We compare the results of a microscopic laser theory with gain and recombination currents obtained from experimental spontaneous emission spectra. The calculated absorption spectrum is first matched to that measured on a laser, ensuring that the quasi-Fermi levels for the calculation and the experiment (spontaneous emission and gain) are directly related. This allows us to determine the inhomogenous broadening in our experimental samples. The only other inputs to the theory are literature values of the bulk material parameters. We then estimate the non-radiative recombination current associated with the well and wave-guide core from a comparison of measured and calculated recombination currents.
AlGaInP based quantum well lasers emitting between 620-690nm are of interest due to an ever increasing range of applications, including digital versatile disk (DVD) and photo-dynamic therapy. At the short end of the wavelength range it is still difficult to design lasers to meet all the performance requirements, particularly threshold current and efficiency. To aid the design we need to have a good description of the gain and recombination processes and, in addition, to understand which of the possible recombination mechanisms are significant in these devices. In this letter we make a detailed comparison of the results of a microscopic laser theory with gain and recombination currents obtained from an analysis of experimental spontaneous emission spectra. To begin the calculated absorption spectrum is matched to that measured on the laser chips, enabling us to make accurate comparisons between theory and experiment in terms of internal quasi-Fermi level separation. Through this analysis we determine the inhomogenous broadening in the laser samples to be 10meV. The only other input parameters represent the bulk material band structure and these are obtained from the literature. Having fixed all parameters, a comparison between the calculated and measured device current enables us to determine the carrier loss rate due to non-radiative recombination in the well and wave-guide core region.

The structure we have chosen to investigate consists of a 6.8nm wide, compressively strained, Ga_{0.4}In_{0.59}P quantum well set in an (Al_{0.5}Ga_{0.3})_{0.15}In_{0.85}P wave-guide core and clad with (Al_{0.5}Ga_{0.3})_{0.15}In_{0.85}P. These lasers emit at 670nm. We observe that devices of length between 250 and 750μm have threshold currents that increase in a linear fashion with temperature up to about 350K, with an exponential type increase
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
becoming evident above 350K for the shorter devices. The measured external differential efficiency is also constant up to approximately 350K. These observations lead us to believe that the thermally activated loss of carriers to the p-cladding layers is small in these structures below 350K. We have used devices of length 450μm and 750μm and have performed the measurements that follow at room temperature to separate the behaviour we wish to examine from effects due to thermally activated leakage, which has already been shown to be important in GaInP / AlGaInP devices [1,2].

We have measured spontaneous emission spectra through a 4 μm wide opening in the top contact of the 50 μm wide, 450 μm long oxide stripe lasers. By measurement of the wavelength of the laser line and the slope of the spontaneous emission spectrum, we were able to determine the quasi-Fermi level separation at threshold [3]. This information is used in the relationship between gain and spontaneous emission [4] to determine the gain spectrum. The measurements were corrected for the system spectral response but since an unknown fraction of the total spontaneous emission is collected, the spontaneous emission spectra and the derived gain spectra are not given in absolute units. We converted them into real units by determining the threshold loss (or gain = 1917cm⁻¹ for the 450μm long devices). The internal optical mode loss (αᵢ) was determined from measurements of the external differential efficiency as a function of device length (αᵢ = 7.0±1 cm⁻¹). The mirror loss (αₘ = 27.5 cm⁻¹) and optical confinement factor (Γ=1.8%) were determined from the refractive index values for the (Al₀.₇ Ga₀.₃)InP and (Al₀.₅ Ga₀.₅)InP [5], the aluminium contents being confirmed by photo-voltage absorption
spectroscopy [6]. The points in Fig. 1 show the gain spectra measured from a sample at different excitation levels.

The gain calculation was performed by solving the semiconductor Bloch equations, with collision effects treated at the level of quantum kinetic equations. The details of the calculation are given in several papers [7,8]. This approach has several advantages over the more familiar gain calculations based on the relaxation rate approximation. It eliminates the dephasing rate as a free parameter. It also includes contributions from non-diagonal Coulomb correlations, which are found to be important in describing the experimental shape and carrier density dependence of gain spectra [9].

The inputs to the gain calculations are the band-structure properties, specifically the electron and hole energy dispersions, as well as the optical dipole matrix elements. These quantities for a GaInP/(AlGa)InP strained quantum well were computed using a 6x6 Luttinger-Kohn Hamiltonian and the envelope approximation [10]. Input parameters to the band-structure calculations were the bulk material parameters [11,12].

To ensure that the inputs to the calculation represent the measured devices we matched the results of the calculation for low carrier density (9x10^{22}m^{-3}) with the energy (1.855eV) of the excitonic absorption peak measured by photo-voltage absorption spectroscopy on the lasers themselves [6] (arrow in the inset of figure 1).

The experimental results are likely to contain the effects of inhomogeneous broadening due to well width or alloy fluctuations. To take account of these effects, we performed a statistical average of the homogeneous gain and absorption spectra, with a weighting described by a normal distribution that is characterized by an inhomogeneous
broadening width. [13]. Inhomogeneous broadening produces a reduction and a red shift of the peak gain. Figure 2 shows the peak gain versus chemical potential separation for inhomogeneous broadening of 0, 10 and 20 meV. The solid points represent the experimental results corresponding to the data in figure 1. An inhomogeneous broadening of 10meV best reproduces the experimental gain peak values. This value corresponds to (for example) a Ga variation in the quantum well of about one percentage point (Ga_{x}In_{1-x}P, where x= 0.41±0.01).

The calculated spectra (lines) in Fig. 1 contain an inhomogeneous broadening width of 10meV and follow the shape and relative magnitudes of the experimental data. They also correctly predict the separation between the peak gain energy and the peak in the absorption spectrum due to the first electron to heavy-hole transition over a large range of injection level. This process is only possible because the quasi-Fermi level separation in theory and experiment are both known for each value of gain.

In addition to determining the transverse electric (TE) peak gain from measurement of the spontaneous emission through the top contact it is also possible to determine the recombination rate associated with the measured TE spontaneous emission by integrating the spontaneous emission spectrum over energy [3]. The result is given by the dots in figure 3. Theoretically, we obtain this recombination rate by using the calculated gain spectra (Figure 1) and the same phenomenological relationship between the spontaneous emission spectrum and gain spectrum used in the experiment [4]. Integrating the spontaneous emission spectrum over energy gives the spontaneous emission rate, \( w_{sp}(N,T) \), in units of \( m^{-3}s^{-1} \). Theoretically we may determine either the TE
part of the spontaneous recombination rate as shown in figure 3 or the total recombination rate by summing the spontaneous emission of both polarisations. This total is the injection current density for a device that has an internal efficiency of 100%. The good agreement between the experimental and theoretical TE spontaneous emission rates as shown in figure 3 leads us to believe that the calculated total spontaneous emission rate is also a good representation of that in the real device.

We have confirmed that the calculation correctly describes the peak gain (and spectrum) and spontaneous recombination rate in our devices. We now make use of a comparison of the calculated gain-current curve with that derived experimentally to estimate the non-radiative recombination rate within the quantum well and wave-guide core of the device.

Figure 4 shows the peak gain versus total (TE and TM) spontaneous emission contribution to the current density (solid line), for the 6.8nm Ga$_{0.41}$In$_{0.59}$P/(Al$_{0.5}$Ga$_{0.5}$)$_{0.51}$In$_{0.49}$P quantum well. The spontaneous emission current is given by $J_{sp} = eL_w v_{sp}(N, T)$ per unit area, where $e$ is the electron charge, and $L_w$ is the quantum well width. This curve represents the theoretical minimum limit to the threshold current density for a given threshold gain, $G_{th} = G_{pk}$. The solid circles are the experimental results obtained from the gain spectra of figure 1 and the actual device drive current density (assuming current spreading of 20%). Further values were obtained from measurements of the threshold loss (gain) versus threshold current for 750μm long devices (triangles) and on devices which are nominally identical except for having two quantum wells in the active region (stars). In the case of the two well samples the results
are plotted in terms of gain and current per well and the threshold loss (gain) was determined in a similar fashion to that described above. The experimental data points for the 450 µm and 750 µm single well devices lie on the same curve and the two well device measurements are similar but both show a large disparity with the calculated results due to additional non-radiative processes. The dotted line of figure 4 is the gain plotted as a function of the sum of the calculated radiative recombination current and a non-radiative contribution from the quantum well where we have assumed that this can be represented by an overall internal efficiency (not the differential efficiency) of 55%. The similarity of shape between the experimental data and this theoretical value calculated using a current-independent efficiency also suggests that any thermally activated loss process does not dominate the recombination in these samples at 300K. To estimate whether this 55% efficiency is reasonable we deduce from the calculated total radiative recombination rate at threshold (4.8×10^{33} m^{-3}s^{-1}) and the calculated carrier density at threshold (6.8×10^{24} m^{-3}) that the radiative lifetime at threshold is 1.4×10^{-9} s. A non-radiative lifetime of 1.2×10^{-9} s is necessary to produce an efficiency of 55% within the well. A more likely scenario is that part of the non-radiative recombination is due to loss of carriers from the quantum well and part due to non-radiative recombination within the quantum well. For example an internal efficiency in the quantum well of 75% and a lifetime in the barrier of 15 ps (the carrier density in the barrier is calculated assuming thermal equilibrium between quantum well and barrier) also reproduces the experimental result (dashed line). The exact balance between these two processes is uncertain, however it is necessary to include a quantum well (or current independent) internal efficiency of at most ≈75% in order to match the
recombination current at low values of gain. The comparison indicates that there are still significant improvements to be made in these devices with regard to non-radiative recombination within the quantum well and also in the barrier material alongside the quantum well.

In summary we have demonstrated good agreement between experimental gain spectra and TE radiative recombination rates and those produced using a microscopic semiconductor laser theory. By comparing the calculated gain and total radiative recombination current with the measured threshold losses and device drive current we have shown that a significant proportion of the total laser drive current is due to non-radiative recombination within the quantum well and wave-guide core.

This work was supported by the Engineering and Physical Sciences Research Council (U.K.) GR/M70698 and the U. S. Department of Energy under contract No. DE-AC04-94AL85000.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
References

Figure Captions

Fig. 1 Room temperature gain/absorption spectra (dots) measured at current densities between 40 and 960A/cm². The calculated spectra (lines) are for carrier densities between $6\times10^{15}$m⁻² and $3.6\times10^{16}$m⁻². The inset shows the absorption portion of the spectra - the arrow indicating the energy of the 1st electron to heavy-hole transition as measured by photo-voltage absorption spectroscopy.

Fig. 2 Peak gain versus quasi-Fermi level separation as measured (solid symbols) and calculated using homogenous broadening only (solid line) and for inhomogeneous broadening of 10 meV (dashed line) and 20 meV (dotted line).

Fig. 3. Theoretical (calculated from the gain spectra, as described in the text) (line) and experimental (solid points) integrated TE polarised spontaneous emission spectra. The experimental data has been scaled by the same factor as the gain spectra.

Fig. 4. Peak gain versus calculated total spontaneous current density (line) and experimental drive current for one well, 450µm long device (filled circles), one well, 750µm long device open triangles and 2 well, 450µm long device (stars). The calculated data reflects the fundamental lower limit for a device with an internal efficiency of 100%. The dotted line includes an internal efficiency of 55%. The dashed line is calculated for a quantum well internal efficiency of 75% and a non-radiative lifetime in the barrier of 15ps.
absorption $\times 10^5 / m$
quasi-fermi level sep. /eV