An Overview of the Development of a Vortex Based Inflation Code for Parachute Simulation (VIPAR)

PDF Version Also Available for Download.

Description

Sandia National Laboratories has undertaken an ambitious, multiyear effort to greatly improve our parachute system modeling and analysis capabilities. The impetus for this effort is twofold. First, extending the stockpile lifetime raises serious questions regarding the ability of the parachutes to meet their requirements in the future due to material aging. These aging questions cannot currently be answered using available tools and techniques which are based upon the experience of expert staff and full-scale flight tests and are, therefore, not predictive. Second, the atrophy of our parachute technology base and the loss of our experienced staff has eroded our ability ... continued below

Physical Description

10 Pages

Creation Information

Behr, Vance L.; Hailey, Christine E.; Peterson, Carl W. & Wolfe, Walter P. May 19, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sandia National Laboratories has undertaken an ambitious, multiyear effort to greatly improve our parachute system modeling and analysis capabilities. The impetus for this effort is twofold. First, extending the stockpile lifetime raises serious questions regarding the ability of the parachutes to meet their requirements in the future due to material aging. These aging questions cannot currently be answered using available tools and techniques which are based upon the experience of expert staff and full-scale flight tests and are, therefore, not predictive. Second, the atrophy of our parachute technology base and the loss of our experienced staff has eroded our ability to respond to any future problems with stockpiled parachutes or to rapidly design a new parachute system on an experience base alone. To assure a future in-house capability for technical oversight of stockpile nuclear weapon parachutes, Sandia must move from our present empirically based approach to a computationally based, predictive methodology. This paper discusses the current status of the code development and experimental validation activities. Significant milestones that have been achieved and those that are coming up in the next year are discussed.

Physical Description

10 Pages

Source

  • 15th AIAA Aerodynamic Decelerator Systems Technology Conference; Toulouse, FR; 06/08-11/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00007258
  • Report No.: SAND99-1259C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 7258
  • Archival Resource Key: ark:/67531/metadc703842

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 19, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Dec. 7, 2016, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 24

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Behr, Vance L.; Hailey, Christine E.; Peterson, Carl W. & Wolfe, Walter P. An Overview of the Development of a Vortex Based Inflation Code for Parachute Simulation (VIPAR), article, May 19, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc703842/: accessed April 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.