .65 .71 996.4 318 3 42 45 319 .65 .71 10029 289 .		նոր.	DOM	DCM
21 j4 3.\ 325 .75 .82 9628 884 . 9 88 4.0 325 .70 .76 964.5 319 3 42 4.5 321 .65 .71 976.0 300 . 4 56 4.7 320 .75 .82 983.037 248 2 88 4.0 320 .65 .71 996.4 318 3 42 4.5 319 .65 .71 1029 289	Filter Sorta	ı Oullet	<u>ln</u>	<u>lua</u>
4 68 4.0 325 .70 .76 944.5 319 3 42 4.5 321 .65 .71 976.0 300 . 4 56 4.7 320 .75 .82 983.037 248 4 1 14 .45 318 .75 .82 989.9 270 . 2 28 4.0 320 .65 .71 996.4 318 3 42 4.5 319 .65 .71 10029 289 .	<u></u>		<u> </u>	<u> </u>
3 48 4.0 320 .65 .71 976.0 3W . 4 56 4.7 310 .75 .82 983.037 241 . A 1 14 .45 318 .75 .82 989.9 270 . 2 28 4.0 320 .65 .71 996.4 318 . 3 42 45 319 .65 .71 10029 289 .	234	58	73	7/
4 56 4.7 320 .75 .82 983,037 248 . A • 1 14 .45 318 .75 .82 989.9 270 . 2 28 4.0 320 .65 .71 996.4 318 . 3 42 45 319 .65 .71 10029 289 .	246	52	79	72
A 1 14 145 318 .75 .82 989.9 270 6 2 28 4.0 320 665 .71 996.4 318 3 42 45 319 .65 .71 10029 289 6	249	51	80	73
2 88 4.0 320 665 .71 9964 318 3 42 45 319 65 .71 10029 289 6	239	49	87	73
3 42 45 319 .65 .71 10029 289 6	238	54	78	73
	242	50	83	75
Toloh May Ive Ave and Ace Total Ave	246	49	84	76
Tolai Mox Ave Ave sent Ave. Tolal Ave.	Avg. klax.	Max	Avg.	Arg.
319 0.819 0.74	1 1	1 1	ì	l _

G-222

Method Clock		la Contin Sample	ved Date		Location#	7 oction Orifice	Run No. 📂 / Meter		tures (deg		<u> </u>	Operator	hody
Time	Point Number	Time	in. flg	Temp deg. F	DP in. H20	DH in. 1120	Vol. cf	Probe	Fliter		lmp. Outlet	DGM In	DGM out
	4	56	4.0	318	.50	.54	1008.545	248	238		49	85	77
В	Į.	17	4.8	316	. 75	સ્ત્ર	1015.4	866	હરવ		ક્ય	હ્ય	77
	2	28	4.8	3\8	. 75	.82	16824	316	437		વ8	85	72
;	3	म् श्र	4.0	318	.50	.	1028.1	199	8 56		49	86	78
	ч	5b	45	318	ي چې	હ્યું	1033.50	249	243		รง	86	79
ے	1	14	8.5	318	.80	.87	1040.8	મહ્ય	251		55	ያ ψ	80
	2	28	10.5	319	.75	.જરૂ	N47.8	315	249		49	90	81
	ָל	¥	13.0	3/8	70	75	(054.4	300	249		นา	91	83
	4	56	8.01	318	.SD	ij	1010183	4	2 2		48	90	83
C)	1	14	13.3	319	•70	.76_	1066.8	268	342		53	88	£3
	2	QF	হত	319	ďg.	3	1074.0	طائ	<i>d</i> ধ্য		49	89	82
	3	F	14.8	317	.wo	. Je5	1080.3	હ્વા	247		50	89	82
	.4	56	17.0	315	,75	.82	1087.197	246	238		51	88	82
_													
								<u> </u>		i			
					.	_						, ····	

#:606 leck ~ + 0 5.0 "\$20 - 0 6.8 "\$20 Final lest de. 20 " Hg. 1087.356

TRAT! TRATION	7	Out	do PITOT	dP ON I	dp P)T0T	dP OR1	٠	
******		*****		A 81	1,400	1.52		
: AMALYSIS - 02 :		6.2	0.500	0.54	1,450	1.58		
202		12.8	0.550	0.60	1,500	1.63		
M20 :	:	10.0	0.400	0.65	1.550	1.69		
g paess, in Hg :	:	29.46	0.650	0.71	1.600	1.74		
	:	7.5	0.700	0.76		1.80		
ter Ges vel., fps			0.750	0,82	1,650	1.85	·	
	1	0.79	0.830	6.87	* 1.700	1,90		 ALC: AND DESCRIPTION
	:	0.50	0.850	0.93	1.750	1.96		
	:	0.050	0.500	0.98	1,800			
· promoven			0.950	1.03	1.650	2.01		
'ACK GAS TEMP, F		312	1.000	1.09	1.900	2.07		
IS HETER TEMP, F	•	87	1.050	1.14	1.950	2.12		
IS MEIGH TOWN .	•		1,190	1.20	2.000	2.18		
ATOT CAMETINE		0.82	1.150	1.25	2.050	2.23		
CTOT CONSTANT	:	1.89	1.200	1.31	2.100	2.29		
RIFICE CONSTANT	•		1.250	1.36	z.150	2.34		
utech 3		0.202	1,300	1.41	2.200			
OZZLE DIA, in	:	0.694	1.350	1,47	2,750	2,45		
YETEK FLOW, OCTO	•	0.63						
P .		0.4207						
LOW, acfm		100	117.8	predicted	vot.			
orget volume		237,69		nozzle T2	2			
limutes to Vol.		3,9616						
tours to vol.		20		5 parts X	4 points/P	ort		
to, of points:		11.885	9/6/93	Unit 7 Oc	stlet 1965 tr	win opera	C	
lead Min./point Jae Minutes/point		14	,,,,,	-				

V

Plant Builly				0
Sampling Location Rental Trus			Run Xo	<u> 5</u>
Set Up By Dw S	Oute	4-7-4)	Run Date	9-7-93
7				<u> </u>
Analyst Responsible for Recovery				
Catculations & Report Revisued By			Report Date	
				
FILTERS USED			CYCLONES	
		Used	F	repared Consainer
silver Ho. Un weighed		(Yes/K		(Ac.)
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
Sorbent Trap No.				
Condenser No.				
Condition 40.		U.5 E		
- · · · · · · · · · · · · · · · · · · ·	itial	Figal		<u> </u>
	<u> </u>	. <u>-28</u> 3	ويكب	9
	<u> 22.7</u> 9	625	/46 _9	9
	<u>930</u> 9	495	2 <u></u> 9	9
Fourth			°	9
Fifth	6		g	9
Sixth			<u>.</u>	9
Seventh			9	9
P117P4 CP1 LB1CHTP.		alai		Ci-al
SILICA GEL MEIGHTS:		ziel		Final
	804.	a	s	115.5
-			* 	-
-			*	
Totals			g	
•			· —	
 				
COMMENTS:			_	
Community Color of Silica Gal:	ee58	in pak	color 1	n bottom
Description of Japinger Water:				
			<u>-</u>	
				
	- <u></u>			

Appendix G5 Mercury Sampling

	(Ha)		
	Samole #	Location	Std. Liters
, .	BA - 8000	AMB Inlet Unit 8	20.0
9-3	BA - 8001	Inlet With	19.6
9-3	BA - 8005	Field Slant - Inht	0
9-3	BA - 8007	Outlet Unit 7	18.6
9-3	BA - 8014	Outlet Unit Oiluter	172.2
9-3	BA - 8021	Outlet Unit 8	ד.רו
9-3	BA - 8026	Outlet Unit 8 Fall Blank.	٥
9-3	BA-8028	Stack	50.6
9-3	_BA - 8033	Stack Field Blank	0
9-4	SA - 8035	Inlet Unit 8	19.3
9-4	BA - 8036	AME Inlet Unit 8	121.5
9-4	BA - 8040	Inlet unit 8 Field Blank	٥
9-4	BA-8042	outlet unit 7	. 17.7
7-4	BA - 8047	Outlet Unit 7 Field Black	۵
9-4	BA-8049	Outlet Unit 7 Diluter	111.5
9-4	BA - 8056	Outlet unit 8	17.0
9-4	BA - 8063	Star K	38.6
9.4	BA - 8068	Stuck Field Blank	o
	BA - 8070	Inlet Unit 8	19.6
9.5	8A - 8071	Inlat Unit 8	122.8
9-5	BA - 8075	Inlet Unit 8 Field Blank	٥
9-5	8A - 8077	Outlet Unit 7	18.4
9-5	BA - 8084	Outlet unit 7 Diluter	167.2
9-5	BA - 8091	Outlet Unit 8	16.7
9-5	BA - 8096	Outlet Unit 8 Field Blank	đ
	BA - 8097	Trip Blank	Ø
	BA - 8098	Stack	49.3
	BA - 8/03	Stack Field Blank	٥
	BA - 8/04	Trip Blank	0
8-27	SA - 8112	Outlet Unit 7 Diluter Blank	162.3

G-228

Southern Research Institute Birmingham, AL

Plant Bailly COC FORM - Mercury

Date:	Project Number:	Test Number:
9-3-93	7960.11.6	
Location:		
INLET (U8)		

Description	SRI Number	Volume	Comments
Pair #1 Charcoal	BA-8000		Ambient Air
Pair #2 Charcoal	BA-8001		Irkt Port
Pair #3 Charcoal	BA-8002		
Pair #4 Charcoal	BA-8003]	
air #5 Charcoal	DA-8004	[
Field Blank - Charcoal	BA-8005		
Trip Blank - Charcoal	BA-8006		
•			

Train Prepared By:	Date: 9 - 3 9 2	3 Time 8:15 AM
Train Relinguished By:	Date:	Time
Fram Received By:	Date:	Times
Frain Relinguished By:	Date:	Time:
Fram Received By:	Des.	Times
Samples Recovered By:	Date:	Time:
Samples Relinguished By:	Date:	Times
Samples Received By:	Date:	Time:
Samples Relinguished By:	Date:	Time:
Samples Received By:	Date:	Tame:

H9 VOOT FIELD DATA

. ор №	_
Job Hame Boilly #A-100	_
Rum No. / Leat Churt Blan	~
Location Tolot U.8	_
Date 9-3-93	_

Operator M Strek	
Hater No. 71 - V/2	
Ambient Temp. *C	:
Barometer No.	

Probe Length		
Sample Point		
Initial Lask @ 2	<u>5 - 4118(</u>	<u> </u>
Final Look @	*116	cla
Baro. Pressure P.	29,36 "Hg	

Clock	Dry Gas	Rotometer	Pump Vacuum	Probe	Condenser Temp *C		Dry Gee Temp *G		Dry Gas Hatar	
Time	Mater, litera	Reading	in. Ilg Gauga	Temp.	let	2nd	Inlet	Outlet	Pressure in: N ₂ O (P _s)	Remarks
8:02										
		·				<u> </u>			<u></u>	
								! - -		
							····	•		
										
						<u> </u>		,		
			<u> </u>			<u> </u>				

$$V_{a} = \frac{Dry\ Gas\ Heter}{Calibration\ Factor} \frac{.9992}{...} \times \underline{\qquad} = \underline{\qquad} T_{a}^{*}G \times \frac{.9}{.5} + 32 = T_{a}^{*}F$$

$$V_{a_{crit}} = 17.65 \text{ V}_{a_{crit}} \left(\frac{P_{b} + \frac{P_{a_{crit}}}{13.6}}{T_{a_{crit}} + 460} \right) = 17.65 \text{ x}$$
 scandard licers

Probe Length 5 Joh No. Sample Point Ambient Air Operator M. Starle Initial Leak @ 25 "Ilg - 0 cia Run No. 2 Aubi. at A: Mater No. 7/- V/2 Final Leak & 25 "ilg - 0 cia Location Inlet U8 Ambient Temp. *C Baro. Prassura P. 29.36 - "Hg Date 9-3-93 Barometer No.

	Rotomater V	Pump Vacuus	Proba	Condenser Teup *C		Dry Cas Temp *● F		Bry Cas Heter		
	Reading	in, lig Gauge	Temp.	let	2nd	Inlet	Outlet	Pressure in. il ₂ 0 (P _n)	Remarks	
8:30	0230.45	0.5	J.o.	230			75		1.0	
8.35	232 50	05	a._	230			75		(.)	····
8.40	235.15	سی ۵		2.3a			75		/.3	
	237.67	0.5	1	230			75		7.0	
8:51	240.32	۵,۵	- (230			75		(.)	
8:55	242.95	0.5	. 1	230			75		(.)	
9:00	245.64	0.5	_1	23			75		e.\	
9:85	248.29	0.5		230			75		10	
9:10	251.02	0.5		2%			75		40	
	2c.67	···-					75			

Dry Gas Hecer $19992 \times 20.67 - 20.65$ Ta'C x $\frac{9}{5} + 32 - T_n'F$

$$v_{a...} = 17.65 \ v_a \left(\frac{p_a + \frac{p_a}{13.6}}{T_a + 450} \right) = 17.65 \times \frac{20.65}{20.65} \times \left(\frac{29.36 \cdot \frac{13.6}{13.6}}{75 \cdot 460} \right) = \frac{20.0}{20.0} \text{ scandard liters}$$

H5 FIELD DATA

Job No	
Job Hame Bailly	
Run No. 3	
Location Zakt	U8
Date 9-3-93	

Operator M. Stille
Heter No. 71- V/2
Ambient Temp. *C
Baromater No.

Probe Langch 5	- <i>(</i>	
Sample Point	let side	port.
Initial Leak @ _	25_*11g = _	<u>.</u> cla
Final Look @	• IIB -	<u>(A</u>
Baro. Pressure P	. <u>29.36 </u>	g

Clock Time	Dry Cas	Rotomoter	· · · · · · · · · · · · · · · · · · ·	Probe	Gondenser Temp *G		Dry Gas Temp *#		Dry-Gas Noter	
	Heter, litera	Reading	la. Ilg Gauge	Toup.	ket	2nd	Inlet	Outlet	Proseuro In. H ₂ O (P _a)	Romarks
9:49	252.60	0.5	3"	236		_	72		4.6	
9:45	255.06	0.5	5 1/2	270			72		4.0	
9:50	257.80	ک ، ۵	6	230			72		1.0	
9:55	260.32	ย. ว	64	230			72		1.0	
0:00	262.90	0,5	63	230			73		(a	
le: 25	265.33	0.5	7乞	230			73		1.0	
10:70	267.70	8.5	罗玄	230			74		1.0	-
	270,29	0.5	95	23a			74		1.0	-
10:28	272.76	0.5	<u>/</u> n	230			74		1.5	

20.16 6

72.89

$$v_{e_{red}} = 17.65 \ v_{e} \left(\frac{P_{b} + \frac{P_{a}}{13.6}}{\frac{P_{a}}{14.460}} \right) = 17.65 \times \frac{20.14}{20.14} \times \left(\frac{29.34 + \frac{1.0}{13.6}}{72.89 + 460} \right) = \frac{19.6}{5.89}$$
 etandszd litera

Plant Bailly COC FORM - Mercury

Date:	Project Number:		Test Number:	
9/3/93		7960.11.6		7
ocation:	_ \ <u></u>		——————————————————————————————————————	
OUTLET (U8]	· <u>-</u>			
Description		SRI Number	Volume	Comments
Pair#1 Charcoal		BA-8021		
Pair #2 Charcoal	· 	BA-8022		
Pair #3 Chercoal		BA 8023		
Pair #4 Charcoal		BA-8024]	
Pair #5 Charcoal		BA-802 5	i l	
Field Blank - Charcoal		BA-8026]	
Trip Blank - Charcoal		BA-8027_		
			1 1	
			1 1	
		_	ļ	
		<u> </u>		·····
Train Propered By:			ate:	Time:
Train Relinguished By:			ele:	Time
Train Received By:			ete:	Time:
Train Relinguished By:			ste:	Tune:
Train Received By:				Times.
Samples Recovered By:			ale:	Time:
Samples Relinguished By:			etc:	Tabes
<u> </u>			ate:	
Samples Received By:	·			Time:
Samples Relinguished By:			ale:	Time:
Samples Received By:		<u> </u>	lete:	Time:

Нэ		
100	FIELD	DATA

Job No.

Job Name <u>BAILLY</u>

Run No. <u>U7M1 (BA-8007)</u>

Location <u>U7 DONEY</u>

Date <u>9/3/93</u>

Operator ISO

Heter No. New SRI 1654

Amblent Temp. *C 19

Barometer No.

Clock	Dry Gas	Rotometer	Pump Vacuum	Probe		Buaer P *		Gas p *C	Dry Gas Heter Pressure in. H ₂ O (P _B)	
Time	Heter, 11ters	Reading	in. Hg Cauge	Temp.	lat	2nd	Inlet	Outlet		Remarks ET (mm)
1539	1386.73	0.5	1.5	243	٦_		19		1.0	8
1544	1389,3	0,5	18	243			20	<u> </u>	1,0	5
1549	13969	0.5	2.0	243			20		10	10
1554	1394,5	0.5	2,0	243			20		1.0	15
1559	1397.7.	0.5	2.0	243)	20		1.0	20
1604	1399.7	0.5	20	243			21		1.0	25
1609	1402.2	0.5	2.0	243			2,	/	רונ	30
1614	1404.75	0.5	2.0	243			21		1.0	35
1619	1407.51	11.5	2.0	243			21		1.0	40
						<u></u>	20.3		<u> </u>	

20.78 L

20,3

$$V_{\bullet} = \frac{Dry\ Gas\ Heter}{Calibration\ Factor} \frac{912}{12} \times \frac{26.78}{10} = \frac{18.95}{10} T_{\bullet}^{*}C \times \frac{9}{5} + 32 - T_{\bullet}^{*}F$$

$$V_{max} = 17.65 \text{ V}_{m} \left(\frac{P_{b} + \frac{P_{m}}{13.6}}{T_{m} + 460} \right) = 17.65 \text{ x} \frac{/8.95}{\sqrt{8.6 + 460}} \times \left(\frac{27.36 + \frac{1.5}{13.6}}{\sqrt{8.6 + 460}} \right) = \frac{18.6}{5.6} \text{ standard liters}$$

Southern Research Institute Birmingham, AL

ate:	Project Nun	be:	Test Number:			
9/3/93		60.11.6				
ocation:						
OUTLET (U7)						
Description		SRI Number	Volume	Comments		
Description		310 Ivaniber	VOIMINE 1	Comments		
Pair #1 Charcoal		BA-8007				
Pair #2-Charcoal	· -	BA-8008	1 1			
Pair #3-Charcoal	 +	_BA-8009-	1			
Pair #4 Charcoal	<u> </u>	_BA-8010				
Pair #5 Charcoal	1,	_BA-8011_	1 1			
Field Blank - Charcoal	-	- DA-8012 ·	1 1			
Trip Blank - Charcoal		_BA-8013	1 1			
			1 .1			
			1			
			1			
			i 1			
			1 1			
	-		1 1			
	i		1 1	•		
		•				
	<u> </u>					
Train Prepared By:		157				
			Pete:	Time:		
Train Della mainhad Dan						
Train Relinguished By:			Pate:	Time:		
Train Received By:			Date:	Time:		
			Date:	Trine:		
Train Received By:			Date:	Time:		
Train Received By: Train Relinguished By; Train Received By:			Date: Date: Date: Date:	Time: Time: Time:		
Train Received By: Train Relinguished By: Train Received By:			Date:	Time: Time: Time:		
Train Received By: Train Relinguished By;			Date: Date: Date: Date:	Time: Time: Time:		
Train Received By: Train Relinguished By: Train Received By: Samples Recovered By: Samples Relinguished By:			Oute: Oute: Oute: Oute: Oute:	Time: Time: Time: Time: Time:		
Train Received By: Train Relinguished By: Train Received By: Samples Recovered By:			Date: Date: Date: Date: Date:	Time: Time: Time: Time:		
Train Received By: Train Relinguished By: Train Received By: Samples Recovered By: Samples Relinguished By: Samples Received By:			Date: Date: Date: Date: Date: Date: Date:	Time: Time: Time: Time: Time: Time:		
Frain Received By: Frain Relinguished By: Frain Received By: Samples Recovered By: Samples Relinguished By:			Oute: Oute: Oute: Oute: Oute:	Time: Time: Time: Time: Time:		

Job No	Baux
Job Name	
Run No	Mere 1-DI (BA-8014)
Location	Olelor
. .	0/2/02

Operator	350
Heter No	71-71

110401 (14)		
Ambient Temp.	•G_	73
Barrana kan 47-		

Probe Length N/A
Sample Point Dicores
Initial Leak @ 200 15.0 "Hg - 0.00 clm
Final Loak @clm
Bero, Pressure P. 29.36 "lig

	Clock	Dry Gas	Rotonatet	Pump Vacuum	Probe		enser p 'G	Dry Ten	Gae Ip *C .	Dry Gas Meter Pressure in. H ₂ O (P _e)	Remarka
	Time	Heter, liters	Reading	In. Hg Gauge	Temp. *C	løt	2nd	Inlet	Outlet		
3	1106	2980.0	83 mn	2.5	N/A	NIA	N/A	74	NIA	1.0	,
(1206	3019.1	83	2,5	. 1	1		89	1	1.05	
Ü	106	3049.7	83	2.5				93		105	
H	226	3069.6	83	2.5				91		1.15	
,	326	3101.3	83	25	•			16		1.15	
, i	426	3132.2	83	2.5	1			96		115	
}	1726	3163.54	83	2.5				99		1.15	
ļ								, , , , , , , , ,			
					. !	,					
							,		1		

183.546

$$V_{-} = \frac{Dry \ Gas \ Heter}{Galibration \ Factor} = \frac{.995 \, 4}{.} \times \frac{./33.54}{.} = \frac{.73.54}{.} = \frac{.73.69}{.} T_{n} \cdot G \times \frac{.9}{.} + 32 = T_{n} \cdot F$$

s

Southern Research Institute Birmingham, AL

9/3/93	7960.11.6)		
·	/900.11.0				
ocation:					
OUTLET (U8]		· · · · · · · · · · · · · · · · · · ·	 		
Description	SRI Number	Volume	Comments		
Pair #1 Charcoal	BA-8021				
Pair #2-Charcoal		-			
Peir #3 Chercoal					
Pair #4 Charagal		-			
Pair #5 Charcoal					
Field Blank - Charcoal	BA-8026				
Trip Blank - Charcoat	BA-8027_	-			
	,				
<u> </u>	l	<u></u>			
Train Prepared By:		Date:	Time		
					
rain Relinguished By:		Date:	Time:		
min Received By:		Date:	Time:		
<u> </u>		Dan.	11112		
Frain Relinguished By:		Date:	Time:		
Train Received By:	- ·	Date:	Time:		
		LAIE.	1		
samples Recovered By:		Dete:	Time:		
Vanda Balia miska 15	<u> </u>				
Samples Relinguished By:		Date:	Time:		
emples Received By:	<u> </u>	Date:	Time:		
<u> </u>					
emples Relinguished By:		Date:	(Tene:		
S					
amples Received By:		Date:	Time		

#5 TOOT FIELD DATA

Job No. BAILLY
Job Name
Run No. USMI (BA-8021)
Location US OUT
Date 9/3/93

Operator	33	<i></i>
Neter No	A-	7500
Ambient Temp.	*4	~74°F
Baromatar No.		

Probe Length 3
Sample Point US ourcer
Initial Leak @ 15 "Hg - 0.00clm
Final Loak @ /5 "Ng - 0.00 clm
Baro, Pressure P. 29.36 Hg

Clock	Dry Gas	Rotometer	Pump Vacuum	Probe		enser p *C		Gas np *G	Dry Gas Meter	
Time	Meter, liters	Reading (ntm)	in. Hg Gauge	Temp.	lst	2nd	Inlet	Outlet	Pressure in. H ₂ O (P _m)	Remarks <i>[MW1</i>
1250	121.530	83	3.5	243	NA	N/A	21	NIA		0
1255	124.0	83	3.7	243	1		27	N/4].	5
1300	126,51	83	3.7	243			27			10
1305	128.95	83	3.8	243			28			15
1310	131.51	83	3.8	243			28		<u> </u>	20
1315	133,92	83	3.8	243			28			25
1520	136.4	83	3,8	243			28			30
1330	138.8	83	3.8	243		oxdot	29			35
1396	141,37	83	3.8	243	1	١ ١	29			40
1200			•				:	\		45.

19.84L

$$V_m = \frac{Dry\ Gas\ Meter}{Calibration\ Factor} = \frac{930}{5} \times \frac{19.84}{5} = \frac{18.45}{5} T_m \cdot C \times \frac{9}{5} + 32 = T_a \cdot F$$

$$V_{n_{\text{out}}} = 17.65 \text{ V}_{m} \left(\frac{P_{b} + \frac{P_{m}}{13.6}}{T_{m} + 460} \right) = 17.65 \times \frac{17.45}{32.2 + 460} \times \left(\frac{27.45}{32.2 + 460} \right) = \frac{17.7}{32.2 + 460} \text{ standard liters}$$

Ho		
4	FIELD	DAT

Job No. BALLLY - 7960.11.6		Probe Length
Job Name BLANK	Operator 350	Sample Point Ams - BLANK
Run No. U8 MBL 1 (BA-8026) Mater No. <u>A - 750-0</u>	Initial Lesk @ 2015"lig - 00_cl
Location US OUT	- Ambient Temp. *C	Final Leak @*ligch
Date 9/3/93	Barometer No.	Baro, Pressure P. 29,36 "Hg

Time Heter, liters R	Dry Gas			m Probe	Condenser Temp "C		Dry Gas Temp *C		Dry Gas Meter	
	Reading	Reading in Hg Gauge	Temp.	let	2nd	Inlet	Outlet	Pressure in. H ₂ D (P _m)	Remarks	
349	BLANK				-	· · · ·	29			
	<u> </u>	<u> </u>							 	
										
						 				-
										
			_			· · ·		_	<u> </u>	
			<u></u>		···-					

$$V_{\rm e} = {Dry \ Gas \ Heter} \over {Calibration \ Factor}$$
 x ____ = ___ $T_{\rm e}^* C \times {9 \over 5} + 32 - T_{\rm e}^* F$

Southern Research Institute Birmingham, AL

Date:	Project Number:	: Test Num	her:
9-3-93	7960.11.6		1
ocation:			
STACK			
Description	SRI Numba	Volume	Comments
Pair #1 Charcoal Pair #2 Charcoal Pair #3 Charcoal Pair #4 Charcoal Pair #5 Charcoal Field Blank - Charcoal Trip Blank - Charcoal	BA-8028 -BA-8029 -BA-8030 -BA-8032 -BA-8033 -BA-8034		
Train Prepared By:	s. (a	Date: 9-3-93	Tune: 1:15 PM
Train Relinguished By:		Date:	Time:
Train Received By:		Date:	Tiene:
Train Relinguished By:		Dute:	Time:
Train Received By:		Date:	Time:
Semples Recovered By:		Date:	Time:
Samples Relinguished By:		Date:	Time:
Samples Received By:	· · · · · · · · · · · · · · · · · · ·	Date:	Time:
Samples Relinguished By:		Date:	Time:
Samples Received By:		Date:	Time:

HG PIELD DATA

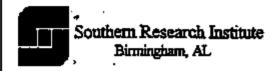
Job Ho	<u> </u>	Probe Length
Job Haus Bailly	Operator M. Stook	Sample Point 1/2/C
Run No. 1 B/A-K BA-8033	Heter No. Vo -/	Initial Look @ 22 -lig - C cla
Location_5tecK	Ambient Temp. *G	Final Lask @cle
Date 9-3-93	Barquetar No	Baro. Pressure P. <u>29,36</u> "Ilg

Clock		P Rotomotor Va		Pump acuum Probe n. Hg Tamp.	Condenser Toup °C		Dry Ges Temp *C		Dry Cas Heter	· · · · ·
Time	Heter, litera	Reading	in. Ilg Gauge		lat	2114	Inlot	Outlet	Pressure in. H ₂ O (P _a)	Renacks
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u></u>				
						, <u></u>				· ·
										
						· · · · · · · · · · · · · · · · · · ·		!		
										· · · · · · · · · · · · · · · · · · ·

$$V_{a_{100}} = 17.65 \text{ V}_{a} \left(\frac{P_b + \frac{P_a}{13.6}}{T_a + 460} \right) = 17.65 \text{ z}$$
 $\times \left(\frac{13.6}{13.6} \right) = \frac{17.65 \text{ z}}{13.6} = \frac{$

HS FIELD DATA

Job No		Probe Length 7
Job Name	Operator M. Steele	Sample Point fort in Shifter
Run No. 2 SA - 8028	Meter No	Initial Leak @ 23 "Hg - 1 cln
Location 57ac K	Ambient Temp. *C:	Final Loak @ 23 "Hg - 0 cln
Date 9-9-93	Barometer No	Baro. Pressure Pb 29.36 _ "Hg


Clock	Dry Gas	Rotometer Vacu		Pump Vacuum Probo			Dry Gas Temp *#		Dry Gas Meter	
Time	Meter, liters	Reading	in. Hg Gauge	Temp.	lst	2nd	Inlet	Outlet	Pressure in. H ₂ O (P _m)	Remarks
1:19	118.13	0.5	İ.	<i>23</i> s			69		1.0	
1:29	122.00	0.5		230			70		7.0	
1:39	126.20	0.5	1	230			72		7.0	
	130.30	0.5	1	230			74		1.0	
15B 🖘	134.50	0.50	1	Z39			75		1.0	
2:09	138.75	٥.5	1	230			77		7.0	
2:20	143.30	0.5		230			78		1.0	
2:30	147.90	0.5	- 1	230			79		1.9	
2:40	152,40	(.5	,	230			80		7.9	
2:55	158.90	0.5	1	230			81		1.0	
2:20	120.30-	0.5	-,	238	-		82		7.0	<u></u>

52.17 L

76.07

Va = Dry Gas Meter 1.00/5 × 52.77 - 52.25 Ta C × 9/5 + 32 - Ta F

$$V_{max} = 17.65 \text{ V}_{m} \left(\frac{P_{b} + \frac{P_{m}}{13.6}}{2_{m}^{2} + 460} \right) = 17.65 \times \frac{52.25}{2.25} \times \left(\frac{29.3 (+ \frac{1.0}{13.6})}{74.89 + 460} \right) = \frac{50.6}{5.09} \text{ standard liters}$$

9-4-93 7960.11.6	
7-4-92	2
Location:	
INLET (U8)	

Description	SRI Number	Volume	Comments
Pair #1 Charcoal	BA-8035	<u> </u>	
Pair #2 Charcoal	BA-8036	i I	-
Pair #3 Charcoal	-BA-8037		
Pair #4 Charcoal	DA-8038		
Pair #5 Charcoal	BA=8039		
Field Blank - Charcoal	BA-8040		
Trip Blank - Charcoal	-BA-8041		
•		li	
,			
		i	
		1 1	
		1 1	

Train Prepared By:	Date: 9-4-93	Time: /2:15 pm
Train Relinguished By:	Date:	Time:
Train Received By:	Date:	Time:
Train Relinguished By:	Duc:	Time∷
Train Received By:	Date:	Time:
Samples Recovered By:	Dete:	Time:
Samples Relinguished By:	Dete:	Time:
Samples Received By:	Date:	Turne: .
Samples Relinguished By:	Dale	Time:
Samples Received By:	Dete:	Time:

H9 FIELD DATA

Job No	
Job Name Bo; 1) y	Operator M.
Rum Hu. 1 8A-7040	Hatar Ho. <u>7/-</u>
Location Folet Blank	Ambient Temp. "G
Date 9-4-97	Natomatar No

<u>. </u>	Probe Length	
M. Steek	Sample Point	
11 - VIZ	Initial Loak @ <u>25</u> *lig - <u>0</u> old	4
νρ. "C	Final Look @	ı
lo	Baro, Pressure Pa 29.48 "Hg	

Glock	Dry Ges	Rotonster	Pump Vacuum	Probe		ensex p *C	Ory Teu	Gas p *C	Dry Gas Hoter	
Tipe	Heter, liters	gnibees	in, lig Gauge	Temp. *O	lat	2nd	Inlet	Outlet	Pressure in. U ₂ O (P ₂)	Remarks
								!		
$\vdash -$								<u></u>		
									<u></u>	
					·			<u></u>		
\vdash										

$$V_{\rm m} = {Pry \ Gas \ Heter} \over {Callbration \ Factor}$$
 x _____ x ___ = $T_{\rm m}^*C \times {9 \over 5} + 32 = T_{\rm m}^*F$

$$V_{a_{id}} = 17.65 \ V_{H} \left(\frac{P_{b} + \frac{P_{a}}{13.6}}{T_{a} + 650} \right) = 17.65 \ \times \frac{17.65 \ \times \frac{13.6}{13.6}}{13.6} = 17.65 \ \times \frac{17.65 \ \times \frac{13.6}{13.6}$$

Job No	
Job Name Bailly	
Run No. 2 BA - 8	*35
Location Zalet	
Date 9-4-93	

Operator M. Starle	
Heter No. 71 - V/2	
Ambient Temp. *C	

Barometer No.

Probe Length J	<u></u>	
Sample Point In by 5ids	port	
Initial Look @ 25_"Ilg -	<u> </u>	_clm
Finel Look @ 25 "lig -	<u> </u>	_clm
Baro. Pressure Pb 29.47	"lig	

GLock	Dry Gas Heter, Liters		Rotometer	Pump Vacuum	Probe		neer •••		Gas p '6/-	Dry Cas Heter	
Time		Reading	ta. IIg Gauge	Toup.	let	2nd	inlet	Outlet	Pressure in, H ₂ O (P _a)	Remarks	
12:28	273.70	0.5	7.ι	230			68		1.0		
12:33	276.00	0.5	8	230			68		1.1	<u> </u>	
12:38	278.60	مح رہ	91	230			69		4.0	· .	
12:43	2F0.90	_0,5	10	z 30			70		/. 0	· · · · · · · · · · · · · · · · · · ·	
12:48	283.50	0.5	1/	230			71		7.0	···	
12.53	286.00	0.5	12	230		· · · · · · · · · · · · · · · · · · ·	72				
12:58	288.40	ح. ۵	14	230			73	i	/.0		
	290.85	_2.0	17	230		<u>-</u> -	73		1.0	<u>_</u>	
1:08	293.35	6.5	೩೦	230			74	_	1.0		
			j	.						<u></u>	

19.65 L

$$v_{n} = \frac{p_{ry} \ Gas \ Heter}{Galibration \ Factor} = \frac{9992}{5} \times \frac{19.65}{5} = \frac{19.63}{5} T_{n} c \times \frac{9}{5} + 32 - T_{n} r$$

$$V_{max} = 17.65 \ V_{m} \left(\frac{P_{b} + \frac{P_{m}}{13.6}}{T_{m} + 460} \right) = 17.65 \times \frac{19.63}{19.63} \times \left(\frac{29.46 + \frac{1.0}{13.6}}{76.89 + 460} \right) = \frac{19.3}{536.89}$$
 standard liters

Ho		
*****	FIELD	DATA

Job No	
Job Hame Bailly	
Run No. 3 Am	
Location Inlet	BA-8076
Date 9-4-93	

Operator M. Stell
Heter No. 7/- U/2
Ambient Temp. *C

Barometer No.

Probe Length 5'	
Sample Point Activit Air	
Initial Loak @ 25 "Hg - 0 el	L
Final Look @25*** ** ** ** ** ** ** ** ** ** ** ** *	•
Baro. Pressure P _b 29.47 "Ng	

Clock Time	Dry Gas Heter, liters		Rotometer	Pump Vacuum	Probe		enser p *G	Dry Ten	Ges ip *9 F	Dry Cas Heter	•
		Reading	in. lig Gauge	Temp.	let	2nd	Inlet	Outlet	Pressura in, H ₂ O (P _b)	Remorks	
1:33	294.40	0.5	4/2	230	,= .= ;		73		1.ε		
5:33	420.20	0.5	44	230			76		4.)		
	; 										
									<u> </u>	····	
	·						·		[
									<u> </u>		
								'.	 		
						:					
									 		
										·	

125.8 €

$$V_{nat} = 17.65 \ V_{n} \left(\frac{P_{h} + \frac{P_{n}}{13.6}}{T_{n} + 450} \right) = 17.65 \times \frac{(25.49)}{(25.49)} \times \left(\frac{29.47 + \frac{(-9)}{13.6}}{(79.5) + 460} \right) = \frac{(21.5)}{(29.47)} \times \frac{(25.49)}{(29.5)} \times \frac{(25.49)}{(29.49)} \times \frac{(2$$

Southern Research Institute Birmingham, AL

Date:	Project Number:	Test Number:				
9/4/93	7960.11.6	11	ン			
ocation:		-	· · · · · · · · · · · · · · · · · · ·			
OUTLET (U8)						
Description	SRI Number	Volume	Comments			
Pair #1 Charcoal	BA-8056					
Pair #7 Charcoal	BA-8057	1				
Pair #3 Charcoal	BA-2058	1				
Pair #4 Chargoal	BA 8050	1 1				
Pair #5 Chargoel -	BA-8060	1 1				
Field Blank - Charcoal	BA-8061	1 1				
Inp Blank - Charcoal	BA-8062	1 1				
		1 t				
		1				
		! !				
		1				
	!		•			
 ··		<u> </u>				
Train Prepared By:		late:	Time:			
To Bello wish of Dec		<u> </u>	··- <u>-</u> .			
Train Relinguished By:	լ	ALC:	Time:			
Train Received By:		hate:	Time:			
Train Relinguished By:		ate:	Time:			
Train Received By:	E	late:	Time:			
cuples Recovered By:) vie:	Time:			
Samples Relinguished By:	inguished By:		Time:			
Samples Received By:)atc:	Time:			
Samples Relinguished By:		Oate:	Time:			
Samples Received By:	I	Date: Time:				

E FIELD DATA

Job No. 7960,11.6 Job Name BAILELY Location

Operator Hoter No. NEW SRI Ust Ambient Temp. '0 23

Barometer No._

Probe Length Sample Point Unit 7 OURES Initial Look @ /5 "lig = 0.00 cln /5 "lig = <u>0.00</u>clm Pinal Leak @ Baro. Pressure Pb 29.40 *Ilg

Glock	Dry Gas	Rotometer	Pump Vacuum	Pump Vacuum Probe		Pump Conde Vacuum Probe Temp			Dry Gas Temp °C		Dry Gas Meter	
Time	Heter, liters	Reading	In. Ilg Gauga	In. ilg Temp. Gauge	let	2nd	Inlat	Outlet	Pressure in. R ₂ O (P _m)	Remarks Er(mm)		
1331	1424.64	0,5	4.8	243			23		/.0	0		
1336	1427,2	0.5	5.5	243)	23)	1.0	5		
1341	1429,89	0.5	5.5	243		7	23		10	/0		
1346	143.23	0.5	5,5	243			24		10	15		
1351	1434,68	0.5	5.7	243			24		1.0	20		
1356	1436.2	0.5	6.2	243			25		1.0	25		
1401	1439,72	0.5	6.5	243			26	(10	30		
1406	1442.15	0.5	6.5	243			26		1.0	<i>85</i>		
1411	1444,24	0,5	6.5	293	1		27		1.0	40		
	20.14						مداره	i				

20.(L

ልንተ ነው

$$V_{n} = \frac{Dry \ Gas \ Heter}{Galibration \ Factor} \frac{9/2}{\sqrt{2}} \times \frac{20.1}{\sqrt{20.1}} = \frac{18.3}{10.6} T_{n} \cdot G \times \frac{9}{5} + 32 = T_{n} \cdot F$$

$$V_{s_{old}} = 17.65 \ V_{m} \left(\frac{P_{p} + \frac{P_{p}}{13.6}}{T_{p} + 460} \right) = 17.65 \times \frac{\sqrt{P.3}}{3} \times \left(\frac{27.46 + \frac{7.0}{13.6}}{76.3 + 460} \right) = \frac{\sqrt{7.7}}{3} \text{ standard liters}$$

Lust	Hg		
ELANK		FIBLD	DATA

Barometer No.

Jab No	7960,11.6	
Job Name_	BALLY	
Run No. <u>(</u>	77MBL1	(BA-8047)
_	Unr 7 0	
Data	9/4/93	

Operator<u>SSO</u>

Heter No. <u>New SRI 1957</u>

Ambient Temp. 'C<u>24</u>

Probe Length NA - BLANK

Sample Point A - BLANK

Initial Leak @ /5 "Hg - QOO class

Final Leak @ "Hg - _____closs

Baro. Pressure P_b 29.40 "Hg

Clock	• • • • • • • • • • • • • • • • • • • •	Probe			Dry Gas Temp °C		Dry Gas Meter			
Time	Meter, liters	Resding	in. Hg Gauge		let	2nd	Inlet	Outlet	Pressure in. N ₂ O (P _e)	Remarks
1432							=			
···							ļ . ———		<u> </u>	<u></u>
								<u>-</u>	<u> </u>	
									 -	
										
									<u> </u>	
				_	<u>.</u>	<u>-</u>	<u> </u>			

$$V_a = {Dry \ Gas \ Heter} \over {Calibration \ Factor}$$
 x _____ T_*G x $\frac{9}{5}$ + 32 = T_*F

$$V_{n_{\rm old}} = 17.65 \text{ V}_{m} \left(\frac{P_{b} + \frac{P_{m}}{13.6}}{T_{m} + 460} \right) = 17.65 \text{ x} \underline{\qquad} \text{x} \left(\frac{+\frac{13.6}{13.6}}{+460} \right) = \underline{\qquad} \text{standard liter}$$

H9 FEBLO DATA

Job No. 7960. 11.6		Probe Length
Job Name BRILLY	Operator_550	Sample Point Our 8 ours
Run No. 08M2 (B48056)	Heter No. 1-7500	Initial Leak @ 15 "lig - 0.00 clo
Location UNIT 8 DURET	Ambient Temp. *C	Final Leek @ /5 "tig - 0.00 cla
Date9/4/93	Barometer No	Baro, Pressure P _b <u>29.40</u> *Ilg

Clock		Rotometer	Pump Vacuum	Vacuum Probe		p °C		Gas p *C	Dry Gas Heter	
Time	Meter, liters	Reading	in. Ilg Geuge	Temp.	let	2nd	Iniet	Outlet	Pressure in. il ₁ 0 (P _n)	Remarks ET (au.)
1514	162.23	83mm	3.5	247			32	`\	1.0?*	0.
1519	164.11	83	4,5	247		-1	32-			5 ·
1524	167.18	83	4.5	247			31			10 -
1529	169,48	83	4,5	242			31			
1534	172.0	83	4.5	242			31			<u> </u>
1539	174.3	83	4.5 à	42			31			
1544	176.55	83	4,5	246			31			30
1549	<i></i>	83	4.5	242			31			35
1534	181.47	83	4.5	242			3.7	\		40
		·							<u> </u>	

19.24L.

31.2

* Meron our-all

$$V_m = \frac{Dry \ Gas \ Heter}{Calibration \ Factor} \frac{.930}{.930} \times \frac{/9.24}{.24} = \frac{/7.89}{.7.89} T_m c \times \frac{9}{5} + 32 = T_m c$$

Fleer rea ~1.0

$$V_{m_{10}} = 17.65 \text{ V}_{m} \left(\frac{P_{b} + \frac{P_{a}}{13.6}}{T_{a} + 460} \right) = 17.65 \text{ x} \frac{/7.59}{7.59} \text{ x} \left(\frac{29.47}{33.6} \right) = \frac{/7.0}{13.6} = \frac{17.0}{5}$$

Date:	Project Number:					
4/4/93	7960.11.6] 2			
ocation:						
OUTLET (U7)						
Description	SRI Num	ber	Volume	Comments		
Pair #1 Charcoal	BA-8042	<u>,</u>	}			
Pair //2 Clarcost						
Pair#3 Chargool	BA-8044	- │	}			
Pair #4 Charcoat	BA-804:	;		ı		
Tan #3 Charcom	BA-8040	•				
Field Blank - Charcoal	BA-8041					
Trip Blank - Charcost	DA 8045	<u>ا</u> ن				
•		[,		
			-			
		1]			
	1					
			\dagger \dagge			
			. 1			
	_ <u></u>]	L			
Train Prepared By:	<u> </u>	Date	<u>-</u>	Time:		
Train Relinguished By:		Detr	<u></u>	Time:		
Train Received By:		Dete	<u> </u>	Time:		
Train Relinguished By:	····	Date	K.	Time:		
Train Received By:		Dan	<u> </u>	Time:		
Samples Recovered By:	es Recovered By:			Time:		
Samples Relinguished By:	ples Relinguished By:		E	Time		
Samples Received By:	les Received By:			Time:		
Samples Relinguished By:			<u>e:</u>	Time:		
Samples Received By:		Dat	<u>*</u>	Time:		

Hs		
400	FIELD	DATA

Job No	BAILLY	
Job Rame_		
Run No	17M.DLZ	#-£49
	UT DIWIER	
Date	9/4/93	

Operator S		
Hater No. 71-V/		
Ambient Temp. *C		

Barometer No.

Probe Length_	DILUTER
Sample Point	Drune
	15 "Hg - 0.00 clm
	15 *11g - 0.00 clm
	26 29.40 Mg

Clock	Dry Gas	Rotometer	Pump Vecuum	Probe		onser onser	Dry Ten	Gos P	Dry Gas Heter	
Time	Meter, liters	Reading	in, Hg Gauge		Lac	2nd	Inlet	Outlet	Pressure in, H ₂ O (P _m)	Remarks
12/2	3164.50	83m	3.2	N IA	N/A	p/m	82	N/A	1.1	
1324	3199,5	8.3	3.2		[9	98	-	1.1	
1412	7223.7	ያ ን	3.2-				pr		1.1	
1530	3262.7	83	3.4				105		1.1	
1612	3284.68	83	3.4				104		let	
		: 							ļ	
				\perp					<u> </u>	
				'						
[,		
		<u>-</u>								··············

120.186

$$V_{m} = \frac{pry \ Gas \ Heter}{Calibration \ Factor} = \frac{9954}{1000} \times \frac{120.18}{1000} = \frac{119.63}{1000} T_{m} \cdot C \times \frac{9}{5} + 32 = T_{m} \cdot F$$

$$V_{a_{min}} = 17.65 \text{ V}_{a} \left(\frac{P_{b} + \frac{P_{a}}{13.6}}{T_{m} + 460} \right) = 17.65 \times \frac{119.63}{19.63} \times \left(\frac{29.46 + \frac{I.1}{13.6}}{77.2 + 460} \right) = \frac{11.5}{557.2} \text{ standard liters}$$

Date:	Project Nu	mber:	Test Number:		
9/4/93	79	60.11.6	2	レ	
ocation:					
OUTLET (U7) DIL			_		
				······································	
Description		SRI Number	Volume	Comments	
7. '- II Ob		D + 0040]		
Pair #1 Charcoal		BA-8049 BA-8050	1 1		
Pair #2 Charcoal Pair #2 Charcoal		BA-8051			
Pair #4 Charcoal		BA-8052			
Pair #5 Charcoal			1		
Field Black - Charcoal		BA-8054			
Trip Blank - Charcoal		BA 8055			
THE DISTR - CHRISTON		- DIL 1033			
			ļ l		
			-		
			1 1		
			1 1		
			<u> </u>		
Trem Prepared By:		. In	ule;	Time:	
Halls repaint by.	•	٦		1015	
Train Relinguished By:		D	ale:	Time:	
Tesis Dessional Des					
Train Received By:		L L	ate:	Tune:	
Train Relinguished By:		- _D	late:	Time:	
<u> </u>					
Train Received By:		<u>_</u>	ate:	Time:	
Samples Recovered By:			hete:	Time:	
onepro romado by:		۲۱	- 100- -	1	
Samples Relinguished By:		in	ate:	Time:	
Samples Received By:			late:	Time.	
Samples Relinguished By:			Hate:	Time:	
sentifies vernifension tak:		[*	rguje,	1	
Samples Received By:		· Ir)ate:	Time:	

Hэ		
	Field	DATA

Job No	
Job Name Bai	n,
Run No. 2	•
Location Stark	<u> </u>
Date 9-4-9	3

Operator M. Thuk
Heter No. Vp - {
Ambient Temp. *C

Berometer No.

Probe Longth 7	1		
Sample Point Part	inside	5 le 1 f	w/_
Initial took @ 23	*itg =	0	_cłm
Final Look @ 23	#Ug –	_0	_clm
Baro. Pressurs P. É	9.48	*11g	

Glock Tine	Dry Ges	Rotometer	Punp Vacuum	Probe		Teen D' c		Gas P *8 /	Dry Cas Heter	Remarks
1 4140	Heter, liters	Reading	in. lig Gauga	Tamp.	1et	2nd	lalet	Outlet	Pressure In. II ₂ 0 (P _p)	Keinetka
23	173.05	0.5	34	230			75		1.0	·
2:45	179.00	05	44	7.30			77		1.0	
3:00	185.50	0.5	434	23°		,	80		1.0	
3:15	192.15	0.5	5	236			83		1.0	
3:30	198.50	0.5	5	230			84	•	1,8	
3:45	204, 65	0.5	54	230			86		6.6	
4:55	210,10	٥.5	/7	230			86		1.0	
4:15	213.10	0.3	22	7.36			86		1.0	
EXE	,						_			

40.05 L

$$V_{n} = \frac{Dry\ Gas\ Heter}{Calibration\ Factor} \frac{1.8b/5}{2} \times \frac{40.05}{100} = \frac{40.11}{200} T_{n}^{*}C \times \frac{9}{5} + 32 = T_{n}^{*}F$$

$$V_{a_{iii}} = 17.65 \ V_{a} \left(\frac{P_{b} + \frac{P_{a}}{13.6}}{T_{a} + 460} \right) = 17.65 \times \frac{40.11}{40.11} \times \left(\frac{29.45 + \frac{13.6}{13.6}}{87.13 + 460} \right) = \frac{38.6}{57.13 + 460} \text{ standard liters}$$

Southern Research Institute Birmingham, AL

Date:	Project Number:	Test Number:
9-5-93	7960.11.6	3
Location:		
INLET (U8)		

Description	SRI Number	Volume	Comments
Pair #1 Charcoal	BA-8070		_
Pair #2 Charcoal	BA-8071	1	Ambient A.r
Pair #3 Charcoal	BA-8072		
Pair #4 Charcoal	BA-8073	j :	
Pair #5 Charcoal	BA-8074		
Field Blank - Charcoal	BA-8075		
Trip Blank - Charcoal	-BA-8676		
-		İ	
	l		
		j	
	}		
	j		

Train Prepared By: M. 5tee (e.	Date: 9-5-93	Time: 9:00 AM
Train Relinguished By:	Date:	Tune
Train Received By:	Date:	Time:
Train Relinguished By:	Date:	Time
Train Received By:	Date:	Time:
Samples Recovered By:	Date:	Time
Samples Relinguished By:	Date:	Time:
Samples Received By:	Date:	Time:
Samples Relinguished By:	Dete:	Time:
Samples Received By:	Date:	Time:

Southern Research Institute Birmingham, AL

	<u> </u>	er:	Test Number:		
9-4-93	7960	.11.6	 	2	
ocation:					
STACK					
Description		SRI Number	Volume	Comments	
Pair #1 Charcoal		BA-8063			
Pair #1 Charcoal		BA-8064			
Pair #2 Charcoal		BA-806 §			
Pair #4 Charcoal	I	BA-8066	·		
Pair #5 Charcoal	[BA-8067]		
Field Blank - Charcoal	L	BA-8068		a. e-1 .	
Trip Blank - Charcoal		BA-8069]	No Soda Liva	
Frain Prepared By:	51/8		B. 42 - 1	93 Z:/5° PM	
14. St	i1/2	_	р-ү- ^ч	93 Time: 2:15 PM	
Frain Prepared By: 1	i./&	Ďi	9-4-	93 2:15 PM	
rain Relinguished By:	11/2	Di	<u> </u>	93 2:/5 PM Time:	
71 515 Frain Relinguished By:	i.1/2	Di Di	9-4-1 de:	73 2:/5 PM Time:	
Frain Relinguished By: Frain Received By: Frain Relinguished By:	i.1/2	Di Di	9-4-1 tir.	73 2:/5° PM Time: Time:	
rain Retinguished By: rain Received By: rain Relinguished By: rain Received By: samples Recovered By:	i.1/&	Di Di Di	B-Y-'	73 2:/5 //~ Time: Time: Time:	
rain Retinguished By: Frain Received By: Frain Retinguished By: Frain Received By:	il/e	Di Di Di	D-Y-1	73 2:/5 // // Time: Time: Time: Time: Time:	
rain Relinguished By: rain Received By: rain Relinguished By: rain Received By: semples Recovered By: semples Recovered By:	i.1/2	D: D: D: D: D: D: D: D: D: D: D: D: D: D	D-Y	73 2:/5 // / Time: Time: Time: Time: Time: Time:	

Job No	
Job Name Bailly	
Rum No. /	
Location Stack	BLAC
Date 9-4-93	

Operator M. Stell
Heter Ho. UA -/
Ambient Temp, *G
Barometer No

Probe Length_	
Sample Point_	Blank
Initial look	<u> 23 </u> "11g – <u>O</u> ctn
Final Lask @_	alm
Baro, Pressure	o P _{b.} <u>29. 48 </u>

Dry Gas	Rotometer	Pump Vacuum	Proba	Gond Ten	enser p *C	Dry Tea	r Cae up *C,	Dry Gas Heter	Romark4
		tn. lig Gauge	Facep .	let	2nd	Inlet	Outlet	Pressure in, M ₂ O (P _p)	
		i						,	<u> </u>
						i			
									,
							<u>-</u>	<u></u>	
			·		_				
								<u> </u>	
	Hoter, litera	Dry Gas Heter, liters Reading	Dry Gas Rotometer Vacuum Heter, liters Reading in. lig Gauge	Dry Cas Retometer Vacuum Proba Heter, liters Reading in lig Temp. Gauge 'C	Dry Cas Recometer Vacuum Proba Tem Heter, liters Reading in. lig Temp. Gauge °C let	Dry Gas Rotometer Vacuum Proba Temp *C Heter, liters Reading in. lig Temp. Gauge *C lat 2nd	Heter, liters Reading in lig Temp. Gauge of lat 2nd Inlet	Dry Cas Retometer Vacuum Proba Temp *C Temp *C Heading fin. lig Cauge *C lat 2nd Inlet Outlat	Dry Gas Retometer Vacuum Proba Temp *C Temp *O, Hater Heter, liters Reading in. High Temp. Gauge *C let 2nd Inlet Outlet in. H2O (Pm)

$$V_n = \frac{Dry\ Gas\ Heter}{Gal\ Ibracton\ Fector} \times \frac{v}{1} = \frac{T_n^*G\ x}{5} + 32 - T_n^*F$$

$$V_{n_{ret}} = 17.65 \ V_{m} \left(\frac{P_{h} + \frac{P_{g}}{13.6}}{T_{n} + 460} \right) = 17.65 \ x$$
 $\times \left(\frac{+\frac{13.6}{13.6}}{+460} \right) = \underline{\qquad}$ at an element of the state of t

Job Na	
Job Hame Bailly	
Run No. /	_
Location Stack	BESIC
Date 9-4-93	

Operator M. Stagle
Hotor No. Un -/
Ambient Temp. "O
Beroseter No

Probe Length	
Sample Point 6	/m/C
Initial Look @ _	<u> 23 _ "46 - O _ cin</u>
Finel Look @	elu
Baro. Pressurs 8	. <u>29.48 </u> •ne

Clock	Dry Gas	Rotometer		Probe	Condenser Temp *C		Dry Gas Temp *C		Dry Gas Hotor	
Timo	Hoter, litera	Reading	in. Ng Gauge	Tamp. *C	let	2nd	Inlet	Outlec	Pressure In. II ₂ 0 (P _p)	Romatka
	· · · · · · · · · · · · · · · · · · ·									
	. <u>-</u> .					 				<u> </u>
		· · · · · · · · · · · · · · · · · · ·					·			

$$V_{n_{crit}} = 17.65 \text{ V}_{n_{crit}} \left(\frac{P_{h} + \frac{P_{m}}{13.6}}{T_{n} + 460} \right) = 17.63 \text{ x} = \frac{4 \frac{13.6}{13.6}}{460} = \frac{13.6}{460} = \frac{13.6}{13.6}$$
 etandard litera

Job No	
Job Name Boilly	
Run No	
Location In ot	Black
Date 9-5-93	,

Operator M. Steele
Meter No. 7/- V/2

Neter No. 71- V/2	
Ambient Temp. *0	
Barometer No.	

Probe Length	
Sample Point <i>B</i> /	ank .
Initial Lask @ 2	<u> 5 "Ng - 0 cla</u>
Final Look @	ela
Baro. Pressure Pa	29.40 MB

Clock			Probs	Condenser Temp *C		Dry Gee Temp *C		Dry Gas Heter		
Tipe	Hoter, liters	Reading	in. Hg Gauge	Temp.	let	2nd	Inlot	Outlet	Proseure in. H ₂ O (P _a)	Remerks
<u> </u>						<u> </u>	<u></u> .			
						 -				
<u> </u>								· · ·		
	•		<u> </u>						<u> </u>	
								· · · · · ·		
								<u>-</u>		
								- -		

$$V_n = \frac{pry \ Gas \ Hatar}{Calibration \ Factor} = \frac{T_n^*G \times \frac{9}{5} + 32 - T_n^*P}{T_n^*G \times \frac{9}{5} + 32 - T_n^*P}$$

$$V_{u_{abs}} = 17.65 \text{ V}_{u} \left(\frac{P_b + \frac{P_a}{13.6}}{T_u + 460} \right) = 17.65 \text{ x} \underline{\qquad x \left(\frac{+\frac{13.6}{13.6}}{+460} \right)} = \underline{\qquad \text{standard liters}}$$

Ho FIELD DATA

Job No		Probe Length
Job NameBai()	Operator M. Stale	Sample Point Side part
Run No. 2 BA - 7070	Heter No. 7/- V/2-	Initial lask @ <u>25</u> "Hg - <u>O</u> cim
Location	Ambient Temp, *C	Final Look @ 25 alls ~ O cla
Date _ 9-5-93	Barometer No.	Baro, Pressure P. 29.40 "Hg

	Dry Gas	Rotometer	Pump Vacuum	Probe		p 'O		Gas P *¶ F	Dry Gas Heter	
Time	Heter, liters	Reading	in. lig Gauge	Tamp.	lat	2nd	inlet	Outlet	Pressure in. N ₂ O (P _m)	Remarks
9:/6	421.80	0.5	ک	230			70		1.0	
9:21	424.20	0.5	54	230			71		1.0	_
9-26	426.70	0,5	لما	23€			72		1.0	
9:31	429.40	0.5	62	230			74		ا ما	
9:36	431.90	مح ر ۵	6/2	230			75		. I.s.	
9:41	434.60	0.5	71	230			77		1.0	
9:46	437.1c	0.5	75	238			78		1.0	
	439.60	1.5	8	23c		_	79		1.0	
9:56	442.03	0.5	9	270			80		1.0	
	~~~							<u> </u>	<u> </u>	

20.23 €

$$V_a = \frac{Dry\ Gas\ Heter}{Calibration\ Factor} = \frac{.9992}{.0.23} \times \frac{.20.23}{.0.23} = \frac{.20.21}{.0.21} T_a c \times \frac{.9}{.0.23} + 32 - T_a F$$

$$V_{a_{pld}} = 17.65 \text{ V}_{a} \left( \frac{P_{0} + \frac{P_{0}}{13.6}}{T_{a} + 660} \right) = 17.65 \times \frac{20.21}{20.21} \times \left( \frac{29.40 + \frac{13.6}{13.6}}{75.71 + 660} \right) = \frac{79.6}{25.71} \text{ standard liters}$$

### H5 FIELD DATA

Job Mo		_
Job Name	<del>}</del>	
Run No. 3		
Location Talet		
Date 9-5-93		

Operator M. 5700 lg
Heter No. 7/- V/2
Ambient Temp. *C

Probe Langth 5'	
Sample Point Ambient Air	
Initial Lask @ 25 *Ilg - 0	ctn
Final Lask @ 25 -11g - 0	clm
Baro. Pressure P. 29. 40 "Hg	

Glock Dry Gas Time Heter, liters		Antometer		Pump Vectum Probe	Condenser Temp *C		Dry Cas Temp '\$ f		Dry Gae Heter	
1 LAB	Heter, liters	Reading	in. lig Gauge	Temp.	let	2nd	Inlet	Outlet	Prossure in, H ₂ O (P _B )	Remarks
10:27	442.80	<b>D</b> .5	4	230			80		/.9	4
2:27	571.70	سی رج	4-	230			91		ەن.	·
										÷
		: 						·		
					<u>-</u>	 <del> </del>				
$\vdash$	-			-						
-		•								
	·····									
							!			

1289 W

$$V_{\rm m} = \frac{p_{\rm ry} \ Gas \ Hater}{Calibration \ Factor} = \frac{9992}{2} \times \frac{128.9}{2} = \frac{128.79}{2} \times \frac{9}{2} + 32 = T_{\rm m}^*F$$

$$V_{a,a} = 17.65 \ V_{a} \left( \frac{P_{b} + \frac{P_{a}}{13.6}}{T_{a} + 660} \right) = 17.65 \times \frac{(28.79)}{(28.79)} \times \left( \frac{29.47}{33.6} \right) = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)} = \frac{(22.8)}{(35.5 + 660)$$



#### Southern Research Institute Birmingham, AL

)ate:	Project Number:	Test Number:			
9/5/93	7960.11.6	نے	<b>3</b> _		
ocation:			·		
OUTLET (U8)					
	· · · · · · · · · · · · · · · · · · ·				
Description	SRI Number	r Volume	Comments		
Pair #1 Charcoal	BA-8091				
Pair #2 Charcos!		-   -			
Pair #3 Charcoal	- BA-8093				
Pair #4 Charcoal	BA-2094	[			
Pair #5 Charcoal	BA-8095	-			
Field Blank - Charcoal	BA-8096	t 1			
Trip Blank - Charcoal	BA-8097				
•					
	·				
<u> </u>					
Frain Propaged By:		Date:	Time:		
		ĺ			
Frein Relinguished By:		Dette	Time:		
Frein Received By:		Dane:	Time:		
Train Relinguished By:	<u>.</u>	Date:	Time:		
Train Received By:		Daux:	Time:		
Samples Recovered By:		Date:	Time:		
<u> </u>					
Samples Relinguished By:	· <del></del> ·	Dete:	Time:		
Samples Received By:	<u> </u>	Date:	Time:		
Samples Ratinguished By:	<del></del> ,	Date:	Times		
Samples Received By:		Date:	Time:		
-		I	ł		

Job No. 7960.11.6

Job Name Barcccy

Run No. 08 M 3 (B4-8091)

Location UNIT 8 OUTLET

Date 9/5/93

Neter No. # 7500

Ambient Temp, *C 35

Barometer No.

Proba Length
Sample Point U8 oct
Initial Leak @ /5 "Hg - 0.00 clm
Final Leak @ 15" "lig - 0.00 clm
Baro. Pressure Po 29.3 "Ng

Glock Time Me	Dry Gas	Rotomater		Probe Temp.	Condenser Temp *C		Dry Gas Temp *G		Dry Gas Heter	
	Meter, liters	Reading //www.			lst	2nd	Inlet	Outlet	Pressure in, N ₂ O (P _m )	Remarks
1049	182.390	83	5.0	244	1	١	35		~1.0*	D
1054	184.90	83	4.5	244	_ }		35			5
059	187.35	83	4.7	244			35			10.
104	189.75	83	4,7	244			<b>3</b> 5	(	<u> </u>	
1109	192.0.	83	4.7	244	/		36			20
114	194,47	83	4.7	244			36			25_
1119	197.0	83	4.8	244			36			30
1124	199.2	83	4.8	244			36			35
129	201.70	23	4.8	244	1		36		· · · · · · · · · · · · · · · · · · ·	40

19.31 L

35.6

A COT OF ORAGE

$$V_{e}$$
 - Ory Gas Heter  $930 \times 1931 - 17.96$   $T_{e}$   $C \times \frac{9}{5} + 32 - T_{e}$   $F$ 

$$V_{a_{nd}} = 17.65 \ V_{a} \left( \frac{P_{b} + \frac{P_{s}}{13.6}}{T_{s} + 460} \right) = 17.65 \ x \frac{17.7 \ b}{7.5 \ b} \times \left( \frac{29.30 + \frac{16.7}{13.6}}{9.1 + 460} \right) = \frac{16.7}{5} \text{ standard liters}$$



Job No	1960,11.6	
Job Name_	48mBL2	Braus
Run No	H <del>8MBL2</del> U8MBL2	8A-869 (
	UNIT BOOT	
Date	-/-/	_

Operator 550

Hetet No. A . 7500

Ambient Temp. *C_ 35

Barometer No.

Probe Length	3'
Sample Point	N/A
Initial Look @ _	<u>/6 -11g - 0:00</u> clm
Finel Leek @	ela
Baro. Preseure P	. <u>29.3</u> "lig

Clock Time	Dry Gas Meter, liters	Rotometer Reading	Pump Vacuum	Probe Temp.	Condenser Temp *C		Dry Gas Temp *C		Dry Ges Noter	
			In. 11g Gauge		løt	2nd	Inlet	Outlet	Pressure in. H ₂ O (P _e )	Remarks
1145	······································									
						<u></u>	<u></u>			
T	<u> </u>		•						· · · · ·	<del></del>
										· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·								<u></u>
	<u></u> -			·	<u> </u>				<del></del>	
<u> </u>										

$$V_{m} = \frac{Dry\ Gas\ Hater}{Gallbration\ Factor} \times \frac{}{} = \frac{}{} T_{m}^{*}C \times \frac{9}{5} + 32 - T_{m}^{*}F$$

$$v_{p_{nl}} = 17.65 \text{ V}_{o} \left( \frac{P_b + \frac{P_g}{13.6}}{T_g + 460} \right) = 17.65 \text{ x} \underline{\qquad} \text{x} \left( \frac{+\frac{13.6}{13.6}}{+460} \right) = \underline{\qquad} \text{standard liters}$$



Date:	Project Number:		Test Number:				
9/5/93		7960.11.6					
ecation:		·					
OUTLET (U7)							
Description		SRI Number	. T	Volume	Commen	<u>ts</u>	
•			十			<del> </del>	
Pair #1 Charcoal		BA-8077					
Pair #2 Charcoal	BA-8078_			•			
Pair #3 Charcoal	<del></del>	BA-8079		f	-		
Pair #4 Charcoal		BA-8080					
Pair #5 Charcoal		BA-8081	ĺ				
Field Blank - Charcoal		BA-8082		ļ.			
Trip Blank - Charcoal		BA-8083		.			
				į.			
						ļ	
						ļ	
						į	
Train Propered By:		\$ 3	Dete	:	Têner		
Truin Relinguished By:			Date:		Time:		
Train Received By:			Date	:	Time:		
Train Relinguished By:		ן ו	Date:		Tane:		
Train Received By:			Date:		Time:		
Samples Recovered By:			Date	:	Time		
Samples Relinguished By:		Date		<b>.</b>	Time:		
Samples Received By:	<del></del>	D ₄		<u> </u>	Time:		
Samples Relinguished By:			Date		Time:		
Samples Received By:			D##	*	Time:		



Job No	7960.	11.6
Job Name_	BALLY	
Run No	17M3	(BA-8077
Location_	Un. 7	DURET
Date	9/5/93	DURET

	Probe L
Operator ISO	Sample !
Hotor No. New Sex Vost	Initial
Ambient Temp. 'C	Final L
Baroneter No	Baro, P

Probe Langth	3'
Sample Point <u></u>	7 005
Initial Leak @ _ /	5 *11g - <u>0.00</u> clm
Final Look @ 15	"llg - <i>0,00</i> eln
Baro, Pressure P _b	<i>29,30</i> "lig

Clock	Dry Qas	Rotomater	Pump Vacuum	Probe		enser P *C		no .c . Gea	Dry Cas Hater	
Time	Hoter, liters	Reading	in. fig Gauge	Temp.	let	2nd	Inlet	Outlet	Pressure in. U ₂ O (P _m )	Remarks <i>ET (an or )</i>
1392	1445.37	0.5	4.8	243	$\Lambda$ .		18		1.0	0
1337	144860	0.5	5.8	243			18		1.0	5
1392	1450,6	0.5	5.8	243			19		1.0	10
1347	1453.15	0.5	5.8	243			14		1.0	15
1352	1455:73	0.5	6.0	243			19		/.0	೨೦
1357	1458.2	0.5	6.2	743			19		1.0	25
1902	1460.72	0.5	6.2	243			20		1.0	30
1407	1463.28	0.5	6:3	243			21		1.0	35
1412	1465,92	0.5	6.3	243	<u> </u>		21		1.0	40

26.55 €

$$V_{m} = \frac{p_{ry} Gas \ Hotor}{Calibration \ Factor} \frac{.9/2}{...} \times \frac{20.55}{...} = \frac{18.74}{1.74} T_{m} G \times \frac{9}{5} + 32 = T_{m} F$$

$$V_{b_{eff}} = 17.65 \ V_{b} \left( \frac{P_{b} + \frac{P_{b}}{13.6}}{T_{a} + 460} \right) = 17.65 \times \frac{18.74}{13.6} \times \left( \frac{29.31}{66.7 + 460} \right) = \frac{18.4}{526.7} \text{ stendard liters}$$



Date:	Project Number:	Test Nun	iber:
9/5/93	7960.11.6		3
ocation:			
OUTLET (U7) DIL			
Description	SRI Number	Volume	Comments
Pair #1 Charcoal	BA-8084		
Pair #2-Charcosl	BA-8085	1	
Pair #3 Charcoal	BA-8086	-	
Pair #4 Charcoal	BA-2087	!	
Pair #5 Charocal	BA-8088	1	
Field Blank - Charcoal	BA-8089	1	
Trip Blank - Chercoal	BA-8090		
		1 1	
		1 1	
Train Prepared By:	  D	ante:	! Time:
· · ·			
		ate:	Time:
Train Relinguished By:	D	ale:	Time:
Train Prepared By: Train Relinguished By: Train Received By:	D		
Train Relinguished By:	D	ute:	Time:
Train Relinguished By:	D	ale:	Time:
Train Relinguished By:	D D	ute:	Time:
Train Relinguished By: Train Received By: Train Relinguished By: Train Received By:	D D	ute: me: ute:	Time: Time: Time: Time:
Train Relinguished By: Train Received By: Train Relinguished By: Train Received By:	D D	elec	Time: Time: Time:
Train Received By: Train Received By: Train Retinguished By: Train Received By: Sumples Recovered By:	D D D	nie:	Time: Time: Time: Time: Time:
Train Relinguished By: Train Received By: Train Relinguished By:	D D D	ute: me: ute:	Time: Time: Time: Time:
Train Received By: Train Received By: Train Retinguished By: Train Received By: Sumples Recovered By:	D D D	nie:	Time: Time: Time: Time: Time:
Train Relinguished By: Train Received By: Train Retinguished By: Train Received By: Samples Recovered By: Samples Retinguished By: Samples Retinguished By:	D D D	ele:	Time: Time: Time: Time: Time: Time: Time:
Train Relinguished By: Train Received By: Train Relinguished By: Train Received By: Samples Recovered By: Samples Relinguished By:	D D D	ale:	Time: Time: Time: Time: Time: Time:
Train Relinguished By: Train Received By: Train Relinguished By: Train Received By: Samples Recovered By: Samples Relinguished By: Samples Relinguished By:		ele:	Time: Time: Time: Time: Time: Time: Time:

Probe Length Douter
Sennie Point Deuren
Initial lask @ 15 "IIg - 0.00clm
Final look @ 15 "lig - 0.00"
Baro. Pressure Pb 29.30 "Hg

D (1-2		Dry Cas Rotomotor Vac		Probe	Condenser Temp °C		Dry Ged Temp "G		Dry Gas Heter Pressure	Remarks
Clock Time	Dry Ges Mater, liters	Reading	in. lig Gauge	Temp.	let	2nd	Inlet	Outlet	in, H ₂ O (P _m )	<del></del>
1008	3285,34	83mm	65	17		-	82	-	1. E 115	
1104	33   5.3	<u>83</u>	7.0		<del>}</del> }-	╀╾┼╌	104	<u> </u>	1.15	
1240	3361.0	<u>83</u> 83	7.0	<del>     </del>	<del>                                     </del>		109		1.15	
<u>1309</u> 1409	3406.	QB.	7.0			<del></del> -	105	<del>}</del>	1.1	
1511	3437.5	43_	7.0	╂╌┼╸	╂╾┼╸	╂╌┼╌	96	<del> </del>	1,1	
1604	3466.72	\$3	7.0	<del>                                     </del>	-					<del> </del>
		<u> </u>			<del></del>	┨┡-	<del> </del>	╂━┼	<u> </u>	
				<u> </u>			99.56			<u></u>

181.386

Va = Calibration Factor .9954 x 181.38 = 180.54 Ta'0 x = + 32 = Ta'F

$$V_{a} = \begin{array}{c} \text{Dry Gas Hater} \\ \text{Calibration Factor} \\ V_{a} = \begin{array}{c} -17.65 \text{ V}_{a} \\ \end{array} \left( \begin{array}{c} \frac{P_{b}}{13.6} + \frac{P_{a}}{13.6} \\ \end{array} \right) = 17.65 \times \frac{180.54}{7.74 + 460} \times \left( \begin{array}{c} 29.38 \\ \hline -17.65 \end{array} \right) = \frac{167.2}{759.84} \text{ at and ard liters}$$

G-268



Date:	<u> Project Number:</u>		Test Num	ber:		
8/27/93	7960.11.6		BLANK			
ocation:		•				
OUTLET (U7) DIL			<u> </u>			
Description	SRI Num	ber	Volume	Comments		
Pair #1 Charcoal	BA-8112	,				
Pair #2 Charcoal	BA-811					
Pair #3 Charcoal	BA-811					
Pair #4 Charcoal	-BA-811					
Pair #5 Charcoal	BA-8116					
Field Blank - Charcoal	-BA-8119					
Trip Blank - Charcoal	-BA-8111		ļ	i		
<b>,</b>			ľ			
			l			
		ŀ		i		
				1		
		Į.				
T-:- D		175		· .		
Train Prepared By:		Dak	<b>E</b> C	Time:		
Train Relinguished By:		Dek	<u> </u>	Time:		
		_				
Train Received By:	<u> </u>	Dar	*	Times		
Train Relinguished By:		Date	e:	Time:		
				<u></u>		
Train Received By:		Date	<b>i.</b>	Tune:		
Semples Recovered By:		Det	<b>e</b> :	Time:		
Samples Relinguished By:		Date	<u>:</u>	Time:		
Samples Received By:		Data	<u> </u>	Time:		
Samples Relinguished By:		Dak	<u>.                                    </u>	Time:		
			<b>L.</b>	Tune.		
Samples Received By:	<del></del>	Du	=:	Time:		
				1		



Job No. <u>BA-8112</u>	<del></del>	Probe LengthN/A
Job Name	Operator 550	Sample Point
Run Ho. BL - Den (BA-8/12)	Heter Ho. 7/-V/	initial Loak @ O-O "llg - 20 clm
Location_ 7 DUT	Ambient Temp. 4 101 °F	Final Look @tigclu
Date	Barometer No	Baro. Pressure P. 29.57 "ilg

Clock Time	Dry Gae	Dry Gas Rotometer	Punp Vacuus	Probe		Condenser Temp *C		7 Gae mp *C	Dry Cas Heter	
	Heter, liters	Reading	in. Hg Gauge	Temp.	lst	2nđ	Inlet	Outlet	Pressure in. H ₂ O (P _m )	Remarks
1059	2787,75	83mm	1.5	NA		. 1	92	1	111	·
1159	2816.75	83	1.5				[]]		1.1	
1259	2845,25	43	1,5		T		117		14	
159	2876,42	83	1.7				117		1/15	
<u> አናኅ</u>	2906.53	83	1.7				118		145	
359	2936,83	83	1.5				118		1.1	
4594	29 66.15	82	1,5				1/5		1.1	
		,	, -		!					
						<u>-</u> .			<u> </u>	
						- <del>-</del> -		. <u>.</u> .		

178.4 -

112.57

$$V_{e} = \frac{Dry \ Gas \ Heter}{Galibration \ Factor} = \frac{.975 \ 4}{.000} \times \frac{.78.4}{.000} = \frac{.177.58}{.000} \ T_{e} \cdot C \times \frac{.9}{.5} + 32 - T_{e} \cdot F$$

$$V_{max} = 17.65 \ V_m \left( \frac{P_b + \frac{P_a}{13.6}}{T_a + 460} \right) = 17.65 \times \frac{177.58}{17.58} \times \left( \frac{29.65}{12.57 + \frac{11}{13.6}} \right) = \frac{162.3}{572.57}$$
 at and ard literature of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t



### Southern Research Institute Birmingham, AL

# Plant Bailly COC FORM - Mercury

Date:	Project Number:	Test Number:
9-5-93	7960.11.6	_ 3
Location:		<u> </u>
STACK		

Description	SRI Number	Volume	Comments
Pair #1 Charcoal	BA-8098		
Pair #2 Charcoal	-BA-8099	!	
Pair #3 Charcoal	BA-8100	]	
Pair #4 Charcoal	-BA-8101	1	
Pair #5 Charcoal	BA-8102		
Field Blank - Charcoal	BA-8103	1	No 50th Line
Trip Blank - Charcoal	BA-8104	<b>i</b>	
-			
		!	
		]	
		;	

Train Prepared By:  M. 5700	Dane: 9-5-93	Time: // 10 AM
Train Relinguished By:	Date:	Time.
Train Received By:	Date:	Time:
Train Relinguished By:	Date:	Time:
Train Received By:	Date:	Time:
Samples Recovered By:	Date:	Time:
Samples Relinguished By:	Date:	Times
Samples Received By:	Date:	Time:
Samples Relinguished By:	Date:	Time:
Samples Received By:	Doe:	Time:



Job 80	
Job Hame Ba://y	<u> </u>
Run No.	
Location Stock	BLAK
Date 9-5-93	

•	-
Operator M. Stuck	_
Heter No. VD-/	
Ambient Temp. *G	-
Barometer No.	

Probe Length_	<u> </u>	
Sample Point	Blank	<u>.</u>
Initial Leak @	<u>23</u> -11g - <u>0</u>	_cla
Final Look @		_clm
Baro. Pressure	r. <u>29.48 </u> **11g	

Glock	Dry Gee	Rotometer	Pump Vacuum	Prob <b>e</b>	Condenser Temp *C		Dry Gee Temp *C		Dry Gas Hotor	
Time	Heter, Liters	Ronding	in. Ilg Gauge	in. lig Temp. Gauge *0	let	2nd	Inlet	Outlet	Prossure in. H ₂ O (P _m )	Remerke
					·					
	<u> </u>									
				· · · · · · · · · · · · · · · · · · ·						

$$V_m = {Dry \ Gas \ Hotor} \over {Galibration \ Factor} = {m \over 2} T_m^* G \times {9 \over 5} + 32 \sim T_m^* F$$

$$V_{e_{ref}} = 17.65 \text{ V}_{n} \left( \frac{P_{b} + \frac{P_{a}}{13.6}}{T_{a} + 650} \right) = 17.65 \text{ x} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6} = \frac{17.65 \text{ x}}{13.6}$$

Job Rame Bailly

Run No. 2 89-8098

Location Stack

Date 9-5-93

		··	-
Onerator	~	Strala	

Hotor Ho. Vg > /

Aublent Temp. *0____

Barometer No.

Probe Length 7	<u> </u>
----------------	----------

Sample Point Post in shelter

Initial Look @ 23 "Hg - Cla

Final Leak @ 23 _*Ilg - _O_olm

Baro. Pressure Pa 29.40 "Hg

Clock Dry Gas Time Heter, liters						Dry Gas Temp ❤ &		Dry Gae Heter		
	Reading	in. Ilg Cauge	Temp.	let	2nd	Inlet	Outlot	Pressure in, H ₂ O (P _m )	Remerks	
1/125	215.00	0,5	24	230			70		/.0	
11:40	221.40	0.5	3 L	230			72		/.0	· <u></u>
11:505	227.90	0.5	3 =	230			75		1.0	
12:10	234,20	سي. ه	4	130			77		/. 6	<u></u>
12:25	240.50	₽,5°	44	230			79		1.8	
12:42	247.60	0.5	44	230			80		7.0	
12:55	253.15	0.5	<u> </u>	230			81_		1.0	
1:12	259.65	0.5	ک	230			7/		1.0	
1:25	265,90	٥,5	5	230			71		10	
Ì						•				

56,9 L

77.33

 $V_{a} = \frac{Dry \ Gas \ Heter}{Galibration \ Factor} \frac{1.00/5'}{2.00} \times \frac{50.9}{1.00} = \frac{50.98'}{5.00} T_{a}^{*}G \times \frac{9}{5} + 32 = T_{a}^{*}F$ 

$$V_{a_{cld}} = 17.65 \ V_{m} \left( \frac{P_{b} + \frac{P_{d}}{13.6}}{T_{a} + 460} \right) = 17.65 \times \frac{S_{0}.98}{5} \times \left( \frac{29.40 + \frac{7.0}{13.6}}{77.33 + 460} \right) = \underline{49.3}_{atandard litera}$$

G-2/

# Appendix G6 Dilution Train Field Data

# METHOD 5 FIELD DATA

Plant/Location Ba: 17 Operator 12G  Date 5/6/53  Test No./Run No. MM51-0.1/ Meter Bor ID Matec 2B  Gas Meter Cat Factor  Orifice ID  Orifice DIMO	Pliot Coefficient, Cp	ist Filter: Leak Rate, cfm. Pretest <u>0,0</u> 0 Leakrate, cfm, Post-test 2nd Filter (if used): Leak Rate, cfm, Pretest Leakrate, cfm, Post-test
CAS METER STADE	A 767 - 5750 CAS MEDER WAD	N 998,591

	gas mett start ti		et: <u>757</u> 216	<u>,500</u>		GAS MET END TRO	er end, e <u> </u>	ei <u>99</u>	18,59	7
-	Vacuum	Stack	Pilot	Orline	Meler	Tempera	lures (deg	. ři		
	in. 11g	Temp	DP	130	Vol				նոք	

Clock	Travese	Sample	Vacuum	Stack	Pilot	Ortifice	Meler	Tempera	lures (deg	. គ			
Time	Point Number	Tune	in. 11g	Temp deg. F	DP in. <u>1120</u>	130 130 <u>1320</u>	Vol.	Probe	Piller	Sorb.	lmp. Outlet	DGA1 in	oot oot
<u>-, ., .,</u>		0	625			1.23	752.5		1	)		66	
		15	6.25			1	762.6					66	
	<u> </u>	30	625				7728					66	}
		45	6.25				783.3					66	
		60	625				793.3					67	
·		15	6.25				903.5					67	
		30	6.25				813.8					67	
		45	6.25			v	824,0		!		, , , , , , , , , , , , , , , , , , ,	67	
		Total	Max	Avg.	Avg sgit	Avg.	Total	Avg.	Avg.	Max	Max	Avg.	Avg.
		!	l l	ı		ļ			!		I	່⊲ລ່	ł

3-277

Clock	5 Field Da Travese	Sample	Vacuum	Stack	<u>Location</u> Pilot	Ortfice	Meter	M 5 Tempera	1 - <i>Di L</i> tures (deg	<i>)</i>		Operator	
Time	Point Number	Time	in. Hg	Temp :	DP in. H20	DH in, H20	Vol. cf	Probe	Filter	Sorb.	Imp. Outlet	DGM (D	DGM out
	<del> </del> 	60	6.25			1.23	834,6					67	
<u></u>		15	6.25			<u> </u>	844.7					67	
		30	625				855.0					68	
		45	6.25		\		865.1					68	
		60	6.25				875-6					7/	
		15	6.25				885.7					72	
		30	6.25				895.9					73	
		45	6.21	.			906.4					73	
i	,	60	6.25				916.8					72	
		16.	60				926.9					73	
		30	Q				937.4					73	
		45	60				9 <i>5</i> 7.4 947.4			<u></u>		73	
		60	60				957.6					74	
		15	6.0				967.9					75	
		<i>3</i> 0	60			$\forall$	978.2		T	1	T.	75	$\overline{T}$
											T		

<u>Method</u> Clock Time	Point	Sample Time	u <u>ed. Date</u> Vacuum in. Fig	Stack Temp	<u>Location</u> Pitot DP	Orifice DH	Run No. 1/1/ Meter Vol	Tempera	ures (deg	<u></u>	lmp.	Operator DGM	DGM
	Number			deg. F	in. H20	in, 1120	cf cf	Probe	Filter	Sorts.	Outlet	in	out
		45	6.00		1	1.23	984.6	1_				75	__
		60	6.0			1/	988,6 998,79]					75	
		<u> </u> i				7							
					\ '					:			
						ı				$\Box$		_	
										-			
													•
	1			$\neg \neg$	;	·		1					
						:							
				]									
				'								<del></del>	
	<del>                                     </del>			-;						<del>-</del>			
				' -	<del>\</del>			<del></del>	~~				

G-2/

#### SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Menijos Location	DIL 1 Outlet	Unit 7	Rum No.	1
AT US BY "LECK OW.	5 Om	ce 09/06/93		
MAN MAN	75	• •		
	for Recovery	" -		
	rt Reviewed By		Report Date	
				· · · · · · · · · · · · · · · · · · ·
F11.76	ks used		CYCLONES	
		Used (Yes)	Pt	epered Container (No.)
iter Wo.		(Yes/K	,,	•
1107 101	···			
arbens Tren Vo.	H590-55-16			
				·
ndenser #6				
_	1			
OTHER SOLUTIONS:	tnitipi	Finel		Gain
irst	A46.0		.5 9	125
econd	645.8		2.7	/ <u>\\</u>
iled	572.7	9 <u>57</u>	3. / g	10.4
murth	456.9	g 460	. <del>7</del>	3.8
fth	<del></del>		9	
ixth	<del></del>			
eventh	<del></del> _	_ •	<del>9</del>	
LICA GEL MELGATS:		initial		final
		845.2		וין 2. 196.
			• <u>-</u>	
			<del></del>	
itels			g	
				101

(Total) Exhaust 0.31
Dilution 0.81

Impingus started at 1101
(Blank)

#### Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	BL-DIL
Date	8-27-93
Operator	Randy Memilt

Run Conditions						
ΔP duct (static )	- *H2O					
Barometric Pressure	"Hg					
"g" scaling factor	١					

Filter ID	<b>B</b> -1
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Cons	ants ∆H@_
Sample (.093)	26,02
Dilution Air	0.0334
Total Flow	g- 0.0413

La ala Obasia	Estina Barria		
Leak Check	Entire System	Q-I	"H20/min @ 100"
Leek Check:	Sample Gas	}	ΔP(sample critice)

Pilot Cp	
Nozzie Diemeter	

ର	Time	Ĺ	Sy	atem Pre	<b>Sures</b>	(in. H2C	)		Flow T	otalizer				System	m Tem	peratu	res (°F)			
-281		Pitet	Semple Orlfice ΔP	Semple Orifice P	Filler AP	Total Flow Orlf 	DN. Orli. AP	Oil. Oil. P	Flow	Tetal Volume (fi3)	T1 Steak	T2 Probe	T3 Sample Orifice Heater	T4 Sample Orifice Gas	T5 Cone Inlet	T8 Cone Ext	T7 Outside Wall	T8 CMMed Filtered Gss	T9 Ditation Alt	T10 Ambletit Air
	/by 9						_				_	165	170	180	105	16/	100	102	93	92_
[	1161	,										140	17/	182	105	101	100	102	93	93
	1/04	1	_	0	2.9	0.33	0.80	-3				133	17/	182	105	10/	99	102	93	93
- {	1117			_	2.9	0.33	3	-3	ĺ	1	_	165	171	181	102	97	97	98	9/	95
Į	/27	_			2.9	0.53	<u> </u>	-3	<u> </u>	-		173:	/7/	182	IDI	95	95	96	89	93
- 1	1143			_	2.9	0.33	0.80	_5	1	į	1	77	171	18/	99	93	95	94	88	95
ı	1158		_	-	2.9	0.33	0.80	-3	-	-		171	170	181	99	94	93	94	88	95
ŀ	1215		-	-	29	0.33	0.80	-3		į	. 1	175	17/	181	99	94	94	94	89	95
	1230		-		2.9	0.33	0.80	-3	1	į	í	181	168	178	99	94	74	94_	90	97
	1245			1	2.9	0.33	0.80	-3	_	-	<b>~</b>	176	162	17/	<del>9</del> 7	93	93	94	90	97
ľ	1300	-			69	0.53	0.80	-3			-	18/	161	171	78	94	97	95	90	98
ı	<u> 13/5 (</u>				2.9	0.23	080	-3	-	-	Í	159	160	170	98	74	94	95	90	95
į	330			1	2.9	0.33	0.80	-3			-	172	158	167	97	73	73	94	90	74
Į	345	<u> </u>			29	0.33	0.50	~3			1	176	/57	167	97	93	93	94	82	96_

Page 2

# Run Sheet for the PM10 Dilution Train

Plant Name	Beilly
Run ID	
Date	P-27-93
Operator	Randy Merritt

Run Conditions										
ΔP duct (static )	"H2O									
Barometric Pressure	25.57 " Hg									
"g" scaling factor										

Fitier ID	,
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Const	ants AH@
Sample (.093)	26.02
Dilution Air	0.0334
Total Flow	0.0413

Leak Check:	Entire System	"H2O/min @ 100"
Leak Check:	Sampte Gas	ΔP(sample orifice)

Pilot Cp	
Nozzle Diameter	

Time		n Sv	etem Pre	saurea	(in, H2C	<del>)</del>		Flow T	otelizer				System	meT m	peretu	res (°F)			
لادر مینبیدی	***		Office		Total Flow Onli AP	Dil. Orif. AP	Dil. Crifi. P	Flow	Total Volume (fi3)	T1 Stack	T2 Probe	73 Sample Orifice Heater	T4 Sample Crifice Gas	TS Cone Intet	T& Cone Exit	T7 Outskie Well	T8 Diluted Filtered Gas	†9 CHlutton Alir	T10 Amblent Air
1400	_		-	2.9	0.53	0.80	-3	<b>-</b> -		_	178	156	165	98	94_	95	95	92	<b>9</b> 7
14/5	-	ĺ	ŀ	29			3	ļ		H	127	156	164	98	95	۶۶	95	92	98
1430	+	j	ı	2.9	0.33	0.50	-3	-	_		18/	157_	167	98	95	96	24	93	99
1445	1	ſ	١	2.7	0.53		-3			-	179	158	147_	99	25	94	96	93	98
1900	1	<del>-</del> .	j	2.9	0.33	0.60	ا م			<b>-</b> !	172	157	146	99	96	96	97	94	97
1515	}		ļ	2.9	0.33	0.80	-3	-		1	176	154	162	99	94	95	96	94	96
1990	1	   }	مبد	29	<b>D.33</b>	0.80	-3	-	<b>—</b>	/	150	154	/63	99	96	96	97	94	94
1545	1		1	3. p	0.53	D. 80	-3		1		182	155	164.	100	97	97	98	95	99
600	ĺ	1	ļ	3.0	0.32	0,80	-3	1		)	184	757	167	10/	98	99	99	95	100
1615	ſ	1	1	3.0	0.33	0.80	-3	ļ		ŀ	100	157	166	101	98	96	99	95	96
1630	ĺ		)	5.D	0.33		-3	1	-	1	173	196		(b)	98	96	98	95	96
1645			-	3.0	0.33	00	-3				178	157	·		98	97	99	95	94
1700	<u> </u>	f			0.33		-3	]		}	178	158		107	99	97	99	.25	95

Avosi

29 0.53 0.70 -3

97 92

# MEHROD 5 FEELD DATA

Operato Date _ Test No Meter J Gos Me Orifice	location	MILAS MUTTER PUTTER Stor	Dic1s		Nozzle ID. Average N Barometri Ambient 1 Assumed I Filter ID Stack Pres	Pitol Coefficient, Cp Nozzle ID. Average Nozzle Dia., Inches Barometric Pressure, in: Ilg 29.57 Ambient Temp., deg. F /60 Assumed Moisture, % Filter ID Stack Pressure, in: Il20 ed: 758.943 GAS METER END.						Ist Filter: Leak Rate, clim, Pretest (20) Leakrate, clim, Post-lest (20) 2nd Filter (if used): Leak Rate, clim, Pretest Leakrate, clim, Post-test  2nd Filter (if used): Leakrate, clim, Post-test  2nd Filter: Leakrate, clim, Post-test  2nd 100 3.23 4					
			STARE TI	ME	[[0]	· / T 🕶		GAS METER END. of 1003,234 6" =									
Clock	Travese	Sample	Vecuum	Stack	Pilot	Orifice	Meter	Tempera	lures (deg	. F)				}			
Time	Point Number	Time	in lig	Temp deg F	DP In (120	Dil <u>in {120</u>	Vol ct	Probe	<u> Füler</u>		imp. Outlet	DCM by	DGM	]			
		0	5.0	63	PlA	1.23	758,943			7		96		]			
		15	40	[07			768.8			· }		98	$\Box$				
<u> </u>		30	50	16.3			774.7			$\neg$		101	7	}			
		45	5.0	112		_ <del></del>	788.5		<u> </u>			101		İ			
		60	10	112.			718,3	7				101					
<u> </u>		15	5.0	112			804.2			7		102		]			
		30	5,0	Įr3			8143		$\neg \vdash$			102		i			
		95	50	112		•	8294		-	7		102	•				
		<u>ligial</u>	Max	Ave.	Avg sort	Aye.	Total	Avg.	Avg.	Max	Max	AYR	Avg.	,			
	-	<b>!</b>	l i			وحا	!		1			اسما	j j	ı			

lock	Travese	Sample	Vectuum	Stack	Pltot	Orifice	Meler	Temperot	lures (deg	. <b>f</b> )		Operator	<u>′</u>
ime	Point <u>Number</u>	Time	in. Hg	Temp deg F	DP <u>In</u> H20	DH in. 1320	Vol. ca	Probe	Filter		imp. Outlet	DGM in	DGM out
		60	5,0	101	NA	1.23	838.3					102	١.
		15	5.0	98	1		844.7					102	
		30	50	96			958.8					102	· ·
		45	5.0	99			869.2					102	! 
		60	5.0	99	;		879.5		!			102	
		15	5.0	101			889.7		-			102	
	· <del>-</del> - • ·••· ,	30	5.0	98			900.1		, ,			DZ	į
		41	5.0	0	· i		910.4					102	<u> </u>
		60	5.0	94			920.8		· 			102	_
	!	15	5.8	100			931.0	$\bot \bot$	1			102	-
		30	5,0	loz	1		9413	<u>                                     </u>				102	<u> </u>
		45	50	102	1		451,7			;		102	<u></u>
		60	-5,0	101	!		942.1					103	<u> </u>
		15	1.0	102	1		972.7		·	1		102	
		30	5.0	101			9825			\		102	

Travese Point Number	Sample Time	Vacuum			i limitwa	l Holor						16,1
		in. Hg	Stack Temp deg. F	Pitot DP in. H20	Orifice DH in. H20	Meler Vol cf	Temperal Probe	Filter	Sorts.	Insp. Outlet	DGM <u>in</u>	DGM out
	45	5.0		1	1-23	993.8			1	1	0	1
:	60		102		•							
			-									,
<del></del>			•	Ţ								
	*						,		!	<del> </del>	<del></del>	
											·-· ·	,
				·—-				•				<u> </u>
											<del></del>	*1
							<del></del>	<del></del>	<u></u>			
										<u> </u>	···· <u> </u>	
										<u> </u>		<u> </u>
<u></u>								<u> </u>	· <del>· · · · · · · · · · · · · · · · · · </del>	<u> </u>		
										ļ	<u> </u>	
				<u></u>			-			ļ		
				60 102	60 /02	60 102	60 102 1003.234	60 102 1003.234	60 102 1003.234	60 102 1003.234	60 /02 /003.234	60 /02 /003.234

#### SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Plant Dailly				
Sampling Location Dr/#/	· · · · · · · · · · · · · · · · · · ·	Ruh Ho	BLANK	
Set Up By ZcOC	Date 08/26/95	Ruti Date		<del></del>
Comments MMS				<del></del>
Analyst Responsible for Recovery <u>K</u>	<u>2/ WF2</u>			<b>_</b>
Calculations & Report Reviewed by	<del>/</del>	Report Date		
				_
FILTERS USED	<del></del>	C/CLOHE:	repared Container	_
	(Ye	s/No)	(No.)	
Filter No.	10 #			_
	5#			_
Sorbent Trep No. <u>H 590 - 55</u>	<u>-17 Out 6</u> 2-2.0 #			_
	1,0 µ			_
Condenser No.	0.5 #			_
				<del></del>
INPTHOER SOLUTIONS:	InitialFir	nel	Gain	
Fires		<u>. 5</u>	+0.9	
Second		5.9	-5.3	- *
Third		7.2	-1:1	- * a
Pourth		÷.Ø	3.6	
Fifth	· · ·	<del>- ,</del>		_ ·
Sixth		<del></del> ;	-	_ 4
Seventh			<del>-</del>	_ 9
SILICA GEL WEIGHTS:	Initfal		Final	
				+ 40·1
	<u>801,5</u>	s	841.6	_ * * ~
		9		_ 9
				_
Totals		g	<u></u>	_ 9
				- 123
	<del></del>	<u> </u>	······································	<b>一 ・ ょ</b> そぎ
				tour : 1
COMMENTS:				· /v
Color of Silies Gel:				
Pescription of Impinger Water:				_
	<del>,</del>			
	<u>.                                    </u>			<del></del>
				_ •

#### MERIOD 5 FIELD DATA

Plant/Location_BAKCY_
Operator 76/350
Date <u>\$127/93</u>
Test No. / Run No. MMS DIL 2 BL
Heler Box ID
Cas Meter Cat Factor
Orifice ID
Outline IN Lib

Pital Coefficient, Op MA
Nozzle D. Nozzle D.
Average Nozzle Ofa., Inches A/A
Barometric Pressure, in Fig 23.57
Ambient Temp., deg. P
Assumed Moisture, %
Filler ID
Stack Pressure, in. 1120

fal Filler:
Leak Rate, cira, Pretest <i>&amp;©</i>
Leakrate, efin, Post-test DO
2nd Filter (if used):
leak Rate, cim, Pretest
Leakrate, cfm. Post-test

GAS METER START; cf: 06/./98 START TIME //e/ CAS METER END. of <u>276.977</u> END TUBE <u>1659</u>

lock	Travese	Sample	Vacuum	Stack	Pilol	Orifice	Meter	Temperal	ures (dea	. f)		· · · · · · · · · · · · · · · · · · ·	
ime	Point Number	Thne	In. Hig	Temp deg. F	DP in. fi20	5){} in. 1)20	vol. • Vol.	Probe	Filter		imp. Ooliel	DGM In	DCM out
	5	0	3.0	103	ſ	1.23	61.194	1		1		116	t
		15	3,0	lot			69.1					114	
		30	30	Įø>			77.8					118	
		45	3.0	112		-	86,6					114	
		60	3,0	1(2.			45.3					118	
		75	3.0	112		-	104.1					119	
		30	3.0	1/3			112.9		\	\		119	1
		45	3.0	112			j21.9				ز	119	
		Total	Max	Avg.	Ave surt	Ave.	Total	Avg.	Ave.	Мож	Max.	Avg	Arg

MMS DIC 2 BLANK

lock	Travese		Vacuum		Pitot	Orifice	Meter	Tempern	ures (der	<u>. D</u>	<del></del>		7G, TS
ime	Point Number	Time	in. Hg	Temp deg F	DP in. H20	15. H20	Vol.	Probe	Filter	Sorb.	ûnp. Outlet	DGM in	DGM out
	,	60	კ.ა	١٩١		1.23	130.4	1		<u> </u>	,	120	
		15	3,0	97			139.7					120	
		30	3,0	96			148.7					120	
	,	45	<i>3,</i> o	99			157.9					120	
···		60	3,0	100			167.1					119	
		5	3,0	101	_		176.2					119	
		30	3.0	98			185.3					121	
		45	3.0	[0]			194.5					וגם	
	,	657	3,0	98			203,7					120	
		15	3.0	100			212.8	ì				119	
		30	3,0	lor			2 <b>21</b> .0					119	
·		45	3,0	102			231,2					11.5	
		60	3,0	(0)			240,6		}			119	
		15	ე.მ	102			250,1					119	
		30	3,0	iol			258,7					119	

Clock	5 Field Da Travese	Sample	Vacuum	Stack	Location Pitot	Orifice	Ruis No. Meter	Tempera	lures (des	. F)		Operator	
ĭme	Point Number	Time	in. Hg	Temp deg. F	DP in. H20	DH in. 1420	Vol cf	Probe	Filler	Sorb.	lmp. Outlet	DGM in	-DGM out
	1	45		100		1.23	268.7					119	1
		60		102			276.979						
				ï									
					<del>   </del>				7	f	ļ		
													<i> </i>
		<del></del>		:									
	<del></del>		<del>  </del>			1		<del></del> -		<del></del>		1	<u> </u>
	<u></u>	[ <u> </u>											<u> </u>
	· · · · · · · · · · · · · · · · · · ·						:				<u></u>		
	<b>.</b>					<del> </del>					<u> </u>	ļ <del></del>	
					<del></del>	<b></b>	: 					i	<u>-</u>
						<u> </u>	,				<u> </u>	· ·	
											<b> </b>		
			<u> </u>			<u> </u>							
												<del>-    </del>	

#### SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Plant Dailly		_	
Seapling Location <u>DIL#2-</u>		Run No	<u>BLANK</u>
Set Up By <u>YsQK</u>	Dete <u>04/4/93</u>	Rum Bate	
Coments <u>MM5</u>			
krelyst Responsible for Recovery 📝	DING		
Calculations & Report Reviewed By	<u> </u>	Report Date	
FILTERS USED		CYCLONE	<b>!</b> s
	Use	d	Prepared Container
	CT4s/		(No.)
ilter No.		_	<del></del>
	<del></del>		<del></del>
torbant Trap No. <u>H 540- 55</u>			
			<del></del>
Consienser Ho.	0,5 #		<del></del>
<del></del>	<del>.</del>		
<del></del>			<u> </u>
MP1MGER SQLUT10H5:	<u>Initial</u> <u>Final</u>		Gain
irst _	<u>145.2 g 445</u>	. 니	<u></u>
econd 61	36 599.5 W	.3 9	<u>-i1.3</u>
hird	<u>572.3</u> , <u>567</u>	<u>.7.</u> e	- 4.6 9
ourth	455.5 0 463	<u>. L</u> 9	+# 1.W s
ifth _	<u> </u>	9	
ifxth _		9	9
eventh _		4	9
SILICA GEL METGHTS:	<u>[nițiel</u>	<del></del>	final
	00~ 1		933.5 F +
	885.2	.9	
	-		g
		_	_
fotals	<del></del>	. <del></del>	4
			*** X4
XMMENTS:			42.6. X.d
color of Silica Bal:			•
lescription of Impinger Water:		_	
months of inhilling section			
<del></del>			
			•
· · · · · · · · · · · · · · · · · · ·			
	<del></del>		

Plant/Location BAICY	`
Operator 76 550	
Dale8/27/93	
Test No./Mun No. METAL TOL BE	ANK
Meter Box (D <u># 86 93 1</u>	
Gas Meter Cal Factor	
Oritice (D	
Orifice DIM	

Piloi Coefficient, Cp
Nozzle ID.
Average Nozzle Dia., Inches
Barometric Pressure. In. Hg 2957
Ambient Temp., deg. F
Assumed Moisture, Z
Filler 10
Slock Pressure, in 1820

1st Filter:			
leak Rale.	clm,	Pretest	00
Lcakrafe,	efm,	Past-lest	ΔÔ
2nd Filler	(if use	ed):	
icak Rale,	elm,	Pretest	
leakinte,	efnt	Post-test	

gas meter start, cf: <u>556.981</u> start time <u>//o/</u>

GAS METER END. of  $\frac{791.167}{10.59}$ 

1 338. R.

Dlock	Travese	Sample	Vecuum	Stock	Pilol	Ortifice	Meter	Temperat	urea (deg	, F)	<del></del>	<del></del>	<u> </u>
Time	Point Number	Time	in. ifg	Temp deg. F	0r 'in. 1120	011 <u>in. 1220</u>	Voi. cí	Probe	Füler	Sort.	imp. Out <u>let</u>	DGM in	DCM out
		0	ن .	WB	N/A	1.21	556,981					100	100
		15	0	105			566.7					10	101
		30	v	103	_		575.4					121	106
		45	0	112			585,6					133	115
		60	9	<b>∥ν</b> .			595.0	,				136	119
		15	Q	(۲			604.7					/37	123
		30	D	113			614.4		1	-		141	125
		45	G	112			624-2			<b>ų</b>		HZ	127
•	<del></del>	Total	lhx	Avg.	Ave surt	Avg.	Total	AVA	Avg.	Max	linz	Avg.	Avr.

135

METALS DIL BLANK

elhod	5 Field Da				Location		Run No.	. <del></del>	- (1		·	Operator	76	350
loek ime	Travese Point	Sample Time	Vacuum in Hg	Stack Temp	Pilot DP	Orifice DH	Meter Vol	Temperat	.ures (deg	. f)	losp.	DGM	DGM	
	Number		u. 148	deg. F	in. H20	in. H20	<u>ଗ୍</u>	Probe	Filter	Sorts.	Outlet	ln	oul	
		60	0	101	NA	1,2)	633.8			!	}	144	129	
		15	KDD	94	<u>İ</u>		643.9		. [			144	/30	
		30	0	96			653.3					143	/30	
		45	0	/00			663.0		; 			143	129	
_	<u> </u>	60	0	99			672.9	_				143	129	
		15	0	101			682.6					145	130	
		30	Ò	98			692.5	1		:		147	132	
	<u> </u>	45	ð	100			702.4	·	!	Ì		146	132	
		60	0	18			712.3		<u> </u>			144	/3/	
_		15	0	100			722.2					143	/30	
_		30	0	102			7320			1		144	170	
_		45	0	lor	!		7419		-	 <del></del>		142	131	
_		60	0	[o]			752.0					46	133	
]		15	0	1.01			762.0			'		145	132	
	:	30	0	101	;	. <u></u>	7714				,	144	133	

3-292

1 mg = 3 01 3

METALS DIL BLANK

dethod Jock	Travese	Sample	Vacuum	Stack	Pitot	Orifice	Meler	Temperal	ures (dea	. F)		Operator	
Ime	Travese Point Number	Time	in. Hg	Temp deg. F	DP in. H20	DH	Vol. cf	Probe	Filler		brip. Ou <b>lle</b> l	DGM in	DGM : out
		45	٥	100	1	1.21	782.2					143	13/
		60		101			791.162						
	\ 				<u> </u>			'		: 1			
								,		<u></u>			
					<del>,</del>								·
	wf										<b>I</b>		
		:									···· <u></u> -	<b> </b>	
												igsquare	
		·									<u>-</u>		

#### SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Lane Dailly				_	
Sampling Location Dist#1			Run Ho	BLANK	
Bet Up By YUDY DWS	Oate _6	18/27/93	Run Date	12793	
oments Multiple Metals					
melyst Responsible for Recovery _					
iculations & Report Reviewed By _			Report Set	·	
,					
FILTERS USED		Use	e CYCLON	Prepared Contain	er
		(Yes/i		(No. }	
ilter #o.	<del></del>			···•·	<del></del>
· · · · · · · · · · · · · · · · · · ·				··· -·	
orbent Trap Ho				<del>.</del>	
	<del></del>				
ondenser Ho.		بر 0.5			
<del></del>					
		**			
HPENGER SOLUTIONS:	(nitie) (606, 1 g	#Inal		Gain	<del></del>
irst mond	<u> </u>	<u> </u>		+ 4.1.	<u>*</u>
oird	440.4	-1-2-1	-	<del>11,4</del>	¥
ourth	605.7			-0.7	9
arm ifth	590.9	100		-1.1	
(xeh	486.4	44.00		4114	°
evensh			<del></del>	<del></del>	······ ,
					<u> </u>
LICA GEL 4E [GHTS:	Ini	tial		final	<del></del>
	818			852.6	
		.0	. s	<u> 254.6</u>	
	<del> </del>		· • ——	<del></del>	<b>9</b>
			_		_
otals	<del>-</del>		. 9	··	g
	·		-	· -	
OHNEHTS:					- <del>40</del> 561
		_			`
Color of Silica Got: Description of Impinger Water:					
		·			
·					
		<del></del>			

#### DOE DILUTION TRAIN OPERATION



					DRY MW, #/#-mole :	30.32	
GAS ANALYSIS - 02 ;	6,0				WET MW, #/#-mole :	29.46	
CO2 :	13.0				STACK PRESS, in Hg:	30.01	
H2O:	7.0				INTERM CONST 1 ;	0.7586	
AMB PRESS, in Hg :	29,57				INTERM CONST 2 :	1.3E 07	
STACK of P. In H2O:	6.0						
Enter Gas vel., fps	64						
of AVG SQR POOT dp :							
Dil. Factor:	*****						
STACK GAS TEMP, F :	300						
GAS METER TEMP, F:	100						
Oil Air Temp	70						
Exh air temp	85						
PITOT CONSTANT :	0,81						
SAMP, ORI. DH@ :	26.02						
				-		-	
DIJ Air Ori DH@:	0.033						
Exhaust flow DH@	0.041						
Filter DP	6					•	
1,000	•						
NOZZLE DIA, in :	0.180						
SYSTEM FLOW, acfm:	0.638	0.407					
1	0.00	26.02	13.34	DHIso			
FLUW, acfm	0.407						
Talel flow in	3.67						
Dil flow solm	3.67						
Oil Ew	0						
							01/
Side etream 1 flow, decim		0.6					_
Side stream 1 DH@		1.788	1.23	DH1	Nutech 2		L7L
N <del>ijeda (ek</del> l)							633
							05.1
Side stream 2 flow, decim		0.6					+3 ²
Side exeem 2 DH@		1.7898	1.23	DH2	Nuteah 4B		- L
- 100 mary 100							I32 U3 ~
Side atream 3 flow, dachn		0.6					ગુજ
Side stream 3 DH@		1,78	1.21	DH3	RAC 8843		ا ''
Carrier Service							اهر مرحد مر
							0 -
Exhaust flow dacim		1.87					
Exhaust flow OHaxh		0.0413	0.31	DHexh			
		<u>.</u>					
		3.67					
Dilution flow DHde		0.0334	0.61	DHda			

#### Run Sheet for the PM10 Dilution Train

Plant Name	Beiffy
Run ID	Metas I
Date	9-3-93
Operator	Randy Merritt

Run Conditions							
ΔP duct (static )	"H2O						
Barometric Pressure	"Hg						
"g" scaling factor	0.57						

Filter ID	2
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	••
	<del></del> · · · ·

Orilice Constants AH@						
Sample (.093)	26.02					
Diktion Air	0,0334					
Total Flow	0.0413					

Leak Check:	Entire System	41.0	"H2O/min @ 100"
Leak Check;			ΔP(sample orifice)

Pilol Cp	<u> </u>
Nozzie Diameter	

Time		Şy	stem Pre	ssures	(In. H20	))		Flow 1	otelizer		System Temperatures (°F)								
	Pitot AP	Sample Orifice &P	Sample Online P	Filter AP	Total Flow Onli AP	Oil. Orif. AP	Dil. Orlf. P	Flow	Total Volume (R3)	T1 Stack	T2 Probe	T3 Sample Orifice Heater	T4 Sample Orifice Ges	T5 Cone Inlet	T6 Cone Euit	77 Outside Well	T8 Diluted Filtered Gas	Dürtion Air	T10 Ambien Alt
04Z										73	155	172_	196	79	73	72	72	72	78
052										74	223	188	213	79	73	72	74	73	8/
108	1	19.5	<b>+</b> 7	4.8	0.75	1.18	<b>†6</b>	.438	2.5	300	288	228	282	93	89	74	93	73	77
122.	1	19.5	<del>47</del>	4.8	0.78	1.20	+6	456	7.8	302	<b>320</b>	233	287	93	90	75	84	73	75
138		12.5	+7	4.8	0.78	/.z/ ·	+6	.460	15.9	304	306.	265	3/3	92	9/	76	85	71	75
<u> 192</u>		20.6	<i>†</i> 7	4.8	0.80	132	+6	.440	21.4	304	318	256	301	9/	91	76	85	70	78
201	_	19.7	+7	4.8	0.79	1.23	46	.458	296	304	327	253	301	9)	90	77	89	68	78
222		19.7	+7	4.8	0.79	1.73	4	458	35.0	305	320	255	300	91	91	77	85	68	75
75/0	<b>.</b> .	19.5	+7	4.8	0.78	7.72	6	.457	13.5	306	321	<u>253</u>	301	91	90	78	85	67	79
<u> 2355</u>		19.5	7	4.8	0.79	1.22	6	458	<i>5L</i> 2	309	316	252	300	91	90	78	85	67	78
3/5	1	124	7	4.8	0.78	1.2/	6	. 458	60.4	310	3/8	253	36/	92	7/	79	86	47	8/
330	-	19.8	6	4.8	6.78	1.21	4	. 458	66.9	3//	521	257	302	92	9/	79		47	79
3 <b>5</b> 1	_	19.8	5	4.8	0.78	121	6	<u>. 458</u>	78.D	<u> 309</u>	370	258	305	93	92	80	88	67_	82
AJG	.5 \ .5 \	19.0	6	4.1	79	1,22	از ما دارما		 	307		<u>.                                    </u>	302				84	69 69	. 29

ANGS! 15.0 6 4.8 179 122 67 500 on magnetelie Sample briffie gressme - deflects below yers on magnetelie Delectron orifie gressme - reads correctly (Straus positive)

ACTUAL DIL PACTOR = 10.89

0.476 doctor sample Plan 1. 47 doctor differ

0.620

#### Run Sheet for the PM10 Dilution Train

Plant Name	8ailly
Run ID	Meals /
Date	9-3-93
Operator	Randy Memitt

1	Run Conditions					
	ΔP duct (static )	" H2O				
	Barometric Pressure	* Hg				
1	"g" scaling factor	1				

Fixter ID	
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Constants ΔH@										
Sample (.093)	26.02									
Dilution Air	0.0334									
Total Flow	0.0413									

Leak Check:	Entire System	"H2O/min @ 100"
Leak Check:	Sample Gas	ΔP(sample orifice)

Pltol Cp	
Nozzie Dizmeter	

ល	Time		Sy	stem Pres	SUFES	(In. H20	)		Flow T	otalizer				System	n Tem	peralu	res (°F)			
-297		Pilot AP	Sample Orifice ΔP	Sample Orifice P	Filter AP	Total Flow Orif AP	Dij. Odf. &P	DIII. Orifi. P	F\0w	Total Volume (83)	T1 Stock	T2 Probe	T3 Sample Oxifice Heater	T4 Sample Ozifice Gae	TS Cone talet	T6 Cone Ext	T7 Outside Wall	T6 Dituted Filtered Gas	T9 Diktion Air	T10 Amblent Air
	1415	ļ	19.6	5	4.65	0.80	(.23	6	, 458	1.8	309	308	198	258	<u>۶</u> 2.	92	8/	87	69	80
	1429	1	19.6	5	4.65	0.80	1-23	6	.460	66	309	3/8	734	295	93	92_	8/	87	-	82
	1445	ļ	19.6	5	4.65	0.79	1.22	L	.460	15. b	308	318			94	94	83	89	69	82
ı	1500	_	19.8	5	4.7	0.79	1.22	7	.458	221	308	3/9		30¥	16	95	85	91	69	82
	1513	}	19.8	5	4.7	0.79	1.27	7	458	27.0	307	3/8	258	304		95	2.5	90	69	78
	532	1	19.6	5	4.9	0.79	1.22	7	.¥5¶	37.1	<u> 307</u>	316	260	30.5	<u>95</u>	94	84	20	69	83
[	1507	1	19.5	5	4.9	0.78	1.21	7	458	43.7	307	3/9		-	96	95	84	90	69	83
1	600	ļ	19.5	5	4.9	0.78	1.21	7	¥58	49.4	307	3/5	265	305	76	95	84	9/	70.	76/
	615	<u>,                                    </u>	/9.5	5	49	0.78	1.21	7	.758	566	308	315	264	<u>305</u>	94_	94	84	90	69	84
	630		18.5	5		0.79	1.22	7	958	64.3	307	324	242.	305	95	<i>yy_</i>	84	90	68	8#
	618	<u>-</u>	19.5	5	49	0.79	121	7	458	721	307	3/4	262	306	96	95	25			\$2
	659	<b>.</b>	19.5	5	4.9	0.75	1.21	7	458		307	3//	263	305	96	75	85			26
Į	1715	-,+	19.6	5	4.9	0.78	1.21	7		846	308	312	264	306	96:	95	85	<del></del>	69 1	84
	1723		4.4	5	4.9	0.78	1.2/	7	428	88.4	307	3//	243	306	97	95	85	7/	/ ۲۹	82

1727 Stop impirgue trains

Scruple nozgle reviented shing run

#### DOE DILUTION TRAIN OPERATION

DOE DITOLOGY LINKING	A-EKATION				
6/9/93 1865					
CAS AWALYSIS - 02 : CO2 :	6.0 13.0				
HZO: AMB PRESS, In Hg : STACK OF, in HZO : Enter Gas vel., fps	7,0 29,26 7,0 67,4				
or AVG SQR ROOT do :	Gr #-4				
Dil. Factor:	10.600				
STACK GAS TEMP, f : GAS METER TEMP, F : DIL Air Temp Exh air temp	318 100 75 85				
PITOT CONSTANT : SAMP. ORI. DHB :	0.61 26.02				
Dil Air Ori DNO: Exhquet flow DH2 Filter DP	0.0334 0.0413 6			Ditution of	" 9H
HOZZLE DIA, in ; SYSTEM FLOW, sector : dp flow, sector Total flow in Dil flow sector Dil Bu	0.169 Shenk 0.758 1.00 0.4863 4.86 4.38		19.72 DHSs	4 mple	
Side atreem 1 ftem, o Side atreem 1 DH2 Mutech 2	facf <b>a</b>	0.6 1.788	1.24 DH1		
Side streem 2 flow, o Side streem 2 DHB Hutech 48	iscfa	0,6 1.7898	1.24 DH2		
Side stream 3 flow, a Side stream 3 DHD RAC 8643	iscf <b>a</b>	0.6 1.76	1.22 DH3	•	
Exhaust flow decim Exhaust flow DHexh		3.06 0.0413	0.87 bleads		
Dilution flow OHdo		4.38 0.0334	1,19 DHda	diluter exh	۱۰ ۲ میریم دیا
			الممد	F 01L	tran qu

Page 1

#### SETUP FOR OPERATION OF DILUTION TRAIN (constant sample cole)

	ulion foc Addicus,	tor in ter 18td, (s		londard		10	Total flow Discled go	orifice to s (iller di	tant, ditio onstant, d Terensial p e dilitaren	HB = C055U*0	26.02 0.0413 10 2	
S	ompie rah	• (Q. #fe	ock cond.	<b>)</b> =								
A	mblent pr	esture,	Pomb =			29.26						
Pr	evious st	ock diff.	pressure	,dP=		6	Slock pre	ssure, P	=		29.7012	
Ĥγ	evicus si	ack temp	erature.	T =		302	Expected	orliice ted	nperature,	3H =	312	
S	lock gas I	02 (rocti	en for			0.05	Slock gas	dry mote	cular west,	, Md =	30,18	
5	kacik gası	CO2 frac	Hon, îc	*		0.12	Slock gas	wat mota	cular wat.	, Me ×	29.31	
51	lock gas	water fro	ocilion, B	#3 =		0.07	District go	s moleculo	r wgl, , 3	# =	26.87	
Th	10 largel	for the c	Suler (III	er temper	ature, If	, is 68 <b>%</b> .		•		INCREMEN	TS 2T	
K	HOP OF THE	e lemper	ature, Ti	H, ad 10	₩ abave	slock temp	oralure.		T & TH	dPH	a	
Ut	gnilles es	s based :	on orlilles	temperat	ve il				20	S	0.02	
		dPH ≐ P	dili. lo	ambient a	sample	orifica intel						
•	) (acim)	dPH (in	H2O)=	<del>-9</del> .00	-4.00	1.00	6.00	11.00	16.0à	21.00	26.00	
			fşid=	10,00	9.88	9.75	\$.63	9.51	9.39	9.26	9,14	
	ſ≖		282	TH≔	292							
			9=	0.55	0.55	0.56	0.56	0.57	0.57	0.57	0.58	
	0.56		라=	1.20	1.19	1.17	6.16	1.14	1,13	1.11	3.10	
		dH((yi)=		11.03	16.16	11.30	11.45	11.60	11.75	11.90	12.06	
0	0.60		dP1=	1.29	1.27	1.25	1.24	1.22	1,20	1.19	1.17	
		d+i(fyi)=		11.80	11.95	12.10	12,25	12.41	12,57	12.74	12.91	
Š	0.62		dPl≂	1.37	1.35	1.34	1.32	1.30	1.28	1.26	1.25	
<u></u>	T=	dd(lyi)=	302	12.60 TH=	12.76 312	12.92	13.08	13.25	13.43	13,60	13,79	
	=			0.56	0.56	0.57	0.57	D 0.57	0.58	0.58	0.58	
	0.35		g≖ dPl≖	1.14	1.13	1.11	0.37	1.08	1.07	1.05	1,04	
	0.75	d4(fyl)=		10.73	10.87	11.00	13.14	11.29	11.44	11.59	11,74	
	0.60	-41717	æl=	1.22	1.20	1,19	2.17	1.16	1,14	1,13	1.11	
	4,00	d+((yi)=		11.49	14.63	11.78	11.93	12.08	12,24	12.40	12.57	
	0.62	-4.17	dPI=	1.30	1.28	1,27	1.25	1.23	1.22	1.20	1.18	
		dH(fyi)⇒		12.27	12.42	12.57	12.74	12.90	13.07	13.24	13,42	
	T=	-4-7-7	322	TH⊨	332			• •				
			<b>g=</b>	0.57	0.57	0.57	0,58	0.58	0.58	0.59	0.59	
	0.58		æ)=	1.08	1.07	1.06	1.04	1.03	1.02	1.00	0.99	
		dH(fyi)=		10.46	10.59	10.72	10.86	11.00	11.14	11.29	11.44	
	0.60	,,,	dPt=	1.16	1.14	1.13	1.11	1.10	1.08	1.07	1.05	
		dH([yi)=		11.19	11.33	11,47	11,62	11,77	11.92	12.06	12.24	
	0.62	- • •	dP1=	1.24	1.22	1.20	1.19	1.27	1.16	1.14	1.12	
		dH(fyi)=		11,95	12.10	12.25	12.41	12.57	12.73	12.90	13.07	

Plant/Location Bas // 7
Operator TZ 6-
Dale 9/3/93
Test No./Run No. Aud 1-O./
Heler Box ID RAC A-8643
Cas Meter Cat Factor
Orifice ID
Orlifice DHIP

Pilol Coefficient, Cp Nozzle iD,
Average Nozzle Dia., Inches
Barometric Pressure, In Fig
Ambient Temp, deg. P
Assumed Moisture, X
Filter ID
Stack Pressure in 1120

fal Füler:	
Lenk Rale, ofm. Pretest 💯	<u></u>
Leakrate, cfm. Post-test 🖋	200
2nd Miller (if used)	
Leak Rate, ofm. Pretest _	_
Leskinte, clm, Post-test _	_

GAS METER START, cl. 743.700 START TIME 1104 Grande Stown

Clock	Thaves	Sample	Vacuum	Stack	Pllot	Orifice	Meter	Tempera	lures (dea	. Fi			
Time	Point	Time	in. Ifg	Temp	D(C	DI)	Vol	, ,	F544	h	նոր	DGM	DGM
	Muinbe	<u>''                                   </u>	╀——	deg. F	in. 1120	hr 1120	<u>eí</u>	Probe	Filler	Sort.	Quillet	in	aut
1106		0	10			1.22	193.7					132	13
		15	1.0	i			903.6					127	107
		30	1,0				813.1					128	109
		45	1,0				822.6					125	111
		60	1.0				932.3					128	41
		15	(.0				842.0					130	113
		30	[.0				951.4		1		_	129	115
	$\top$	45	10			A	961.2					121	115
	-	Total	Max	Avg.	Ave sqrt	Avg.	Tolal	Avg.	Avg.	Max.	klox	Avg.	Avg.

300

	řΓ	<del>                                     </del>		П	Т	, 1			J	Ţ.	· <del>-</del>	Т	<del></del>			Т	$\overline{}$
f	100	DGM aut	511	1	#	5	10	107	103	2//	*	()	*	2	1/2	117	2
	Operator	1929 in	α(/	129	8	149	118	17/	147	126	57)	73	131	131	3	134	13/
	ļ	unp. Outlet					_			_				_	_		
	15	tros:	_					$\dashv$									_
-	7:0	Filer	,						_	_		_	-	-		_	
-	Acid 1-0.1	Probe	-					-				_			_		
•	un No. A C	Yol.	0118	4.088	890.5	8.668	8,800	917.9	927.4	436.4	2.956	9.26.1	969.4	9783	984.9	94.6	1004.1
	A Parity	OH DH in 1120	1,22		_							-	_				->
	Location	DP DP in. HZ0	1			_				-							
		Temp deg. F											,		•		
	uct Dale	in. Hg	10	1,0	6.1	1.0	10	[,0	07	01	07	2	1.0	1.0	۵′1	0/	3
ላ	Field Data Continued Date	Time	09	12	30	45	37.25	15	30	74	00	7	30	45	0.0	15	30
ة د	Field Da	Pofnt Number	_				for that										
4 1	Method 5	Time					P.C.S.COM		_			-! 				_	

_	4	٦	·····	<del></del>	<u> </u>								 		<del></del> -	<del>,</del>	_
P	14	DGH	7/1	119								,					<u> </u>
	Ocualor	DGM	132	132					:						;		
		bmp. Outbet		<del>-</del>						_				-			
	ŧ	ہ ا					1										
•	10	Filter															
-	70	Probe i	1			<del></del> -		<del></del>							_		<b></b> -
<	un Na Ac	weter temperatures (deg. f.) Vol. O of Probe (Effer Sori	1013.8	1023,548			1										
	~	Office DIFF in HZO	122	•								:					
	Location	Pilot. DP in H20	<u>.</u> _					-				<u>.</u>					Γ
		Mack Temp									-						
	red bale	Vacuum in. Hg	6,	(2)										_			
4	a Contin	Zemple Time	14	4:09						· · ·							
ر 2		Point Number											 			-	
*.j. *	Method 5	E Sec															

#### SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

ampting Location <u>DII / Durice u</u>	9/		lifet No		<del></del>
ec up By Zirz (Dwy	Date @	7105 773	Run Oate _		
	<del></del>			<del></del>	
malyst Responsible for Recovery				······································	
alculations & Report Reviewed By			Report Sate		<del></del>
				•	_
FILTERS USED		<del></del>	CTCLONE		
		Used (Tee/It		repared Containe (Ro.)	+
filter No.			_		
perbent frap He.					
	•				
Condenser No.		_			
HPTHSER SOLUTIONS:	10f5fat 443.7 o	656	3 -	<u>مئوہ</u> ماہ∆ ا	<del></del>
irst			<del></del> ,	20.4	º
econd hied	<u>587.2</u> 9	11 4 12		3.5	9
inter			9		<del></del> -
ifth		_	<del></del> *		;
isth			?		
Seventh					;
			<del></del> -		
BLICA GEL METCHTS:	tei	tfal		Final	
		_	-	~7.50	4
	76	9.9	, <u>26</u>	<u> </u>	3.
			g		<b>9</b>
fotals	<del></del>		9		, ;

#### METIOD 5 FIELD DATA

Plant/Location Bar// 9
Operator TEC
Dale 9/3/93
Test No./Run No. Metals 1-0:12
Meler Box D Natect #40
Gos Meter Cal. Factor
Orlfice ID
Orifice INIO

Pitot Coefficient, Cp
Nozzie ID.
Average Nozzle Din., Inches
Borometric Pressure, In. Ilg
Ambient Temp., deg. F
Assumed Moisture, %
Filler ID
Stock Pressure, In. H20

lst Filter:	
Leak Rate, cin	n. Pretest <u>G</u> æ
	Post-test
2nd Filler (li t	ised):
Leak Rate, cin	
leakmle, cím	

GAS METER START, cf; 379A 19 START TIME 1108GAS METER BND, of 494-667 END TIME 1724

lock	Travese	Sample	Vacuum	Slock	PHot	Orlice	Meter	Temperat	ures (deg	F			
lime	Point Number	Time	in. Ifg	Temp deg. F	DT in. 1120	011 <u>In. 1120</u>	Vol. ef	Probe	Filler	Sorta	lmp. <u>Ouție</u> ț	DGAT In	OGM out
0	<u> </u>	0	2.0			124	279.419			}		100	1
		15	1.0				288,4					100	
		კა	3.0				217.4					100	
		45	3,0	: 			306.4					100	
		60	3,0				315-5					101	
		15	3,0				324.6					101	
		30	9.0				333.7					101	
		45	3,0			V	342.7				<u> </u>	101	
		Total	Max	AVg.	Ave sort	Avg.	Total_	Ave	hvg.	Max	Max.	Ávg.	Avg.

304

100

Clock Tune	5 Field Da Travese Point Number	Sample Time	Vacuum in Hg	Slack Temp deg F	Pitot Pitot DP in. H20	Orifice OH in. H20	lun No. M.c Meter Vol.	Temperal	ures (deg	ı	lmp. Quliet	Operator DGM in	OGM out
	1	60	300			124	351.8	1.		-		10%	
		15	30				3610					106	
		30	3,0				370.4					1.8	
		45	3,0				379.2					109	
Alt .	you er lust	460	3.0				387.8					104	
		5	3.0	"			396.7					104	
		30	3.0				405.7					108	
		45	3,0				414.7					108	
		60	300				423.6					108	
		7	3,0				432.9					10	
		3,5	3.0				441.9					[a	$\perp$
		45	3.0		1		451.)					108	
		60	3.0				460.2					108	
		15	3,0				469.3					108	
		30	3,0		,	V	478.2	1				110	1

The vese	Sample	Vacuum	Stack	Pitot	Orifice	Run Na. Meter	Temperal	tures (deg	. <b>内</b>		Operator	
Point Nunsber	Time	in. Ilg	Temp deg. F	DP in. H20	DH in. H20	Vol.	Probe	Filter		lmp. Outlet	DGM in	DGM out
N.	45	30			624	487.3			_1_	1	110	
,,	Ceo	3,2			1.	496.669					110	
<u> </u>			i		y							
<u> </u>									$\perp$			
		'										
_									1			Į.
	<del></del>						·					
l	 <del></del>			<u></u>								
<i>,</i>					·			<del></del>	:			
					<del></del>		·-· · ·-					
		:				· 						<del></del>
	<del></del>	·									<u> </u>	
					····							
<del></del> -											<del></del>	
										!		
	Point Nunsber	Point Time Number 45	Point Time in lig	Point Number in llg Temp deg. F	Point Number in lig Temp DP in H20  A 45 3.0  Ceo 3.0	Point Time in IIg Temp DP DH in H20  A 45 3.0 (-24  (e0 3.0)	Point Number In. 11g Temp deg. F in. H20 in. H20 of 1.24 447.3  (e0 3.0 496.669	Point Number In. Ilg Temp deg. F in. H20 in. H20 cf Probe  1 45 320   1 24 487.3    (e0 3.0   496.669    (math deg. F in. H20 in. H20 cf Probe	Point Number in lig Temp deg. F in H20 in H20 cf Probe Filter    45 3.0   (-24 447.3   496.669   1	Point Number In. 11g Temp deg. F in. H20 in. H20 of Probe Filter Sorb.  4 3.0	Point Number II. Ilg Temp deg. F in H20 in H20 cf Probe Filter Sorb Outlet    45 3.0   1-24 447.3	Point Number In. 11g Temp deg. F in. H20 in. H20 of Probe Filter Sorb. Outlet in 110 (10 (10 (10 (10 (10 (10 (10 (10 (10

#### DOE DILUTION TRAIN OPERATION

EBŲ BMKs				
INMO				i i
GAS ANALYSIS - 02 :	6.0			,
.CO2:	13.0			
H2O:	7.0			
AMB PRESS, In Hg :	29.26			
STACK dP, In H2O :	7.0			
Enter Gas vel., (ps	67.4			
or AVG SQR ROOT dp :				
Dill. Fector:	10.000			
STACK GAS TEMP, F :	318			
gas meter temp, f:	100			
Oil Air Temp	75			
Exh air temp	85			
PITOT CONSTANT :	0.81			
SAMP. ORI. DH@:	26.02			
Dif Air Ori DH@:	0.0334			
Exhaust flow CH@	0.0413			
Filter DP	6	-		<b>-</b> .
NOZZLE DIA, in :	0.189			
"YSTEM FLOW, acfm :	0,788	0.466	decim	,
_ 1	1.00	26.02	19.72	OHso
FLOW, actim	0,4863			
Total flow in	4.88			
Dil flow scfm	4.38			
Dil 8w	0			
Side stream 1 flow, declin		0.6		
Side stream 1 DH@ Nutech 2		1.788	1.24	DH1
Side stream 2 flow, decim		0.6		
Side stream 2 DH@		1.7896	1.24	DH2
Nutech 4B		1,2-24	,	
Side etreem 3 flow, decim		· 0.6		
Side stream 3 DH@ RAC 8543		1.76	1.22	DH3
, 4 22.74				
Exhaust flow dealm		3.06		
Exhaust flow DHexh		0.0413	0.87	DHexin
		4.38 0.0334		

Plant Barlly	<del></del>				
Sampling Location Dil #2 (a.H	Rum 40				
Set up by XOK/DIMS	Dete <u>09/03/43</u>	Run Date			
comments Multiple Metals	·	<del></del> _			
Analyst Responsible for Recovery					
Calculations & Report Reviewed By _		Report Date			
<del></del>					
FILTERS USED		CYCLONES			
		red Prepared Contain (No.)	<del>er</del>		
filter Ao.	-	, , , , , , , , , , , , , , , , , , ,			
Sorbent Trap No.		•	<del></del>		
Covidence: No.			<del></del>		
potecka countiène.	Initial fin	al Sain			
INPENDER SOLUTIONS: First	585.7 a 62				
Second	57/8 52	7,3 " 4.5	9		
Mosto Third	126.6 a 42.	7.5	9		
Fourth	602.7 9 600	<del>2.3</del> <del>-0.4</del>	y		
flfth	589.5		<del>7</del>		
Sixeh	140.2 . 46	<del></del> _	;		
Seventh	_ 0	9	<del></del> -		
<u> </u>			<del></del>		
STUTCA GEL VETGITS:	Initial	Final			
	## A	527 ES 1.	,3V		
	<u>793.4</u>	829.6	g J 🗸		
	<del></del>	_	9		
Totals		_ 9	<del>9</del>		
			185		
<del> </del>	<del> </del>		<u> </u>		
CONTENTS:					
Color of Silica Gel:					
Description of Impinger Water:	· · · · · · · · · · · · · · · · · · ·	····			
	· · · · · · -	· · · · · · · · · · · · · · · · · · ·			

# MEITIOD 5 FIELD DATA

Plant/Location Bailly Operator 186 Date 9/3/63	Pitot Coefficient, Cp Nozzle ID.	Ist Filler: Leak Rale, cfm, Prelest <u>A0</u> 00 Leakrale, cfm, Post-lest <u>A</u> 000)
Test No./Run No. Motol #   Dil #   Meter Box ID Notoch # 2	Average Nozzle Dio., knohes Barometric Pressure, in 11g Ambient Temp., deg. F	2nd Filter (if used): leak Rate, clim. Pretest
Gos Meter Cal Factor Orifice ID Orifice DNO	Assumed Molsture, 2	Leakrale, cfm. Post-test
GAS METER START	<u> </u>	1 of 252.692 (1) 716.41

Clock	Travese	Semple	Vacuum	Stack	Pilal	Orifice	äleter	Temperat	lures (deg	. f)			
Time	Point Number	Tune	in. lig	Temp deg. F	74" (150 OL	bii <u>in, ji20</u>	Vol. ef	Probe	Filler	Sorb.	unp. Outlet	DGM tn	DGA out
106		0	4,0		1	1.24	5.95	1		1	<u> </u>	16	
		15	40				17.0				<u> </u>	78	
		30	4,0				27.4					80	
		٧٢	4.0				37.1					80	
		þΟ	4,0				47.4					8/	
		15	4.0				57.8					82	
		<b>3</b> 0	4.0				68.0			<u> </u>		81	
	ļ	48	40			9	74.4			' 		81	
		Total	Max	Avg.	Ave sert	Avg.	Total	Avg.	Avg.	Max	Max.	Avg.	ave.

G-309

41

mber 6	Time	Vacuum in. Hg	Stack Temp deg. F	Pllot OP In. H20	Orifice OH in. H20	Meter Vol ef	Temperat Probe	Filter		lmp. Outlet	DGM in	DGM
	15	4.0			1.54					Julie		<u>out,</u>
	$\neg$				1 1007	88.9	. }.			1_	80	
	30	, I				99.0				<u> </u>	79	
,		4.0				109.8			 		80	
-14-1	45 .	40				119.7					81	
7 1057 4	60	40				129.5			j		79	
1 7		4.0									80	
	30	ao	<u>-</u>					$\neg \uparrow \uparrow$				
(	15	4.0	,			160.1					82	
		4.0				170-1					82	
	5	4.0				_					81	
	30	4,0									83	
I I '	/-					, ,		77		!	84	
		4.0									84	
	5	4,0				222.					83	
] -,	70 h	40			V	2322		<del></del>				
		30 45 60 15 30 45 60	30 4.0 45 4.0 60 4.0 15 4.0 30 4.0 45 4.0 60 4.0 15 4.0	30 4.0 45 4.0 60 4.0 15 4.0 30 4.0 45 4.0 60 4.0 15 4.0	30 4.0 45 4.0 15 4.0 30 4.0 45 4.0 46 4.0 15 4.0	30 4.0 45 4.0 15 4.0 30 4.0 45 4.0 46 4.0 15 4.0	30 40 149.8 45 4.0 160.1 15 4.0 170.1 15 4.0 160.8 30 4.0 160.9 45 4.0 20.4 60 4.0 20.4 15 4.0 20.4	30 40 149.8 45 4.0 160.1 10 4.0 170.1 15 4.0 160.8 30 4.0 140.9 45 4.0 201.4 60 4.0 211.8 15 4.0 222.1	30 4.0   149.8   160.1   170.1   170.1   180.8   140.9   140.9   140.9   140.9   140.4   15 4.0   211.8   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1   15 4.0   222.1	30 4.0   149.8   160.1   170.1   15 4.0   160.8   170.1   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.	30 40   149.8'   160.1   170.1   15 4.0   160.9   170.1   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.9   160.	30 4.0

۳) د	<del>5</del> -	U	<del>-}</del> -						, 1		, .			
Metho	<u>d 5</u>	Meld Da	la Contin	ued. Date		Location	]	iun No. Me Meler	tals #	1/-0i	<u> </u>		Operator	126
Clock Time		ravese Point umber	Sample Time	Vacuum in. Hg	Stack Temp deg F	Pliot DP in. H20	DH in. (120	Vol. ef	Probe			bnp. Outlet	DGM in	DGM out
		1	45	40			1-24	242.5	ì	1	•	]	83	
<u>L</u>			60	4.0			1	2 72,692	•				82	
			:				6							
		T								1	1	1		
	T	$\top$			-1						•			
		- <del> </del>												
-	T		-		<u> </u>						•••	· · · · · · · · · · · · · · · · · · ·		
	T	<del>                                     </del>	<u> </u>					-						
	十													
	┿				· · · - ·			·						
<del>                                     </del>		├──								<u> </u>				
ļ		<del>                                     </del>												
	+	<del> </del>				:						<b> </b>		
-	+		-			<u> </u>						<del>                                     </del>	<b></b>	
-	-			:		•								
									•		·-			

9-31

Plant <u>Bar/ly</u> Sampling Location Dil #1 10:	Add acres				
at up By TAOK / DWS	Page 4			<del></del>	
ments Mulkok Metals	nace 6	7103133	turn Date	<del></del>	
nelyst Responsible for Recovery		·		<del></del>	
alculations & Report Reviewed B			Description		
STORESTONE & MADOLE MANAGEMENT D	<b>,</b>		Report Date _		
<del> </del>				<del></del>	
FILTERS USED			CYCLONES	<del></del>	
		Usad (Yes/He)	Pre	eres Container (No.)	
filter Wa.		10 µ	•	******	
Sorbent Trap Ho					
<u> </u>					
ondenser No.		0.5 ±			
NPINCER_SOLUTIONS:	toicial	Final		Gain	
irst	/ 101 42	• 455·I		373 9	
Becond	6592	643.7	<u> </u>	<u>भ, र्</u> ड	
Third	4,39.8	9 442.0		3.2 <u> </u>	
Fourth	573 i	1 573.V	9	0 · 4 · 8	
fifth		· 572.4		<u> </u>	
tiath .	484.2	486.7	ø _	<u>∂-,&gt;</u> g	
Seventh		g <u> </u>	• -		
SELICA GEL WEIGHTS:		ricial		Figat	
	,		1/4	<del>,                                    </del>	
	7	96.7	420	6-835.0 g	38.3
	_				
fotels		<del></del>		9	
					85.9
<del>-</del> · · · ·				<del></del>	0
	4				
COMMENTS: Color of Silica Cet: <u>427</u>	inter				
	WILLIAM TO THE STREET				
Description of Imployer Water:				<del>_</del>	
	<u> </u>				
<del></del>					
<del></del>	<u> </u>				
	"			<del></del> -	

## Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	METALS 2
Date	9-4-93
Operator	Randy Merritt

Run Conditions					
ΔP duct (static )	* H2O				
Barometric Pressure	"Hg				
"g" scaling factor	0.58				

Filter (D	3
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Constants AH@				
Semple (.093)	26.02			
Dilution Air	0,0334			
Total Flow	0,0413			

Leak Check: Entire Syst	em 4.0	"H2O/mip @ 100"
Leak Check: Sample Ga	8	ΔP(sample orifice)

Pilot Cp	
Nozzie Diamater	

Time	System Pressures (in. H2O)					Flow 1	w Totalizer System Temperatures (°F)												
F=	Pitot AP	Sampte Orlike AP	Sample Onlice P	Filler AP	Total Flow Orif <u>AP</u>	Dil. Oriv. AP	D≱. Orlf. P	Flow	Fotal Volume (#3)	T1 Stack	T2 Probe	T3 Sample Orifice Heater	T4 Sample Orifice Gss	T5 Cone Inlat	T6 Cone Exil	T7 Outside Wati	TB Diluted Filtered Ges	T9 Dilution Air	T10 ; Ambient Air
1003							جوا ل			1	276	121	134	82	83	81	83	73	\$/
1016		20.0	+5_	4.2	073	1.14	-6	.46/	0.2.	309	345	179	253	95	95_	83	9/	74	7/
1030		19.5	+5	42	0.71	1.12	-6	.459	6.1	310	325	w	280	99_	95	83	89	73	7/
1049		19.5	45	4.2	0.70	1.11	-6	458	12.7	311	323	245	297	95	95	82	<b>8</b> 8	7/	73
1/02	<u> </u>	19.4	<i>†5</i>	4.2	0.71	1.12	-6	458	21.4	308	323.	262	309	93	<u>*</u>	8/	88	69	72
415	<u>-</u>	19.5	<b>+5</b>	4.2		1.11	-6	.458	74.9	307	323	264	3//		94	8/	88	68	72
1/30	<del></del>	19.5	+5		<del> </del>	1.12	-6_	<u>. 458</u>	33.7	308	324	274			95	85		68	78
1149	-	19.5	<b>+5</b>			LL2.	-6				324				25		90	69	83
lloo	7	19.5	+5	425		Ш.	-6	.458	48.5	_		228			96	84		69	78
1215	-		+5	<u>4.3</u>		111	<u>-                                    </u>	_	55.7		322	261		_	76	85	9/	70	82
1230		19.3	15		<del></del>	1.11	-6			3/0	22	261			97	86	92_	7/_	83
1245		19.5	<del>1</del> 5	_		1.12	- 6		69.3		327				98	87	94	72.	84
300		٦٦٠	<del>†</del> 5	43 13	ļ	1.13	-6	.460	76.6						27		92	73	15 79
1315	1	19.5	15	44	0.7 <i>0</i>	112	<u>1-4</u>	. 460.	47.6	310	269	260	299	97	96	85	7/	72	77

1014 Start .

304

43 72

364 minutes

page 2

### Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	METALS 2
Date	9-4-93
Operator	Randy Merritt

Run Conditio	ns
ΔP duct (static )	" H2O
Barometric Pressure	"Hg
"g" scaling factor	28

Filter ID	3
Post-weight (gms)	
Pre-weight (gms)	
Weight Gein (gms)	

Jene Const	ants ΔH@
Sample (.093)	26.02
Dilution Air	0.0334
Total Flow	0.0413

Leak Check:	Enline System	"H2O/min @ 100"
Leak Check:	Sample Gas	ΔP(semple orifice)

			 _
Pliot Cp		[	
Nozzte D	iamet	er	

Time		System Preseures (in. H2O)					Flow 1	Flow Totalizer System Temperatures (°F)											
	Pilot AP	Sample Orifice ΔP	Semple Orifice P	Filter ΔP	Flow Onlf AP	Off. Off. AP	Dil. Orif. P	Flow	Fotel Volunte (R3)	F1 Slack	T2 Probe	73 Sample Orlice Heater	T4 Sample Orlice Gas	T5 Cone intet	TB Cone Ext	T7 Outside Wall	T8 Däuted Filtered Gee	T9 Dilution Air	T10 Ambient Alt
1330	~	18-2	+5	4.45	0.7/	1.13	7	.443	90.9	310	3/0	259	296	97	97	85	9/	71	75
1345		19.5	<b>4</b> \$	4.75	0.7/	1.12	7	464	96.5	312	321	261	299	97	97	84	9/	7/	84
1400	-	19.5	<b>+</b> 5	4.45	0.71	1./2	7	. – : – –	1 T T T	309	320	259	300	98	98	87	93	7/	86
1415		19.5	+9	445	0.71	1.14	7	464	1/3.0	308	318	259	298	99	99	88	94	75	86
1430		19.4	<b>+</b> 9	4.45	27/	114	7	462	119.2	308	320.	261	300	100	100	86	95	73	82
1448	-	19.4	<del>+5</del>	4.45	071	1.13	7	462	1284	307		258	30/	lo!	101	90	96	74	88
1500	4	19.4	<u> </u>	4.6	0.71	1/3	フ	.459	1348	308	3/8	262	302	102	101	91	97	75	92
/5/5		19.5	<del>,</del> 5	4.6	0.7/	1.14	7	458	141.0	208	316	258	299	102	101	92	97	75	92
530	۱,	19.5	<i>+</i> 5	4.6	0.70	1.14	7.	459	147.7	307	318	262	30/	107	102	92	97	76	88
1546	-,	C ( · 7	15	4.6	0:7/	1.14	7.	<b>US9</b>	1560	307	3/7	260	299	/02	102	91	97	77	83
1600	1	19.4	<i>+</i> 5	4.6	0.7/	1.14	7	.456	1615	307	3/7_	26/	301	103	102	12	98	77	90
llell.	1	19.2	+5	4.6	6.7/	1.13	7	456	167.0	307	318	261	30/	105	2	93	98	77	93
16/8	<u> </u>			_	:				170.2										
						l i						[							

16/8 - pull publ out, cease sampling

ing promises tracks or amortism	
9/4/43	* 1 - 44
***************************************	
GAS ANALYS18 - 02 : 6.2	
CO2: 12.8	
H20: 10.0	
AND PRESS, in Mg : 29.40	
STACK dP, in 820 : 7.0	
Enter Ges vel., fps 67.4	
or AVG SUR ROOT dp :	
O[l. Factor: 10.000	8-busy
	· ~ ^ \\
STACK GAS TEMP, F : \$20	$\bigcap \lambda \lambda^{i}$
GAS METER TEMP, F : 100	$(V, I_{i})$
Dil Air Temp 75	\p1
Exh sir temp 85	V
PITOT CONSTANT : 0.81	
SAMP. CA1. DH9 ; 26.02	
Dil Air Oct DHD: 0.0334	
Exhaust flow ORD 0.0413	
filter OP 6	ا الله الله الله الله الله الله الله ال
NOZZLE 01A, in : 0.189 Shen	sample orifice
_	0.472 dacfa
• • • • • • • • • • • • • • • • • • • •	26.02 19.58 DHao
b 1.00	20.02 ( 19.30 unit)
/LOV, scfm 0.4717	
Total flow in 4.72	
Bil flow softs 4.24	•
011 86 0	
Side stream 1 flow, dacim	0.6
Side stream 1 DH2	1.788 1.24 OHS
	1-790 1-29 UN1
Nutech 2	
Cids assess 3 floor doors	A.4
Side stream 2 flow, dscfm	0.6 1.7898 1.24 DH2
Side streem 2 DH9	1.789B 1.24 DH2
Mutech 48	
Side streem 3 flow, doctm	0.6
Side streem 3 DH9	4 76 4 65 405
RAC 8643	. al. l
KAL BOAS	" Experience
	TOTAL EXPEDIT
Eshaust flow decfm	2,92
Exhaust flow Diexh	
Section 1180 Liveril	4.24 6.0334 1,11 OHds 7
	4.26 AIR 9 12 1
Dilution flow OHda	6.0334 1.11 OHdo 1
hitelial itam rupa	0.14274 ( 14.11 MINOS )

#### SETUP FOR OPERATION OF DILUTION TRAIN (constant sample rate)

Dilution factor conditions, fet	in tera d, is:	tent, Gd ts of St (PF/Petal	andard	1	otel fl iluted	rifice d ow orlfi gas file initial	ice cons or diff	tent, d orentia			
	mple rate (9, stack comd.) =			0.60							
Ambient pressur				29.4							
Previous stock			_			esaure,			29.91471		
Previous stack			=		*****	orifice			330		
Stack gas 02 fr						s dry 🗪			30.30		
Stack gas CO2 1		_	_		-	s wat mo			29.07		
Stack gas water	. ILECTIC	on, BWS	•	0.1 0	lutea	gas moto	RCULAR M	gt,, Mt	28.84		
The target for	the dile	uter fit	ter tem	perature,	TF, is	68 <b>4</b> 1.		THERENET	NTS		
Keep orifice to	eperatu:	re, fil,	<b>▲t 10 間</b>	above 61	ack tes	peretur	1 & TH	dP#	۵		
Use settings be	sed on a	orifice	temperat	ture, TK.			50	5	0.02		
.=4		A									
QPR = Q (acfm) dPH (i			-6,00	s <b>ample</b> orl -1.00	4.00	9.00	4/ 66	19,00	24.00		
a (actor) are (	fstd=	10.10	9.97	9.85	9.73	9.61	9.48	9,36	9.24		
ţ=	300	7R=	310	7.63	7.12	7,01	7.40	7,30	7.64		
•-	9-	0.56	0.56	0.56	0.57	0.57	0.58	0.58	0.58		
0.58	dPt≎	1.17	1.16	1,15	1.13	1,12	1.10	1.09	1.07		
di(fy	_	10.81	10.94	11.07	11.21	11.36		11.66	11.81		
0.60	.,- dPt≃	1.26	1.24	1,22	1,21	1,19	1.18	1,16	1.14		_ < 0
di(fy		11.56	11,71	11,85	12.00	12.15		12.47	12.64	<i>c</i>	0-35
0.62	dPt=	1.34	1.32	1.30	1.29	1,27	1.25	1,24	1.22	 . ५′	0-58
d#(fyi		12.35	12.50	12.65	12.81	12,98		13.32	_ <del>_13,90</del> _	 O	
7=	320	T#=	330								
	g=	0.56	0.57	0.57	(0.58	0.50	0.5B	0.59	0.59		
0.58	dPt=	1.12	1.10	1.09	1.07	1.06	1.65	1.03	1.02		
dH(fy	i)=	10.52	10.65	10.79	10.92	11.06	11.21	11.35	11.50		
0.60	dPt≖	1.19	1.18	1.16	1.15	1.13	1.12	1.10	1.09		
dH(fy	i)=	17.26	11.40	11,54	11.69	11.84	11.99	12.15	12.31		
0.62	d≥t=	1.27	1.26	1.24	1,22	1.21	1,19	1.17	1.16		
dH(fy)		12.03	12.17	12.33	12,48	12,64	12.81	12,97	13.15		
τ=	340	T⊯≖	350								
	g±	0.57	0.58	0.58	0.56	0.59	0.59	0.59	0.60		
0.58	dPt=	1.06	1,05	1.03	1.02	1.01	0.99	0.98	0.97		
dicty		10.26	10,38	16,51	10.65	10.78		11.07	11.21		
0.60	dPt=	1.13	1.12	1,t1	1.09	1.08	1.06	1.05	1.03		
d#{fy		10.98	11.11	11.25	11.39	11.54	11.69		12,00		
0.62	dPt≖	1.21	1.19	1.18	1,16	1.15	1,13	1,12	1,10		
di(fy	1)=	11.72	11.87	12.01	12.17	12.32	12.48	12.65	12.81		

9/4/93

Plant/Location Bartly
Operator
Dale 9/4/93
Test No./Run No. Aleta/s 2, UL
Meter Box ID No Feet 2
Gas Aleter Cat Factor
Orifice ID
Orifice DII®
Test No./Run No. Alera/s 2 , () L Heter Box ID <u>No.Feek. 2</u> Gas Meter Cat Factor Orifice ID

Pilot Coefficient, Cp Nozzie ID:
Average Nuzzle Dia., inches
Barometric Pressure, in Ilg
Ambient Temp., deg. F
Assumed Motsture, %
Füler ID
Stack Pressure, in 1120

ist filter:
Leak Rate, c/m. Pretest 💯
- Leakrate, cfm, Post-test 💇
2nd Füler (if used):
Leak Role, cfm, Pretest
leakrale, cfm. Post-test

GAS METER START, cf. 254.100 START TIME 1017 CAS METER END. of 50/-57% END TIME . | 612

Clock	Travese	Sample	Vacuum	Stack	Pllot	Orifice	Meler	Temperal	tures (deg	. គ			
Time	Point	Tune	in. lig	Temp	[DAP	DH	Vol				ևոր.	DCM	DGN
	Number	<u> </u>	<u> </u>	deg. P	in. 1120	in. 1120	ct	Probe	Filter	Sorb.	Outlet	<u>in</u>	<u>oul</u>
] 	1	0	3.5	٢	(	1.24	204.100					80	
		15	3.5				265.2					82	
<u> </u>		30	3.5				276.3					82	
		45	3,5				2800					82	
		60	3.5				296.3					82	
i .		15	3.5				306.5					82	
	<u> </u>	30	3.5	ļ	İ		314.7		;		i i	83	
		45	3,5		į		327.3			1	<u> </u>	85	
		Total	Max	Avg.	Avg sgrt	Ave.	Total	Avg.	Avg.	<u>llax</u>	<u>llar</u>	Avg.	Avg.
<u>-</u> wii		Total	Max	Avg.	Avg sgrt	Ave.	Total	Avg.	Avg.	<u>Max</u>	<u>ļlar</u>	/	-

G-31/

0 '	اں کے							, ,	/				
Melliod	5 Field Da	la Contin	ued Date		Location	<u> </u>	Run No. M Heler	e+e/5 2	COL 1	/ - <del></del>	<u>-</u>	Operator	726
Clock Time	Travese Point Number	Time	Vacuum in. Hg	Stack Temp deg. F	Pitot DP in. H20	Oridice DH in H20	Meler Vol ef	Tempera Probe	lures (deg Fijler	l	lmp. Outlet	DGM in	DG§! out
		60	3.5	1		1.24	337.7		l	1		86	
		15	3.5			1	348.2					87	
		30	3.5				358.0					88	
		45	3.5		:		367.9	!				87	
		60	3.5		·		378.4					87	
		15	3.5				358.7					87	
		30	3,5		_ ~		399.0	·	-			86	
		45	3,5				409.4					87	
		60	3,5				419.5	í		•		87	
		5	3,5				429.9			••••		88	
		30	3.<		1		441.1			ij		89	
		45	3.1			<u></u>	450.4	,		<b>.</b>		87	
		QO	3.5	!	·		460.7			1		89	
	•	7	3,5		1		4712					89	
		70	3.5				481.3					88	

Metbod Clock Time	Trave Poin	se it	Sample Time	ved Date Vacuum in Hg	Stat Tem	ap q	location Pitot DP	LXM	Ruu No. Me Meter Vol.					Emp.	Operator DGM	DGM
	Num	<u>ær</u>			deg.	F	in. H20	in. H20	<u>cf</u>	Pr	obe	Filler	Sarb.	Outlet	in	oul
	i	_	45	3.5			1	1.24	491.7			1			89	
		i	60	3.5				Ψ	501.576						89	
									·					}		
							1	·								_
			!													
			<del></del> -													
					i		<del></del>	<u>-</u>								
					<del></del> :				<del></del>	•••						
		_ 	<del></del>		;									<del></del>	1	
	<del>*  </del>				<del>- j</del>	1								ļ <u> —</u>		
	1	7			<del></del> -	_			<del></del>	·		,				
		ᅱ			- ;	$\dashv$		;					<del></del>	- <del></del>		
	1	┪	:			$\dashv$					$\dashv$					
		$\dashv$				$\dashv$		<del></del>							<del> </del>	·
		$\dashv$				$\dashv$					_					
						4				<u></u>					1	

lanz Beilly					
sampling Location Dil #1	(Outtet et T)		Run No	_2	
Set Up By GOC/DAY	Dete	09/44/93	Rum Date		
comments Multiple Metals					
inelyst Responsible for Recovery	Nith to other				
Calculations & Meport Reviewed By .			Report Sett	<u></u>	
FILTERS USED			CTCLOM		
		Všed (Yee/H	_	Prepared Conti	
Ffiter Ho		u u	·		
Sorbent Trap No.				<u> </u>	
Condenser Ho.					
		<u>.                                    </u>	· ———	_	
	•				
THP1NGER SOLUTIONS:	Initial	Finat	<u> </u>	Gein	
First	589.2	s <u>6</u> 28.	2		38.8
Second	579.2	g 5.84.7			575
Third	427.5	e 427.	8 ,		0.5
Fourth	579.4	s <u>577.</u>	5 .		21
Fifth		9 589.	39		<u>-1.4</u> .
Sixth	462.9	. <u>463</u>	<u>.7</u> . a		0.8
Seventh	<del></del>	s <u> </u>	9		
SELICA GEL WEIGHTS:		mitfat		First	
	7:	76.0		8/3 · A	37
	<del></del>		<u> </u>		
	<del></del>	<u> </u>	- —		
			9		
Totals			*		
Totals			*		81.

## METHOD 5 FIELD DATA

Operator The Date 9/4/98 Test No./Run No. Meta 57,0/2 Meter Box ID 1/4/24 46 Gas Meter Cal. Factor Orifice ID	Pitot Coefficient, Cp Nozzle ID. Average Nozzle Dia., inches Barometric Pressure, In. Hg Ambient Temp., deg. F Assumed Moisture, % Filter ID Stack Pressure, In. H20	- -	Ist Filter: Leok Rate, cfm, Pretest <u>0.000</u> Leokrate, cfm, Post-lest <u>0.000</u> 2nd Filter (if used): Leok Rate, cfm, Pretest Leokrate, cfm, Post-lest
gas meter start,	ct: 448,000	gas meter end.	el 718.753
start time <u>1013</u>		End tobe	1612

Clock	Trav	ese:	Sample	Vacuum	Stack	Pilol	Ortfice	Meter	<u>Tempern</u>	tures (deg	<u>. f)</u>			
Time	Poi		Time	in. lig	Temp	, DAS	L DH	Vol			1	lmp.	DGM	DGM
ļ	Num	ber		<b></b> i	deg. F	in 1120	'in !120	<u> </u>	Probe	Filter	Sorb.	Outlet	in	้อกั
			0	3.0	<u>}</u>		1.24	498.0	1_1_		1		104	
		<u>-</u>	15	3,0			1	.507.8					104	
			<i>3</i> 0	3.0				177.4					103	
	'		45	3,8	1			526-1					62	
			60	3,0				535.2					loz	. ]
		$\perp$	15	3,0				544.2					102	
			30	3,0				553.3					loz	
		1	45	30			<b>V</b>	5626	!	!	1	, , , , , , , , , , , , , , , , , , ,	104	j
			Total	<u>   Inx</u>	Avy.	Avg sqrt	Avg.	<u>Tolal</u>	Avg.	Avg.	Max.	Max	Avg.	Ave
		1		ļ	l	1							1	ı

Method Clock Time	5 Field Da Travese Point Number	ta Contin Sample Time	ved Date Vacuum in. Hg	Location Pitot DP in. H20	Orifice DH in, H2O	Run No. 19 z Meter Vol. er	Temperal	ures (deg Füter		lmp. Outlet	Operator DGM in	DGM out
<u>.                                 </u>	1	60	30	1	1.24	571.7			1		106	$\perp$
		15	3,0		<b>-</b>	58/.1					108	Ì
		30	30			540.0					108	
		45	3,0			598.Y					l07_	
		60	3,0			608.1					104	
		K	30			617.2					107	ļ
		30	30			626.3					107	
		40	3.0			635.4					104	
		60	3,0			644,8					110	
		15	3.0			654,0					ŲΟ	
		<u>و</u> ز	3,0	!		664.0					1/2	
		45	30	1		672.4					112	
		60	3.0			681.5					113	1
		15	3.0	, , , ,		961.0					114	
	'	30	3.0		$\neg V$	700,1		'			14	

1120 Operator  $\equiv$ ğ # 퀽 Filer Probe 709,4 7/8,753 1.24 Pitot DP in H20 Location Slack Temp deg. F Melhod 5 Field Dala Continued Date
Cock Travese Sample Vacuum
Time Point Time in Hg 3.0 00 1-13: 3 01 2

#### DOE DILUTION TRAIN OPERATION

145 M5						
****************						
EAS ANALYSIS - 02 ;	6.2					
CO2 :	12.8					
H2O z	10.0					
AVB PRESS, in Hg :	Z9.40					
STACK dP, in H20 :	7.0				1.167	
Enter See vel., fps	67.4				2141 ²⁻¹	
er AVG SOR ROOT dp :					9/4/93	
Dil. Factor:	10.000				-	
STACK GAS TEMP, F :	320					
GAS HETER TEMP, F :	100					
Dil Air Yemp	75					
Exh eir temp	85					
PETOT CONSTANT :	0.61					
SAMP, CRI, DHB :	26.02					
Dit Air Ori DHO:	0.0534					ABN N
Exhaust flow DND	0.0413			•		200
filter OP	6					rne.
MO22LE 01A, in :						Embed From
SYSTEK FLOW, acfin :		0.472 ds			フ	
dp	1.00	26.02	19.50 OHED			
FLOU, sefm	0.4717					
total flow in	4.72					
Dit flow sofm	4,24 0					
OIL BH	v					_
Side stream 1 flow, a	dscfn.	6,0			for	45
Side etreem 1 DHR Nutech 2		1.785	1.24 081	Tul-	Might Bos	
Side stream 2 flow,	dacim	0.6	7	1000		
Side strees 2 DMB		1.7898	1.24 0H2			
Hutach 45		***************************************	1.27.2			
Side stream 3 flow,	dsefm	0.6	\			
Side stream 3 OHD		1.76	1.22 DK3			
RAC 8643						
Exhaust flow discin		2.92				
Exhaust flow Otleah		0.0413	0.78 SHEXH			
		4.24				
Dilution flow Dide		0.0334	1.11 DHda			

	2 (		_
· ,	2 (was roughly)	Run Ha	
ot Up by 2404/045		Run Gate	<del></del>
oments <u>MULTEPLE ME</u>			
elyst Responsible for Recove			
iculations & Report Reviewed	Ву	Report Da	te
- · · · · · · · · · · · · · · · · · · ·			
FALTERS USED		CYCLO	
		Used (Yes/No)	Prepared Container (No.)
ilter No.	10 g		•
orbent Trap No.			<u> </u>
ondenser Ho.	Q.5 µ	<u> </u>	
			<u>-</u>
PTHORR SOLUTIONS:	initial	Fingl.	Gein
rst	<u>613.1</u> 9	650 4 .	37.3
cond	<u> </u>	669.5	4.1
ird	941.0	443   9	2,1
urth	605.2 g	603.9	-1.3
fth	364.7	562.a 9	-2.5
exth	186.0	486.9 9	0,9
eventh		<u> </u>	-
	<u> </u>	<del></del>	<del></del>
LICA SEL VEIGHTS:	Initial		<u> Final</u>
	835.4		<u>8713 = 5</u> 3
		<u>-</u>	
	<del></del>	— » —	<del>.</del>
utal a			
tals		°	<i>7</i> 0114

Plant/location Barly
Operator TEG
Date
Test No./Run No. Acada 2, D.L.
Heler Box ID RAC A-8643
Gas Meter Cal Factor
Orifice ID
Oridice DH2

Pilol Coefficient. Cp Nazzle ID:
Average Nozzle Dia., inches Darometric Pressure, in 11g
Ambient Temp., deg. F Assumed Molsture, %
Filter ID
Stack Pressure, in 1120

1st Filter:
Leok Rate, c/m. Pretest O.do
Leakrate, cfm, Pust-test 22.00
2nd Filler (if used):
jeak Rale, cfm. Pretest
leakinte, cîm. Post-test

GAS METER START, cc. 25.100 START TIME 1012 CAS METER BND. of <u>257.163</u> END TOJE <u>1614</u>

Clock	Thaves	æ ]	Sample	Vacuum	Steck	Pilal	Orlice	Meler	Tempera	tures (deg	. F)			
Time	Point Number		Tune	in. Ifg	Tetnp deg. F	DP hr H20	011 An. (120	Vol.	Probe	Füler	Sorb.	ûnp. Outlet	DGAE Ún	DGM out
			0	3.0		1	1.22	251	j				126	105
			15	2,5				35.6					124	111
			30	2.5				45.7					130	<i>tu</i>
			45	2.5				54.9					130	1/2
			60	25				64.5					131	112
			15	26				74.1				<u> </u>	131	103
			30	2,5				83.6					132	113
			45	2.5	į		V	93.5			]		132	114
		ſ	<u>Total</u>	γωx	Avg.	Avg sqrt	Avg.	Total	Ave.	Avg.	kiax.	Max	Avg	Aýg.

G-326

ias

Method Clock	5 Field Da	la Contin Semple	ued Date Vacuum		Incation Pitot	Orifice	Run No. Ac Meter	1 d 5 2	<i>D</i> , 2 <b>25</b> Lures (deg	EA .		Operator	786
Time	Point Number	Time	in. Itg	Temp deg. F	DF io. H20	DH in H20	Vol.	Probe	Filler		lmp. Outlet	DGM in	DGM out
ļ <u>.</u> .	1	60	2.5			1,22	103.2	1	'	1		134	115
		15	2.5				113.1					132	118
		30	2.5				122.2					135	117
	<u> </u>	45	2,5				131.5					135	117
		60	2.5	•			141.4		<u> </u>	·		135	118
		15	2.75		 		151.0					136	118
		30	2.75				160.6					136	114
		45	2.75				170.4					135	119
		40	2.75				179.9					135	119
		1	2.75				149.5					136	119
		30	2.74				20.0	: 				138	120
		पु	2.75				208,8					137	12/
		60	3,0				218.5		:			134	121
		15	3.0	i			228.5	;				137	12/
		<b>7</b> 0	3.0	1		A	277.9			;	. – –	135	119
											<u> </u>	1	

~`)* -	2. 01	2					_	,	4/.				
Method	5 Pseld Do	la Contin	ued Date		Location		Run No. Ac	1052,1	0.6			Operator	TEL
Clock Time	Point Number	Sample Time	Vacuum in. Ilg	Slack Temp deg. F	Pitot DP to. H20	Ovifice DH in. H20	Run No. A d Meter Vol.	Temperal Probe	ures (dea Filter	. F) Sorb.	lmp. Outlet	DGM In	DGM out_
	1	45	3.0	)		1-22	257.163	1	ſ	Ī	<u> </u>	137	120
		60	3.0			1	257.163					136	120
						V							
					:		-			1			
							-						
					· ·· · · · · · · · · · · · · · · · · ·		·		<del></del>		ļ		
												<u></u>	
	· -				<u> </u>	-							
				<del>-   </del>					<del></del>	<del>_</del>			
		<u> </u>		<del>-  </del>				- · <del>-</del>			•		
				-							<del></del>		
			<del></del>	····-		<del></del>		1					<b> </b>
$\vdash \vdash \vdash$													
$\vdash$							<del></del>		:				

rtant Bailly papeling tocation Dil (Outlet-44	-17\	Oran Me	2
iet Up By LOK (NES		Run Date	
Companies Acids	Otte Otto District		
Analyst Responsible for Mecovery			
Calculations & Report Reviewed By		Report &	He
· · · · ·		•	
FRLTERS USED	<del> </del>	CYCL Used	OMES Propered Container
	(	(Y <del>00</del> /10)	(No.)
filter No.	10 д		
	5 μ _		
Sorbent Trap No			
Condenser Ko.	0.5 µ	<del></del> _	<del>- · - · - · - ·</del>
	<del> </del>		
			- 1.
HPTHGER SOLUTIONS:		610al a	Guin Gr
iest Jeoond		632.7 9 636.6 9	9
ining		479.3	
ourth			<del></del>
ifth			
Fixth		s	
Seventh	<u> </u>	_=	
HILICA GEL WEIGHTS:	Initial		Flest
			<u></u>
	<u> 673.0</u>	8	9112 3
		9	
fotals	<del></del>	9	
			-
COMMENTS:			
Color of Silice Cal:	Piak		
Color of Silice Del: / K			
		<del></del>	<del> <u>-</u></del>
Description of Lapinger Weter:			

Page 2

## Run Sheet for the PM10 Dilution Train

Plent Name	Bailly
Run ID	METALS 3
Date	9-5-93
Operator	Randy Merrill

Run Condillons								
ΔP duct (static )	" H2O							
Barometric Pressure	"Hg							
"g" scaling factor								

Filter ID	
Post-weight (gms)	
Pre-weight (gms)	·
Weight Gain (gms)	

Orifice Constants ΔH@							
Sample (.093)	26.02						
Dilution Air	0.0334						
Total Flow	0.0413						

Leak Check:	Entire System	"H2O/min @ 100"
Leek Check:	Sample Gas	ΔP(sample orifice)

Pitot Cp	
Nozzie Diameter	

Time		Śy	stem Pre	saures	(in. H2C	)		Flow 1	otalizer	System Temperatures (°F)									
	Pitot AP	Sample Orifice AP	Sampte Orilloe P	Filler AP	Total Flow Orif AP	DN. OHA AP	Oil. Oil. P	Flow	Total Volume (f13)	T1 Slack	T2 Probe	T3 Sample Orlice Heater	T4 Sample Orifica Geo	TS Cone Intel	T8 Cone Exit	T7 Outside Wall	T8 Dikted Filtered Gas	T9 Dikaton Air	T10 Ambient Air
1315	Í	19.3	+5	4.6	0.70	1.15	6	456	860	3/2	298	256	305	105	102	93	99	74	85
1330	ţ	19.3	+5	46	0.70	114	وا	.456	95.1	3/2	297	254	305	105	102	9/	98	74	86
1345	,	11.2	<b></b> ≠5	4.6	0.70	1.14	6	-757	102.5	3/2	297	253	303	103	100	90	94	72	83
<u>1400                                   </u>	<u>-</u>	19.3	++ <del>5</del>	4.6	0.70	1.13	4	.452	109.5	3/2	297	252	302	103	100	90	96	73	85
<u>1415.</u>	•	19.5	<del>15</del>	4.6	0.69	1.13	6	.44	116.1	3/2	295	252	302	103	100	89	95	72	85
<b>(453</b>	,	19.5	+5	46	0.69	1.12	6	.463	/25.l	3/3	295	251	301	10/	99	87	94	70	82
1545	-	19.3	+5 T	46	0.70	1.15	4	.463	120.9	312.	295	251	301	10/	98	86	93	69	23
150b	_	19.3	+5	46	0.69	1.12	6	966	157.5	3//	298	250	300	100	9.7	85	92	69	85
1518		19.3	+5	4.6	0.69	1.12	6	.466	146.2	309	298	249	299	101	97	84	91	18	82
1530	_	19.3	±5	46	0.68	112	J	160	151.8	309	299	247	295	100	96	83	90	68	22
1345	-	19.3	15	46	0.68	$lm_{\perp}$	ی	359	158.9	308	299_	246	297	(Go	95	82	89	68	21
1602		19.3	45	4.6	269	$\overline{M}_{\cdot \cdot \cdot}$	3,	.459	167.3	209	297	Z46	297	99	95	82	99	67	86
1612									11.5							_			
fψ	<b>8</b> .2°	19.4	45	4.6	<u>ا</u> 4ما .	1,12	Ų		14.5.5)	311			324	l <u> </u>	<u> </u>		94	14	<u> </u>

1608 Stop trains

### Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	METALS 3
Date	9-5-93
Operator	Randy Merritt

Run Conditions									
ΔP duct (static )	" H2O								
Barometric Pressure	2 9.30 " Hg								
"g" scaling factor	57								

Filter ID	4
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Constants AH@									
Sample (.093)	26.02								
Dilution Air	0.0334								
Total Flow	0.0413								

Leak Check:	Entire System	5	"H2O/min @ 100"
Leak Check:	Sample Gas		ΔP(semple orifice)

Pitot Cp	
Nozzie Diameter	

Time	· T	System Pressures (in. H2O)							Flow Totalizer System Temperatures (°F)										
	Pilot ⊿P	Sampte Onlice ΔP	Sample Orlice P	Filler &P	Total Flow Orif AP	DW. OrW. AP	Dil. Odt P	Flow	Total Volume (#3)	Ť† Stack	T2 Probe	T3 Sample Orifice Heoler	T4 Sample Ortice Gas	T5 Cone Inlei	T6 Cone Exti	T7 Outside Well	TB Diluted Filtered Geo	T9 Dituition Alt	T10 Ambient Air
100	Į I			:						_	192	169	189	81	78	79	81	77	75
1010	<del>-</del>	19.5	+5	5.4	0.68	1.13	6	.461	0.9	311	233	189	241	89	90	8/	87	77	75
1015	_	19.0	<b>†5</b>	4.1	0.68	1.10	6	459	3.0	3/3	257	202	260	92_	93	82	89	77	79
/029	<u> </u>	19.5	+5	4.25	0.70	135	6	. 463	7,2	313	275	221	278	95	96	14	92	77	72_
104		19.4	+5	4.25	0.70	u	J	.460	14.7	314	282	245	298	100	(00	<b>\$</b> 7	94	75	23
105	<u> </u>	19.5	<i>45</i>	1.3	0.70	1.11	4	.464	21.5		285	2.55	301	102	100	88	96	74	86
1///0		19.5	<del>1</del> 5			$BU_{-}$	6	464	28.4	315	287	255	305	103	lol_	90	_	<u>73</u>	84
1/37	<u>'                                    </u>	19.5	15	44	0.69	1.12	6			312	286	2 <i>5</i> 2	303	105	102	92	98	72	84
//44	<u> </u>	19.5	+5	4.6	0.70	1.14	6		45.3		292	253	303	105	102	93	98	72	85
1157	<u> </u>	19.5	<u>+5</u>		0.68		6	457	51-7	307	296	253	303	105	/oz	92	98	72	70
12/5		19.3	<i>+5</i>	4.6	0.68	1.11	6		58.6	310	295	254	304	106	103	92	98	72	85
1230	· [-	19.5	+5	4.6	0.70	1.15	6	454	65.5	3/4	296	257	306	106	102	92	98	73	89
1250		19.5	<i>†</i> 5		0.70	115	ھ	.458		313	300	z <b>56</b>	306	105	/02	92	98	73	89
130	니	19.5	+5	4.6	0.70	1.15	6	.457	Bi.B	313	298	756	306	105	102	93	98	73	88_

glass sample morgle position reonforced we chass files tape on outside of notife, as was

~1130 shose pulled out at laye bollvalue for 20-50 seconds.

#### DOE DILUTION TRAIN OPERATION

DUE DISCITION SKAIN OPERATION	
019795 9(5(47) 105	
EAS AMALYSIS - 02 : 6.2 002 : 12.8 H20 : 10.0	
AND PRESS, in Hg : 29,30 SIACK dP, in M20 : 7.0 Enter Ges vel., fps 67.4 or AVG SUR ROOT dp :	9/5
Dil. Factor: 10,000	- U/ 1/2
STACK GAS TEMP, F : 320 GAS METER TEMP, F : 100 DIL Air Temp 75 Exh mir temp 85	$\mathcal{Y}$
P1107 COUSTANT : 0.81 SAMP, ORI. DHG : 26.02	
Dil Air Ori DHA: 0.0334 Exhaust flow DHA 0.0413 Filter OP 6	
### ### ### ### ### ### ### ### #######	0.470 decfs 26.02 19.43 DHso
Side stream 1 flow, dacfm Side stream 1 DHA Nutech 2	0.6 1.788 1.24 581
Side streem 2 flow, dscfm Side streem 2 DHB Nutech 48	0.6 1.7895 1.24 DH2
Side streem 3 flow, dacfm Side streem 3 DHD RAC 8843	0.6 1.76 1.22 tm3
Exhaust flow decim Exhaust flow Dhexh	2.90 9.0413 9.78 DHexh
Dilution flow DHds	4.23 0.0334 1.11 OHdo

TUP FOR OPERATION OF DILUTION TRAIN (constant sample rate)

Dilution factories,		ns of st	endard		Sample o Total fi Diluted Expected	ow orifi gas file	ice cons ter diff	tant, d erentia	26,02 0.0613 10 1
Sumple rate				0.60					
Arbient press			_	29.3				_	
Previous ste					Steck pr	•			9.81471
Previous star			•		Expected Stock ga				330
Stack gas 02 Stack gas CO	-				Stock ga				30.30 29.07
Stack gas He			_		Diluted				28.84
SCHOOL AND ME	UE4 17 BC 14	MIT DES	_	4.1	D. HALCO	Rec alor.		91,, MC	20.04
The target fo	or the dile	star ffl	ter tem	meratura.	IF. is	AREF.		1 MCREMEN	YS
Keep orifice								dP#	- Q
Use settings							20	3	0.02
			•	•					
<b>o</b> ₽H	■ P diff.	to ambi	ent at s	sample or	ifice in	let			
Q (acto) dPH	(in. H20)	+11,00	-6.00	-1,00	4,00	9,00	14,00	19.60	24,00
	fstd=	10,06	9.94	9.82	9,69	9,57	9.45	9.33	9,20
Ţ=	300	TH≠	310						
	g=	0.56	Q.56	0.57	0.57	0.57	0.58	0.58	0.58
0,58	dPt=	1.16	1.15	1.13	1.12	1,10	1.09	1.07	1.06
diff	fyl)=	10.77	10.90	11.04	11.18	11.32	11.47	11.62	11.78
0.60	<b>d</b> Pt=	1.24	1.23	1.21	1.20	.1.18	1.16	1.15	1.13
dH(	fyi)=	11.52	11.67	11,81	71.96	12,72	12.27	12.44	12.60
0,62	dPt≈	1.33	1.31	1.29	1.27	1.26	1.24	1.22	1.27
aH(	fyi)=	12.31	12.46	12.61	\$2,77	12,94	13.11	13.28	13.46
7=	320	TĦ≠	330						
	8-	0.57	0.57	0.57	0.56	0.5B	0.58	0.59	0.59
0.58	dPt≖	1.10	1.09	1.08	1.05	1.05	1.03	1.02	1.01
	fyl)≖	10.49		10.75		11.03	11,17		11.47
0.60		1.18	1,17	1.15	1.14	1.12	1.11	1.09	1.07
_	fyl}≖ 	11.22	11.36	11.51		11.80	11.95	12.11	12.27
0.62	dPt= Auto-	11.99	1.24 12.13	1.23		1,19	1.16 12.77	1.16 12.93	1.15
Te CMC	(yi)= 340	7#=	350	12,29	12.44	12,60	12,71	12.73	13.11
1-		0.57	0.58	0.58	0.58	0.59	0.59	0.60	0.60
0.5B	g≎ dPt=	1.05	1.04	1.02		1.00	9.98	0.97	0.96
	fyl)=	10.22		10.48		10,75	10,89	11.03	11.18
0.60	,,,,,– dPt≖	1,12	1,11	1,09		1,07	1,05	1.04	1.02
	fyl)=	10.94	11.08	11.21		11.50	11.65	11.81	11.96
0.62	dPt=	1.20	1.18	1.17		1.14	1.12	1.11	1.09
d#{	tyi)=	11.68	11.63	11.97	12,13	12.28	12.44	12.61	12.77

4/5/93

## METHOD 5 FIELD DATA

GAS METER START, et: 1.78,400	gas meter end, et <u>490.4</u>
START TIME 1003 - 1604	END THE

Clock	Travese	Sample	Vacuum	Stock	Pilot	Ortice	Meter	Tempera	(times (deg	. A 🖳			
Time	Point Number	Time	in ilg	Temp deg. F	DP <u>61. 1120</u>	<u>pr 1550</u>	Vol. → ef	Probe	Filler	Sorb.	knp. Outlet	D/AI In	t)GM out
· 	1	C	1,0	_		1.22	2524	1				120	103
		15	10				268.0	!				125	104
		30	1,0	}			277.6					127	109
		45	1,0				287.3					127	112
		60	10				296.9					129	112
		15	1,0				306.5					130	113
		30	1,0				316.1	.			<u> </u>	131	114
]	Ţ	45	1.0	,			3257			-		וכו	114
	1	Total	Max	Avg.	Avg sqrt	AVR.	Total	Avg.	Avg.	<u> Hax</u>	Mox	Ave	Avg.

Method Clock Time	5 Field Da Travese Point Number	la <u>Contin</u> Sample Time	ucd Date Vacuum in Hg	Stack Temp deg. F	Location Pitot DP in. H20	Orifice DH in. 1920	Run Na. Ae Meler Vol. cr	Temperal	ures (deg Filter		lmp. Outlet	Operator  DGM in	DGN out
		60	1.0			1-22	3356					132	114
		15	1,0				345.4					/3/	1/7
<u> </u>		20	10				355.1					132	112
		45	1.0				364.9					13/	114
		60	12	<u> </u>			374.5	 		_		133	116
		15	1.0				384.4	, 				133	<i>ון</i>
		30	1.0				394.2			$\perp$		133	115
	 	न्र	1,0				403.7			$\bot$	 	133	115
	·	60	1,0				413.5				<u> </u>  :	13z.	116
		1	1.0				423.2				;	13/	115
		30	10				432.8		<u> </u>		<u> </u>	/3/	14
		<u>us</u>	1.0		\		442.5			$\perp$		130	114
		60	1.0			<del>     </del>	452.7		\		<u> </u>	130	114
		15	(.0			<u> </u>	462.9		}_		···	128	)I <del>/</del>
	,	30	1.0	_			471.5					129	114

Jack Time	5 Field Da Travese Point Number	Sample Time	Vacuum in. Ilg	Stack Temp deg. F	Lucation Pitot DP In. H20	DH	Run No. AC Meter Vol. cf	Temperal Probe	ures (deg Füter	<u> </u>	lmp. Outlet	DGM in	DGM out
	1	45	1,0	-		1-22	481.3	1		1		124	1/>
		60	1,0			<u> </u>	490831		_}_			128	1/2
·									-		<del>                                     </del>		
· ·- ····	<u></u>							· · · · · · · · · · · · · · · · · · ·					
					<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	
•		:		<u></u>	<u>-</u> .		:			<u> </u>		<u> </u>	
							<u>:</u>		****		<u> </u>		
							- · · · · · - · · · · · · · · · · · · ·						
						· <b></b>	<u>.</u>						
										··,·			
							:				<u> </u>		
						<u> </u>							

ent <u>Bhilly</u> mpling Location Dil (Duffet le			<del></del>	Stat No	3	4
OP BY DIOK TOWS		Date 05/0	1/93		09/05/23	
1.34						<del></del>
Lyst Responsible for Recovery						
culations & Report Reviewed By				Report De	te	
			•••	Cres	MES	
			Used (Yes/No		Prepared Cont (No.	
ter No			•	•	(no.	_
ter Ro.						
bent Trap No						
denger Wa.						
INGER SOLUTIONS:	Initial	· · · · ·	Final	·- ·	Sein	
ST.	636.			3g	8.0	
ond _	581.			. <u>5</u> .	21.0	
~d	477	2		3 .	3.	
rth	_	;				g
th		<u> </u>				9
th				9		9
epsth _		9				g
ICA GEL WEIGHTS;		Initial			Final	<del></del> (
		8162		g	958.3	46.6
				•		ş
ols				•		g
		<del></del> .				TOTAL W
ENTS: or of Silico Gel: <u> </u>	15 le					
oription of Impinger Water:						
<del></del>						
	<del></del>		-			
	<del></del> -					<del></del>

### NETHOO 5 FIELD DATA

Plant/location Bail 9 Operator TE - Date 9/5/97 Test No./Run No. Mcta/5 3- Dil   Meter Box ID 1/2/2/2/2 Gas Meter Cat Factor Orifice ID Orifice DIM	Pilot Coefficient, Cp	ist filter: Leak Rale, cim, Pretest <u>O.O</u> O Leakrale, cim, Pust-test 2nd filter (if used): Leak Rale, cim, Pretest Leakrale, cim, Post-test
-----------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------

GAS METER START, cf. 502, 800 START TIME <u>1008 - 1604</u>

Clock	์ก๊าล'	Vese	Sample	Vacuum	Stack	Pilol	Orlice	Meler	Tempera	lures (dea	, f)			·——
Time	Pol Nun		Time	in. Ilg	Temp deg. F	Dr In. 1920	in. \$120	ef .	Probe	filter	Sorb.	lmp. Outlet	D/SAE bi	DCAL out
	111111	IIUCI	0	5.0	UCE. I	/			Floor	14151	<del>307 14.</del> -	untact	82	, <u></u>
<u> </u>				7.0			1,24	502.8		<del>                                     </del>	<del></del>	<b>├</b> ┈┼		<del>                                     </del>
			15	5.0			<u> </u>	5/3.3	<u> </u>				83	
			<i>3</i> 0	4.7				523.6				]	94	
			45	4.75				534.0					85	
			60	4.75				544.2					85	<u> </u>
			15	4.75				554.5					85	
			30	4.75				564.7					86	
			45	4.75			V	575.2			,		87	
	τ		Total	Max	Avg.	Avgisort	Avg.	Total	Avg.	Avg.	ibx	Max	Avg.	Ang.
		- 1	- (	j		į	ľ			ļ	- 1			

G-338

85

<u>Method</u> Clock	5 Field Da Travese	la Contin Sample	ued Date Vecuum	Stack	<u>Location</u> Pilot	Onifice	Rım No. Me Meter	<i>Ara(† )</i> Tempera	5~ <i>Vil</i> lures (deg	. / Pl		Operator	TΞ
Time	Point Number	Time	in. Hg	Temp deg. F	DP in. H20	0H in, H20	Vol cf	Probe			imp Outlet	DGM in	DGM out
	1	60	4.75		1	1.24	281.2	(	}	i	;	87	
		15	4.75			<u> </u>	596.0					97	
		30	4.75				606.3					88	
		45	4.75				616.7					88	
		60	4.75				627.0					85	1
		15	4.75				637.6					88	
		30	4.75				647.9					87	
		45	4.75				658.1					87	
	,	60	4.75				668.5					87	
		15	4.75				678.9			İ		85	
		30	4.75		.	\ \	689.2			<u> </u>		85	
		45	4.75			- }	699.5					84	
,		60	પ્તર				710.5	<u> </u>				83	
		15	4.75			W	721.1					82_	$\perp$
		劧	4,75				7701					81	

ock me	5 Field Da Travese Point Number	Sample Tune	Vacuum b). Ilg	Stack Temp deg. F	Location Pilot DP in. H20	Ortfice DH	Run No. M & Meter Vol. ef	Temperat Probe	ures (deg Filter	P)	lmp. Outlet	Operator DGM in	DGA out
	1	45	4.75			1.24	740.6	ţ	1		1	80	1
		60	4.75			¥_	770.537					80	
				\ 	\	<b>&gt;</b>			_ \		<u> </u>		
				·				( -					
								,					
				*							-		
											· <del></del> ·-		
	<i>-</i>						·						-
			•										
-													
$\neg$			···							<del></del>	<b></b>	$\mid - \mid \mid$	
$\dashv$					- <del></del> -	<del></del>	·-···-					$\vdash \vdash \vdash \vdash$	
_												igwdot	

FILTERS USED		CY	CLOWES
		Used (Yes/No)	Prepared Container (No.)
filter Wo.		•	
Sorbent Trap No.		Ζ.0 μ	
<del> </del>		1.0 μ	
Condenser Ho.		0.5 µ	
		· · · · · · · · · · · · · · · · · · ·	<del></del>
MP1NGER SOLUTIONS:	Initial	Final	Gain
irst	<u>612.4</u>	<u>643.9</u> ,	<u> </u>
econd	<u>555</u> o	<u>600.5</u>	
hird		<u>- मॅसॅ३-1</u> १	, <u>, , , , , , , , , , , , , , , , , , </u>
ourth	<u> </u>	<u>597.6</u>	<u> </u>
ifth	584.4 0	<u> 584.6</u> :	<u> </u>
ixth	<u>488.2</u> s	<u> 490 l</u> s	<u> </u>
eventh		<del></del> 5	
ILICA GEL VEIGHTS:	lotx	lat	Final
	<u> </u>	<u>.7</u>	837.2 A
ocals	<del> </del>		
			±0.CA ←

### MEIIKOD 5 FIELD DATA

Plant/Location Ban/19	Pitol Coefficient, Cp	_	Jal Filler:
Operator TEC.	Nozzle ID.	_	Lenk Rate, cfm, Pretest <u>0.0</u> 0
Date _ 5 /5/ 52	Average Nozzle Dio., Inches	<b>-</b> -	Leakrale, cfm. Post-test Oxo
Test Na./Run No. Metals 3-0:22	Dorometric Pressure, In. Hg		2nd Filter (if used):
Heler Dox D <u>Natech 46</u>	Ambient Temp., deg. P		icak Rale, clim. Pretest
Gas Heler Cal Factor	Assumed Halslure, %	<u></u>	Leakmle, cfm, Post-lest
Orivine ID	Miler ID	_	
Orifice DNP	Stack Pressure, in 1120		
<del> </del>		_	A A
GAS METER START,	d: 720.100	gas meter end,	d _ <i>939.975</i>
START TIME <u>10 a</u>	8-1604	end the	1608

Clock	Travese	Sample	Vacuum	Slack	Płlot	Orifice	Melet	Temperal	lures (deg	. F)			
Time	Point Number	Thre	in. Hg	Temp deg. F	97 10, (120	041 in. <u>J120</u>	\\rightarrow \\rightarrow \( \text{C} \)	Probe	Füler :	Sorb.	imp. Qutlet	DYA! In	IXCXI OUL
		0	3.5	1	,	1.24	720.1	1				100	
		15	3.5	-		(	729.3					102	
		30	3.5				7384					104	
		45	3.5				747.5					105	
		60	326				756.8					106	
		15	3.24				766.0					107	
		30	3.25				775.2	.				107	
		45	3,25		7	<b>W</b>	784.4	, [		- , .		107	
		Total	<u> lbx</u>	AYE	Ave sort	Ave.	Total	Avg.	Avg.	linx	Max.	Avg.	Avg.
	ŀ	ı	1	ı	ı	!	. 1	· •	,	l		; 87)	

lock	5 Fieldi Dat Travese	<u>la Contin</u> Semple	ved Date Vacuum	Stack	<u>Location</u> Pitot	Ortlice	Run No. <i>V</i>	Temperal	Ures (deg	<u> </u>		Operator	12
ine ———	Point Number	Time	in. lig	Temp deg F	DP in. (120	DH	Vol.	Probe	Filter	Sorts.	İmp. Outlet	DGM in	DGM out
	1	60	321		1	1.24	793.7	1_1_		1		108	
		15	3.25				१०२४					108	
		30	3,25	<u> </u>			8120					1/0	
		45	3,28				821-)				<u> </u>	110	_
		60	3.2<				830,2					110	
	!	15	3.25		<u> </u>		939.5	<u> </u>		$\perp$		109	
	1	30	3.25				848.6					106	$\perp$
		45	3.25		<u> </u>	<u> </u>	857.7					10%	
	. 1	60	3,25				866.4					106	·
		15	3,25			<u> </u>	8759				<u> </u>	109	
		30	325	ļ			885./				,	108	
ı	:		3,25				874.2		· !			108	
· ·		60	3,26				903.8	. \				108	
		15	3.24	:	!		912.4		1			108	
		<i>3</i> 0	3,25	\ `	.		921.7		·	i		108	,

kiethod Clock Time	5 Field Da Travese Point Number	Sample Time	ved Date Vacuum In. 11g	Stack Temp deg. F	Location Pitot DP in, H20	Orifice DH in. 1120	dun No. <i>M</i> Meler Vol. cr	Probe		lmp. Outlet	Operator DGM in	DGNI out
		45	3.25 3.25			1.24 0	930.8 931.975				108	_}_
									\ \	. '		
	-						<u> </u>		 			
							<del></del>					
	· 									_		
<u>.</u>												

# SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

Sampling Location DUL #2 (outlet out 1) Set up by DXT loss Set up by DXT loss Set up by DXT loss Consents Mutholk Metals  Arolyst Responsible for Recovery Multiple  Filter UseD  Filter No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Service No.  Sy  Sy  Sy  Sy  Sy  Sy  Sy  Sy  Sy  Sy	Plant Bailly			•	_	
Comments   Multiple   Metals   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Mu	Sampling Location DIL#2 10	outlet aut 7)				
Comments   Multiple   Metals   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Management   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Multiple   Mu	Set Up By MAX /avs	Date	89/ost93.	Run Dete	09/05/93	
Report Date   Report Date	comments Multiple Metals					
Report Date   Report Date	Analyst Responsible for Recovery	Will 1 14.				
Used (Ves/No)   Prepared Container (Vo.)				Report Dat	•	
Used (Ves/No)   Prepared Container (Vo.)						
Used (Vest/No)   Prepared Container (Vo.)		<u> </u>	-			
Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No.   Condenser No	FILTERS USED				<u>es</u>	<del></del>
10 x   5 x   2.0 x   1.0 x   2.0 x   1.0 x   2.0 x   1.0 x   2.0 x   1.0 x   2.0 x   1.0 x   2.0 x   2.0 x   1.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x   2.0 x						her
Serbent Trap No.  2.0 x  1.0 x  1.0 x  2.5 x  2.0 x  1.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.5 x  2.0 x  1.0 x  2.0 x  1.0 x  2.0 x  1.0 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x  2.1 x	fil tec lin.		•	•		
Sorbent Trep No.    1.0 p				•		
1.0 p	tarbant Trun No.		·			
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	401 Delice 11 ap 1402			•		
INPO]NOTER SOLUTIONS:	Condenses No.					
First 6/7.6 : 649.3 s 31.7 s 585.2 s 591.9 s 6.7 s 1.3 s 585.2 s 591.9 s 6.7 s 1.3 s 582.8 s 580.5 s -2.3 s 586.6 s 586.6 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.		•	4.5 #			
First 617.6 : 649.3 s 31.7 s Second 585.2 s 591.9 s 6.7 s Third 441.4 s 442.7 s 1.3 s Fourth 582.8 s 580.5 s -2.3 s Fifth 596.6 s 598.5 s 11.5 s Second 582.8 s 580.5 s -2.3 s Fifth 596.6 s 486.6 s 486.6 s 486.6 s 486.6 s 486.6 s 486.6 s  SILICA GEL WEIGHTS: Initial Final Final 578.4 s 9 914.3 Not 35.1 s  Totals 5000000000000000000000000000000000000	<del></del>					
First 617.6 : 649.3 9 31.7 9 Second 585.2 9 591.9 9 6.7 9 Third 441.4 : 442.7 9 1.3 9 Fourth 582.8 9 580.5 0 -2.3 9 Fifth 596.6 9 598.5 9 41.5 9 Seventh - 9 - 9  SILICA GEL WEIGHTS: Initial Final 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 10	MANAGE AND DESAME.		P #			
Second			<del></del>	3 4	94115	31.2.
Third  #4/4 \$ 449.7 9 1.3 9  Fourth  #582.8 9 5.80.5 0 -2.3 9  Fifth  #596.6 9 598.5 9 #159  Seventh  #86.6 9 486.6 9  #878.4 9 914.2 Not 35.1  Totals  **COUNTENTS: Color of Silica Gal; /3 / in /-  **Color of Silica Gal; /3 / in /-  **Color of Silica Gal; /3 / in /-	•					
Fourth 582.8 g 580.5 g -3.3 g  Fridth 596.6 g 598.5 g -3.3 g  Sixth 686.6 g 486.6 g g  SILICA GEL MEIGHTS: Initial Final g  Totals g  COMMENTS: Color of Silica Gal: 12 link-  Color of Silica Gal: 12 link-  Color of Silica Gal: 12 link-	•				<del></del>	
						<del>4 2</del>
	•			-		•
Seventh	•			<del></del>	···	.h
STETCA GEL METGHTS:  STR.4 9 914.2 Not 35.  Totals  SOMMENTS: Color of Silica Gal; 1/2 Link		79.0	<del>78/2:</del>			<del>4</del> 9
878.4 9 914.2 Not 35.  Totals  SOMMENTS: Color of Silica Gal; 1/2 link	Saverith .			9		
TOTAL 3	SILICA GEL WEIGHTS:	loi	riel		Final	
TOTAL 3		_ +	_	_		JE 25
TOTAL 3		87	<del>8.4</del>	, <u>4</u>	<u>914. a</u>	100 5 32
COMMENTS: Color of Silica Gal; 1/2 fink			!			g
COMMENTS: Color of Silica Gal; 1/2 fink						
COMMENTS: Color of Silica Gal; 1/2 fink	Totals			3 <u></u> -		\$
COMMENTS: Color of Silica Gal; 1/2 fink					-throx	. ns/
Color of Silica Gal: 12 fink		<del></del>	· ·	•	ikte	<u> </u>
Color of Silica Gal: 12 fink						
	COMMENTS: U. a. v					
						<del></del>
	Description of Impinger Water:			<del></del>		
					<del></del>	

#### DOE DILUTION TRAIN OPERATION

6/9/93			
N/G			
GAS AWALYSIS - 02 1	6.2		
COZ :	12.8 10.0		
H2O ;	10.0		
ANTE PRESS, In Mg :	29.30		
STACK dP, in H20 : Enter Gas vel., fps	7.0		
Enter Gas vel., fps	67.4		
or AVG SOR ROOT dp :			
Dil. Factor:	10.000		
STACK GAS TEMP, F :	320		
GAS NETER TEMP, F :	100		
Dit Air Temp	75		
Exh air temp	85		
PETOT CONSTANT :	A. A1		
SAMP. OR[. DES :	26.02		
Sheen's fort's nation :	20.02		
Dit Air Orl DHO:	A 477/		
Exhaust flow DKO			
Filter DP	6		
NOZZLE DIA, in :	0.189	Shank #9	_
SYSTEM FLOW, acfm :	0.788	0.470	
SYSTEM FLOW, acfer :	0.788 1.00	0.470 26.02	deefm 19.43 Diso
SYSTEM FLOW, acfor :	0.788 1.00 0.4701	0.470 26.02	
SYSTEM FLOW, acfor : dp FLOW, scfn Total flow in	0.788 1.00 0.4701 4.70	0.470 26.02	
SYSTEM FLOW, acfor :	0.788 1.00	0.470 26.02	
SYSTEM FLOW, acfor : dp FLOW, scfn Total flow in	0.788 1.00 0.4701 4.70	0.470 26.02	
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm	0.788 1.00 0.4701 4.70 4.23	0.470 26.02	
SYSTEM FLOW, acfor : dp fLOW, scfn Total flow In Bil flow scfm Bil Bu	0.788 1.00 0.4701 4.70 4.23	0.470 26.02	
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm	0.788 1.00 0.4701 4.70 4.23	0.470 26.02 0.6	19.43 DHSO
SYSTEM FLOW, acfor : dp FLOW, scfn Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d	0.788 1.00 0.4701 4.70 4.23	0.470 26.02 0.6	
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow In Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB	0.788 1.00 0.4701 4.70 4.23	0.470 26.02 0.6	19.43 DHSO
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow In Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2	0.788 1.00 0.4701 4.70 4.23 0	0.470 26.02 0.6	19.43 DHSO
SYSTEM FLOW, acfm : dp  FLOW, scfm Total flow in Bil flow scfm Bil Bw  Side stream 1 flow, d Side stream 1 DHB Nutech 2  Side stream 2 flow, d	0.788 1.00 0.4701 4.70 4.23 0	0.470 26.02 0.6 1.788	19.43 BHso 1.24 981
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 flow, d	0.788 1.00 0.4701 4.70 4.23 0	0.470 26.02 0.6 1.788	19.43 DHSO
SYSTEM FLOW, acfm : dp  FLOW, scfm Total flow in Bil flow scfm Bil Bw  Side stream 1 flow, d Side stream 1 DHB Nutech 2  Side stream 2 flow, d	0.788 1.00 0.4701 4.70 4.23 0	0.470 26.02 0.6 1.788	19.43 BHso 1.24 981
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 BHso 1.24 981
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 DHSO 1.24 911 1.26 DH2
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d Side stream 3 DHB	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 BHso 1.24 981
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 DHSO 1.24 911 1.26 DH2
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d Side stream 3 DHB	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 DHSO 1.24 911 1.26 DH2
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d Side stream 3 DHB RAC 8643	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 DHSO 1.24 911 1.26 DH2
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow,	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898 0.6 1.76	19.43 DHSO 1.24 DH1 1.24 DH2 1.22 DH3
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 1 DHB Nutech 2 Side stream 2 flow, d Side stream 2 DHB Nutech 4B Side stream 3 flow, d Side stream 3 DHB RAC 8643	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898	19.43 DHSO 1.24 PH1 1.24 PH2 1.22 DH3
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow,	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898 0.6 1.76	19.43 DHso 1.24 PH1 1.24 PH2 1.22 DH3
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream 3 flow d Side stream	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898 0.6 1.76	19.43 DHso 1.24 PH1 1.26 PH2 1.22 DH3
SYSTEM FLOW, acfm : dp FLOW, scfm Total flow in Bil flow scfm Bil Bw Side stream 1 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 2 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow, d Side stream 3 flow,	0.788 1.00 0.4701 4.70 4.23 0 Isofm	0.470 26.02 0.6 1.788 0.6 1.7898 0.6 1.76	19.43 DHso 1.24 PH1 1.24 PH2 1.22 DH3

DIL

# Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	ORFANCS /
Date	9-6-93
Operator	Randy Merrill

Run Conditions						
AP duct (static )	" H2O					
Berometric Pressure	" Hg					
"g" scaling factor	.58					

Filler ID	5
Post-weight (gms)	
Pre-weight (gms)	
Weight Gain (gms)	

Orifice Constants AH@						
Sample (.093) 26.02						
Ditution Air	D.0334					
Total Flow	0.0413					

59

Leak Check:	Entire System	5	"H2O/min @ 100"
Leek Check:	Sample Gas		ΔP(sample orifice)

	_
Pitot Cp	
Nozzle Diameter	

Time		Sy	stem Pre	Saures	(in. H2C	)		Flow T	otalizer	*			System	m Tem	peratu	res (°F)			
	Pitot 4P	Sample Ordice ΔP	Sampte Orifice P	Filler AP	Total Flow Onl	Orif. AP	Oilf. P	Flow	Total Volume (#3)	T1 Stack	T2 Probe	13 Semple Odlice Heater	T4 Sample Orlice Gas	Y5 Cone Inlet	T6 Cone Ext	77 Outside Welf	TB Dibled Filtered Ges	T9 Datation Altr	T10 Amblent Air
955										<del></del> _	Z34	120	133	65	62	62	63	63	63
1001				1	L			)	0	_	245	139	152	65	62	62	62	62	13
1020	-	/8.5	+5	40	0.82	107	6	450	3.9		282	167	127	80	76	65	70	64	43
100	<u> </u>	18.7	15	4.0	0.82	1.07	6	.457		330	295	176	240	80	76	64	70	64	64
1040	<u>  </u>	18.6	+5	40	0.84	1.10	6	450	11.6	350	307.	195	258	81	77	65	7/_	63	44
DSS	<u> </u>	18.6	+5	4.0	0.25	108	6	448	18.4	340	279	2/3	268	82	78	66	72	61	64
//lb	<u> –                              </u>	18.7	+5	4.0	0.89	107	6		24.5		282	222	272	82	79	67	72	61	64
1130	<u> </u> -	18.6	15	4.0	0.83	1.07	6	452	34.9		297_	231	285	83	80	67	73	.59	46
1/42	1=	18.7	+5	4.0	0.85	1.67	4	¥49	41.3		297	234_	288	24	80	68	73	59	64
1700	<u> -</u>	18.6	75	4.05	0.83	1.07	6	452	16.3	_	296	25 <i>8</i>	290	84	80	68	73	28	65
1216	<u> </u>	18.5	<i>}</i>	205	0.82	102	6	449	56.3	J	296	246	297	84	80	68	74	58	64.
1230	-	11.5	<i>+</i> S	4.15	0.83	1.07	6	430	62.3		296	249	299	85	80	69	74_	58	66
1245		18.6	15	4.10	0.82	1.07	وا	.450	69.0	_	296	253	302	25	81	69	74	58	66
1255	<b>—</b>	18.6	+ 5	410	0.81	1.07	4	448	74/	1	296	254	303	84	Ĕ/	70	<i>75</i>	58	67

(017 Strut delater my TI reading is probably high init 7 ordet MT only reading ~50 high I yesterlay

Page 2

# Run Sheet for the PM10 Dilution Train

Plant Name	Bailly
Run ID	ORGANIS I
Date	9-6-93
Operator	Randy Merrit

Run Conditions						
ΔP duct (static )	" H2O					
Berometric Pressure	"Hg					
"g" scaling factor						

Filter (D	
Post-weight (gms)	
Pre-weight (gms)	<u> </u>
Weight Gein (gms)	Ĭ <u>-</u>

Orifice Const	anis AH@
Sample (.093)	26.02
Dilution Air	0,0334
Total Flow	0.0413

Leak Check:	Entire System	"H2O/min @ 100"
Leak Check:	Sample Gas	ΔP(sample orifice)

Pitot Cp	
Nozzie Diameter	

emiT		Ŝу	stem Pre	ssures	(in. H2C	<del>)</del> } .		Flow T	otalizer				Syste	m Tem	peratu	res (°F)			
	Pilot AP	Sample Orifice AP	Sample Orifice P	Füler ∆P	Total Flow Oril AP	Dif. Orlf. AP	Dil. Odf. P	Flow	Total Volume (fi3)	T1 Stack	T2 Probs	T3 Sample Orifice Heater	T4 Semple Orifice Gas	T5 Cante Inlet	TS Cone Est	T7 Outside Wall	TB Diluted Filtered Gas	T9 Olfution Air	T10 Amblent Air
13/6	-	18.5	+5	420	0.82	1.07	5	.451	84.0		296	ZSS	304	87	82	70	76	58	69
15302	1	18.6	+5	4.20	0.81	1.07	5	.452	90.0	-	297	255	304	87	જ	7/	76	58	67
1345	1	12.7	+5	420	0.82	1.07	5	¥\$7	96.8	1	298	255	303	82	82	70	76	59	68
1400	<u>-</u>	18.7	<del>+</del> 5	4.20	0.84	1.09	5	.453	104.0	I	298	255	305	87	81	10	75	59	48
1416		19. g	ታይ	4.20	084	108	5	456	1123		299.	255	363	82	şį	70	75	<u>59                                    </u>	70
1431	_	18.9	+5	4.25	0.84	1.09	5	458	118.5	1	299	255	303	87	81	70	75	59	7/_
1445	_	18.9	+ 5		4.84	1.08	5	.457	125.2	1	300		303	87	82	76	75	89	70
1500		18.9	+5	43	0.85	1.08	5	456	131.7	Ė	322	Z <i>5</i> 4	303	27	82	7/_	76	_	65
1515	-	/E.9	<u>+5</u>	4.3	0.8 /	1.08	5	.456	138.7	-	30/	<u> 257</u>	304	82	82	71		60	7/
1530		18.8	45	4.3	0.82	1.07	5	.457	146./	(	300	257	304	87	82	7/		<b>g</b> o	70
1545		18.7	+ 5	43	0.83	<i>l.</i> 07	5	पदा	1526	_	301	258	304	87	82	7/	76	60	7/
1400		18.8	+5	<del>4.3</del>	0.85	1-09	ζ	452	160.0	-	300	258	304	17	85	7/	77	60	69
145		18.8	+5	4.3	0.83	1.09	5	451	14.6	_	300	258	304	<b>£</b> 7	63	71_	77	00 1	,
1620		<u> </u>		<u> </u>					1688		·	<u> </u>	<u></u>	L		L			

1618 Stop deleton

9/6/93		
MM5		
5.6 : SO - SISYANA CAD		
002 : 12.6		
#20 : 10.0		
AMB PRESS, In Hg : 29.46		
STACK dP, in 820 : 7.0		
Enter Gas wel., fps 67.4		
or AVS SOR ROOT do :		
at was seek kool ob :		
Dil. Factor: 10.000		
4118V 440 TEND C . 730	_	
STACK CAS TEMP, F : 320	,	
GAS METER TEMP, F : 100		
DIL Air Temp 75		
6xhairtemp 85		
PITOT CONSTANT : 0.81		
\$AMP. 081. DKG : 26,02		
DIL Air Ori 1888: 0.0334		
Exhaust flow DH9 0.0413		
FFLter DP 6		
H022LE DIA, in : 0.187	Shenk #25 )	
SYSTEM FLOW, acfm : 0.771	0.463_dasctm	
% 1.00	26.0½ 18.72 DHso	
LDV, scfm 0.4627	(	
total flow in 4.63		V/ ( AA
Dil flow acfm 4.16	<del></del>	$I(\subseteq IV)$
DSL SM Q		1 - 1
		RCCM 9693 Revised
Bide streem 1 flow, decim	0.6	. 1
Side Streem 1 DMM	1.788 1.23 DH1	1.162
Mutech 2		11/195
		u (G)
Side stresm 2 flow, decim	0.6	111
Side stress 2 DHG	1.7898 1.23 DHZ	
Autech 48	strata itta mit	1
nuccui 45		1600
Side stream 3 flow, dacfm	0	· · · · · · · · · · · · · · · · · · ·
Side stream 3 DHO	1.76 G.00 DH3	The Land
RAC 6643	1114 4144 643	X4-1
	Manager Manager	
		f _{and}
Edward flow dische	3,43	AD-
Exhaust flow Oliexh	0.0413 1.07 Diexh	1, A
Emigraph Line Cultur	0.0413 / 4,07 DBBM	new.
	/ /	for new /c
hild-alt-a days must	4.16	11.2716
Ditution flow OHda	0.0534 1.07 DWda	N627.
	\ /	r. ) l
	<del></del>	

# DOE DILUTION TRAIN OPERATION

Dilution flow DHda

9/6/93						
195						
GAS AMALYSIS . OS :	6.2					
C02 :	12.8					
W20 :	10.0					
AMB PRESS, in Hg :	29.46					
STACK dP, In #20 :	7.0					
Enter Gas vel., fpe	67.4					
or AVG SOR ROOT dp :			ſ			
			1			
Bil. Factor:	10.000		1			
			1			
STACK BAS TEMP, F :	320		\			
GAS NETER TEMP, F :	100		1			
Dil Ale Temp	75	•	\			
Exh air temp	85		\ \			
Eur er, carp			1			
PITOT CONSTANT :	0.81		-	<b></b>		9/6/13
			י	1		$\sigma(b) \simeq$
SAMP. CRI, DAM :	26.02			1	****	410
				1		[[ ·
Dil Air Ori DHĐ:	0.0334			1		* ¥
Exhaust flaw 042	0.0413			1		
Filter OP	6			1		
HOZZLE DIA, in ; SYSTEM FLOW, mefm : dp fLOW, sefm Total flow in Dil flow mefm	0.189 Shard 0.788 1.00 0.4726 4.73 4.25	k #9 0.473 d 26.02	scfm 19.54 DHsc			
Dil Ber	•					
Side stream 1 flow, o	dscfm (	0.6 1.788	1.23 ax1	)		
Nutech Z	`	10100				
HUCCUI C		• _	The second	}		
Pid	da_4_	~		1		
Side stream 2 flow, 4	user	0.6	4 07 500	/		
Side stream 2 049	\	1.7898	1.23 DH2			
Mutech 4B	\					
		\				
Side stream 3 flow,	dsefm					
Side stream 3 DHB		1.76	0.00 OH3			
RAC 8643						
m. 4						
Exhaust flow dacfm		3.53				
Exhaust flow Ollexh		0.0413	1.14 OHeath			
		4.25				
B						

0.0334

1.12 OHde

# DOE DILUTION TRAIN OPERATION

'						
9/6/93						
1445						
*************	****					
GAS AWALYSIS - 02 :	6.2					
CO2 :	12.8					
K20 :	10.0					
AMB PRESS, In Hg :	29.46					
STACK dP, in H20 :	7.0					
Enter Gas vel., fps	67.4					
or AVE SER ROOT dp :	01.4					. ^
or was say know of .						IIV ×
Dil. Factor:	10.000					15 m
<b>2111 140101</b>	,,,,,,					<b>J</b> /
STACK GAS TEMP, F :	320				`	1,
GAS HETER TEMP, F :	100				\	-
Dil Air Temp	75				\	
Exh air temp	85				\	
enn air temp	65				\	
PITOT CONSTANT :	0.81					1, 143
SAMP, ORT. DHS :	26.02				\	
aren', butt. bib.	20.02				`	\ //\la!
Dit Air Ori OND:	0.0334					7 17
Exhaust flow DH2	0.0413					\ \ \
filter DP	6					\ <i>1</i>
, recei br	•		<del></del>			V
HOZZLE DIA, in :	0,189 Shan	/ معد	•	ì		$\sim$
SYSTEM FLOW, acfm :		0.473 d	aata	1		1 \
do	1.00	26.02	19.54 DHzo	1		1
FLOV, actin	0.4726	20.45	17.34 DREG	/		1
		•				1
Total flow in	4.73	•				1
Dil flow sefm	4,25					/ \
Dil Bu	0					\
Side stream 1 flow, d	(nedm	0.6				\
Side stream 1 DH2	124 148	1.788	1.23 041			\
		1.760	1.23 DAT			\
Butech 2						\
01		* .				\
Side stream 2 ftmu, c	18¢ im	0.6	4 27 652			
Side stream 2 DND		1.7898	1.23 DH2			
Nutech 48						
Aldr 7 (6		_				
Side stream 3 flow, c	19C1M	0	4			
Side stream 3 DNB		1.76	0.00 0#3			
RAC 8643						•
			· <del></del>			
Widowak dhay danda				. 1		
Exhaust flow decin		3.53	4.42	\		
Exhaust flow Ottenth		0.0413	1,14 DHexh	1		
		. 35		,		
Afficient di su Buide	\	4.25	4 42 mud-	- /		
Ollution flow DHds	\	0.0334	1,12 OHda	/		-
	\					
		` .				
		The base of a	<b>-</b>			
		-				

# SETUP FOR OPERATION OF DILUTION TRAIN (constant sample rate)

	Dilamina seme		KI =	10.4		effice .	****	-NAT -	26.02	
n t (	Dilution cons	_					constant		20.02 0.0413	
	factor in ten	65 OT BC	D-BOHG				ice cons ter diff			
CONDICTOR	ns, f <b>std</b> , is:	/DF /D. 4.4		-						
	Cdi ( (Tate/TF)	(PP/PSTC	U	'	: Apected	INIŢ1A	t probe	CITTEFE		
Sample re	ate (Q, stack :	cond.3 =		0.60						
• •	pressure, Pamb	_		29.46						
,	stack diff. p		de =	_	Stack pr	essure.	P≖		29.97471	
	stack tempera	•			•	-	e Temper		330	
	9 02 fraction.	_			•		olecular	_	30.30	
_	a CO2 fraction	_			_		olecular	<b></b>	29,07	
_	s water fracti	-	=		_		ecutar w		-	•
_		-								
	et for the dile							1 ACREME		
Keep orî	fice temperatu	re, Tä,	at 10 🎚	F above p	tack ten	<b>perat</b> ur	1 & TH	dPR	Q	
Use sett	ings based on a	orif <b>ic</b> e	temperal	ture, TD.			50	5	0.02	
						_				
	dPH = P diff.			•						
Q (acfm)	dPH (in. #20)		-6.00	-\$.00	4.00	9.00	14.GD	19.00	24.00	
	fstd÷	10.12	9.99	9.87	9_75	9.63	9.50	9.38	9.26	
†=		TH=	310							
	8=	0.56	0.56	0.56	0.57	0.57	0.57	0.58	0.58	manama
0.58	d₽t=	1.18	1.17	1,15	1.14	1.12	1.11	1.09	1.08	- 12
	dk(fyl)=	10.83	10.96	11.10	11.24	11.38	11.53	11.68	11.83	
0,60		1,26	1,25	1.23	1.21	1.20	1.16	1,17	1,15	
	dH(fyi)#	11.59	11.73	11.88	12.02	12.18	12.34	12,50	12.66	
9.62		1,35	1,53	1.31	1.30	1.28	1.26	1,24	1.23	
	dH(fyi)=	12.37	12.52	12.68	12.84	13.00	13.17	13,36	13.52	
T=		TH=	330		<u></u>	— <u> </u>				
	F	0.56	0.57	0.57	0.57	0.58	0.58	0.59	0.59	
0.58		1.12	1,11	1.09	1.08	1.07	1.05	1.04	1.02	
	dH(fyl)=	10.55	10.68	10.61	10.94	17.08	11.23	11.37	71.53	
0.60		1,20	1.18	1,17	1.15	1.14	1,12	1.11	1.09	
	dH(fyi)=	11.29	11.42	11.57	11.71	17.86	12.02	12.17	12.33	
0.62	<b>c</b> Pt=	1.28	1.26	1.25	1.23	1.21	1.20	1.18	1.16	
	dK(fyi)=	12.05	12.20	12.35	12.51	12.67	12.83	13.00	13.17	
T=	340	TH=	350							
	g=	0.57	0.57	0.58	0.58	0.59	0.59	0.59	0.60	
0.58	dPt≠	1.07	1.05	1.04	1.03	1.01	1,00	0.99	0.97	
	dK(fyl)=	10.28	10.41	10.53	10.67	10.80	10.94	11.09	11.23	
0.60	dPt=	1.14	7.13	1.11	1.10	1.08	1.07	1.05	1.04	
	dR(fyi)=	11.00		11.27	11.42	11.56	11.71	11.86	12.02	
0.62		1.22	1.20	1.19	1.17	1.15	1.14	1.12	1.11	
	dH(fyl)≎		11,89	12.04		12.35	12.51		12.84	
	-					-				

# MEITHOD 5 FIELD DATA

Plant/location Ba.lly Operator TEG  Date 7/6/93 Test No./Run No. MM5/-D.L 2 Meter Box ID Natoch 4B Gas Weter Cal Factor Orifice ID Orifice IMP	Pilot Coefficient, Cp Nozzie ID. Average Nozzie Dia., inches Borometric Pressure, in. lig Ambient Temp., deg. F Assumed Moisture, % Filter ID Stock Pressure, in. 1820	l st Filler: Leak Role, cfm, Prelest <i>QQO</i> Leakrate, cfm, Post-test <i>QQO</i> 2nd Filler (If used): Leak Rate, cfm. Pretest Leakrate, cfm. Post-test
<u></u>	· ——	1169 016

START TI	MB <u>[Ø</u> :		<u> </u>		gas meter end. of// end tode//s_//s	59.149
Vacuum	Stack	Pilot	Orifice	Meler	Temperatures (deg. F)	

Clock	Travese	Sample	Vacuum	Stack	Pilot	Orifice	Meler	Temperat	ures (deg	F)			
Time	Point Number	Time	in. Ilg	Temp deg. F	in. 1120	011 in. 1120	of Vol	Probe	Filter	Sorb.	lmp. Outlet	DGM in	DGM out
	1	0	5.75			1.23	942.1			-	1	84	
		15	5.75				951.2					84	
		30	5.15				960.2					84	
		45	5.75				967.4					84	
		60	5.5	,			978.3					86	
		15	5.5				987.4					85	
		30	55				996.5					86	
		47	5.25			,	1005.6		1 	1	(	86	
		Total	Max	Avg.	Avg sqrt	Avg.	Total	Avg.	Avg.	<u> </u>	Max	ÁVØ.	Avg.
		I	, ,	1			[ 1	;	ı		,	' 87 '	

Travese		Vacuum	Stack	iocallon Pitot	Orifice	Run No. /// Meter	Temperat	/ — /); .ures (deg	<u>/                                    </u>		Operator	-(2
Point Number	Ture	in. lig	Temp deg. F	DP in. <b>H20</b>	ior 1450 HO	Vol.	, '	(		imp. Outlet	DGM in	DGM out
_  _	60	5.25			123	1014.7	1		1		84	1
	15	(25				1023.8					87	
	30	5.25				1032.9					18	
	45	5.25				1041.9					58	
	60	5.25				1051.2					88	
<u> </u>	15	5.5				1060.4					89	
	30	5.5				10696	:				89	
	45	5.5				1078.5					89	
	60	5.5				1087-7					89	
	15	5.5				10966					88	
<u> </u>	30	5.5				11058			Į		88	\ <b>\</b>
	45	5.5									98	
	60					1123.6					89	
1	15	5,5		<u> </u>							89	
	30	5.5		1	<b>V</b>						89	7
	Travese Point	Travese Foint Number	Travese Point Number	Travese Point Number	Travese Point Number    Sample   Vacuum   In.   Ilg   Temp   DP	Travese Foint Number  Time in. lig Temp deg. F in. H20 in. H20    60   5.25	Travese Point Time in IIg Temp deg F in H20 in H20 of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of Vol. of	Travese Foint Time In IIg	Travese   Point   Time   Vacuum   Time   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   In   Ilg   In   Ilg   In   Ilg   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   Ilg   In   In   In   In   In   In   In   I	Travese   Point   Time   In   Itg   Pitot   De   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   Itg   OH   In   I	Travese   Sample   Vacuum   Time   In   Ig   Stack   Pitot   DP   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online   Online	Travese   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Product   Prod

Clock	5 Field Do Travese	Sample	Vacuum	Stack	Location Pilot	Orifice	Run No. M Meter	M 5   Temperat	-10,1  ures (dea	<u>ス</u>	_	Operator	
Time	Point Number	Time	in. Hig	Temp deg. F	DP in. H2O	DH in. H20	Vol.	Probe	Filter	1	lmp. Qutlet	DGM in	DGM out
		45	5.5			1,23	//10/9 // 72 <b>8</b> 49			1	1	90	1
		60	5.5	<u> </u>		1	1179849					90	
						V				1	\		,
	·		_								!		
					•								
	* " - "												
	<u> </u>					· ·· - · · · · · · ·							
		<del> </del>			<del></del>						<del></del> -		
	•					<del></del>	<u> </u>		<u></u> -				
	<del></del>		-								<u> </u>		
<u></u>										<u> </u>		<u> </u>	-
												<del> </del>	
			<del></del>		· · · · · · · · · · · · · · · · · · ·	<del></del>					<u> </u>		
					-					<del></del>	· · · - · · · · ·		
	<u>-</u> .					:					<u> </u>		

# SAMPLING TRAIN SET-UP AND IMPINGER WEIGHT SHEET

nalyst Responsible for Recov	ery 206/213		<del></del>	
atculations & Report Reviews			Report Date	
			<u> </u>	
FILTERS USED			CYCLONE	1
		Use (Yes/	d i	repared Container (No.)
ilter Ko.			nu,	(444)
				<u>-</u>
orbent Trap No. <u>H 594</u>	2-55-15			<u> </u>
		1.0 g		
ondenser No				
<del></del>	<del>,</del> , <del></del> ,	<del></del>		
<del></del>		<u> </u>		
MPTHGER SCLUTIONS:	initial dest 2	<u>Fira</u>		Gain ⊃ O. ¥
irst	<u> </u>		2.2 9	9.2
eçand hird	<u> </u>		2.7	4,65
ourth	498.4		1. 2- 9	2.8
ifth			······································	-
lixth				
eventh			9	
TLICA GEL VETGHTS:		Initjal		Firmi
TETON OCC PETON ST	<u> </u>			
	<u></u>	0.2	_	899.0 No
			ـــــ هـــــ	
fotals	<del></del>		-•	<del></del>
COMMENTS: .				
totor of Silica Gel:	2 per le pea	ch		
escription of Impinger Weter	r: /			

# Appendix G7 Reduced Data: Impactor and Cyclones

# ***** RESULTS OF STATIS(TICS) WITH ISOKINETIC CORRECTIONS *****

RESULTS OF AVERAGES FOR RUNS : BAILLY & ESP INLET

TnipR1.IT TnipR2.IT TnipR3.IT

CLASS. AERO DIA.

DIA. MICRON	DM/DLOGD MG/DNM3	STD DEV	90% CON INT	CUM LOAD. MG/DNM3	90% CON INT	CUM\$
0.10 0.13	8.01E+00 1.87E+01	1.34E+00 2.98E+00	2.27E+00 5.03E+00	7.57E-01 2.27E+00	2.20E-01 5.94E-01	0.02 0.05
0.16	3.75E+01	5.60E+00	9.44E+00	4.77E+00	1.22E+00	0.11
0.20	6.51E+01	8.92E+00	1.50E+01	1.04E+01	2.16E+00	0.24
0.25	9.83E+01	1.21E+01	2.03E+01	1.80E+01	3.32E+00	0.42
0.32	1.29E+02	1.37E+01	2.31E+01	2.99E+01	4.53E+00	0.70
0.40	1.48E+02	1.28E+01	2.15E+01	4.34E+01	5.53E+00	1.02
0.50	1.43E+02	9.15E+00	1.54E+01	5.79E+01	6.13E+00	1.36
0.63	1.12E+02	6.82E+00	1.15E+01	7.12E+01	6.42E+00	1.67
0.79 1.00	5.42E+01 4.80E+02	1.20E+01 3.30E+01	2.02E+01 5.56E+01	7.85E+01 9.81E+01	6.83E+00 9.04E+00	1.84 2.30
1.26	3.66E+01	1.68E+01	2.84E+01	1.17E+02	1.10E+01	2.73
1.58	3.83E+01	1.79E+01	3.03E+01	1.20E+02	1.17E+01	2.82
2.00	1.13E+02	2.81E+01	4.74E+01	1.29E+02	1.30E+01	3.03
2.51	3.80E+02	6.06E+01	1.02E+02	1.49E+02	1.72E+01	3.50
3.16	B.11E+02	1.13E+02	1.91E+02	2.16E+02	2.77E+01	5.07
3.98	B.70E+02	9.48E+01	1.60E+02	2.99E+02	3.72E+01	7.01
5.01	8.35E+02	9.39E+01	1.58E+02	3.84E+02	4.35E+01	9.00
6.31	1.29E+03	2.62E+02	4.41E+02	4.82E+02	6.40E+01	11.31
7.94	2.42E+03	6.72E+02	1.13E+03	6.87E+02	1.37E+02	16.10
10.00	3.61E+03	1.07E+03	1.80E+03	9.68E+02	2.53E+02	22.71
12.59	4.57E+03	1.25E+03	2.11E+03	1.39B+03	3.75E+02	32.68
15.85	5.27E+03	1.23E+03	2.07E+03	1.87E+03	4.78E+02	43.95
19.95	5.46E+03	9.62E+02	1.6ZE+03	2.41E+03 2.95E+03	5.46E+02	56.60
25.12 31.62	5.06E+03 4.15E+03	5.22E+02 1.49E+02	8.80E+02 2.52E+02	2.95E+03 3.39E+03	5.76E+02 5.83E+02	69.10 79.55
39.81	2.98E+03	3.05E+02	5.14E+02	3.77E+03	5.86E+02	88.37
50.12	1.86E+03	3.85E+02	6.50E+02	3.99E+03	5.92E+02	93.62
63.10	1.00E+03	3.13E+02	5.28E+02	4.15E+03	5.98E+02	97.31
79.43	4.56E+02	1.88E+02	3.17E+02	4.21E+03	6.01E+02	98.81
100.00	1.75E+02	8.71E+01	1.47E+02	4.25E+03	6.02E+02	99.66
125.89	5.56E+01	3.14E+01	5.30E+01	4.26E+03	6.02E+02	99.88
158.49	1.45E+01	8.87E+00	1.50E+01	4.26E+03	6.02E+02	99.98
199.53	3.09E+00	1.95E+00	3.29E+00	4.26E+03	6.02E+02	99.99
251.19	5.34E-01	3.32E-01	5.60E-01	4.26E+03		100.00
316.23	7.43E-02	4.34E-02	7.32E-02	4.26E+03		100.00
398.11	8.33E-03	4.29E-03	7.23E-03	4.26E+03	6.02E+02	100.00
501.19	7.57E-04	3.11E-04	5.25E-04	4.26E+03		100.00
630.96 794.33	5.60E-05	1.54E-05	2.60E-05	4.26E+03		100.00
1000.00	3.40E-06 1.72E-07	3.85E-07 1.14E-08	6.49E-07 1.92E-08	4.26E+03 4.26E+03	6.02E+02 6.02E+02	100.00
1000.00	1.126-01	1.146-00	1.326-00	4.205403	0.025+02	100.00

FOR TOTAL MASS: (UNCORRECTED)
9999.00 3.78E+03 3.30E+02 5.56E+02

# CYCLONE DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC DATE OF TEST: 9/5 TIME OF TEST: 0927 LOCATION OF TEST: Bailly Unit 8 TEST DESIG.: NIP TEST TYPE INLET RUN NUMBER: 3-FILE NAME:TNIPR3.IT RUN REMARKS: CYCLONE TYPE: sori5 SRI 5 SERIES CYCLONE (NEW #4) WATER VAPOR 9.95% CO2 14.00% CO O2 5.00% N2 CO 0.00% \$00.18 ORIFICE ID (OPTIONAL): GAS METER VOL
CYCLONE DELTA P
ORIFICE DELTA P
STACK PRESSURE
BAROMETRIC PRES
STACK TEMP
METER TEMP
CYCLONE TEMP
SAMPLE TIME
AVG GAS VEL
ORI P WRT PBAR
NOZZLE DIA
MAX PART DIA
WATER VOLUME
WATER FACTOR

20.715 cf
0.00 IN. HG.
0.038 INCHES H20
29.40 INCHES H20
29.40 INCHES HG
341 DEGREES F
60.00 MINUTES
60.00 MINUTES
65.70 FEET/SEC
-0.06 INCHES HG
0.155 INCHES
1000 MICRONS
46.8 CC
1.0020 MASS GAIN OF STAGE 1 1735.70 MG
MASS GAIN OF STAGE 2 287.30 MG
MASS GAIN OF STAGE 3 126.00 MG
MASS GAIN OF STAGE 4 65.70 MG
MASS GAIN OF STAGE 5 4.40 MG MASS GAIN OF FILTER 46.00 MG MASS GAIN OF BLANK SUBSTRATE 0.70 MASS GAIN OF BLANK FILTER 0.00

TEST DESIG.: NIP RUN NUMBER: 3 SRI 5 SERIES CYCLONE (NEW #4)

ACTUAL FLOW RATE 0.601 CFM FLOW RATE AT STANDARD CONDITIONS 0.333 CFM PERCENT ISOKINETIC 116.441 % VISCOSITY 228.8E-06 GM/CM-SEC CALCULATED IMPACTOR DELTA P = 0.81 IN. HG

STAGE	CUNN.	D50	D50	ÇUM	RE.	sqr(Psi50)
	CORR.	(CLAS AERO)	(IMP AERO)	FREQ.	NO.	
1	1.026	10.264	10.395	23.2844	931	0.215
2	1.040	6.671	6.803	10.6120	1182	0.202
3	1.070	3.777	. 3.907	5.0716	1576	0.178
4	1.105	2.531	2.661	2.1976	2317	0.217
5	1.253	1.072	1.200	2.0340	3875	0.211

STAGE CUT DIAMETERS BASED ON PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.99E+03 MG/DRY NORMAL CUBIC METER

2.21E+03 MG/ACTUAL CUBIC METER

1.74E+00 GRAINS/DRY STD CUBIC FOOT

9.67E-01 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA.	CUMFR	CUMFR	CUM.MASS	DM/DLOGD
(MICRONS)	(STDDEV)	(PERCENT)	(MG/DRY	N.CU.METER)
•		,		
0.100	-3.5202	0.02	8.67E-01	9.13E+00
0.126	-3.2492	0.06	2.32B+00	2.11E+01
0.158	-3.0002	0.14	5.41E+00	4.20E+01
0.200	-2.7752	0.28	1.10E+01	7.19E+01
0.251	-2.5761	0.50	2.00E+01	1.07E+02
0.316	-2.4051	0.81	3.23E+01	1.38E+02
0.398	-2.2641	1.18	4.71E+01	1.54E+02
0.501	-2.1550	1.56	6.23E+01	1.44E+02
0.631	-2.0800	1.88	7.50E+01	1.05E+02
0.794	-2.0409	2.06	8.24E+01	4.05E+01
1,000	-2.0398	2.07	8.26E+01	4.85E+02
1.259	-2.0412	2.06	8.24E+01	1.71E+01
1.585	-2.0325	2.11	8.41E+01	1.74E+01
1.995	-2.0239	2.15	8.58E+01	8.28E+01
2.512	-2.0203	2.17	8.66E+01	3.28E+02
3.162	-1.8113	3.50	1.40E+02	7.29E+02
3.981	-1.5955	5.53	2.21E+02	7.90E+02
5.012	-1.4461	7.41	2.96E+02	7.63E+02
6,310	-1.2944	9.78	3.90E+02	1.25E+03
7,943	-1.0643	14.36	5.73E+02	2.47E+03
10.000	-0.7651	22.21	B.87E+02	3.76E+03
12.589	-0.4432	32.88	1.31E+03	4.72E+03
15.849	-0.1111	45.58	1.82E+03	5.34E+03
19.953	0.2307	59.12	2.36E+03	5.37E+03
25.119	0.5816	71.96	2.87E+03	4.78E+03
31,623	0.9411	B2.67	3.30E+Q3	3.72E+03
39.811	1,3087	90.47	3.61E+03	2.51E+03
50.119	1.6838	95.39	3.81E+03	1.46E+03
63.096	2.0659	98.06	3.92E+03	7.27E+02
79.433	2.4544	99.29	3.96E+03	3.07E+02
100.000	2.8488	99.78	3.98E+03	1.09E+02
125.893	3.2486	99.94	3.99E+03	3.27E+01
158.489	3.6533	99.99	3.99E+03	8.20E+00
199.526	4.0622	100.00	3.99E+03	1.71E+00
251.189	4.4749	100.00	3.99E+03	2.96E-01
316.228	4.8908	100.00	3.99E+03	4.25E-02
398.107	5.3094	100.00	3.99E+03	5.06E-03
501.187	5.7302	100.00	3.99E+03	4.98E-04
630.957	6.1526	100.00	3.99E+03	4.06E-05
794.328	6.5760	100.00	3.99E+03	2.75E-06
1000.000	7.0000	100.00	3.99E+03	1.55E-07

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 82.63 2.0693 % CUM MASS LESS THAN 2.512 MICRON: 86.59 2.1685 % CUM MASS LESS THAN 10.000 MICRON: 886.87 22.2110 % CUM MASS LESS THAN 15.849 MICRON: %1819.81 45.5758 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

# CYCLONE DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC

DATE OF TEST: 9/4 TIME OF TEST: 0848

LOCATION OF TEST: Bailly Unit 8

TEST DESIG.: NIP

TEST TYPE INLET

RUN NUMBER: 2-FILE NAME:TNIPR2.IT

RUN REMARKS:

CYCLONE TYPE: sori5

SRI 5 SERIES CYCLONE (NEW #4)

WATER VAPOR 9.67%

CO2 13.97% CO 0.00% O2 5.20% N2 80.83%

ORIFICE ID (OPTIONAL):

GAS METER VOL
CYCLONE DELTA P
ORIFICE DELTA P
STACK PRESSURE
BAROMETRIC PRES
STACK TEMP
METER TEMP
CYCLONE TEMP
SAMPLE TIME
AVG GAS VEL
ORI P WRT PBAR
NOZZLE DIA
MAX PART DIA
WATER VOLUME
WATER FACTOR

20.925 cf
0.00 IN. HG.
0.039 INCHES H20
29.48 INCHES HG
29.48 INCHES HG
1000 MINUTES
41 DEGREES F
66.80 FEET/SEC
-0.06 INCHES HG
0.155 INCHES
46.2 CC
1.0020

MASS GAIN OF STAGE 1 1690.60 MG
MASS GAIN OF STAGE 2 301.00 MG
MASS GAIN OF STAGE 3 144.40 MG
MASS GAIN OF STAGE 4 80.40 MG
MASS GAIN OF STAGE 5 11.00 MG
MASS GAIN OF FILTER 49.30 MG

MASS GAIN OF BLANK SUBSTRATE 0.30 MASS GAIN OF BLANK FILTER 0.00

TEST DESIG.: NIP RUN NUMBER: 2 SRI 5 SERIES CYCLONE (NEW #4)

ACTUAL FLOW RATE 0.609 CFM
FLOW RATE AT STANDARD CONDITIONS 0.340 CFM
PERCENT ISOKINETIC 115.954 %
VISCOSITY 229.0E-06 GM/CM-SEC
CALCULATED IMPACTOR DELTA P = 0.84 IN. HG

STAGE	CUNN.	D50	50ס	CUM	RE.	sqr(Psi50)
	CORR.	(CLAS AERO)(	IMP AERO)	FREQ.	NO.	
1	1.026	10.169	10.301	25.7076	945	0.214
2	1.040	6.574	6.705	12.4912	1200	0.200
3	1.071	3.715	3.845	6.1577	1600	0.176
4	1.106	2.494	2.623	2.6371	2353	0.215
5	1.257	1.057	1.184	2.1668	3935	0.210

STAGE CUT DIAMETERS BASED ON PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.94E+03 MG/DRY NORMAL CUBIC METER

# 2.20E+03 MG/ACTUAL CUBIC METER

1.72E+00 GRAINS/DRY STD CUBIC FOOT

= 9.61E-01 GRAINS/ACTUAL CUBIC FOOT

TEST DESIG.: NIP RUN NUMBER: 2

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA (MICRONS)		CUMFR (PERCENT)	CUM.MASS (MG/DRY	DM/DLOGD N.CU.METER)
0.100	-3.5405	0.02	7.93E-01	8.40E+00
0.126	-3.2691	0.05	2.14E+00	1.96E+01
0.158	-3.0190	0.13	5.02E+00	3.94E+01
0.200	-2.7922	0.26	1.04E+01	6.85E+01
0.251	-2.5905	0.48 0.79	1.89E+01 3.10E+01	1.03E+02 1.36E+02
0.316 0.398	-2.4160 -2.2704	1.16	4.58E+01	1.56E+02
0.501	-2.1559	1.56	6.14E+01	1.52E+02
0.631	-2.0743	1.90	7.51E+01	1.18E+02
0.794	-2.0276	2.13	8.41E+01	5.78E+01
1.000	-2.0176	2.18	8.61E+01	5.06E+02
1.259	-2.0039	2.26	8.89E+01	4.73E+01
1.585	-1.9815	2.38	9.38E+01	4.94E+01
1.995	-1.9591	2.51	9.88E+01	1.40E+02
2.512	-1.9318	2.67	1.05E+02	4.42E+02
3.162	-1.7050	4.41	1,74E+02	9.10E+02
3.981	-1.4844	6.88	2.72E+02	9.29E+02
5.012	-1.3347	9.10	3.59£+02	8.78E+02
6.310	-1.1842	11.82	4.66E+02	1.40E+03
7.943	-0.9603	16.85	6.64E+02	2.61E+03
10,000	-0.6741	25.01	9.86E+02	3.78E+03
12.589	-0.3662	35.71	1.41E+03	4.62E+03
15.849	-0.0466	48.14	1.90E+03	5.11E+03
19.953	0.2840	61.18	2.41E+03	5.08E+03
25.119 31.623	0.6251 0.9759	73.40 83.55	2.89E+03 3.30E+03	4.48E+03 3.48E+03
39.811	1.3360	90.92	3.59E+03	2.35B+03
50.119	1.7047	95.59	3.77E+03	1.37E+03
63.096	2.0813	98.13	3.87E+03	6.86E+02
79.433	2.4653	99.31	3.92E+03	2.92E+02
100.000	2.8561	99.78	3.94E+03	1.05E+02
125.893	3.2530	99.94	3.94E+03	3.17E+01
158.489	3.6554	99.99	3.94E+03	7.99E+00
199.526	4.0628	100.00	3.94E+03	1.68E+00
251.189	4.4744	100.00	3.94E+03	2.92E-01
316.228	4.8897	100.00	3.94E+03	4.22E-02
398.107	5.3081	100.00	3.94E+03	5.03E-03
501.187	5.7289	100.00	3.94E+03	4.96E-04
630.957	6.1516	100.00	3.94E+03	4.04E-05
794.328	6.5755 7.0000	100.00 100.00	3.94E+03	2.73E-06 1.53E-07
1000.000	1.0000	100.00	3.94E+03	1.036-01

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 86.08 2.1825 % CUM MASS LESS THAN 2.512 MICRON: 105.31 2.6701 % CUM MASS LESS THAN 10.000 MICRON: 986.49 25.0126 % CUM MASS LESS THAN 15.849 MICRON: %1898.61 48.1399 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

#### CYCLONE DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC DATE OF TEST: 9/3 TIME OF TEST: 0832 LOCATION OF TEST: Bailly Unit 8 TEST DESIG.: NIP INLET TEST TYPE RUN NUMBER: 1-FILE NAME:TNIPR1.IT RUN REMARKS: CYCLONE TYPE: sori5 SRI 5 SERIES CYCLONE (NEW #4) WATER VAPOR 8.79% CO2 13.40% CO 0.00% O2 5.50% N2 81.10% ORIFICE ID (OPTIONAL): GAS METER VOL
CYCLONE DELTA P
ORIFICE DELTA P
STACK PRESSURE
BAROMETRIC PRES
STACK TEMP
METER TEMP
CYCLONE TEMP
SAMPLE TIME
AVG GAS VEL
ORI P WRT PBAR
NOZZLE DIA
MAX PART DIA
WATER VOLUME
METER FACTOR

21.310 cf
0.00 IN. HG.
0.40 INCHES H20
29.36 INCHES H20
29.36 INCHES HG
338 DEGREES F
79 DEGREES F
60.00 MINUTES
70.80 FEET/SEC
-0.06 INCHES HG
0.155 INCHES
41.7 CC
1.0000 MASS GAIN OF STAGE 1 1552.40 MG
MASS GAIN OF STAGE 2 179.50 MG
MASS GAIN OF STAGE 3 111.90 MG
MASS GAIN OF STAGE 4 63.10 MG
MASS GAIN OF STAGE 5 8.40 MG
MASS GAIN OF FILTER 43.60 MG

MASS GAIN OF BLANK SUBSTRATE -1.80 MASS GAIN OF BLANK FILTER 0.00

TEST DESIG.: NIP RUN NUMBER: 1 SRI 5 SERIES CYCLONE (NEW #4)

ACTUAL FLOW RATE 0.605 CFM

FLOW RATE AT STANDARD CONDITIONS 0.340 CFM

PERCENT ISOKINETIC 108.703 %

229.2E-06 GM/CM-SEC VISCOSITY

CALCULATED IMPACTOR DELTA P = 0.83 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	sqr(Psi50)
	CORR.	(CLAS AERO)	(IMP AERO)	FREQ.	NO.	• , ,
1	1.026	10.220	10.351	21.0224	939	0.215
2	1.040	6.621	6.752	11.8095	1193	0.200
3	1,071	3.744	3.875	6.0318	-1590	0.177
4	1.106	2.512	2.641	2.7339	2339	0.215
5	1.255	1.064	1.192	2.2156	3911	0.211

STAGE CUT DIAMETERS BASED ON PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.40E+03 MG/DRY NORMAL CUBIC METER

1.91E+03 MG/ACTUAL CUBIC METER #

1.49E+00 GRAINS/DRY STD CUBIC FOOT

8.36E-01 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA (MICRONS)		CUMFR (PERCENT)	CUM.MASS (MG/DRY	DM/DLOGD N.CU.METER)
0.100 0.126	-3.5694 -3.2984	0.02 0.05	6.13E-01 1.66E+00	6.52E+00 1.54E+01
0.128	-3.0479	0.12	3.93E+00	3.12E+01
0.200	-2.8200	0.24	8.19E+00	5.50E+01
0.251	-2,6163	0.45	1.51E+01	8.45E+01
0.316	-2.4389	0.74	2.51E+01	1.14E+02
0.398	-2.2895	1.10	3.75E+01	1.33E+02
0.501	-2.1701	1.50	5.11E+01	1.34E+02
0.631	-2.0825	1.87	6.35E+01	1.10E+02
0.794	-2.028 <del>6</del>	2.13	7.23E+01	6.32E+01
1.000	-2.0102	2.22	7.56E+01	4.43E+02
1.259	-1.9940	2.31	7.85E+01	4.47E+01
1.585	-1.9699	2.44	8.31E+01	4.69E+01
1.995	-1.9459	2.58	8.79B+01	1.12E+02
2.512	-1.9218	2.73	9.29E+01	3.50E+02
3.162	-1.7143	4.32 6.65	1.47E+02 2.26E+02	7.20E+02
3.981 5.012	-1.5024 -1.3521	8.82	3.00E+02	7.79E+02 7.24E+02
6.310	-1.2166	11.19	3.81E+02	9.56E+02
7.943	-1.0434	14.84	5.05B+02	1.55E+03
10.000	-0.8274	20.40	6.94E+02	2.23E+03
12.589	-0.5840	27.96	9.51E+02	2.92E+03
15.849	-0.3178	37.53	1.28E+03	3.58E+03
19.953	-0.0301	48.80	1.66E+03	4.04E+03
25.119	0.2780	60.95	2.07E+03	4.15E+03
31,623	0.6053	72,75	2.47E+03	3.80E+03
39.811	0.9505	82.91	2.82E+03	3.06E+03
50.119	1.3126	90.53	3.08E+03	2.12E+03
63.096	1.6902	95.45	3.25E+03	1.25E+03
79.433	2.0821	98.13	3.34E+03	6.19E+02
100.000	2.4873	99.36	3.38E+03	2.53E+02
125.893	2.9044	99.82	3.40E+03	8.45E+01
158.489 199.526	3.3323 3.7698	99.96 99.99	3.40E+03 3.40E+03	2.28E+01
251.189	4.2157	100.00	3.40E+03	4.92E+00 8.44E-01
316.228	4.6688	100.00	3.40E+03	1.14E-01
398.107	5.1278	100.00	3.40E+03	1.22E-02
501.187	5.5917	100.00	3.40E+03	1.03E-03
630.957	6.0591	100.00	3.40E+03	6.79E-05
794.328	6.5290	100.00	3.40E+03	3.54E-06
1000.000	7.0000	100.00	3-40E+03	1.46E-07

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 75.57 2.2214 % CUM MASS LESS THAN 2.512 MICRON: 92.94 2.7321 % CUM MASS LESS THAN 10.000 MICRON: 693.98 20.3997 % CUM MASS LESS THAN 15.849 MICRON: %1276.75 37.5306 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

#### IMPACTOR DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

```
PART, DIAMETER
                                          CLASSICAL AERODYNAMIC
      DATE OF TEST: 9/3-9/5
      TIME OF TEST:
      LOCATION OF TEST: Bailly 8 ESP OUTLET
      TEST DESIG.: NIP
      TEST TYPE
                                            OUTLET
      RUN NUMBER: 1-FILE NAME: TNIPR1.OT
      RUN REMARKS: Run over 3 consecutive days
      IMPACTOR TYPE: uwpc3-11
          soripc 3 4 5 7 9 11
      WATER VAPOR
        NATER VAPOR 9.01%
CO2 13.00% CO 0.00%
CO 6.10% N2 80.90%
      ORIFICE ID (OPTIONAL):
      SUBSTRATE MATERIAL, G)rease or Bare metal, F)ilter: F
     GAS METER VOL 159.908 cf
IMPACTOR DELTA P 0.00 IN. HG. (0 for calc. from theory)
ORIFICE DELTA P 0.00 INCHES H20
STACK PRESSURE 7.0 INCHES H20
BAROMETRIC PRES 29.41 INCHES HG
STACK TEMP 320 DEGREES F
METER TEMP 83 DEGREES F
IMPACTOR TEMP 320 DEGREES F
SAMPLE TIME 600.00 MINUTES
AVG GAS VEL 66.60 FEET/SEC
ORI P WRT PBAR 0.00 INCHES HG
NOZZLE DIA 0.134 INCHES
MAX PART DIA 1000 MICRONS
WATER VOLUME 328.4 CC
METER FACTOR 1.0240
 MASS GAIN OF STAGE 1 5.39 MG
MASS GAIN OF STAGE 2 4.77 MG
MASS GAIN OF STAGE 3 2.68 MG
MASS GAIN OF STAGE 4 2.48 MG
MASS GAIN OF STAGE 5 2.58 MG
MASS GAIN OF STAGE 6 2.36 MG
MASS GAIN OF STAGE 7 4.02 MG
MASS GAIN OF STAGE 7 4.02 MG
MASS GAIN OF STAGE 7 4.02 MG
  MASS GAIN OF FILTER 2.40 MG
MASS GAIN OF BLANK SUBSTRATE 1.05
MASS GAIN OF BLANK FILTER 1.18
```

TEST DESIG.: NIP RUN NUMBER: 1 soripc 3 4 5 7 9 11

ACTUAL FLOW RATE 0.423 CFM
FLOW RATE AT STANDARD CONDITIONS 0.261 CFM
PERCENT ISOKINETIC 108.201 %
VISCOSITY 225.4E-06 GM/CM-SEC
CALCULATED IMPACTOR DELTA P = 1.35 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	V*D50
	CORR.	(CLAS AERO)(	IMP AERO)	FREQ.	NO.	UM-M/S
1	1.027	8.787	8.907	76.0731	732	13.9
2	1.044	5.441	5.559	55.5776	318	19.4
3	1.075	3.202	3.320	46.6071	131	14.5
4	1,124	1.943	2.060	38.7399	166	17.4
5	1.240	1.004	1.118	30.2990	246	19.8
6	1.477	0.522	0.634	23.0829	338	18.5
7	2.016	0.264	0.375	6.7196	633	17.7

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 4.09E+00 MG/DRY NORMAL CUBIC METER

= 2.52E+00 MG/ACTUAL CUBIC METER

= 1.79E-03 GRAINS/DRY STD CUBIC FOOT

= 1.10E-03 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA		CUMFR	CUM.MASS	DM/DLOGD
(MICRONS)	(SIDDEA)	(PERCENT)	(MG/DRI	N.CU.METER)
0.100	-2.9562	0.16	6.39E-03	7.65E-02
0.126	-2.5910	0.48	1.96E-02	2.04E-01
0.158	-2.2371	1.27	5.17E-02	4.65E-01
0.200	-1.8954	2.90	1.19E-01	9.07E-01
0.251	-1.5669	5.86	2.39E-01	1.54E+00
0.316	-1.2547	10.48	4.28E-01	2.22E+00
0.398	-0.9784	16.39	6.70E-01	2.52E+00
0.501	-0.7650	22.21	9.08E-01	2.10E+00
0.631	-0.6353	26.26	1.07E+00	1.23E+00
0.794	-0.5662	28.56	1.17E+00	7.30E-01
1,000	-0.5164	30.28	1.24E+00	7.72E-01
1.259	-0.4516	32.58	1.33E+00	1.10E+00
1.585	-0.3691	35.60	1.46E+00	1.36E+00
1.995	-0.2743	39.19	1.60E+00	1.56E+00
2.512	-0.1753	43.04	1.76E+00	1.54E+00
3.1 <del>6</del> 2	-0.0889	46.46	1.90E+00	1.21E+00
3.981	-0.0206	49.18	2.01E+00	1.20E+00
5.012	0.0819	53.27	2.18E+00	2.32E+00
6.310	0.2824	61.12	2.50E+00	3.98E+00
7.943	0.5703	71.58	2.93E+00	4.31E+00
10.000	0.8859	81.22	3.32E+00	3.48E+00
12.589	1.2008	88.51	3.62E+00	2.49E+00
15.849	1.5144	93.50	3.82E+00	1.62E+00
19.953	1.8266	96.61	3.95E+00	9.58E-01
25.119	2.1375	98.37	4.02E+00	5.15E-01
31.623	2.4472	99.28	4.06E+00	2.52E-01
39.811 50.119	2.7558 3.0633	99.71 99.89	4.08E+00 4.08E+00	1.13E-01 4.59E-02
63.096	3.3699	99.96	4.09E+00	1.71E-02
79.433	3.6756	99.99	4.09E+00	5.80E-03
100.000	3.9804	100.00	4.09E+00	1.80E-03
125.893	4.2845	100.00	4.09E+00	5.12E-04
158.489	4.5879	100.00	4.09E+00	1.33E-04
199.526	4.8907	100.00	4.09E+00	3.16E-05
251.189	5.1930	100.00	4.09E+00	6.87E-06
316.228	5.4949	100.00	4.09E+00	1.37E-06
398.107	5.7964	100.00	4.09E+00	2.49E-07
501.187	6.0975	100.00	4.09E+00	4.15E-08
630.957	6.3985	100.00	4.09E+00	6.32E-09
794.328	6.6993	100.00	4.09E+00	8.81E-10
1000.000	7.0000	100.00	4.09E+00	1.12E-10

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 1.24 30.2812 % CUM MASS LESS THAN 2.512 MICRON: 1.76 43.0405 % CUM MASS LESS THAN 10.000 MICRON: 3.32 81.2160 % CUM MASS LESS THAN 15.849 MICRON: 3.82 93.5039 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

#### CYCLONE DATA REDUCTION PROGRAM, VERSION 10

# INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC DATE OF TEST: 9/3-6 TIME OF TEST: LOCATION OF TEST: Bailly 8 ESP OU7-ET TEST DESIG.: nip TEST TYPE OUTLET (, RUN NUMBER: A-FILE NAME: ThipR).OT RUN REMARKS: CYCLONE TYPE: doe2 SRI 5 SERIES CYCLONE (NEW #4) CO2 12.90% O2 6.30% WATER VAPOR 9.59% CO 0.00% N2 80.80% ORIFICE ID (OPTIONAL): GAS METER VOL
CYCLONE DELTA P
ORIFICE DELTA P
STACK PRESSURE
BAROMETRIC PRES
STACK TEMP
METER TEMP
CYCLONE TEMP
SAMPLE TIME
AVG GAS VEL
ORI P WRT PBAR
NOZZLE DIA
MAX PART DIA
WATER VOLUME

438.180 cf
0.00 IN. HG.
0.59 INCHES H20
1000 INCHES H20
29.40 INCHES HG
322 DEGREES F
322 DEGREES F
1020.00 MINUTES
67.00 FEET/SEC
-0.09 INCHES HG
0.172 INCHES
1000 MICRONS
956.0 CC WATER VOLUME 956.0 CC METER FACTOR 1.0240 MASS GAIN OF STAGE 1 23.10 MG MASS GAIN OF STAGE 2 0.50 MG MASS GAIN OF FILTER 20.40 MG

MASS GAIN OF BLANK SUBSTRATE 0.00

MASS GAIN OF BLANK FILTER

0.70

TEST DESIG.: nip RUN NUMBER: 1 SRI 5 SERIES CYCLONE (NEW #4)

ACTUAL FLOW RATE 0.683 CFM
FLOW RATE AT STANDARD CONDITIONS 0.417 CFM
PERCENT ISOKINETIC 105.314 %
VISCOSITY 225.6E-06 GM/CM-SEC
CALCULATED IMPACTOR DELTA P = 0.01 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	sqr(Psi50)
	CORR.	(CLAS AERO)	(IMP AERO)	FREQ.	NO.	
1	1.027	9.082	9.202	46.6513	1173	0.204
2	1,044	5.455	5.575	45.4965	1490	0.177

STAGE CUT DIAMETERS BASED ON PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.59E+00 MG/DRY NORMAL CUBIC METER

2.19E+00 MG/ACTUAL CUBIC METER

= 1.57E-03 GRAINS/DRY STD CUBIC FOOT

= 9.59E-04 GRAINS/ACTUAL CUBIC FOOT

TEST DESIG.: nip RUN NUMBER: 1

#### SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA (MICRONS)		CUMFR (PERCENT)	CUM.MASS (MG/DRY	DM/DLOGD N.CU.METER)
0.100 0.126	-3.4601 -3.1425	0.03 80.0	9.77E-04 3.02E-03	1.16E-02 3.21E-02
0.158	-2.8354	0.23	8.25E-03	7.77E-02
0.200	-2.5396	0.56	2.00E-02	1.65E-01
0.251	-2.2561	1.20	4.33E-02	3.12E-01
0.316	-1.9858	2.35	8.46E-02	5.26E-01
0.398	-1.7298 -1.4888	4.18	1.50E-01 2.45E-01	7.99E-01 1.10E+00
0.501 0.631	-1.2640	6.83 10.31	3.71E-01	1.40E+00
0.794	-1.0562	14.54	5.23E-01	1.63E+00
1.000	-0.8663	19.32	6.94E-01	1.78E+00
1.259	-0.6954	24.34	8.75E-01	1.81E+00
1.585	-0.5444	29.31	1.05E+00	1.74E+00
1.995	-0.4141	33.94	1.22E+00	1.57E+00
2.512	-0.3057	37.99	1.37E+00	1.33E+00
3.162	-0.2199	41.30	1.48E+00	1.04E+00
3.981	-0.1578	43.73	1.57E+00	7.08E-01
5.012	-0.1203	45.21 45.74	1.63E+00	3.54E-01
6.310 7.943	-0.1069 -0.0988	46.06	1.64E+00 1.66E+00	7.85E-02 2.30E-01
10.000	-0.0644	47.43	1.71E+00	8.01E-01
12.589	0.0135	50.54	1.82E+00	1.43E+00
15.849	0.1338	55.32	1.99E+00	2.00B+00
19.953	0.2942	61.57	2.21E+00	2.47E+00
25.119	0.4925	68.88	2.48E+00	2.75E+00
31.623	0.7264	76.62	2.75E+00	2.77E+00
39.811	0.9938	83.99	3.02E+00	2.48E+00
50.119	1.2924	90.19	3.24E+00	1.95E+00
63.096	1.6200	94.74	3.41E+00	1.32E+00
79.433 100.000	1.9743 2.3532	97.58 99.07	3.51E+00 3.56E+00	7.50E-01 3.51E-01
125.893	2.7543	99.71	3.58E+00	1.33E-01
158.489	3.1755	99.92	3.59E+00	3.99E-02
199.526	3.6146	99.98	3.59E+00	9.33E-03
251.189	4.0692	100.00	3.59E+00	1.68E-03
316.228	4.5373	100.00	3.59E+00	2.30E-04
398.107	5.0164	100.00	3.59E+00	2.38E-05
501.187	5.5045	100.00	3.59E+00	1.86E-06
630.957	5.9993	100.00	3.59E+00	1.09E-07
794.328	6.4985	100.00	3.59E+00	4.85E-09
1000.000	7.0000	100.00	3.59E+00	1.65E-10

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 0.69 19.3151 % CUM MASS LESS THAN 2.512 MICRON: 1.37 37.9926 % CUM MASS LESS THAN 10.000 MICRON: 1.71 47.4332 % CUM MASS LESS THAN 15.849 MICRON: 55.3234 % 1.99 NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

#### IMPACTOR DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

MASS GAIN OF BLANK SUBSTRATE 0.87

MASS GAIN OF BLANK FILTER

```
PART. DIAMETER CLASSICAL AERODYNAMIC
   DATE OF TEST: 9/6
   TIME OF TEST:
   LOCATION OF TEST: Bailly 7 ESP OUTLET
   TEST DESIG.: NIP
                                OUTLET
   TEST TYPE
   RUN NUMBER: 5-FILE NAME: TNIPR5.OT
   RUN REMARKS:
   IMPACTOR TYPE: uwpc3-11
      soripc 3 4 5 7 9 11
                                   8.10%
   WATER VAPOR
     CO2 12.80%
                                  CO
                                           0.00%
             6.60%
     02
                                 N2
                                           BO.60%
   ORIFICE ID (OPTIONAL):
   SUBSTRATE MATERIAL, G)rease or Bare metal, F)ilter: F
   GAS METER VOL 33.205 cf
IMPACTOR DELTA P 0.00 IN. HG. (0 for calc. from theory)
  ORIFICE DELTA P 0.20 INCHES H20 STACK PRESSURE 7.0 INCHES H20 BAROMETRIC PRES 29.56 INCHES HG 316 DEGREES F 70 DEGREES F
                                   0.20 INCHES H20
                                   7.0 INCHES H20
   METER TEMP 70 DEGREES F
IMPACTOR TEMP 316 DEGREES F
SAMPLE TIME 124.50 MINUTES
AVG GAS VEL 53.80 FEET/SEC
ORI P WRT PBAR -0.03 INCHES HG
NOZZLE DIA 0.154 INCHES
   MAX PART DIA 1000 MICRONS
WATER VOLUME 0.0 CC
METER FACTOR 1.0240
MASS GAIN OF STAGE 1 14.80 MG
MASS GAIN OF STAGE 1 14.80 MG
MASS GAIN OF STAGE 2 10.77 MG
MASS GAIN OF STAGE 3 5.03 MG
MASS GAIN OF STAGE 4 3.67 MG
MASS GAIN OF STAGE 5 2.46 MG
MASS GAIN OF STAGE 6 1.36 MG
MASS GAIN OF STAGE 7 1.32 MG
MASS GAIN OF FILTER
                                      3.09 MG
```

1.83

TEST DESIG.: NIP RUN NUMBER: 5 soripe 3 4 5 7 9 11

ACTUAL FLOW RATE 0.427 CFM
FLOW RATE AT STANDARD CONDITIONS 0.268 CFM
PERCENT ISOKINETIC 102.270 %
VISCOSITY 225.4E-06 GM/CM-SEC
CALCULATED IMPACTOR DELTA P = 1.39 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	V*D50
	CORR.	(CLAS AERO)(	IMP AERO)	FREQ.	NO.	UM-M/S
1	1.025	9.479	9.597	59.6910	748	15.1
2	1,044	5.416	5.533	31.0663	325	19.5
3	1.075	3.172	3.288	19.0465	134	14.5
4	1.124	1.921	2.037	10.9408	170	17.4
5	1.241	0.992	1.105	6.3469	252	19.7
6	1.477	0.516	0.628	4.9236	345	18.5
7	2.016	0.262	0.372	3.6363	648	17.7

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.65E+01 MG/DRY NORMAL CUBIC METER

2.30E+01 MG/ACTUAL CUBIC METER

= 1.60E-02 GRAINS/DRY STD CUBIC FOOT

= 1.00E-02 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA. (MICRONS)		CUMFR (PERCENT)	CUM.MASS	DM/DLOGD N.CU.METER)
(1110110110)	(01000,	(10000111)	(130) 51(1	in combibility
0.100	-2.6579	0.39	1.44E-01	1.28E+00
0.126	-2.3771	0.87	3.19E-01	2,24E+Q0
0.158	-2.1401	1.62	5.91E-01	3.15E+00
0.200	-1.9510	2.55	9.33E-01	3.56E+00
0.251	-1.8137	3.49	1.27E+00	3.10E+00
0.316	-1.7298	4.18	1.53E+00	1.99E+00
0.398	-1.6845	4.60	1.68E+00	1.17E+00
0.501	-1.6562	4.88	1.78E+00	1.00E+00
0.631	-1.6251	5.21	1.90E+00	1.40E+00
0.794	-1.5826	5.68	2.07E+00	2.07E+00
1.000	-1.5243	6.37	2.33E+00	3.08E+00
1,259	-1.4457	7.41	2.71E+00	4.64E+00
1.585	-1.3412	8.99	3.28E+00	7.08E+00
1.995	-1.2051	11.41	4.17E+00	1.08E+01
2.512	-1.0414	14.88	5.44E+00	1.43E+01
3.162	-0.8780	19.00	6.94E+00	1.51E+01
3.981	-0.7325	23.19	8.47E+00	1.64E+01
5.012	-0.5647	28.62	1.05E+01	2.45E+01
6.310	-0.3241	37.29	1.36E+01	3.89E+01
7.943	-0.0147	49.41	1.80E+01	4.82E+01
10.000	0.3244	62.72	2.29E+01	4.72E+01
12.589	0.6653	74.71	2.73B+01	3.97E+01
15.849	1.0050	84.26	3.08E+01	2.98E+01
19.953	1.3438	91.05	3.33E+01	2.00E+01
25.119	1.6816	95.37	3.48E+01	1.20E+01
31.623	2.0184	97.82	3.575+01	6.39E+00
39.811	2.3544	99.07	3.62E+01	3.06E+00 1.31E+00
50.119 63.096	2.6896 3.0241	99.64 99.87	3.64E+01 3.65E+01	5.03E-01
79.433	3.3578	99.96	3.65E+01	1.73E-01
100.000	3.6909	99.99	3.65E+01	5.34B-02
125.893	4.0235	100.00	3.65E+01	1.48E-02
158.489	4.3555	100.00	3.65E+01	3.67B-03
199.526	4.6871	100.00	3.65E+01	8.19E-04
251.189	5.0183	100.00	3.65E+01	1.64E-04
316.228	5.3491	100.00	3.65E+01	2.95E-05
398.107	5.6796	100.00	3.65E+01	4.76E-06
501.187	6.0099	100.00	3.65E+01	6.90E-07
630.957	6.3400	100.00	3.65E+01	8.99E-08
794.328	6.6700	100.00	3.65E+01	1.05E-08
1000.000	7.0000	100.00	3.65E+01	1.10E-09

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 2.33 6.3709 % CUM MASS LESS THAN 2.512 MICRON: 5.44 14.8839 % CUM MASS LESS THAN 10.000 MICRON: 22.91 62.7169 % CUM MASS LESS THAN 15.849 MICRON: 30.77 84.2571 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

# CYCLONE DATA REDUCTION PROGRAM. VERSION 10

#### INPUT DATA

PART. DIAMETER CLASSICAL AERODYNAMIC DATE OF TEST: 9/3~5 TIME OF TEST: LOCATION OF TEST: Bailly 7 ESP OUTLET TEST DESIG.: nip TEST TYPE 1 OUTLET 7, RUN NUMBER: 2-FILE NAME: ThipRZ.OT RUN REMARKS: CYCLONE TYPE: doe2 SRI 5 SERIES CYCLONE (NEW #4) WATER VAPOR 8.58% CO2 12.70% CO 0.00% CO 6.50% N2 80.80% WATER VAPOR 8.58% ORIFICE ID (OPTIONAL): GAS METER VOL 525.260 cf
CYCLONE DELTA P 0.00 IN. HG.
ORIFICE DELTA P 0.38 INCHES H20
STACK PRESSURE 7.0 INCHES H20
BAROMETRIC PRES 29.40 INCHES HG
STACK TEMP 314 DEGREES F
CYCLONE TEMP 95 DEGREES F
CYCLONE TEMP 314 DEGREES F
SAMPLE TIME 1440.00 MINUTES
AVG GAS VEL 55.00 FEET/SEC
ORI P WRT PBAR 0.176 INCHES HG
NOZZLE DIA 0.176 INCHES HG
WAX PART DIA 1000 MICRONS
WATER VOLUME 999.0 CC
METER FACTOR 1.0262 MASS GAIN OF STAGE 1 210.80 MG MASS GAIN OF STAGE 2 76.60 MG MASS GAIN OF FILTER 172.80 MG MASS GAIN OF BLANK SUBSTRATE 0.00

MASS GAIN OF BLANK FILTER 3.90

TEST DESIG.: nip RUN NUMBER: 2 SRI 5 SERIES CYCLONE (NEW #4)

ACTUAL FLOW RATE 0.560 CFM
FLOW RATE AT STANDARD CONDITIONS 0.349 CFM
PERCENT ISOKINETIC 100.370 %
VISCOSITY 224.6E-06 GM/CM-SEC
CALCULATED IMPACTOR DELTA P = 0.01 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	sqr(Psi50)
	CORR.	(CLAS AERO)	(IMP AERO)	FREQ.	NO.	
1	1.023	10.439	10.558	53.8023	979	0.213
2	1.036	6.672	6.790	37.0151	1243	0.196

STAGE CUT DIAMETERS BASED ON PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 3.21E+01 MG/DRY NORMAL CUBIC METER

2.00E+01 MG/ACTUAL CUBIC METER

1.40E-02 GRAINS/DRY STD CUBIC FOOT

= 8.74E-03 GRAINS/ACTUAL CUBIC FOOT

SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

(MICRONS) (STDDEV)(PERCENT) (MG/DRY N.CU.MET)	ek )
0.100 -4.5458 0.00 8.89E-05 1.01E	
0.126 -4.3035 0.00 2.73E-04 2.94E	
0.158 -4.0620 0.00 7.88E-04 8.05E	
0.200 -3.8215 0.01 2.15E-03 2.07E	
0.251 -3.5820 0.02 5.50E-03 5.00E	
0.316 -3.3437 0.04 1.33E-02 1.14E	
0.398 -3.1065 0.10 3.05E-02 2.43E	
0.501 -2.8706 0.21 6.59E-02 4.89E	
0.631 -2.6361 0.42 1.35E-01 9.26E	-
0.794 -2.4030 0.81 2.61E-01 1.66E	
1.000 -2.1715 1.50 4.80E-01 2.79E	
1.259 -1.9415 2.61 8.37E-01 4.45E	
1.585 -1.7132 4.33 1.39E+00 6.70E	
1.995 -1.4867 6.85 2.20E+00 9.56E	
2.512 -1.2620 10.35 3.32E+00 1.29E	
3.162 -1.0392 14.93 4.79E+00 1.65E	
3.981 -0.8185 20.65 6.62E+00 2.01E	
5.012 -0.5998 27.43 8.80E+00 2.33E	
6.310 -0.3832 35.08 1.12E+01 2.56E	
7.943 -0.1681 43.32 1.39E+01 2.73E	-
10.000 0.0526 52.10 1.67E+01 2.90E	
12.589 0.2882 61.34 1.97E+01 3.00E	
15.849 0.5411 70.58 2.26E+01 2.89E	
19.953 0.8102 79.11 2.54E+01 2.55E	
25.119 1.0947 86.32 2.77E+01 2.05E	
31.623 1.3937 91.83 2.94E+01 1.48E	
39.811 1.7062 95.60 3.07E+01 9.52E	
50.119 2.0314 97.89 3.14E+01 5.38E	
63.096 2.3684 99.11 3.18E+01 2.65E	
79.433 2.7162 99.67 3.20E+01 1.13E	
100.000 3.0740 99.89 3.20E+01 4.11E	
125.893 3.4408 99.97 3.21E+01 1.27E	
158.489 3.8158 99.99 3.21E+01 3.34E	-02
199.526 4.1980 100.00 3.21E+01 7.35E	
251.189 4.5865 100.00 3.21E+01 1.35E	-03
316.228 4.9805 100.00 3.21E+01 2.08E	
398.107 5.3789 100.00 3.21E+01 2.67E	
501.187 5.7810 100.00 3.21E+01 2.86E	
630.957 6.1859 100.00 3.21E+01 2.55E	
794.328 6.5925 100.00 3.21E+01 1.90E	
1000.000 7.0000 100.00 3.21E+01 1.19E	-09

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 0.48 1.4958 % CUM MASS LESS THAN 2.512 MICRON: 3.32 10.3461 % CUM MASS LESS THAN 10.000 MICRON: 16.70 52.0968 % CUM MASS LESS THAN 15.849 MICRON: 22.63 70.5762 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

# ***** RESULTS OF STATIS(TICS) WITH ISOKINETIC CORRECTIONS ******

RESULTS OF AVERAGES FOR RUNS :

BAILLY STACK

TnipR2.OT TnipR3.OT TnipR4.OT

CLASS. AERO DIA.

DIA. MICRON	DM/DLOGD MG/DNM3	STD DEV	90% CON INT	CUM LOAD. MG/DNM3	90% CON INT	CUM%
0.10	6.00E+00	3.87E+00	6.52E+00	8.39E-01	9.45E-01	5.69
0.13	8.00E+00	5.04E+00	8.50E+00	1.57E+00	1.43E+00	10.67
0.16	8.51E+00	5.38E+00	9.08E+00	2.39E+00	1.89E+00	16,21
0.20	7.30E+00	4.90E+00	8.25E+00	3.16E+00	2.26E+00	21.44
0.25	6.39E+00	4.73E+00	7.97E+00	3.86E+00	2.53E+00	26.19
0.32	7.33E+00	5.47E+00	9.23E+00	4.56E+00	2.81E+00	30.95
0.40	1.06E+01	7.62E+00	1.28E+01	5.40E+00	3.22E+00	36.67
0.50	1.34E+01	9.36E+00	1.58E+01	6.65E+00	3.81E+00	45.14
0.63	1.32E+01	8,82E+00	1.49E+01	7.98E+00	4.39E+00	54.17
0.79	1.02E+01	6.17E+00	1.04E+01	9.10E+00	4.75E+00	61.77
1.00	7.76E+00	3.78E+00	6.37E+00	1.00E+01	4.90E+00	68.15
1.26	6.59E+00	2.30E+00	3.88E+00	1.07E+01	4.96E+00	72.89
1.58	6.2BE+00	1.58E+00	2.67E+00	1.14E+01	4.98E+00	77.29
2.00	5.46E+00	1.19E+00	2.00E+00	1.20E+01	4.99E+00	81.18
2.51	4.06E+00	9.39E-01	1.58E+00	1.25E+01	5.00E+00	84.57
3.16	2.80E+00	6.40E-01	1.08E+00	1.28E+01	5.00E+00	86.76
3.98	1.99E+00	2.66E-01	4.48E-01	1.30E+01	5.00E+00	88.48
5.01	1.49E+00	2.60E-01	4.38E-01	1.32E+01	5.00E+00	89,60
6.31	1.28E+00	3.37E-01	5.69E-01	. 1.33E+01	5.00E+00	90.57
7.94	1.33E+00	5.84E-01	9.85E-01	1.35E+01	5.00E+00	91.46
10.00	1.61E+00	1.35E+00	2.27E+00	1.36E+01	5.01E+00	92.43
12.59	1.85E+00	2.08E+00	3.51E+00	1.38E+01	5.03E+00	93.63
15.85	1.93E+00	2.51E+00	4.23E+00	1.40E+01	5.06E+00	94.90
19.95	1.83E+00	2.60E+00	4.38E+00	1.42E+01	5.09E+00	96.17
25.12	1.58E+00	2.37E+00	3.99E+00	1.43E+01	5.13E+00	97.35
31.62	1.23E+00	1.92E+00	3.23E+00	1.45E+01	5.15E+00	98.26
39.81	8.63E-01	1.38E+00	2.32E+00	1.46E+01	5.17E+00	99.02
50.12	5.36E-01	8.69E-01	1.47E+00	1.47E+01	5.18E+00	99.45
63.10	2.92E-01	4.79E-01	8.07E-01	1.47E+01	5.18E+00	99.76
79.43	1.38E-01	2.28E-01	3.84E-01	1.47E+01	5.18E+00	99.89
100.00	5.58E-02	9.26E-02	1.56E-01	1.47E+01	5.18E+00	99.97
125.89	1.92E-02	3.185-02	5.37E-02	1.47E+01	5.18E+00	99.99 100.00
158.49 199.53	5.52E-03 1.33E-03	9.17E-03 2.20E-03	1.55E-02 3.70E-03	1.47E+01 1.47E+01	5.18E+00 5.18E+00	
251.19	2.65E-04	4.35E-04	7.33E-04			100.00
316.23	4.38E-05	7.07E-05	1.19E-04	1.47E+01 1.47E+01	5.18E+00 5.18E+00	100.00
398.11	6.00E-06	9.39E-06	1.58E-05	1.47E+01	5.18E+00	100.00
501.19	6.87E-07	1.02E-06	1.71E-06	1.47E+01	5.18E+00	100.00
630.96	6.72E-08	8.85E-08	1.49E-07	1.47E+01	5.18E+00	100.00
794.33	5.87E-09	6.02E-09	1.02E-08	1.47E+01	5.18E+00	100.00
1000.00	4.96E-10	3.12E-10	5.25E-10	1.47E+01	5.18E+00	100.00
2000.00	11,00 10	J. 121 10		114,0.01	\$110H.00	100.00

FOR TOTAL MASS: (UNCORRECTED) 9999.00 1.46E+01 7.99E+00 1.35E+01

### IMPACTOR DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

```
PART. DIAMETER
                                  CLASSICAL AERODYNAMIC
     DATE OF TEST: 9/3
     TIME OF TEST: 0900
     LOCATION OF TEST: Bailly Stack
     TEST DESIG.: NIP
                                   OUTLET
     TEST TYPE
     RUN NUMBER: 2-FILE NAME: TNIPR2.OT
     RUN REMARKS:
     IMPACTOR TYPE: uwpc3-11
        soripc 3 4 5 7 9 11
     WATER VAPOR
                                    15.38%
      CO2 12.80%
                                   CO 0.00%
      02
              6.30%
                                   N2
                                             80.90%
     ORIFICE ID (OPTIONAL):
     SUBSTRATE MATERIAL, G)rease or Bare metal, F)ilter: F
    GAS METER VOL 124.257 cf
IMPACTOR DELTA P 0.00 IN. HG. (0 for calc. from theory)
ORIFICE DELTA P 0.33 INCHES H2O
STACK PRESSURE 0.5 INCHES H2O
BAROMETRIC PRES 29.36 INCHES HG
STACK TEMP 131 DEGREES F
METER TEMP 91 DEGREES F
IMPACTOR TEMP 250 DEGREES F
SAMPLE TIME 360.00 MINUTES
AVG GAS VEL 33.40 FEET/SEC
ORI P WRT PBAR -0.05 INCHES HG
NOZZLE DIA 0.193 INCHES
MAX PART DIA 1000 MICRONS
WATER VOLUME 459.8 CC
METER FACTOR 1.0240
     GAS METER VOL 124.257 cf
 MASS GAIN OF STAGE 1 1.38 MG
MASS GAIN OF STAGE 2 2.17 MG
 MASS GAIN OF STAGE 3 2.58 MG
MASS GAIN OF STAGE 4 4.83 MG
MASS GAIN OF STAGE 5 10.45 MG
MASS GAIN OF STAGE 6 18.43 MG
 MASS GAIN OF STAGE 7 13.69 MG
 MASS GAIN OF FILTER 15.48 MG
MASS GAIN OF BLANK SUBSTRATE 0.62
MASS GAIN OF BLANK FILTER
                                                    1.23
```

#### RESULTS

TEST DESIG.: NIP RUN NUMBER: 2

soripc 3 4 5 7 9 11

ACTUAL FLOW RATE 0.536 CFM

FLOW RATE AT STANDARD CONDITIONS 0.332 CFM

PERCENT ISOKINETIC 109.635 %

VISCOSITY 205.9E-06 GM/CM-SEC

CALCULATED IMPACTOR DELTA P = 2.36 IN. HG

STAGE	CUNN. CORR.	D50 (CLAS AERO)(	D50 (IMP AERO)	CUM FREQ.	RE. NO.	V+D50 UM-M/S
1	1.018	9.530	9.614	98.7995	1235	15.8
2	1.047	4.588	4.694	96.3481	462	20.7
3	1.086	2.513	2.618	93.2508	190	14.4
4	1.147	1.471	1.575	86.6134	242	16.7
5	1.293	0.744	0.846	71.1126	358	18.6
6	1.593	0.385	0.486	43.0444	492	17.3
7	2.328	0.188	0.287	22.4501	922	16.1

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 1.88E+01 MG/DRY NORMAL CUBIC METER

= 1.39E+01 MG/ACTUAL CUBIC METER

= 8.21E-03 GRAINS/DRY STD CUBIC FOOT

= 6.09E-03 GRAINS/ACTUAL CUBIC FOOT

## SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA (MICRONS)		CUMFR (PERCENT)	CUM.MASS (MG/DRY	DM/DLOGD N.CU.METER)
0.100	-1.5857	5.64	1.06E+00	8.01E+00
0.126	-1.2355	10.83	2.03E+00	1.13E+01
0.158	-0.9400	17.36	3.26E+00	1.28E+01
0.200	-0.7039	24.08	4.52E+00	1.20E+01
0.251	-0.5177	30.23	5.68E+00	1.135+01
0.316	-0.3438	36.55	6.86E+00	1.28E+01 1.70E+01
0.398 0.501	-0.1414	44.38 54.38	8.33E+00	1.98E+01
0.631	0.1099 0.3774	54.36 64.71	1.02E+01 1.21E+01	1.83E+01
0.794	0.6204	73.25	1.38E+01	1.36E+01
1.000	0.8196	79.38	1.49E+01	9.79E+00
1.259	0.9937	83.98	1.58E+01	7.73E+00
1.585	1.1648	87.80	1.65E+01	6.66E+00
1.995	1.3388	90.97	1.71E+01	5.16E+00
2.512	1.4949	93.25	1.75E+01	3.42E+00
3.162	1.6180	94.72	1.78E+01	2.24E+00
3.981	1.7247	95.77	1.60E+01	1.81E+00
5.012	1.8394	96.71	1.82E+01	1.73E+00
6.310	1.9746	97.58	1.83E+01	1.54E+00
7.943	2.1272	98.33	1.85E+01	1.25E+00
10.000	2.2930	98.91	1.86E+01	9.24E-01
12.589	2.4687	99.32	1.86E+01	6.42E-01
15.849	2.6536	99.60	1.87E+01	4.19E-01
19.953	2.8472	99.78	1.87E+01	2.57E-01
25.11 <del>9</del>	3.0490	99.88	1.88E+01	1.48E-01
31.623	3.2585	99.94	1.88E+01	7.90E-02
39.811	3.4752	99.97	1.88E+01	3.93E-02
50.119	3.6988	99.99	1.88E+01	1.82E-02
63.096	3.9285	100.00	1.88E+01	7.76E-03
79.433	4.1641	100.00	1.88E+01	3.06 <b>E</b> -03
100.000	4.4050	100.00	1.88E+01	1.115-03
125.893	4.6508	100.00	1.88E+01	3.73E-04
158.489	4.9009	100.00	1.88E+01	1.15B-04
199.526	5.1548	100.00	1.88E+01	3.25E-05
251.189	5.4121	100.00	1.88E+01	8.45E-06
316.228	5.6723	100.00	1.88E+01	2.02E-06
398.107	5.9350	100.00	1.88E+01	4.43E-07
501.187	6.1995	100.00	1.88E+01	8.96E-08
630.957	6.4656	100.00	1.88E+01	1.67E-08
794.328	6.7325	100.00	1.88E+01	2.88E-09
1000.000	7.0000	100.00	1.88E+01	4.59E-10

## INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 14.90 79.3786 % CUM MASS LESS THAN 2.512 MICRON: 17.51 93.2530 % CUM MASS LESS THAN 10.000 MICRON: 18.57 98.9064 % CUM MASS LESS THAN 15.849 MICRON: 18.70 99.6009 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

## IMPACTOR DATA REDUCTION PROGRAM, VERSION 10

## INPUT DATA

MASS GAIN OF BLANK FILTER 1.91

```
PART. DIAMETER CLASSICAL AERODYNAMIC
     DATE OF TEST: 9/4
     TIME OF TEST: 0825
     LOCATION OF TEST: Bailly Stack
     TEST DESIG.: NIP
     TEST TYPE
                                     OUTLET
     RUN NUMBER: 3-FILE NAME: TNIPR3.OT
     RUN REMARKS:
     IMPACTOR TYPE: uwpc3-11
        soripc 3 4 5 7 9 11
                                    15.91%
     WATER VAPOR
       CO2 12.80% CO
O2 6.60% N2
                                      CO
                                                0.00%
      02
                                                 80.60%
     ORIFICE ID (OPTIONAL):
     SUBSTRATE MATERIAL, G)rease or Bare metal, F)ilter: F
    GAS METER VOL 166.996 cf
IMPACTOR DELTA P 0.00 IN. HG. (0 for calc. from theory)
ORIFICE DELTA P 0.34 INCHES H20
STACK PRESSURE 0.5 INCHES H20
BAROMETRIC PRES 29.48 INCHES HG
    STACK TEMP 127 DEGREES F
METER TEMP 98 DEGREES F
IMPACTOR TEMP 250 DEGREES F
SAMPLE TIME 480.00 MINUTES
AVG GAS VEL 33.20 FEET/SEC
ORI P WRT PBAR -0.05 INCHES HG
NOZZLE DIA 0.193 INCHES
MAX PART DIA 1000 MICRONS
WATER VOLUME 637.7 CC
METER FACTOR 1.0240
     METER FACTOR
                                   1.0240
 MASS GAIN OF STAGE 1 13.32 MG
MASS GAIN OF STAGE 2 3.36 MG
MASS GAIN OF STAGE 3 4.78 MG
MASS GAIN OF STAGE 4 8.11 MG
MASS GAIN OF STAGE 5 14.68 MG
MASS GAIN OF STAGE 6 22.59 MG
MASS GAIN OF STAGE 7 11.21 MG
 MASS GAIN OF FILTER 19.83 MG
MASS GAIN OF BLANK SUBSTRATE 1.03
```

### RESULTS

TEST DESIG.: NIP RUN NUMBER: 3 soripc 3 4 5 7 9 11

ACTUAL FLOW RATE 0.537 CFM

FLOW RATE AT STANDARD CONDITIONS 0.331 CFM

109.716 % PERCENT ISOKINETIC

205.7E-06 GM/CM-SEC VISCOSITY CALCULATED IMPACTOR DELTA P = 2.38 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	V*D50
	CORR.	(CLAS AERO)	(IMP AERO)	FREQ.	NO.	UM-M/S
1	1.018	9.522	9.606	86.1546	1248	15.8
2	1.047	4.582	4.688	83.5321	464	20.7
3	1.086	2.508	2.613	79.3114	191	14.4
4	1.147	1.467	1.571	71.3389	243 -	16.7
5	1.293	0.742	0.844	55.9563	360	18.5
6	1.592	0.384	0.484	31.6623	494	17.3
7	2.324	0.188	0.287	20.1905	926	16.1

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

PARTICLE DENSITY = 1

TOTAL MASS CONCENTRATION = 1.97E+01 MG/DRY NORMAL CUBIC METER

= 1.47E+01 MG/ACTUAL CUBIC METER

= 8.61E-03 GRAINS/DRY STD CUBIC FOOT

6.42E-03 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA	. CUMFR	CUMFR	CUM.MASS	DM/DLOGD
(MICRONS)	(STDDEV)	(PERCENT)	(MG/DRY	N.CU.METER)
0.100	-1.5237	6.38	1.26E+00	8.44E+00
0.126	-1.2125	11.27	2.22E+00	1.05E+01
0.158	-0.9688	16.63	3.28E+00	1.02E+01
0.200	-0.7987	21.22	4.18E+00	7.60E+00
0.251	-0.6891	24.54	4.83E+00	5.89E+00
0.316	-0.5906	27.74	5.46E+00	7.31E+00
0.398	-0.4497	32.65	6.43E+00	1.27E+01
0.501	-0.2402	40.51	7.98E+00	1.77E+01
0.631	-0.0043	49.83	9.82E+00	1.82E+01
0.794	0.2054	58.14	1.15E+01	1.40E+01
1.000	0.3627	64.16	1.26E+01	1.01E+01
1.259	0.4869	68.68	1.35E+01	8.07E+00
1.585	0.6015	72.62	1.43E+01	7.60E+00
1.995	0.7159	76.30	1.50E+01	6.72E+00
2.512	0.8178	79.33	1.56E+01	5,11E+00
3.162	0.8958	81.48	1.61E+01	3.47E+00
3.981	0.9511	82.92	1.63E+01	2.26E+00
5.012	0.9877	83.84	1.65E+01	1.42E+00
6.310	1.0146	84.49	1.66E+01	1.27E+00
7.943	1.0472	85.25	1.68E+01	1.85E+00
10.000	1.1014	86.47	1.70E+01	3.00E+00
12.589	1,1879	88.26	1.74E+01	3.99E+00
15.849	1.3065	90.43	1.78E+01	4.49E+00
19.953	1.4555	92.72	1.83E+01	4.46E+00
25.119	1.6331	94.88	1.87E+01	3.96E+00
31.623	1.8378	96.69	1.90E+01	3.16E+00
39.811	2.0677	98.07	1.93E+01	2.24E+00
50.119	2.3213	98.99	1.95E+01	1.41E+00
63.096	2.5968	99.53	1.96E+01	7.71E-01
79.433	2.8926	99.81	1.97E+01	3.66E-01
100.000	3.2069	99.93	1.97E+01	1.48E-01
125.893	3.5381	99.98	1.97E+01	5.10E-02
158.489	3.8845	99.99	1.97E+01	1.47E-02
199.526	4.2444	100.00	1.97E+01	3.52E-03
251.189	4.6162	100.00	1.97E+01	6.99E-04
316.228	4.9980	100.00	1.97E+01	1.14E-04
398.107	5.3883	100.00	1.97E+01	1.54E-05
501.187	5.7853	100.00	1.97E+01	1.70E-06
630.957	6.1874	100.00	1.975+01	1.54E-07
794.328	6.5928	100.00	1.97E+01	1.16E-08
1000.000	7.0000	100.00	1.97E+01	7.33E-10

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 12.64 64.1599 % CUM MASS LESS THAN 2.512 MICRON: 15.63 79.3254 % CUM MASS LESS THAN 10.000 MICRON: 17.03 86.4656 % CUM MASS LESS THAN 15.849 MICRON: 17.81 90.4322 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

# IMPACTOR DATA REDUCTION PROGRAM, VERSION 10

#### INPUT DATA

```
PART. DIAMETER CLASSICAL AERODYNAMIC
     DATE OF TEST: 9/5
     TIME OF TEST: 0920
     LOCATION OF TEST: Bailly Stack
     TEST DESIG.: NIP
     TEST TYPE
                             OUTLET
     RUN NUMBER: 4-FILE NAME: TNIPR4.OT
     RUN REMARKS:
     IMPACTOR TYPE: uwpc3-11
        soripc 3 4 5 7 9 11
      CO2 12.90%
     WATER VAPOR
                                      15.74%
                                   CO 0.00%
      02
               6.50%
                                     N2
                                              80.60%
     ORIFICE ID (OPTIONAL):
     SUBSTRATE MATERIAL, G)rease or Bare metal, F)ilter: F
     GAS METER VOL 165.497 cf
IMPACTOR DELTA P 0.00 IN. HG. (0 for calc, from theory)
    IMPACTOR DELTA P 0.00 IN. HG. (O
ORIFICE DELTA P 0.34 INCHES H20
STACK PRESSURE 0.5 INCHES H20
BAROMETRIC PRES 29.40 INCHES HG
STACK TEMP 130 DEGREES F
METER TEMP 87 DEGREES F
IMPACTOR TEMP 250 DEGREES F
SAMPLE TIME 480.00 MINUTES
AVG GAS VEL 32.90 FEET/SEC
ORI P WRT PBAR -0.05 INCHES HG
NOZZLE DIA 0.193 INCHES
MAX PART DIA 1000 MICRONS
WATER VOLUME 634.5 CC
METER FACTOR 1.0240
                                     0.34 INCHES H20
                                     0.5 INCHES H2O
 MASS GAIN OF STAGE 1 2.25 MG
MASS GAIN OF STAGE 2 2.48 MG
MASS GAIN OF STAGE 3 4.03 MG
MASS GAIN OF STAGE 4 5.73 MG
MASS GAIN OF STAGE 5 5.94 MG
MASS GAIN OF STAGE 6 4.67 MG
MASS GAIN OF STAGE 7 3.99 MG
 MASS GAIN OF FILTER 5.12 MG
MASS GAIN OF BLANK SUBSTRATE 1.16
MASS GAIN OF BLANK FILTER
```

## RESULTS

TEST DESIG.: NIP RUN NUMBER: 4

soripc 3 4 5 7 9 11

ACTUAL FLOW RATE 0.542 CFM FLOW RATE AT STANDARD CONDITIONS 0.334 CFM 112.265 % PERCENT ISOKINETIC

205.8E-06 GM/CM-SEC VISCOSITY

CALCULATED IMPACTOR DELTA P = 2.42 IN. HG

STAGE	CUNN.	D50	D50	CUM	RE.	V*D50
	CORR.	(CLAS AERO)(3	IMP AERO)	FREQ.	NO.	um-m/s
1	1.018	9.477	9.5 <del>6</del> 1	95.5664	1251	15.9
2	1.047	4.561	4.667	90.2095	468	20.8
3	1.087	2.493	2.599	78.5520	192	14.5
4	1.148	1.458	1.562	59.9756	245	16.7
5	1.296	0.737	0.839	40.5206	363	18.6
6	1.599	0.381	0.481	26.2518	497	17.3
7	2.346	0.186	0.285	14.7244	933	16.1

STAGE CUT DIAMETERS BASED ON THEORETICAL VALUES OF STAGE CONSTANTS

PARTICLE DENSITY = 1

* TOTAL MASS CONCENTRATION = 5.41E+00 MG/DRY NORMAL CUBIC METER # 4.02E+00 MG/ACTUAL CUBIC METER = 2.37E-03 GRAINS/DRY STD CUBIC FOOT

= 1.76E-03 GRAINS/ACTUAL CUBIC FOOT

# SPLINE FIT ON CLASSICAL AERODYNAMIC DIAMETER BASIS

PARTICLE DIA (MICRONS)		CUMFR (PERCENT)	CUM.MASS (MG/DRY	DM/DLOGD N.CU.METER)
0.100	-1.7827	3.73	2.02E-01	1.54E+00
0.126	-1.4606	7.21	3.90E-01	2.19E+00
0.158	-1.1955	11.59	6.28E-01	2.48E+00
0.200	-0.9925	16.05	8.69E-01	2.26E+00
0.251	-0.8450	19.91	1.08E+00	1.94E+00
0.316	-0.7272	23.36	1.26E+00	1.86E+00
0.398	-0.6115	27.04	1.46E+00	2.21E+00
0.501	-0.4803	31.55	1.71E+00	2.66E+00
0.631	-0.3379	36.77	1.99E+00	2.97E+00
0.794	-0.1917	42.40	2.30E+00	3.11E+00
1.000	-0.0410	48.37	2.62E+00	3.40E+00
1.259	0.1282	55.10	2.98E+0D	3.93E+00
1.585	0.3303	62.94	3.41E+00	4.52E+00
1.995	0.5628	71.32	3.86E+00	4,40E+00
2.512	0.7982	78.76	4.26E+00	3.57E+00
3,162	1.0122	84.43	4.57E+00	2.59E+00
3.981	1.1982	88.46	4.79E+00	1.80E+00
5.012	1.3538	91.21	4.94E+00	1.22E+00
6.310	1.4845	93.12	5.04E+00	8.85E-01
7.943	1.6060	94.59	5.12E+00	7.27E-01
10.000	1.7342	95.86	5.19E+00	6.56E-01
12.589	1.8801	96.99	5.25E+00	5.72E-01
15.849	2.0441	97.95 98.70	5.30E+00	4.62E-01
19.953 25.119	2.2252 2.4225	99.23	5.34E+00 5.37E+00	3.44E-01 2.35E-01
31.623	2.6349	99.58	5.39E+00	1.47E-01
39.811	2.8616	99.79	5.40E+00	8.40E-02
50.119	3.1016	99.90	5.41E+00	4.33E-02
63.096	3.3540	99.96	5.41E+00	2.01E-02
79.433	3.6178	99.99	5.41E+00	8.36E-03
100.000	3.8920	99.99	5.41E+00	3.10E-03
125.893	4.1757	100.00	5.41E+00	1.02E-03
158.489	4.4680	100.00	5.41E+00	2.96E-04
199.526	4.7679	100.00	5.41E+00	7.59E-05
251.189	5.0744	100.00	5.41E+00	1.71E-05
316.228	5.3866	100.00	5.41E+00	3.40E-06
398.107	5.7036	100.00	5.41E+00	5.95E-07
501.187	6.0244	100.00	5.41E+00	9.16E-08
630.957	6.3480	100.00	5.41E+00	1.25E-08
794.328	6.6735	100.00	5.41E+00	1.50E-09
1000.000	7.0000	100.00	5.41E+00	1.62E-10

# INHALABLE PARTICULATE MATTER

CUM MASS LESS THAN 1.000 MICRON: 2.62 48.3652 % CUM MASS LESS THAN 2.512 MICRON: 4.26 78.7610 % CUM MASS LESS THAN 10.000 MICRON: 5.19 95.8555 % CUM MASS LESS THAN 15.849 MICRON: 5.30 97.9520 % NOTE: DIAMETERS FOR INHALABLE PARTICULATE MATTER ARE ON CLASSICAL AERODYNAMIC BASIS.

# Appendix G8 Spreadsheet Template for Methods 5 and 17

```
A1: (W20) 'MUN TOENTIFICATION:
91: U [V13] 'IMACI3.MOZ
C1: (M29) "
                       REDUCED MASS TRAIN DATA
G1: (UZ1) 'DRY MI, #/#-mole :
H1: (F2) 0,32*#3+0.44*#4+0.28*(100-#3-#4)
A2: (U20) 'GUN DATE
#2: (G) U (W13) *6/3/93
C2: (U29) "
                 ******
G2: [UZ1] 'UET MJ, #/#-mole :
HZ: (FZ) U +H1*(1-05/100)+18*(05/100)
A3: [M20] 'GAS AWALYSIS - OZ :
63: (F1) U (W13) 6.4
CS: DI291 "ISOKINETIC AGREEMENT, %:
D3: (F1) [910] 1.667*H6/(E15*07*((E8/2)*2*0.00694*9P1))
DS: (M21) "STACK PRESS, IN HO:
H3: (F2) +86+87/13.6
A4: (M20) " (Dry Basis) - CO2:
84: (F1) U (M13) 12.7
GA: (NZ1) 'STAND SAMPLE VOL :
H4: (F4) 17.45=816*810*(86+818/13.4)/(820+460)
AS: U (M20) "PRETEST SETUP $820:
M5: (F1) U (W13) 5
C5: (N29) "CALCULATED % N20
05: (F1) [010] +H5*100
65: CM21] 'FRACTION M20
#5: (F3) (0.04707*813)/(0.04707*613+H4)
A6: (W20) 'AMB PRESS, in Ng :
86: (F2) U (M13) 23.35
66: (HZ1) 'ACTIMIL SAMPLE VOL :
M6: (F2) +M4"29.921/H3"(B19+460)/528"(1/(1-H5))
A7: [420] 'STACK dP, in H20 :
87: (F1) U (W13) -10
C7: DIZ91 "AVG CAS VELOCITY, ft/s :
D7: (F1) (M10) 85.48-89-817-050RT((619-460)/(H3-H2))
AS: (N20) 'NOZZLE DIA, in
88: (F3) U [¥13] 0.202
CB: (M29) "AVG GAS TEMPERATURE, F :
DE: (FD) (M10) +819
A9: (M20) *PITOT CONSTANT
89: (F2) U [M13] 0.787
C9: [M29] "GAS VOLIME FLOW, acfm :
99: (,0) $W10J +07*60*811
A10: (M20) 'GAS METER CALIB :
810: (F3) U (M13] 1.0099
C10: (W29) "dscfm:
D10: (,0) Cr101 +07*1058.82*B11*(1-H5)*#3/(819+460)
A11: (W20) 'DUCT AREA, ft2 :
#11: (F1) U (V13) 126.6
C11: (U291 "wacfm :
0:1: (,0) (M10) +010*(1/(1-H5))
C12: (W29) "Ory Gas Lb/hr:
D12: (FO) [W10] +D10*0.075*N1*60/28.95
A13: (M20) 'H20 COLLECTED, at :
813: (F1) U (M13) 97.5
Ct3: (W29) "Moisture to/hr:
013: (FO) (M10) (011-010)*0.075*18*60/28.95
```

```
A14: (N20) 'PARTICLE MASS, mg :
814: (F2) U (M13) 23585.9
C14: [M29] "Total Lb/hr:
014: (FO) (W10) +D12+D13
A15: [M20] 'TIME SAMPLED, min :
815: (FO) U [W13] 96
C15: (NZ9) MASS LOADING, gr/ecf :
015: ($2) [W10] +B14*0.0154/W6
A16: (M20) 'GAS METER VOL, ft3:
B16: (F3) U (U13) 151.5-82.7-0.2-0.2-0.7-0.4-0.3
C16: (N29) "gr/dscf :
016: (S2) (M10) +814*0.0154/M4
A17: [L20] 'AVG SERT PITOT do :
817: (F3) U (M13) 1.051
C17: (U29) "mg/ecm :
P17: (S2) (W10) +B14/(H6*0.02632)
A18: [M20] 'AVG CR1 dP, in #20:
818: (F3) U (M13) 1.41
C18: (M29) *mg/dacm :
018: (S2) (W10) +B14/(H4*0.02632)
A19: [M20] 'AVG STACK TEMP, F :
819: (FQ) U (U13) 293
C19: (W29) "gr/decf 85% C2 :
D19: (SZ) Q/102 +016*((20.9-3)/(20.9-83))
A20: (M20) "GAS METER TEMP, F :
820: (FO) U [M13] 89
C20: [W29] * g/dscn 23X C2
DZU: ($2) ($10) +019/0.43699
CZ2: [M29] "ENISSION RATE, Lb/hr
022: (92) [N10] +016*60*010/7000
C23: (W29) "EMISSION RATE, #/66-8tu:
D23: ($2) [V10] +016*9820*(20.9/(20.9-83))/7000
A25: U (W20) "Fo:
825: (F2) U D/131 (20.9-83)/84
```

# Appendix G9 Spreadsheet Template for Dilution Train

```
A1: (N6) * DOE DILUTION TRAIN DATA REDUCTION
M1: ISP
01: 29.92
MZ: 'FS
92: 528
A3: B/6) 16/2/93
#3: 'FR
03: 460
A4: [M6] PM65 & Acids
84: 4KA
04: 28.97
45: [46] **-----
K5: [W21] 'DRY MU, #/#-mole :
L5: (F2) 0.32*06+0.44*D7+0.28*(100-06-D7)
A6: [W6] 'CAS ANALYSIS - OZ :
06: (F1) U (W7) 7
Ká: [W21] 'WET MU, #/#-mole :
LA: (F2) +L5*(1-08/100)+18*(08/100)
A7: D61 "
                        CO2 :
D7: (#1) U (M7) 12
K7: (WZ?? 'STACK PRESS, in Ng:
L7: (F2) +09+010/13.6
A6: (N6) "
                        K20 :
08: (F1) U (W7) 12.1
KA: (N21) 'INTERN CONST 1
LB: (F4) 85.48*021*0.0005074*(930*25.4)*2*9$9RT((D16+460)/(L7*L6))
A9: (W6) 'AMB PRESS, in Hg :
09: (F2) U (M7) 23.15
K9: (W21) 'INTERM CONST 2
L9: ((1-06/100)*L7)*2*L5*(017+460)*1.067*022/09
A10: (M6) 'STACK dP, in M20 :
010: (F1) U (M7] -1.4
All: [M6] 'Enter Gas vel., fps
A12: (M6) 'or AVG SOR ROOT do :
012: (F2) U (M7) 1.3
A14: {Wb} 'Target Dil. Fector:
B14: (F3) U (M7) 10
A16: {W6} 'STACK GAS TEMP, F :
D16: (FO) U (W7) 205
A17: (M6) "GAS METER TEMP, F :
017: (F0) U (U7) 100
A18: (NS) 'Dit Air Temp
018; (M7) 72
A19: (M6) 'Exh air temp
D19: [W7] 86
AZ1: [M6] 'PITOT CONSTANT
D21: (F2) U (M7) 0.81
A22: (M6) "SAMP. ORI. DHB
022: (F2) U (N7) 9.2
A23: [N6] "SAMPLE DURATION, min:
D23: (N7) 360
A25: (W6) "DIL AIR ORI DH8:
025: (W7) 0.0334
A26: (W6) 'Exhaust flow OH@
D26: (N7) 0.0413
A27: {W61 'Filter DP
```

7 7277

Section of February

```
027: (W7) 6.3
A28: [M6] *Pda
028: (1/7) 11
A30: (N6) 'MOZZLE DIA, to
930: (F3) U (U7) 0.175
A31: (N6) "SAMPLE FLOW, aufm :
031: (F3) EW71 0.9785
E31: (F3) (N15) +053
F31: (#2) (M9) +031
A32: (W6) 'do pitot
032: (F2) U (M7) +012*012
£32: (M15) +022
F32: (NF) (F31*8L$7/($0$3+80$16))
G32: [M12] +f32*f32*($0$3+$0$16)*$L$6
H32: (U9) +8082*E32/($081*$084)
132: (F2) +032*H32/(0.5625*$L$7)
J32: 'OHSO
A33: (M6) 'SAMPLE FLOW, doesn':
D33: [U7] +031*(1-D8/100)*(526/(460+016))*(D9/29.92)
A34: [W6] 'Total flow in, dscfm
034: (F2) (W7) +035+033
A35: [W6] 'Dil flow decfm
035: (#2) [W7] 3.92
E35: (N15) * frue Dilution Factor:
J35: (FZ) (E39+E31)/E31
A36: 2N6) 'Dil Bu
036: (117) 0
E36: QV15] " Sample Volume, dacf :
J36: (F2) +E31*023
137: *dncm:
J37: (F2) +J36*0.02832
E39: (F2) (M15) +035
F39: [W9] +E39*S081/{D9+D28/13.6)*(8083+$D818)/S082
G39: [W12] ** flow at prifice conditions
A40: [86] 'Dilution flow DHdo
640: [M15] +025
F4D: (N9) (F39*S051/S052)
G40: (W12) +F40*F40*($Q$3+$0$18)*$C$4
#40: [U9] +$0$2*E40/($0$1*$0$4)
140: (F2) +G40*#40/(0.5625*(09+02B/13.6))
J40: 'Dida
G41: [U12] "bete
H41: (M9) "Hoomst
A42: [M6] 'Side stream 1 flow, dscfm
E42: [¥15] 0
F42: 849] +E42"$0$1/$0$9"($0$3+$0$17)/$0$2
A43: 8/61 'Side stream 1 DHD
£43: (U15) 1.788
F43: [U9] (F42*S0S9/(S0S3+SDS17))
G43: [VI2] +F43*F43*($083+80$17)*$084
 H43: [W7] +5052*E43/(5051*5054)
 143: (#2) +G43*H43/(0.5625*$0$9)
 J43: '0H1
#43: (W21) 'Mutech 2
 A44: [U6] 'N7 #4 (old)
A46: IV6) 'Side stresm 2 flow, dactor
```

```
46: [M15] 0.75
F46: [M9] +E46*S081/S0S9*($083+$0$17)/$082
A47: (M6) 'Side stream 2 DH8
E47: (M15) 1.7898
F47: (MP) (F46*$0$9/($0$3+$0$17))
647: (U12) +F47*F47*($0$3+$0$17)*$0$4
HAT: (MP) +8052*E47/($061*8064)
147: (F2) +G47*H47/(0.5625*$089)
147: 'DH2
#47: (W21) 'Mutech 48
A48: 046] 'guardian 100
A50: (U6) 'Side acress 3 flow, decfo
£50: (N15) 0.71
F50: (W9) +E50*80$1/$0$9*($0$3+$0$17)/$0$2
A51: [W6] 'Side stream 3 000
£51: (W15) 1.76
F51: [W9] (F50*$0$9/($0$3*$0$17))
Q51: [M12] +#514F514($0$3+$0$17)*$0$4
MS1: (M9) +8082*E51/(8081*8084)
151: (F2) +651*H51/(0.5625*$0$9)
J51: PDH3
K51: (W21) 'RAC 8643
A52: [W6] 'CAE 71-16
A55: [W6] 'Exhaust flow decim
E55: (F2) [W15] +034-E42-E46-E50
#55: EMP) +E55*8081/($L$7-(027+132)/13.6)*($0$3+$0$19)/8082
A56: (N6) 'Exhaust flow Diesch
256: (W15) +026
F56: [M9] (F55*%L$7/($0$3+$0$19))
G56: [W12] +F56*F56*(3083+80819)*8084
#56: [W9] +$0$2*E56/($0$1*$0$4)
156: (F2) +656*H56/(0.5625*(%L$7-(027+132)/13.6))
```

J56: 'Dkexh

THE PERSON NAMED IN TAXABLE

G-400