An inelastic nuclear resonant scattering study of partial entropies of ordered and disordered Fe{sub 3}Al

PDF Version Also Available for Download.

Description

Inelastic nuclear resonant scattering spectra were measured on alloys of Fe{sub 3}Al that were chemically disordered, partially-ordered, and DO{sub 3}-ordered. The phonon partial DOS for {sup 57}Fe atoms were extracted from these data, and the change upon disordering in the partial vibrational entropy of Fe atoms was obtained. By comparison to previous calorimetry measurements, it is shown that the contribution of the Fe atoms to the vibrational entropy is a factor of 10 smaller than that of the Al atoms. With the assistance of Born - von Karman model calculations on the ordered alloy, it is shown that differences in ... continued below

Physical Description

14 p.

Creation Information

Fultz, B.; Sturhahn, W.; Toellner, T. S. & Alp, E. E. November 29, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Inelastic nuclear resonant scattering spectra were measured on alloys of Fe{sub 3}Al that were chemically disordered, partially-ordered, and DO{sub 3}-ordered. The phonon partial DOS for {sup 57}Fe atoms were extracted from these data, and the change upon disordering in the partial vibrational entropy of Fe atoms was obtained. By comparison to previous calorimetry measurements, it is shown that the contribution of the Fe atoms to the vibrational entropy is a factor of 10 smaller than that of the Al atoms. With the assistance of Born - von Karman model calculations on the ordered alloy, it is shown that differences in the vibrational entropy originate primarily with changes in the optical modes upon disordering. The phonon DOS of {sup 57}Fe was found to change systematically with chemical short range order in the alloy. It is argued that changes in the vibrational entropy originate primarily with changes in the chemical short-range order in the alloy, as opposed to long-range order.

Physical Description

14 p.

Notes

OSTI as DE00750604

Medium: P; Size: 14 pages

Source

  • MRS '99 Fall Meeting, Boston, MA (US), 11/29/1999--12/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/XFD/CP-100583
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750604
  • Archival Resource Key: ark:/67531/metadc703748

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 29, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 2:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fultz, B.; Sturhahn, W.; Toellner, T. S. & Alp, E. E. An inelastic nuclear resonant scattering study of partial entropies of ordered and disordered Fe{sub 3}Al, article, November 29, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc703748/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.