Abstract

This paper presents the challenges and solutions of applying Built-In-Current Sensors (BICS) to a safety-critical IC design for the purpose of in-situ state-of-health monitoring. The developed Quiescent Current Monitor (QCM) system consists of multiple BICS and digital control logic. The QCM BICS can detect leakage current as low as 4 μA, run at system speed, and has relatively low real estate overhead. The QCM digital logic incorporates extensive debug capability and Built-In-Self-Test (BIST). We performed analog and digital simulations of the integrated BICS, and performed layout and tape-out of the design. Silicon is now in fabrication. Results to date show that, for some systems, BICS can be a practical and relatively inexpensive method for providing state-of-health monitoring of safety-critical microelectronics.

I. Introduction

Measuring the quiescent power supply current of an IC is a well known and widely used technique for detecting defects such as bridging, open, and parasitic transistor defects [1-3]. Normal operation of an IC can degrade previously undetected faults and increase leakage current [4]. In addition, environmental stresses, such as temperature, voltage, radiation, or age can aggravate faults, or cause damage resulting in elevated IDDQ [5-7]. Our Quiescent Current Monitor (QCM) system can detect elevated IDDQ current real-time during system operation for state-of-health monitoring of an IC. The QCM performs leakage current measurements on every transition of the system clock to get maximum coverage of the IC in real-time. The quiescent current trip point can be set as low as 4 μA. BICS are placed on the end of every standard cell row of the monitored system core logic. Each BICS monitors the quiescent current for its row and contributes to a single state-of-health output. The QCM includes extensive built-in debug capability via scan to allow complete controllability and observability for each BICS.

In the tester environment, the QCM distributed BICS can detect and locate faults in an IC. This can significantly reduce fault diagnosis efforts [8]. Real-time IDDQ testing can also reduce tester time when normal IDDQ test methods are time-intensive.

In the system environment, the QCM can provide state-of-health monitoring for the core of the IC by detecting high current faults introduced by extreme environment, or aging. It can also detect speed degradation of the technology due to radiation, temperature, or other environmental conditions. Highly critical outputs can be safely shut down in real time when faults or speed degradation indicate questionable logic function.

We will first describe the analog BICS and simulations, then discuss the digital control logic of the QCM. Finally, we will highlight specific problems and their solutions during integration, simulation, and layout of the QCM with the target IC design.

II. Analog BICS

The target IC, or Device-Under-Test (DUT), is fabricated in a 0.6 μm n-well technology using a standard cell digital library. The design consists of approximately 20,000 gates and has a system speed of 200 kHz. BICS must monitor leakage current after every transition of the system clock in order to be real-time. Desired BICS accuracy is less than 10 μA. These system parameters set the speed, size, and resolution requirements for the BICS.

The speed requirement is the most critical and is achieved by using multiple BICS across the die. Each BICS only monitors a sub-circuit of the DUT, which we call its Circuit-Under-Test (CUT). Either the power or ground for the CUTs must be isolated from each other in order to do multiple and concurrent BICS monitoring. In the DUT library, cell power or ground rails are shorted directly to the bulk of the transistors. Since this is an n-
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
well technology, all grounded n-transistor sources are shorted together by the silicon substrate and can not be isolated. The n-wells for the p-transistors provide \(V_{DD} \) power isolation for each standard cell row. Thus, the BICS can perform \(V_{DD} \) power rail monitoring individually and simultaneously if each CUT consists of one standard cell row. Similarly, p-wells can provide isolation for p-well technology, and \(V_{SS} \) monitoring is possible.

The BICS must consume minimal area, especially since each standard cell row contains a BICS. The method of measuring static current will determine both size and resolution of the BICS. Many fast and small BICS have been proposed [9-14]. Fig. 1 shows the BICS cell that we developed to best suite our application. Fig. 2 shows the common bias generator (only one per DUT) that supplies bias voltages \(V_{po} \), \(V_{pi} \), and \(V_{no} \) for the BICSs.

![Fig. 1. QCM Built-In Current Sensor (BICS)](image)

\[I_{REF} \]

\[V_{DD} \]

\[MP3 \]

\[V_{DDQ} \]

\[CUT \]

\[Standard \]

\[Cell Row \]

\[I_{REF} \]

\[MP4 \]

\[PAD \]

\[V_{po} \]

\[MP5 \]

\[PAD \]

\[V_{pi} \]

\[MN2 \]

\[MN3 \]

\[MN4 \]

\[V_{no} \]

\[V_{SS} \]

Fig. 2. Common Bias Generator

\(V_{DDQ} \) is the local power for each CUT and includes the n-well (i.e. PMOS bulk connections) and power rail for that standard cell row. The digital input TEST turns on MP3 to supply power to the CUT at \(V_{DDQ} \) from \(V_{DD} \) when monitoring is not being performed. MP3 is scaled very large so that switching transients for the CUT are not significantly affected during normal operation. The bulk for MP3 connects to \(V_{DDQ} \), forming a diode connection between \(V_{DD} \) and \(V_{DDQ} \). This insures that there will never be more than a diode drop in voltage between \(V_{DD} \) and \(V_{DDQ} \), even during monitoring.

Fig. 2 shows the common bias generator for the BICS cells. This circuit generates global bias voltages needed by the individual BICS cells. Distributing voltages instead of reference currents to the individual BICS cells means only one bias generator is needed on the die. The current reference supplied to the bias generator, \(I_{REF} \), comes either from an internal reference circuit or externally through a direct input. In either case, the reference current passes through MN2 to create the global bias voltage \(V_{no} \). Devices MN3 and MN4 mirror the current into scaled devices MP4 and MP5 to produce global bias voltages \(V_{po} \) and \(V_{pi} \), respectively. Tying the bias nodes to unused bond pads provides additional capacitance for noise filtering.

In the BICS (Fig. 1), after transient currents have settled, a high on TEST turns MP3 off to force quiescent current of the CUT through MP1 instead of MP3. Devices MP1, MP2, and MN1 form a high gain cascode amplifier (operated open loop as a comparator). MP1 and MP2 are sized up by \(\sim 2X \) from the bias generator transistors MP4 and MP5, therefore they can source \(2 \times I_{REF} \). MN1 is 1X the bias generator transistor MN2, therefore it can sink only \(I_{REF} \), or only half that of MP1 and MP2. Under normal conditions \((I_{DDQ} \sim 0) \) MN1 limits the current through the cascode amplifier to \(I_{REF} \) and saturates at a high voltage near \(V_{DD} \). Buffer B1 amplifies MN1 drain voltage and provides a proper digital output level, resulting in a low state at HIGHQC (High Quiescent Current detected). When the CUT quiescent current increases to the trip value (ideally \(I_{REF} \)), current through MP1 will reach \(2 \times I_{REF} \), which is its limit. If the CUT quiescent current is increased further, the net current sourced by MP2 drops below \(I_{REF} \). (The CUT is in essence robbing the nominal \(I_{REF} \) from MP2 and MN1) As a result, MN1 drain voltage will drop near the \(V_{SS} \) rail causing a high state on HIGHQC indicating a high quiescent current fault. The actual \(I_{DDQ} \) trip point varies from \(I_{REF} \) due to the non-linear relationship between MOS drain current and voltage. As IDDQ increases the bias points of MP1 and MP2 of the BICS change causing the trip point to occur somewhat lower than \(I_{REF} \). Furthermore, MP5 of the Bias Generator is sized to keep MP1 of the BICS in the linear region rather than full saturation. Doing so minimizes the drop in \(V_{DDQ} \) during the test phase when \(I_{DDQ} \) passes through MP1 of the BICS. The resulting trip point sits closer to half of \(I_{REF} \) than \(I_{REF} \). This simply represents a factor easily calibrated.

BICS and Bias Generator layouts conform to the DUT standard cell library so that automatic placement
and routing can be performed. Simulations across temperature, voltage, and process conditions insure proper function during testing and system operation. Fig. 3 shows simulation results of the BICS and Bias Generator under typical conditions. HIGHQC is the digital output of the BICS. As the IDDQ leakage current increases, HIGHQC switches from logic 0 state (0 V) to a logic 1 state (5 V). Detectable leakage current is below 10 μA, as required. The chosen resolution for testing is 4 μA. The circuit simulations work well below 4 μA, but operation is approaching the threshold region, so results may not be consistent from die to die under use conditions.

Fig. 3. HIGHQC output vs. IDDQ

Fig. 4 shows the change in V_{DDQ} during I_{DDQ} monitoring. Note that the voltage does not drop below 4.2 V because of the diode connection of BICS transistor MP3 bulk to V_{DDQ}.

The speed of the BICS will depend on how quickly V_{DDQ} can be discharged so that the voltage differential can be detected. This depends on the capacitance of the power net. Measured n-well unit capacitance times the maximum n-well dimensions of a standard cell row results in an estimated capacitance per BICS. Simulation shows 560 ns latency for BICS monitoring of 4 μA leakage current under typical conditions. This is more than adequate for a system speed of 200 kHz (2500 ns per half cycle). Table 1 gives the simulated HIGHQC latency for given I_{DDQ} leakage currents.

Table 1. BICS Latency

<table>
<thead>
<tr>
<th>I_{DDQ} leakage current</th>
<th>TEST to HIGHQC latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 μA</td>
<td>985 ns</td>
</tr>
<tr>
<td>4 μA</td>
<td>560 ns</td>
</tr>
<tr>
<td>8 μA</td>
<td>330 ns</td>
</tr>
<tr>
<td>16 μA</td>
<td>215 ns</td>
</tr>
</tbody>
</table>

III. Digital Control

QCM Digital Control must support multiple BICS, use minimal real-estate, and have relatively little impact on system design phase, including design insertion, placement, and routing. In the tester environment, each BICS must be individually controlled and observed for fault analysis and debug. In the system environment, BICS monitoring must occur real-time, and BIST for the QCM must be included.

Fig. 5 shows the QCM floorplan and block diagram. There must be no switching during I_{DDQ} monitoring. Therefore, asynchronous portions of the core logic can not be monitored. For the target DUT, asynchronous logic consists only of input registers (primary inputs are asynchronous).
The QCM Control contains the bias generator, clock generator, BIST control, and scan control. The bias generator provides a current reference for the BICS. The current reference for the BIAS generator can be provided externally or selected internally from 1 to 15 preset values. User controlled scan allows controlling and observing of individual BICS for debug and failure analysis. It is possible to go into and out of scan during normal system operation so that an offending vector can be analyzed. If a vector is known to trip the QCM, system operation is halted at that vector and scan is used to determine which BICS detected high IDDQ. By narrowing the DUT search area to a particular standard cell row, failure analysis efforts can be significantly reduced.

The clock generator provides timing signals for the BICS and delays the input clock, PRE_SYS_CLK, before applying it to the monitored and unmonitored core as SYS_CLK. Delaying the system core clock provides time to latch the previous clock transition BICS result and turn on the large p-type transistor (MP3 of Fig. 1) before the CUTs draw any switching currents. The number of BICS used determines the loading, and thus the delay required for the system clock. There is provision to multiplex the clock from PRE_SYS_CLK to SYS_CLK when the QCM is disabled. Fig. 6 shows a timing diagram for the clocking scheme. Note that T_{TST}, the IDDQ test time, is the last event before the next input clock transition. Therefore, T_{TST} time can be shortened to meet system speed requirements, trading off with IDDQ trip resolution. (See Table 2 for simulation times of target DUT)

The QCM End Cell contains a scan register used for BIST and User Controlled Scan. For the BIST, a single digital input, RUN_BIST, forces a logic 1 to propagate through the scan chain and perform a calibration for each BICS. If any BICS fails, HQC_TRIPPED will be asserted. A failed BIST indicates that a BICS is not functioning properly, or that the power rails are insufficient to supply enough current for calibration (if this is the case, there will also not be enough current for normal switching of the CUT).

The QCM End Cells are placed at the end of each standard cell row of the monitored system core and contains the BICS and a scan register. A fixed bus width (independent of the number of BICS) interfaces the QCM End Cells to the QCM Control. This reduces routing resources and circuit complexity. A fixed bus width means that each BICS digital output, HIGHQC, must contribute to a single digital pass/fail for the DUT. Fig. 7 shows the circuit developed to accomplish this. It uses a wired-OR arrangement where any BICS that pulls down HQC_PULL_L will overriive the control logic and cause the HQC_TRIPPED output to go high and remain high until reset. This indicates that a high IDDQ fault has been detected, and that logic is no longer reliable.
IV. QCM and DUT Integration

Integration of the QCM and DUT involves schematics, simulation, and layout. The QCM is self-contained and almost completely non-intrusive to the design, so schematic integration is achieved simply by instantiating the QCM Control and an array of 50 QCM End Cells in the top sheet of the design. Other minor edits include adding QCM I/Os, adjusting power and grounds, and intercepting and delaying the system clock.

With system design complete, integrated QCM and DUT analog simulations can proceed. The analog simulation SPICE file contains one QCM Bias Generator, 50 QCM End Cells, pad capacitance, \(V_{DDQ} \) capacitance, and surrounding logic, such as buffers, drivers, and miscellaneous logic. SPICE simulations verify driver sizes in and out of analog cells, clock timing, and logic functionality. Table 2 gives the simulation results for the target DUT under typical conditions. (Refer to Fig. 6) Simulation speed results are well within the DUT system speed requirement of 200 kHz.

<table>
<thead>
<tr>
<th>(I_{DDQ}) trip</th>
<th>(T_{\text{LAT}})</th>
<th>(T_{\text{TR}})</th>
<th>(T_{\text{TSS}})</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (\mu \text{A})</td>
<td>22 ns</td>
<td>8 ns</td>
<td>985 ns</td>
<td>990 kHz</td>
</tr>
<tr>
<td>4 (\mu \text{A})</td>
<td>22 ns</td>
<td>8 ns</td>
<td>560 ns</td>
<td>1.7 MHz</td>
</tr>
<tr>
<td>8 (\mu \text{A})</td>
<td>22 ns</td>
<td>8 ns</td>
<td>330 ns</td>
<td>2.8 MHz</td>
</tr>
<tr>
<td>16 (\mu \text{A})</td>
<td>22 ns</td>
<td>8 ns</td>
<td>215 ns</td>
<td>4.0 MHz</td>
</tr>
</tbody>
</table>

Analog SPICE simulations verify analog cell timing characteristics, such as delay, rise and fall times. SPICE extractions of layout cells provide capacitance loading of analog inputs and outputs. Behavioral models of the QCM analog cells incorporating these characteristics enable complete IC level digital verification of both DUT and QCM functionality and timing.

Layout integration utilizes the normal backend auto-place and route tools, with the exception of a script to seed the QCM End Cells at the end of the monitored core standard cell rows. The placement tool relies heavily on the hierarchy of the design. Simple front-end tool ‘find’ and ‘group’ commands adjust the hierarchy to place the QCM End Cells with the monitored core, and the QCM Control with the unmonitored input registers.

Fig. 8 shows the power/ground strapping floorplan. Power is routed on the left of the core logic and ground is routed on the right. This prevents shorting of the standard cell row \(V_{DDQ} \) nets between QCM end cells and the core logic, and is an option in the power strapping tool. The layout has an ‘equate’ command that resolves LVS errors caused by isolated standard cell row \(V_{DDQ} \) nets. The final layout passes all LVS and DRC rules.

Real estate is also an important issue. After layout, the addition of the QCM added approximately 20% core die area. This will be reduced with optimization after the QCM concept has been proven. The target DUT is I/O bound, even with the addition of the QCM. Therefore, there is no effective real estate impact.

VI. Conclusion

\(I_{DDQ} \) testing is a commonly used method for identifying faults in ICs. Certain environmental conditions such as extreme temperature, radiation, and aging can also cause high \(I_{DDQ} \). Therefore, BICS can provide state-of-health monitoring for safety-critical ICs if
the BICS can operate not only in (lab) testing but also real-time in-situ. BICS can also aid in the failure analysis process by locating which standard cell row is drawing high I_{DOQ}. We have integrated BICS into a safety-critical application with minimal cost and impact to the DUT. Complete analog and digital simulations verified timing and function. Addition of the QCM has little impact on the normal layout process of the DUT. Hardware is currently in fabrication and extensive test programs will evaluate the performance of the QCM and DUT.

VII. Acknowledgment

Thank you to all contributors of this work. Jerry Soden and Chuck Hawkins provided valuable support, guidance and review. Brent Meyer and Ron Anderson provided conceptual ideas. Kathy Wilkel and Harold Ortiz performed cell layout. Ivan Lowe and Russ Mikawa performed system layout. Dave Renninger and Kathy Wilkel performed reticle design and verification. Rick McFarland developed the test program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract number DE-AC04-94AL85000.

VIII. References