Computational fluid dynamics simulations of a glass melting furnace

PDF Version Also Available for Download.

Description

The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the ... continued below

Physical Description

9 p.

Creation Information

Egelja, A. & Lottes, S. A. May 9, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 55 times , with 7 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

Physical Description

9 p.

Notes

OSTI as DE00755867

Medium: P; Size: 9 pages

Source

  • 8th International Energy Forum, ENERGEX 2000, Las Vegas, NV (US), 07/23/2000--07/28/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ES/CP-101835
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 755867
  • Archival Resource Key: ark:/67531/metadc703844

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 9, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 7:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 7
Total Uses: 55

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Egelja, A. & Lottes, S. A. Computational fluid dynamics simulations of a glass melting furnace, article, May 9, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc703844/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.