Determining equivalent damage loading for full-scale wind turbine blade fatigue tests

PDF Version Also Available for Download.

Description

This paper describes a simplified method for converting wind turbine rotor design loads into equivalent-damage, constant-amplitude loads and load ratios for both flap and lead-lag directions. It is an iterative method that was developed at the National Renewable Energy Laboratory (NREL) using Palmgren-Miner's linear damage principles. The general method is unique because it does not presume that any information about the materials or blade structural properties is precisely known. According to this method, the loads are never converted to stresses. Instead, a family of M-N curves (moment vs. cycles) is defined with reasonable boundaries for load-amplitude and slope. An optimization ... continued below

Physical Description

vp.

Creation Information

Freebury, G. & Musial, W. March 13, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 265 times , with 23 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes a simplified method for converting wind turbine rotor design loads into equivalent-damage, constant-amplitude loads and load ratios for both flap and lead-lag directions. It is an iterative method that was developed at the National Renewable Energy Laboratory (NREL) using Palmgren-Miner's linear damage principles. The general method is unique because it does not presume that any information about the materials or blade structural properties is precisely known. According to this method, the loads are never converted to stresses. Instead, a family of M-N curves (moment vs. cycles) is defined with reasonable boundaries for load-amplitude and slope. An optimization program iterates and converges on the constant amplitude test load and load ratio that minimizes the sensitivity to the range of M-N curves for each blade section. The authors constrained the general method to match the NedWind 25 design condition for the Standards, Measurements, and Testing (SMT) blade testing pro gram. SMT participants agreed to use the fixed S-N slope of m = 10 from the original design to produce consistent test-loads among the laboratories. Unconstrained, the general method suggests that slightly higher test loads should be used for the NedWind 25 blade design spectrum. NedWind 25 blade test loads were computed for lead-lag and flap under single-axis and two-axis loading.

Physical Description

vp.

Source

  • 19th American Society of Mechanical Engineers (ASME) Wind Energy Symposium, Reno, NV (US), 01/10/2000--01/13/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-500-27510
  • Grant Number: AC36-99GO10337
  • Office of Scientific & Technical Information Report Number: 753808
  • Archival Resource Key: ark:/67531/metadc703684

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 13, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 31, 2016, 2:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 23
Total Uses: 265

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Freebury, G. & Musial, W. Determining equivalent damage loading for full-scale wind turbine blade fatigue tests, article, March 13, 2000; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc703684/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.