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Abstract

TQaddress lithium-ion cell safety issues in
demanding power applications, electrical and thermal
abuse tests were performed on 18650 sized cells.
Video and electrically monitored abuse tests in air
included short circuit, forced overcharge, forced
reversal, and controlled overheating (thermal) modes.
Controlled overheating tests to 200”C were
performed in a sealed chamber under a helium
atmosphere and the gases released from the cell
during thermal runaway were analyzed at regular
intervals using gas chromatography and mass
spectrometry. In addition to alkane and alkene
solvent breakdown fragments, significant Hz was
detected and evidence that HF was evolved was also
found.

Introduction

With the success of lithium-ion celis in commercial
electronics, this technology seems poised to move
into more demanding aerospace, military, and hybrid
electric vehicle applications. At the present time, the
materials chosen for this cell’s anode, cathode,
solvent, and electrolyte salts all continue to evolve,
based on somewhat conflicting performance, cost,
lifetime, environmental, and safety goals. It is not
known at present which materials will become the
new standard materials for these Li-ion cell
applications, but interest in the thermal stability of
their material is very topical [I-3]. It does not seem
likely, however, that optimization for safety will get
easier as application demands get more stringent, as
cells increase in size, and as cells are hermetically
sealed to help achieve longer application lives.
Hence the need for the clearest possible
understanding of the intrinsic reactivities of the
chosen cell materials and which is the motivation for
linking observed cell behavior with cell chemistty
andgasevolution. Otherworkershavebeenlooking
at theproductsofelectrolytebreakdown,butperhaps
withouttheimmediatelinkto cell safety [4-5].

This study is part ofa larger, more comprehensive
effort at the Sandia National Laboratories and other
DOE National Laboratories to understand how design
choices in the lithium ion cell chemistry influence cell
performance,cyclelife,calendarlife,andsafety.

Performance tests, aging tests, accelerated rate
@ 3+ ‘$

calorimetry (ARC), differential scanning calorimet#)o L
(DSC), and microcalorimetr-ytests on whole cells and~ @ @
cell parts are being performed so that a complete .%+%$
picture of how this electrochemistry behaves maybe
constructed.

Methods and Equipment

All electrical and thermal abuse tests were conducted
at the Explosive Component Facility (ECF), at Sandia
National Laboratories, Albuquerque, New Mexico.
Test bays at the ECF are equipped with reinforced
concrete walls and a custom air scrubbing system to
permit safe, remote controlled abuse testing of cells
and batteries.

Two types of 18650 size lithium-ion cells were tested in
this study. The first type, called here Type I, was a
commercially available, older cell employing
conventional materials choices. PVDF binder was present
in both anode and cathode. Coke was the active anode on
a Cu backing, and LiCoOz the active cathode on Al
backing. The electrolyte used was 1.OMLiPF6 in a PC-
EC-DMC mix. The separator was of a non-fhsing,
microporous polypropylene type. These cells also have a
full complement of built-in safety devices: a pressure
yielding vent, an internal pressure actuated lead breaker,
and a positive temperature coefficient (PTC) resistor
located in the header seal. The PTC increases cell
resistance more than 10 fold when the cell temperature
goes above 100°C.

The second type, called here Type II, was privately
built for DOE research and did not include the PTC
and lead breaker features. This cell design did
contain a shut down separator which behaves much
like a PTC device under short circuit conditions at
least insofar as leading to increased resistance upon
cell heating. These cells contained cathodes that
were 84 WT??O LiNio,85Coo.1502with graphite and
carbon black added for conduction, and the anode
was a blend of SFG-6 and MCMB-6 carbons. The
electrolyte was 1.0 M LiPF6 in 1:1 EC/DEC. PVDF
binder was used throughout. The separator was
supplied by Celgard.

Electrical abuse tests in air were performed in
triplicate on cells which were stripped of their
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1. Introduction

Mass transfer continues to be cited as a critical transport process in groundwater,

soils, and streams. Estimation of rate coefficients (for both difision and sorption) is

highly sensitive to the late-time behavior of breakthrough curves (BTCS). Indeed, recent

studies have-shown that the late-time data (i.e., after the advective peak has passed) may

be the most important data for estimation of both the capacity coefficient and the rate

coefficient or density function of rate coefficients [e.g., Farrell and Rehdxw-d, 1994;

Wagner and Har-vey, 199~ Werth et al., 1997; Haggerty and Gorelick, 1998; Haggerty et

aI., in review]. With improvements in experimental and analytical techniques,

concentration obsenations are now frequently available from laborato~ and field

experiments over several orders of magnitude of both time and concentration. Therefore,

the examination of late-time behavior of BTCS is both feasible and critically important to

the evaluation of rate-Iimited mass transfer, particularly if discrimination between

dfierent models of mass transfer is desired.

A rapidly growing body of recent work on mass transfer and transport has

extended the basic model of single-rate mass transfer [e.g., Coats and Snziih, 1964; van

Genuchten and Wierenga, 1976; Cameron and Khde, 1977; Rao et al., 1980] or two-rate

mass transfer [e.g., Brusseau et al., 1989] to models with distributed, or multiple rates of

mass-transfer described by a density function of rate coefficients and primarily applied to

laboratory data ~Connaughton et al., 1993; Lafolie and Hayot, 1993; Pedit and Miller,

1994, 1995; Backes et al, 1995; Chen and Wagenet, 1995; Haggerty and Gorelick, 1995;

Ahn et al, 1996; Chen and Wagenet, 1!?97; Culver et al., 1997; Cunningham et al., 1997;

. .
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1 Sahoo and Smith, 1997; Werlh et al., 1997; Cunningham and Roberts, 1998; Deitsch et

2 al., 1998; Haggerfy and Gorelick, 1998; Kau@nan ei al., 1998; Lorden ei ai., 1998;

3 McLaren et al., 1998; Holienbeck ei al., 1999; Stager and Perram, 1999]. It should be

4 noted, however, that the concept of multiple time-scales of mass transfer has been

5 employed for at least three orders of magnitude, primarily in chemical engineering and

6 soil physics [Ruihven and Loughiin, 197 1; Villermaux, 1981; Rao et al., 1982; iVeretnieks

7 and Rasmuson, 1984; Rasmuson, 1985; Fong and AAdkey, 1990; Valocchi,. 1990], as

8 have multiple time-scales of reaction in chemistry [e.g., AlbeW et al., 1985 and many

9 others].

10 The work of Haggerty and Goreiick [1995, 1998] is particularly important to this

11 current work. These papers develop and apply the “multirate” model, which is a

12 transport model with a spatially-uniform density fimction of first-order mass transfer rate

13 coefficients. These papers show that any density function of diffusion rate coefficient

14 may be represented in a transport model by a different, but exactly equivalen~ density

15 function of fret-order rate coefficients.

16 The multiiate model has been applied to field data collected in a set of single-well

17 and two-well ~nvergent flOW tracer tests conducted in a fractured dolomite (Haggerty et

18 al., in review). After pulse injections of solute, the BTC data in the Single-Well

19 Injection-Withdrawal (SWIW) tests showed a power-law behavior at late-time

20 (i.e., c - t$. Withii the SWIW tests, k ranged from 2.1 to 2.8. The d@sion rate

21 coefficients in this application were described by an assumed lognormal density function

22 of diffinion rate coefficients, and interpretation of the BTC data focused on defining the

~~ mean and standard deviation of this lognormal density function to match data obsemed in

4
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the tail of the BTC. While the lognon-nal density function provided excellent matches to

the data, the details of the power-law behavior of the tail of the BTC were left for a

future investigation. In particular, two issues were left: (1) an understanding of the

density functions of rate coefficients that could lead to late-time power-law behavio~ and

(2) the range of late-time slopes that can be provided by a Iognorrnal density function.

A power-law plots as a straight line on a double-logarithmic graph.

Consequently, in this paper we will frequently refer to the value of the power k as the

“slope”. Although the slope is always negative, for the sake of brevity, we will refer only

to its absolute value.

Power-law behavior at late time in BTCS has been noted in a number of other

laboratory and field experiments. Farrell and Reinhard [1994] and Werth et al. [1997]

observed power-law BTC and mass recovery curves with sorbing organic solutes in

unsaturated media. Cunningham et al. [1997] were able to represent the Werth et al.

[1997] data with a gamma density fhnction of diffusion rate coefficients, while Haggerty

and Gorelick [1998] were able to approximate the power-law behavior with a Iognormal

density finction of dif%mion rate coefficients. Both Cunningham et al. [1997] and
,

Hagger~ and Gorelick [1998] noted the inability of conventional models of mass

transfer to yield the appropriate power-law behavior. Power-law behavior with a slope

of 3/2 has been observed in field data from the Grimsel test site and has been adequately

explained with conventional (single-rate) matrix difision [Eikenberg ei al., 1994;

iYadernzann and Heer, 1996]. However, single-rate diffusion is only able to yield a

power-law of exactly rsq, and can only maintain this behavior slightly longer than the

. 5
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mean immobile-domain residence time (1== ~/ 15Da for spheres and &/3Da for layers),

where Da is the apparent diffisivity and a is the half-thickness of the immobile domain.

Power-law behavior such as that observed in Farrell and Reinhard [1994]; Werth et al.

[1997]; or A4eigs and Beauheim [in review] cannot be explained with conventional

single-rate diffusion. Jaekel et al. [1996] showed that power-law BTCS result from a

pulse injection of solute and equilibrium Freundlich sorption. Unfortunately, none of the

data sets mentioned above are explained by this (the A4eigs and Beauheim tracers were

non-sorbing, and equilibrium Freundlich sorption is insufficient to explain the power-

laws in the other data sets [Werth et al., 1997]).

The late-tiie (asymptotic) behavior of BTCS undergoing first-order linear

nonequilibrium sorption has been examined by Vereecken ei al. [1999]. Vereecken et al.
. .

[1999] develop late-time expressions for the BTC that are valid for time-varying

velocity, but only after a pulse injection and in media with one- or two-site

nonequilibrium sorption.

The purpose of tlis paper is to explore the nature of tailing in mobile-immobile

(dual porosity) tracer test 13TCS for a wide variety of linear mass transfer models.
,

Specifically, we have the following objectives: (1) develop an analytic expression for the

late-time BTCS for transport experiencing a distribution of either first-order sorption or

diffusion time-scales and for both pulse injections and media with non-zero initial

concentrations; (2) examine the information that can be provided by the late-time

behavior of the BTC; (3) examine BTCS that exhibit power-law behavior at late time and -

the implications for mass transfer. Particular expressions describing the late-time BTCS
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for single-rate models with both infinite and finite immobile domains, as well as

mukirate modek with first-order. and diffusion rate coefficients defined by lognorma},

gamma and power-law density fimctions are provided. Implications of the late-time

slopes defined by these equations are discussed with respect to mass transfer processes,

including implications for estimates of the mean residence time in the immobile zone (or,

equivalently, a characteristic mass transfer time). The power-law late-time behavior of

BTCS in two SWIW tests from the WIPP site are examined.

8 2. Mathematical Development

9 2.1. General case

10

11

12

13

14

15

16

17

18

19

2.1.1. Late-Time Solution for Concentration:

The mass balance equation for a solute

along a single stream tube), and interacting with

sorption, and/or linear nonequilibrium sorption is:

$(~-~)=~+r(x>f)

advecting and dispersing in 1-D (i.e.,

rock via diffusion, linear equilibrium

.

(1)

where ct~ ~] is longitudinal dispersivity; v &Tl] is pore-fluid velocity; Ra [-] is the

retardation factor in the mobile (advective, effective or kinematic) porosity; c M-3] is

solute concentration within the advective porosity; and ‘(x, t) ~-s~l] is the source-

sink term for mass exchange with the immobile (matrix or diffusive) porosity and

no’nequilibrium sorption sites. From this point forward, we will adopt the terminology of

7
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“mobile” and “immobile” domains and concentrations, which refer to either sorption or

difffsion. We wili employ the uniform initial conditions

C(X,t=O) =Cj~(x, ‘, I = O) = co

where Cjm @fL-3]is solute concentration within the immobile domain, which may,

case of diffision, be a fimction of a second spatial coordinate z oriented normal

mobile-immobile domain interface. We will also employ the boundary conditions

C(X=O,i)= L@ (t)

+--+ ‘)=’O

(~a)

in the

to the

(2b)

(2C)

8

where mO@lTL-s] is the zeroth moment of the BTC; CO~-;] is the initial concentration

in the system; and ~(t) [1?] is the Dirac delta. The Dirac injection is never met in

practice. However, as long as the duration of the pulse is much shorter than the mean

residence time in the immobile zone, (2b) will be a sufficiently good approximation. For

a finite pulse injection with constant velocity, the zeroth moment nZOis the injected

concentration multiplied by injection time.

boundag conditions (2a-c), then at late time:

for t>> td (3) .

where tad .[T] is the average advective residence time (equal to LRa/v if velocity is

constant in s~ace), In other words. once the irmut pulse has advected far past the point of
A. . .

8



.

1

~

3

4

5

6

7

8

9

10

11

12

13

14

15

16

fla~:er~ et al,, Late-time behmior ofbreakthrough curves

observation L, then dispersion has a negligible effect on concentration. Similarly, if the

immobile domain has a long mean residence time relative to advection, then at late time:

~<< r(x, t), for r>> rd and ta>> td (4)

where t= [T] is the mean residence time in the immobile domain. In other words,

concentration change at late time is dominated by exchange between the mobile and

immobile domains if the average immobile domain residence time is longer than the

advective time. Note that from this point forward, it will be assumed that t= >> ia~zmd

1>> tad unless othenvise stated. Therefore, the equation (1) maybe re-written:

By integration we can obtain a solution for concentration at late time:

C(X=L, t)=-[&(xy w

(5)

(6)

where L ~] is the distance from point of injection to point of observation along the flow

path. If velocity, retardation%and the parameters and finctions that comprise r(x, t) are

spatially unifon-n, then thk leaves us with a very simple expression for concentration at

late time:

4X=L‘)=-”N) (7)

9
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The spatially-variable case is left for a future paper. From this point on the dependency

of c on x=-L and t is implicitly assumed.

2.1.2. Source-Sink Term r(t):

The source-sink term I’(i) is the rate of loss or gain of concentration to or from

the immobile domain (loss at early time and gain at late tiie). For any linear mass

transfer problem with unifoqn initial conditions it is possible to express the source-sink

term as the following, which is valid at all times:

(8)

where g(t) is a “memory fimction” to be defined; * represents the convolution product; gO

is the memory fimction at t = O; and CO[ML-3] is the injtial concentration. Note that the

Laplace transform of (8) is commonly used in analytical solutions [e.g., VWerrnaux, 1974

and many others since], and that the last transformation in (8) is most easily derived in

the Laplace domain. Equation (8) has been expressed explicitly in the time domain by

e.g., Peszynska [1996] and Carrera et al. [1998], and results in an integro-partial ‘

differential equation when substituted back into (l). The memory function g(t) may be

physically interpreted as the capacity coefllcient (~~ot, see Section 2.3) multiplied by the

residence time distribution in the immobile domain, given a Dirac pulse at the surface.

The derivative of g(t) is proportional to what is commonly called in

probability of f~st return or distribution of first passage times

Georges, 1990, p. 271-272].

statistical physics the

~e.g., Bouchaud and

10
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We desire to find a closed-form expression for the source-sink term in (8),

accurate at late time, that may be substituted into (7). We recognize the following

characteristics of r(t): (1) at early time the fimction represents rapid loss from a high-

concentration

the fbnction

pulse in the mobile domain to the immobile domain; and

represents slow gain to the mobile domain (which

concentration) from the immobile domain. To obtain a solution that is

(~) at late time

has very low

accurate at late

time, we therefore require an approximate function for mobile-domain concentration that

has the comect pulse size at early time, and that is approximately zero at late time, Such

an approximation is available in c s m05(t), where nZOis the zeroti moment of the

injection. Note that this approximation is used only for calculating the source-sink term,

and not as an approximation for late-time concentration itself. That this approximation is

sufficient will become apparent when the results are compared to a full numerical

solution. Employing the properties of convolution, (8) can now be expressed:

r(~)s ‘o% – cog, for t>> td and t.>> td (9)

The general form of the memory function is [modified from Carrera et al., 1998]
.

g(t)=J“ctb(a)e-wda
o

(lo)

where ct is a rate coefficient and b(a) is a density fimction of frost-order rate coefficients.

hTotetwo differences between our definition of the memoxy function and that of Carrera

el al. [1998, Eqn. (15), p. 182]. First, our memory fiinction g(t) includes the constants

that are placed before the source-sink term in Carrera et al.’s mass balance equation.

11
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Secondly, although Carrera et al. [1998] express (1O) as a discrete function, the more

~enera~ expression is ~ a continuous finctioq allowing for density functions of diffusion

rate coefficients, etc. Various density functions b(a) are given in Table 1, along with the

corresponding memory function ~1).

We note that (10) is the Laplace transform of ct b(ct), where t substitutes for the ‘

Laplace variable. We also use the property of the Laplace transform [e.g., Roberts and

Kaufia~, 1966, P. 4]

Lap{a=b(a)} = - ~

where Lap{ *) indicates the Laplace transform.

Employing (7), (9), (10), and (11), we

concentration at late time:

.=td(cg-mog)

“~[(’o+~o)~~(a)e-d~a

= l~Lap{(co + cxmO)ab(ct)}

All forms of (12) are equivalent and are usefii

.

(11)

can now write an approximation for

(12)

m different ways for understanding the

late-time behavior of BTCS. We expect that in most applications only one of co or nZO

will be non-zero; however, (12) holds true regardless of the values of co and m,. Note

that the late-time concentration can be calculated for various density fimctions b(ct) using

g-(t)supplied in Table 1.
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At this point, we re-emphasize the restrictions on Equation (12). These are (1)

time is much greater than the advection time; (2) the mean residence time in the

immobile domain is much greater than the advection time; and (3)

than the duration of the injection pulse, meaning that an

valid approximation to the injection. In a heterogeneous

impulse

velocity

time is much greater

(Dirac) function is a

field, restrictions (1)

and (2) mean that both time and mean residence time in the immobile domain must be

much greater than the sum of advection time across a control plane and the standard

deviation of that advection time. In particular, a power-law distribution of advection

times (such as invoked by e.g., Berkowitz and Scher [1997]) would invalidate the use of

(12).

2.2. PJotes on Application of Equation (12)

Equation (12) presents an interesting theoretical development for two reasons.

First, the late-time behavior of the J3TC is easily obtained for a wide variety of density

functions b(a) using any comprehensive table of Laplace transforms.

simpler for fu-st-order mass transfer than the equations developed by

Equation (12) is

Vereecken et al.

[1999]. The equation also provides an asymptotic expression for any mass transfer

process with a known memory fimction g(t), which is easily calculated for a wide range

of sorption and diffhsion processes. Conversely, it must be pointed out, the equations

developed by Jlereecken e~al. [1999] allow for time-vaging velocity.

Second, (12) suggests that the density fimction of mass transfer rate coefficients

(whether from diffision, nonequilibrium sorption, or a general density function of mass

transfer processes) is available directly and ~alytically from bre~~hrough data. In fac~
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if (12) is treated as an integral equation where b(a) is an unknown, the density function

b(a) may be directly calculated using the inverse Laplace transform. If the medium is

initially free of tracer, then CO= O and the density function b(a) is given analytically by

the Bromwich integral: “

b(a) = 1 J c(=L>l)e-Md’=~JOa2Lap-’{c(=L’)}lfloa2 (Zni) ~r
(13)

where i is the unit irnasjnary numbe~ and Br represents the Bromwich contour [see, e.g.,

LePage, 1961, p. 319-320]. A similar equation maybe easily constructed for the case of

non-zero initial conditions and continuous flushlng of tfacer-free fluid, such as in a purge

experiment. Unfortunately, the practical use of (13) is limited by the

can only use the late-time breakthrough data, and that any errors in

numerical instabilities in the inverse Laplace transfoti. Nonetheless,

conditions that we

the data introduce

(13) will allow us

to determine certain important properties of the density function b( a).

For relatively simple cases (i.e., single rate mass transfer), the properties of (12)

‘allow estimation of the rate coefficient and capacity coei%cient directly from the BTC

[also see Vereecken et al., 1999]. For some more complex cases (e.g., gamma and

power-law density fictions), the properties of (12) will allow certain properties of the

density function of rate coefficients to be determined. This will be discussed in the

following sections.
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2.3.

usefid

Notes on the Density Function b(u)

We add two notes regarding the density function b(a) before continuing. First, a

definition is that of the O*moment of the density finction of rate coefllcients:

[b(a)da=13tof (14)

where J3tot is commonly known as the capacity coefficient. The capacity” coefficient is

the ratio of mass in the immobile domain to mass in the mobile domain at equilibrium; in

the absence of sorption it is the ratio of the two volumes.

Second, we note without derivation that the Laplace transform of the density

function of rate coefficients is a particularly useful

proportional to tie mass fraction remaining in an

fimction by itself.

immobile domain,

This function is

where the initial

conditions are uniform concentration in the immobile domain and the boundzuy condition

on the immobile domain is zero concentration. The mass fraction remaining in the entire

system (MZVIJis therefore:

(15)’

In other words, the mass fraction remaining is calculated simply by finding the Laplace

transform of the density finction b(ct).

15
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2.4. Mean Residence Time in Immobile Domain

One of the criteria for use of equation (1?) is that the mean residence time in the

immobile domain be much greater than the advection time. This sub-section outlines the

calculation of tlis mean residence time, as well as providing an effective rate coefficient

that may be used in an “equivalent” first-order model of mass transfer.

The residence time distribution in the immobile domain given a Dirac impulse at

the surface is g(i)/~~ol. The mean residence time (or characteristic mass transfer time) is

therefore “

\

“ b(a)

‘k ,
~da

It can be shown [e.g., Cunningham

(16)

and Roberts, 1998] that the zeroth, f~st, and second

temporal moments of the BTC are the same for any density fimction of rate coefficients

provided that the mean residence time in the immobile domain is the same. Therefore,
,

the best effective rate coefficient (i.e., the one that yields the same zeroth, first,

second moments of the BTC) is the harmonic mean of the density fimction, since:

and

16
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Notably, the harmonic mean may be zero for some density functions, meaning that the

mean residence time in the immobile domain is infinite. Note that an infinite mean

residence time does not require infinite size or infinite capacity in the immobile domain.

The harmonic means for a number of density functions b(ct) are shown in Table 1.

3. Late-Time Behavior of BTCS

In this section we will consider a number of examples of BTCS after a pulse

injection into a medium with zero initial concentration. Many of the fimctions developed

in this section are summarized in Table 1, as are several others not discussed here.

3.1. Simple Example 1: First-Order Mass Transfer

Consider the simplest case of mass transfer described by a single first-order rate

coefficient. The density function of rate coefficients is

b(a) = pfo~(cx- %)

The memory fhnction ~t), given by applying (1O)to (18), is

.

g(t) = UJP ~o~-~f

The resulting late-time approximation for concentration in the mobile domain (with

initial concentration of zero) is given by substituting (19) into (12):

24c = mJ&p tot~fe f

(18)

(19)

(20)

17
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This solution displays the well-known behavior that late-time concentration is

exponential with a semi-log slope d(ln c)/cit of -ct~

3.2. Simple Example 2: Finite Spherical Blocks

Consider the case of diffusion into finite spherical matrix blocks. Haggeriy and

Gorelick [1995] showed that a particular discrete density function

coefficients results in a model that is mathematically identical, from

of fust-order rate

the perspective of

the mobile domain concentratio&, to that of diffusion into and out of various matrix

geometries. Using mathematics that is more similar to that presented in this paper,

Carrera et al. [1998] make the same assertion. In the case of spherical blocks, the

density function is

(21)

where ~~o~[-] is the capacity coefficient of the spherical blocks; Da [T]] is the apparent

diffimivity; and a ~] is the radius of the spherical blocks. This density function is a

series of Dirac deltas with monotonically decreasing weight. The harmonic mean of (21)

is the well-known linear driving force approximation 15 Da/& [e.g., GIueckuuj 1955],

-and the mean residence time in the spheres is therefore ia = &/l 5Da. The memory

l%nction is

(q

1s
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Readers familiar with diffision in spherical geometry will recognize (22) as

proportional to the mass flux out of spheres initially saturated with a uniform solute

concentration and with a boundary concentration of zero. [e.g., Crcznk, 1975, p. 91;

GrathwohI ei al., 1994].

The resulting late-time approximation for concentration in the mobile domain

(with initial concentration of zero) is given by substituting (22) into (12):

From this expression, we can see that the late-time concentration is exponential;

therefore, on a double-log plot, the late-time slope will approach m shortly after the mean

residence time in the immobile domain (~a= ~/1 5Da) is reached.

Figure 1 shows the full solution to the advection-dispersion-mass transfer

(ADMT) equations and the late-time approximation. The ADMT equations were solved

using STAMMT-L [Haggeriy and Reeves, 1999] for m. = 1 x

tad = 1 x 10g s; DJ& = 1 x 10-SS-l; ~tO,= 1; and a Peclet number

04 s kg m-s;

of 1000. All

concen~ations have been nondimensionalized

in (23).

From Figure 1 we make four points.

by the terms in front of the intinite series

First, the approximation very accurately

represents the late-time behavior of the ADMT solution, but obviously does not contain

the advective-dispersive peak. We can see in the figure that the late-time approximation

is valid when t >> tad provided that 1=>> fad.

19
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Second, the late-time behavior demonstrates the well-known 3/2 slope for matrix

diffusion [e.g., Hadermann and Heer, 1996], which ends when tDaI$ >1. As long as

the block size a is large enough (or Da small enough) that tDa/~ << 1 over the entire

time of a tracer test then the slope remains 3/2. In such a case it would not be possible

to estimate the value of Da/~ from the BTC. The limiting case of “infinite” matrix

blocks is given in

coefficient for this

Table 1, for c - dg/di - f;n. Note that the harmonic mean rate

case is zero, meaning that the mean residence time for very large

blocks approaches infinity.

Third, the location of the BTC peak in the ADMT solution may lie anywhere on

the late-time approximation cuwe, dependent on the relative values of fad and Da/~

Last, we note that it is possible

time approximation as a type-curve,

coefficient ~lot would be estimated

=tiiated from the horizontal shift.

to estimate both ~~o~and 11~~ by using the late-

if the break in slope is present. The capacity

from the vertical SW while Da/f would be

3.3. Gamma Density Function of First-Order Rate Coefficients

Gamma density fhnctions of rate coefficients have been used ~o represent

multirate mass transfer in several papers. Cunningham et al. [1997] developed the

mathematics of a gamma density function of diffision rate coefficients, while ?Verth ei

al. [1997] applied this model successfully to several mass-fraction-remaining data sets.

Confiaughion et al. [1993] used a gamma density function of fm.t-order rate coefficients

‘to model release of naphthalene from soil, while Pedit and Mller [1994] employed a

gamma density ,jimction of first-order rate coeff~cients to examine diuron sorption. Other

20
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examples include Ahn et al [1996]; Chen and Wagenei [1997]; CuIver el al [1997];

Sahoo and Smith [1997]; Deitsch et al.

[1998], and Stager and Perram [1999].

[1998]; Kauj+nan et al. [1998]; Lorden et al.

The method we are using is applicable to both

types of density fimctions, and the key relationships for both are given in Table 1.

Although the early time behavior will differ between gamma density fi-mctions of first-

order and diffision rate coefficients, the late-time slope will be identical for the same

value of ~. ,

The gamma density fimction of fust-order rate coefficients is

where y [T-l] is the scale parameter and q [-] is the shape parameter. The hacmonic mean

of (24) is Oif q is less than 1, a fact that is of particular importance for applications. As

a consequence, the mean residence time in the immobile domain would be infinite.

(These facts are also true for gamma density fhnctions of dif..sion rate coefficients.) If

q is greater than 1, the harmonic mean of (24) is (q-l)y.

The memory fhnction is

4)= Plot~(Yt + 1)-’

Therefore, the late-time concentration in the fracture is given by

c = WJd Pt0tY2
+-@

(y’+’+’

Note that when yt >>1 the BTC follows a power-law:

(25)

(26)
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The same late-time power-law behavior is also exhibited with a density function of

diiT.mien rate coefficients. Note that’ a power-law behavior (c - r~ with k <3 would

indicate an inftite second (and higher) temporai moment and an infinite mean residence

time in the immobile domain.

Figure 2 shows the late-time approximation in (26) nondimensionalized by the

transport terms. We have normalized time by the mass transfer rate y. Figure 2 also

shows a solution to the ADMT equations with STAMMT-L (Hagger@ and Reeves, 1999)

formO= 1 x 104s kg m-3;tad= 1 x 104s; y= 1 x 10-~s-]; ~ = 0.5; ~tot= 1; and aPeclet

number of 1000.

We see from (27) and Figure 2 that the late-time double-log slope of

concentration will be -(q+2). For comparison to published values, Connaughton ei al.

[1993] estimated values of q in the range of 0.17 to 0.37 for a gamma density function of

f~=t-order rate coefficients, while Pedii and Mller [1994] estimated ~ = 0.11 from their

experiments; Culver et al. [1997] estimated q = 0.023 to 0.054 for their column

experiments; Deifsch et al. [1998] estimated ~ from 0.092 to 350 in 15 experiments with

&ffferent rnateria]s,

estimated q = 0.60

with the majority having ~ below 1

and 0.84 in two column experiments.

Kau$$nan et al. [1998]

Werth et al [1997] found

szlues of q equal to approximately 0.5 for a gamma density function of diffusion rate

coefficients. Note that almost all of these estimated ~ (i.e., those below 1) will lead to an

i~,flnite mean residence time within the immobiie domain. Consequently, the variance of

.
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the breakthrough times will be infinite with these models. Late-time behavior associated

with gamma density functions is discussed fhrther in Section 4.2.

3.4. Lognormal Density Function of Diffusion Rate Coefficients

Lognormal density fbnctions of rate coefficients have also been used to represent

mass transfer in natural systems. Pedit and Miller [1994]; Backes et al. [1995];

Hagger~ [1995]; Culver et al. [1997]; McLaren et al. [1998] all used a lognormal

density function of first-order rate coefficients to model uptake and release of sorbing

solutes in soils. Pedit and Miller [1995] and Haggerty and Gorelick [1998] used a

lognormal density function of diffusion rate coefficients to model diffusion of sorbing

solutes in soils. As is true for the gamma density functions of rate coefficients, the

behavior of both lognormal models is very similar, especially at late time and large

variances. In our analysis here we will employ only a density fimction of diffusion rate

coefficients:

(28)

The equivalent density finction of first-order rate coefficients is ~iven by Hagger@ and

Gorelick [1998]:
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The harmonic mean of (29) is 3exp( p-uz/2). Consequently, the effective rate coefficient

is approximately 0.22c? orders of magnitude smaller than the geometric mean. For large

o, the effective rate coefficient is approximately zero and the mean residence time in the

immobile domain approaches infinity. In the limit of very large G, the density fi-mction is

log-unifo~ and is equivalent to a power-law density function with - a-l. As we shall

see in the following sections, this corresponds to a late-tiie BTC of- f2.

The Laplace transform of (29) must be done numerically. The result may then be

inserted into (12). After takng the second derivative in time (numerically), the late-time

approximation for a concentration BTC is shown in Figure 3 for various values of G.

The time axis of Figure 3 is normalized by the geometric mean of (24), and concentration

is normalized the same as previously. Fi=~re 3 also shows the solution to the ADMT

equations in the presence of a lognormal density function of di.ffision rate coefficients.

The ADMT equations were solved using STAMMT-L [Hagger~ andlleeves, 1999] for

n?O= lx 104skgm-3;~ad=l X 104S; e-p = lx 104 s-1; 0=5; ~~ot=l; anda Peclet

number of 1000. The discrepimcy at late time is due to numerical error in the series of

numerical steps for the late-time approximation; however, the late-time slopes are

correct. Note that the late-time slopes for the lognormal distribution lie between 2 and 3

for a large range of time, provided that o is greater than approximately 3.

24
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Published values of o for lognormal distributions of rate coefficients are typically

larger than 3 [e.g., Pedit and Mller, 1994, 1995; Culver et al., 1997; Haggerp and

Gorelick, 1998; Haggerty et al., in review], suggesting that mass transfer rate coefficients

have large variability in natural media. With such large values of ~, we would expect to

see late-time slopes on double-log BTCS after a pulse-inj ection between 2 and 3.

3.5. Power Law Density function of First-Order Rate Coefficients

An alternative density fhnction that has been less commonly used to describe

mass transfer in groundwater and soils is a power-law density function. Hatano and

Hatano [1998] used a power-law density function of waiting times in the context of a

continuous-time random walk to model the sorption of radionuclides in a column

experiment. Power-law density finctions of waiting times have been used in statistical

physics to describe anomalous transport behavior [e.g., Bouchard and Georges, 1990;

Scher et al., 1991]. Frequently such density functions arise from diffusion or rate-limited

sorption on a fractal geometry. A particular advantage of a power-law distribution,

within the context of thk work is that it allows us to investigate power-law BTC

behavior for a larger range of late-time slopes.
. .

As with a gamma density “function it is possible to define both a density function

of first-order rate coefficients and an equivalent density function of diffision rate

coefllcients. Again, although the early time behavior will differ for power-law density

functions of first-order and diflision rate coefficients, the late-time slope will be

identical for the same value of k. For the sake of brevity, we show only the power-law

density function of first-order rate coefficients.

25
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A truncated power-law density function may be written as follows:

(30a)

where ~x. [T1] is the maximum rate coefficient; ~h [T-l] is the minimum rate

coefficient; and k is the exponent. The value of ~ti may be zero if k >2. The reason for

choosing to write the power-law as k-3 will become apparent shortly. If k = 2, the

density function may be written

The late-time concentration in the mobile domain is

c=w~~:czk-’e-&da , k> Oaztdk# 2 (31)

For arbitrary (non-integer) values of k, (31) must in general be evaluated

numerically. However, the most important point about (31) is that

,

c- f-k , ~.l<<f <<a-j
mat mm (32)

Expressed in words, the slope of the BTC is k for time: much greater than a~-~ and

much less than a~:~ for all values of k. At times greater than a~j~ the slope goes to m.

26
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1 It is possible to present closed form solutions for many specific cases of (3 1); we

2 will provide the solutions for the cases k = 1, k = 2, and k =3. First, let us define three

3 other variables in terms of %=Xand ~k:

.

5

6

7

8

9

10

11
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14

k,= ;-
min

.7

(33a)

a~
~2= l–p ‘

k$2

P
ci~

k=2
In (1,) ‘

Note that q is a function of %2Y,a~ti, and k, and is used for the purpose of simplifying

the following equations only.

●

Using these variables, the late-time concentration for k= 1 is therefore

(c =m~.~ ,Op~ e-7[ j.,
)

– e-f T-l (34)

(33b)

(MC)

Ifk = 2, then the density fimction is Iog-uniform, and ‘L- ‘-’- “- -------’--’’ --- ‘-LUC ltlLC-LllHC CXJIIG~IIUiiLIUIl 1S

(35)

If k = 3, then the density function is uniform, and the late-time concentration is

r 1

a21e-’’kr(:+*+2e-T(Tc ‘m$aGPIO, p (36)
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From the abo~e equations we see that a family of curves is required for each value of k

since both ctmjll and ccmm appear in all equations. However, inspection of the equations

indicates that the curves for each value of k will be identical until t approaches ct~~ .

The harmonic mean of the density function (30a) and (30b) is

._

a“- J;) ‘

k=2

k=3
.

(37)
*

1

()k–3 ~,k-Ll
a~k

()
otherwise

k–2 k:-3_~ ‘

.Approximations may be made to (37) that are useful in understanding what controls the

harmonic mean of the distribution. These approximations are given in Table 2. Note

again that the mean residence time in the immobile domain is simply the inverse of a“~.

We make two points in regard to (37) and Table 2, and leave further discussion of

late-time behavior associated with power-law density functions to Section 4.2. Firs$ if

the late-time slope of the BTC is less than 3 (i.e., k < 3), then the harmonic mean is

controlled by amin. However, if the late-time behavior of the BTC remains power-law

until the end of the experiment, the parameter ~min cannot be

Consequently, the harmonic mean (and therefore the mean

estimated from a BTC,.

residence time in the

immobile domain) cannot be estimated if the BTC remains power-law until the end of

the experiment with a slope less than 3.

Second, if k <3 and amill = O, then the harmonic mean is O. Therefore, if a

BTC has a late-time slope of k <3, and the behavior is due to mass transfer, this may

28
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indicate an infinite mean residence time in the immobile domain. It also causes the

second and higher temporal moments of the BTC to be infinite.

Note that there is nothing that physically precludes a late-time slope between 2

and 3 being maintained to infmite”time (i.e., 2< k <3 as 1 + m). A slope of k <2 to

infinite time, however, would require an infinitely large immobile domain (i.e., infinite

capacity). Therefore, a slope of k < 2 cannot be maintained for infinite time (for this

reason, k = 3/2 is possible with diffusion, but only until a time of- ~/Da).

The late-time behavior of concentration, as given by (34) - (36) is shown in

Fi=gure4 for Umin = 10-5am=. Fi=wre 4 also shows the solution to the ADMT equations

in the presence of a power-law density fimction of rate coefllcients. The AD~

equations were solved using STAMMT-L [lYagger@ and Reeves, 1999] for nz~= 1 s kg

tad=l S; ~== 1 s-]; qn= 1 x 10”5S-l;k= 1; ~,01=1; and aPeclet number of 1000.

3.6. Summary of Late-Time Slopes

Figure 5 provides a summary of late-time slopes for several of the models

presented. Late-time slopes are given versus nondimensional time. Note that a BTC

with advection and dispersion will mask some portion of the slopes shown in this fi=~re

at earlier times. The slopes given in Fi=~re 5 will only be present when t >> tad. A

power-law slope is a constant at late-time, such as provided by the gamma and power-

Iaw density functions. Note that the conventional diffusion model is equivalent to the

lognormal density function with CJ= O. The slope in the conventional model is 3/2 until

.
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approximately the mean residence time in the immobile domain (&/3Da for 1-D

diffusion).

power-law

Note that the Iognorrnal density function with larger a cannot provide a true

BTC, but can hold the slope relatively constant over a long time. All

lo=~ormal density functions will approach an infinite slope as time goes to infinity.

4. Axmlications to Tracer Tests and Discussion

4.L WIPP Tracer Tests ,

Figure 6a shows data and confidence intervals from two single-well injection-

wit.hdrawal (SWIW) tracer tests conducted in the Culebra Dolomite Member of the

Rustler Formation at the Waste Isolation Pilot Plant (WITP) Site in southeastern New

Mexico. The Culebra is a 7-m-thick, variably fractured dolomite, and is a

pathway to the accessible environment in the event of a radionuclide release

potential

from the

WII?P. These two tests were performed in the central well at two nmki-well sites, ,

designated H-1 1 and H-19. The SWIW tests consisted of the corisecutive injection of

one or more slugs of consemative tracers into the Culebra Dolomite, fol~owed by the

injection of a Culebra brine chaser (containing no tracer), and then by a resting period of.

approximately 6.5 x 104 s (18 h). The tracers were then removed from the formation by

pumping on the same well until concentration was close to or below detection levels.

The total residence time (i.e., tad) of the slug in the formation was approximately 9.0 x

10’s (25 h). Details of the tracer tests are given in A4eig.sandl?eauheirn [in review] and

in Meigs ei al. [in press]. Interpretation of the SWIW tests by Haggerfy el al. [in review]

suggest that the late-time behavior of the BTC is due to muitiple rates of mass transfer.

30



1 It is clear that neither heterogeneity nor tracer drift alone can be responsible for the

~ observed behavior, though a combination of the two may explain some fraction of it

3 [A4eigset al., in press; Leso~andKonikow, 1997].

4

5 The SWIW data in Figure 6a display late-time slopes that are approximately

6 constant over several hundred hours. The slopes at all times for both BTCS are given in

7 Fi=wre 6b, which was calculated using a 5-point, moving-window average. As can be
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seen from both figures, the late-time behavior of both BTCS is essentially power-law.

The H1 1-1 BTC has a slope of about 2.1 after 3 x 10’ s (83 h). The slope of the H1l-1

BTC appears to become more negative after about 3 x 10ss (830 h), but this maybe due

to a 70°/0 increase in the pumping rate at that time. In addition, the accuracy of the data

is relatively low after 3 x 106s, malckg slope calculations uncertain. The H19S 1-1 BTC

has a constant slope of about 2.3 from 6 x 105s (170 h) to the end of the test. Note that

conventional (single-rate) diffusion can only provide a constant late-time slope of 3/2,

which is shown for comparison in Figure 6a.

The late-time behavior of the SWIW tests was interpreted by Hczggt@ et al. ~i

17 review] using a lo-~o&nal density function of difi?mion rate coefficients (Da/@. As

18 shown in that paper, a log~ormal density function does an excellent job of representing

19 the entire BTC (with c = 3.55 for H1l-1 and o = 6.87 for H19S1-1). However, based on

20 the BTC data alone it is not possible to rule out other density fimctions of rate

21 coefficients, including a gamma density function or a power-law density function.
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~.~. Implications of Power-Law BTC Behavior

We note again that both the gamma and power-law density functions result in

power-law BTCS at late time. The conventional diffision model also causes power-law

BTCS with a slope of 3/2 prior to t - ~/Da. There are four important scenarios for such

power-law behavior.

CASE 1 – Power-1aw behavior to injinite time and k <3: The first scenario is that

the BTC behaves as a power law over all time (i.e., the slope of the BTC would be

power-law to infkite time) and the slope is less than 3. It is important to note that (1)

this is physically possible provided that the slope k is also greater than 2; and (2) several

papers effectively invoke” Case 1 by assuming a gamma density fi..m.ctionand finding

estimates of q less than 1 [e.g., Connaughion e~al., 1993; Pedit and A4ilIer, 1994; Culver

et al., 1997; Werth et al, 1997; Deitsch et al., 1998; h~aufian et al., 199$; Lorden et al.,

1998]. In Case 1, the mean residence time in the immobile domain must be infinite.

Consequently, there can be no effective single-rate model that is equivalent to the

multirate model in the way that a single-rate first-order model is approximately

equivalent to a conventional single-rate diffision model. No single-rate (either first-

order or difision) model can yield the same second or higher temporal moments as the

multirate model. In facq any single-rate model (either f~st-order or diffusion) fit to data

will have parameters that are a function of the experimental observation time (i.e., the

experiment len=~).

CASE 2 – Power-Iaw behavior Ionger than experimental time-scale and k 53:

Tine second scenario is that the power-law behavior ends at a particular time that is

,-
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beyond the experimental observation time, and the slope is less than 3. Lnthis case, the

mean residence time in the immobile domain cannot be ascertained from the

experimental data alone. In other words, it is impossible, based solely on the BTC data,

to estimate an effective rate coei%cient: the effective rate coefficient could be either

undefined (as in Case 1) or simply longer than the inverse of the experimental time.

If the slope k is less than 2, then the power-law behavior either must end at some

time or the slope must steepen to greater than 2. Such is the case with conventional

diffixion and a slope of 3/2. Because the immobile domain cannot be infinitely thick, the

power-law behavior with k less than 2 must end at some time. However, without

information external to the tracer test data, the time at which the power-law behavior

ends (and therefore the mean residence time in the immobile domain) cannot be known.

CASE 3 – Power-1aw behavior enh within experimental time-scale: The third

scenario is that the power-law behavior ends within the experimental

An example of this is the conventional diffusion model with a

observation time.

slope of 3/2 at

intermediate time. In this case, an effective rate coefficient or mean residence time in the

immobile domain can be estimated. The mean residence time will be larger for smaller

slopes, and for very small

power-law behavior ends.

function because a gamma

behavior.

slopes will approach the inverse of the time at which the

Note that Case 3 cannot be modeled by a gamma density

density function does not allow for an end to the power-law

CASE 4- Power-law behavior with k >3: The fourth scenario is that the BTC

has a slope greater than 3. In this case the mean residence time can be estimated even if

the power-law behavior exten& to infinite time. This is because the harmonic mean of a
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power-law density fimction is non-zero and dominated by the value of ~&K,provided that

k>s,

Which scenario do the WIPP SWTWtracer tests fall into? Based on the BTC data

alone, HI 9S 1-1 must be either Case 1 or Case 2. Since the power-law behavior extends

to the end of the data se4 it is not possible to estimate the mean residence time of the

immobile domain. We know only that the mean residence time must be at least the

inverse of the experimental time (i.e., - 1.9 x 106s). H1 1-1, on the other hand, maybe

Case 3. If the marked change in slope at approximately 3 x 106s is not primarily due to

the increase in pumping rate, then HI 1-1 is Case 3. However, if this is an artifact of the

increase in pumping rate, then HI 1-1 may be Case 1 or 2. Given the data uncefiainty

after approximately 2 x 10Gs (560 h) and the fact that we have not investigated the case

of time-varying pumping rate, we remain uncertain as to which case H 11-1 falls under.

5. Conclusions

With improvements in experimental and analytical techniques, breakthrough

curves Q3TCS) are now available from many laboratory and field experiments with

several orders of magnitude of data in both time and concentration. The late-time ‘

behavior of BTCS is critically important for the evaluation of rate-limited mass

especially if discrimination between different models of mass transfer is

Double-log plots of BTCS are particularly helpful and commonly yield

information about mass transfer

We have six primary conclusions.

transfer,

desired.

valuable
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First, we derived a simple analytical expression for late-time BTC behavior in the

presence of mass transfer. Equation (12) gives the late-time concentration for any linear

rate-limited mass transfer model for either zero-concentration or equilibrium initial

conditions. The expression requires the advection time-scale, the zeroth moment of the

injection pulse, the initial concentration in the system, and the memory function g(t) be

known. Note that caution is advised in using (12)

(such as in a strongly heterogeneous velocity field).

if the varkmce of tad may be large

Second, the memory fimction g(i) is proportional to the residence time

distribution in the immobile domain given a unit impulse at the surface of the immobile

domain. This memory function is simply the derivative of the Laplace transform of the

density function of rate coefficients describing the immobile domain. Consequently, the

late-time concentration is proportional to the first or

transform of the density function of rate coefficients.

Third, the effective rate coefficient that yields

BTC temporal moments as does the fbl

density function of rate coefficients.

coefficients with power-law u ‘-3asa3

Consequently the mean residence time in

second derivative of the Laplace

the same zeroth, firs; and second

density fimction is

However, for any

the harmonic mean of the

density finction of rate

0 and where k <3, the harmonic mean is zero.

the immobile domain is infinite and there is no

single effective rate coefficient. This applies both to density fimctions of diffision rate

coefficients and density fimctions of first-order rate coefficients. Many such

distributions have been invoked in the literature.
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Fourth, if the BTC (afier a pulse injection) goes as - rk asf+ CO,then the

underlying density function of rate coefficients must be - Uk-sas ct ~ O. This holds for

density finctions of both first-order and diffi.rsion rate coefficients. For a BTC from a

medium with initially non-zero but equilibrium concentrations, the equivalent BTC goes

~ jl-k.

Fifth, if the slope of a BTC (after a pulse injection) goes to k as

t + m, anti k <3, then the mean residence time in the immobile domain is infinite. (This

is a corollary to the third and fourth conclusions.) Consequently there is no single

effective rate coefficient in this medium. A second consequence is that any single-rate

(either diffusion or frost-order) rate coefficient estimated from the BTC will be a finction

of experimental observation time. Again, for a BTC from a medium with initially non-

zero but equilibrium concentrations, then the equivalent BTC goes as rk+l.

Sixth, if a 13TC exhibits power-law behavior (c - r$ to the end of the

experiment then one of two cases must exist. If k <3 then the mean residence time (and

effective rate coefficient) cannot be estimated from the BTC. The mean residence time

must be at least the experimental obse~ation time and could be infinite. If k >3 then the
,

mean residence time (and its inverse, the effective rate coefilcient) can be estimated.
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Plots of SIWW data from the WIPP site (a) and the slopes of the data (b). For
comparison of slopes to conventional diffusion, the extra lines in 6(a) have
slopes of 3/2 and 5/2. Confidence intervals (95°/0) are shown as thin solid
lines above and below the data.
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