OVERVIEW OF DESIGN ACTIVITIES FOR LI/V BLANKETS*

Dai-Kai Sze and Richard F. Mattas

Argonne National Laboratory
9700 South Cass Ave.
Bldg. 207,
Argonne, Illinois, USA

and

The ARIES Team

Presented at the
International Workshop on Liquid Metal Blanket Experimental Activities
September 16-18, 1997
CEA Headquarters
Paris, France

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
OVERVIEW OF DESIGN ACTIVITIES FOR Li/V BLANKETS

Dai-Kai Sze and Richard F. Mattas

Argonne National Laboratory, 9700 South Cass Ave., Bldg. 207, Argonne, Illinois, USA

and

The ARIES Team

Recent fusion power plant design studies in the US have been conducted within the ARIES project. The most recent design of Li/V blankets was conducted as part of the ARIES-RS design. The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design.

1. INTRODUCTION

Lithium/Vanadium blanket systems have been examined for many years, including programs such as the Fusion Reactor Blanket/Shield Design Study [1], Blanket Comparison and Selection Study [2,3], and ITER [4]. In recent years, comprehensive design of fusion power plants has been conducted through the ARIES program, which involves a number of US institutions. The most recent ARIES studies are the STARLITE [5], which is a DEMO study, and ARIES-RS [6], which is a commercial power plant study. These recent studies will be the focus of this paper.

The first wall/blanket/shield (FW/B/S) materials selection determines the performance of a fusion power plant. Proper selection of the materials have the following effects:

1. The structural material and coolant selection determines the blanket temperature, which in turn, decides the power conversion system and the efficiency. This requires high blanket temperature.

2. The structural material and the coolant determine the activation, the after heat and the waste disposal rating of the materials. Therefore, it determines the safety and environmental characteristics of the fusion power plant. This requires low activation materials.

3. The selection of the breeding material determines the tritium breeding, and tritium inventory in the blanket. This requires the selection of a breeding material which can give high tritium breeding.

4. The selection of the breeding and shielding materials determines the thickness required for the magnet protection. This requires the selection of effective shielding materials.

5. The complexity of the blanket/shield has a dominate effect on the reliability of the fusion power plant. This requires simple blanket geometry and low blanket pressure.

6. The first wall/blanket and the divertor designs determines the maximum acceptable neutron wall loading. This requires good heat transfer design.

The STARLITE [5] project considered several blanket options for a DEMO power plant.

1. Self-cooled lithium blanket
2. He-cooled with Li₂O as the breeding material

1The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a no exclusive, royalty-free license to publish or reproduce the published form of this contribution, or alloy others to do so, for U.S. Government purposes.
3. He-cooled with \((\text{Li}_2\text{O} + \text{Li})\) as the breeding material
4. He-cooled with \(\text{Li}\) as the breeding material

All options used a vanadium alloy, e.g. \(\text{V-4Ti-4Cr}\), as the structural material. The self-cooled \(\text{Li}\) blanket was selected based upon engineering simplicity, potential to accommodate high neutron wall loads, low pressure operation, and the capability to achieve a net tritium breeding ratio greater than one without using a neutron multiplier. The self-cooled \(\text{Li/V}\) was then examined in further detail as part of the ARIES-RS design.

The ARIES-RS design [6] selected a self-cooled lithium design with a \(\text{V\text{-alloy}}\) as the structural material. It is the judgment of the ARIES team that this blanket has the best potential to fulfill most of those requirements with only a moderate extrapolation of today's technology. The \(\text{V\text{-alloy}}\) has low activation, low after heat, high temperature capability and can handle high heat flux. A self-cooled liquid lithium blanket is simple, and with the development of an insulating coating, has low operating pressure. Also, this blanket gives excellent neutronic performance. There are a number of engineering issues that have to be resolved. The most critical issues are:

1. \(\text{V\text{-alloy}}\) material development
2. \(\text{V\text{-alloy}}\) industry development
3. Insulating coating development
4. Power cycle development
5. Tritium recovery

Those issues will be discussed in the final section.

2. FW/B/S MECHANICAL CONFIGURATION

For a self-cooled liquid metal blanket design for a magnetically confined fusion power plan, the key consideration is to reduce the liquid metal MHD pressure drop. However, for the ARIES-RS design, it is assumed that an insulating coating can be developed to reduce the MHD pressure drop. With this assumption, the MHD pressure drop is no longer a major concern. The design of the FW/B/S can be optimized to improve heat transfer and simplified the configuration.

A very simple blanket configuration is based on once through, poloidal flow[7]. For the ARIES-RS design, major effort was made to radiate the alpha power to the first wall to reduce the heat flux to the divertor. For this reason, a first wall heat flux of 1 MW/m² was assumed during the design study. The once through configuration is unable to handle this high heat flux, due to the high coolant temperature near the exit end of the first wall. The coolant configuration is shown on Figure 1, with the coolant flows along the first wall first, and enters the blanket to remove the nuclear heating deposited in the blanket. This design modification from the once through flow significantly reduce both the coolant temperature and the coolant residence time for the first wall and improve first wall heat removal capability. The coolant for the reflector regime remains as once through. This different configurations for the blanket and reflector is selected to minimize the mechanical connection between the blanket regime and the reflector regime to simplify the maintenance procedures.

![Figure 1. ARIES-RS Blanket Flow Direction](image)

3. PRIMARY LOOP AND POWER CONVERSION SYSTEMS DESCRIPTION

The selection of the heat transport system for the ARIES RS design can be summarized as following:

- Primary coolant: Lithium
- Primary structural material: \(\text{V-4Cr-4Ti}\)
- Secondary coolant: Sodium
- Secondary structural material: 316 SS
- IHX design: Double wall IHX
- Power conversion: Steam
Tritium recovery method Cold trap

The design of the primary loop and power conversion system is critical to the attractiveness of a power plant. This is the system to assure efficient power conversion, to isolate the radioactive products within the nuclear island, and to assure reliable operation of the power plant.

A key concern of designing the primary loop design for a power plant with a LiN blanket is how to transfer the design from a LiN system to a system compatible to the power conversion system. With a blanket temperature limit of 700°C, the power conversion system most likely will be an advance steam cycle. Therefore, it is best to have another material, most likely an iron based alloy, to be used for the power conversion system. Also, the cost of the V-alloy is high. It is not certain whether V-alloy can be used for the entire system from economic point of view. Therefore, the design of the primary loop has to make the transition from a V-alloy structure to an iron based alloy structure.

The design proposed here is to use a double-walled IHX, both to improve the reliability of the IHX, and to provide a location to make the V-steel joint. The primary coolant of the ARIES-RS is Li, while the most logical choice for the secondary coolant is Na. The problem is that, at the temperature we have, Li is not compatible to steel, while Na is not compatible to the V-alloy. Therefore, the transition location has to be made at a site which does not face either Li or Na.

The design of the double-wall IHX is illustrated on Figure 2. To join double-wall coolant tubes, two tube sheets are required, with the inner tube sheet joining the outer tubes and the outer tube sheet joining the inner tubes. This is a standard double wall heat exchanger design developed by Westinghouse for breeder program applications[8]. The key feature for the ARIES-RS double-wall IHX design is to use the space on the HX container at the outer tube sheet to make the transition from V-alloy structure to the steel structure, as illustrated on this figure. The reason for doing this is that the steel/V weld does not face either Li or Na, to avoid the material compatibility problem. Further testing is certainly required to confirm this design, and to find a method to make the V/steel weld.

The power conversion system selected is an advanced steam cycle. This cycle was recommended by the EPRI for the next generation of power stations[9]. To maximize the power conversion efficiency, a double reheat system was selected. There are nine stages of feedwater heaters. The thermal converting efficiency for this steam cycle was reported to be 46.4%.

![Figure 2. The V-SS Join at the IHX](image)

4. TRITIUM SYSTEM DESCRIPTION

Many processes have been proposed to recover tritium from liquid lithium[10]. The goal of the design process is to limit tritium concentration in the lithium to about 1 appm. This goal for a commercial power plant is to limit the tritium inventory in the lithium to < 200 g. Due to the high solubility of tritium in the lithium and the required low concentration, the tritium recovery from lithium becomes a difficult technical issue. The only recovery process which has been demonstrated to be able to recover tritium to this level is the molten salt recovery process[11]. However, the salt used to recover tritium will be dissolved in the lithium, which may cause compatibility problems with the insulating coating required to reduce the liquid metal MHD pressure drop.

The tritium recovery process proposed here is based on cold trap process[12]. The cold trap process has been demonstrated to be able to recover tritium from lithium[13], sodium[14] and potassium[15] to their solubility limits. For the liquid lithium system, the hydrogen solubility at the cold trap temperature of 200°C is 440 appm, which is far above the design goal of 1 appm. For this reason cold trap has not been considered as a candidate process for recovery tritium from lithium. The concept developed here is to add protium in the lithium so that the total hydrogen concentration in the lithium is higher than the 200 appm saturation value. At 200°C, Li(H+T) will be supersaturated and precipitate out together. The co-precipitation of hydride and trifide has been demonstrated in the breeder program. The Li(T+H)
can be separated from lithium by a process called "meshless cold trap" process which was developed by the breeder program to separate NaH from Na by gravitational force[16]. The Li(T+H) can then be heated up to 600°C for decomposition. The hydrogen stream will then be fed to the main Isotope Separation System (ISS) to separate tritium from protium. A calculation by the ITER-Naka estimated that the additional tritium inventory and the refrigeration power caused by the blanket tritium stream are acceptable[17].

5. MHD AND HEAT TRANSFER

The key design consideration for a self-cooled liquid metal blanket for a tokamak is the MHD pressure drop. With a moderate low plasma beta (that means high magnetic field) and a high neutron wall loading, there is no design window for a self-cooled liquid metal blanket for the in board blanket regime[18]. Therefore, the development of an insulating coating is necessary for a self-cooled liquid metal blanket to be feasible. This insulating coating has to be reliable over long period of time, under severe neutron irradiation, compatible to both the structural material and to the coolant, and can survive repeated thermal cycling and maybe plasma disruption.

The development of the insulating coating is still in an early stage. The reference material in the US program is CaO[19]. With the assumption that a fully insulated coating can be developed, the blanket will be designed to be optimized to heat transfer. For the ARIES-RS design, a strong effort was made to radiate the alpha power to the first wall. Therefore, a first wall heat flux of 1 MW/m² was assumed.

The blanket heat transfer has been calculated based on the configuration as shown on Figure 1, and with different surface heat load. The calculation was done by a two dimensional finite difference heat transfer code developed at ANL. The effects of MHD is represented by the coolant velocity profile, which is assumed to be a slug flow. The velocity is determined in an iterative mode to satisfy the following temperature:

\[
\begin{align*}
T_{\text{in}} &= 330^\circ C, \\
T_{\text{out}} &= 610^\circ C, \text{ and} \\
T_{\text{structure}} &< 700^\circ C.
\end{align*}
\]

Figure 3 summarizes the heat transfer calculation results for the case with 1 MW/m² surface heat flux. The results indicate that a first wall heat flux of this magnitude can be handled by a self-cooled lithium blanket. This is an important conclusion because it demonstrates the capability of a self-cooled lithium blanket to be able to handle high wall loading.

6. ASSESSMENT AND CONCLUSIONS

The ARIES-RS is a design study to evaluate the performance of an advanced fusion power plant. A Li/V blanket was selected as the reference design for ARIES-RS. This selection was based on the performance and safety characteristics of the Li/V blanket.

Some key issues associated with the Li/V blanket have to be resolved during the next phase of fusion development. The rather important ones are:

1. Radiation damage effect: This is a key issue for fusion material development which is common to all structural material. Since there is no intensive 14 MeV neutron source, the effect of radiation damage to the structural material is unknown. All the radiation damage information available are from fission spectrum, which may be very different from the fusion spectrum. In particular, the effects of He is difficult to assess. At this time, the first wall life time is set at 200 DPA. The real first wall life time may be very different from this. The 14 MeV radiation damage information will not be available until an intensive fusion neutron source is available.

2. Material fabrication: The fabrication of large V-alloy components has to be demonstrated. Based on a study for ITER, it is estimated that the
development of V-alloy for ITER application will take 5 to 8 years and cost $130 million[20].

3. Primary loop design: For a fusion power plant with a V/Li blanket, the power conversion system will be either a high performance steam cycle, or a closed cycle He turbine. It is questionable if V-alloy will be compatible to either high temperature water or high temperature He. Therefore, the structural material has to be changed from V-alloy to some other alloy. The joining of two different structural materials will be difficult. For this design study, a concept is proposed to make this joint at the double-walled IHX. Both the design of the double-walled IHX, and the performance of the join with repeated thermal cycling, have to be demonstrated.

4. V-alloy cost: To assure the low activation performance of the V-alloy, some of the impurities have to be reduced to low levels. The most important impurity is Nb, which has to be reduced to a level lower than 1 ppm. Methods are available to reduce the impurities to the level required. However, the increment of the cost is not certain.

5. Insulating coating development: The development of a reliable insulating coating is necessary for a self-cooled liquid metal blanket. Otherwise, the MHD pressure drop will be just too high. This coating has to be reliable over a long period of time, with repeated thermal cycling, under intense radiation damage, and facing high temperature liquid lithium. Also, it has to be compatible to low activation requirements, material compatibility, as well as tritium recovery system. The development of the insulating coating is still in an early stage and much further work needs to be done.

6. Tritium recovery: To recover tritium from lithium to a very low concentration (~1 appm) is very difficult. However, many processes have been proposed. The method proposed here is based on cold trap. There is wide experience on the cold trap process for both Na and NaK systems. Therefore, there is reason to believe that the cold trap process can be developed as designed.

7. Lithium reactivity: The chemical reactivity of the lithium is always a concern. However, many studies have concluded that a fusion power plant with a Li/V blanket can be safe. It is clear that the chemical reactivity of the lithium cannot be changed. Thus, it is up to the designers to make the design safe.

There are many other engineering issues to be resolved, such as the reliability of the blanket, the replacement of the blanket, the performance and the design of the power conversion system etc. However, those issues are common to all the blankets.

REFERENCES:


5. ARIES STARLITE Study (to be published)


8. R.P. Waszink, J.Y. Hwag, L.E. Efferding, Thermal/ hydraulics performance test results of sodium-heated steam generator model employing a duplex tune, Proceeding of the


11. V.A. Maroni, R.D. Watson, G.G. Stahl, Some preliminary considerations of a molten salt extraction process to remove tritium from liquid lithium fusion reactor blankets, Nucl. Technology 25 (1975) 83.


17. O. Kveton, ITER JCT Naka, Personnel Communication.

