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ABSTRACT 
An implicit finite difference method was applied to analyze 

laminar natural convection in a vertical channel with a modified 
power law fluid. This fluid model was chosen because it 
describes the viscous properties of a pseudoplastic fluid over the 
entire shear rate range likely to be found in natural convection 
flows since it covers the shear rate mnge from Newtonian through 
transition to simple power law behavior. In addition, a 
dimensionless similarity parameter is identified which specifies in 
which of the three regions a particular system is operating. 
The results for the average channel velocity and average Nusselt 

number in the asymptotic Newtonian and power law regions are 
compared with numerical data in the literature. Also, graphical 
results are presented for the velocity and temperatun fields and 
entrance lengths. The results of average channel velocity and 
Nusselt number are given in the three regions including 
developing and fully developed flows. 
As an example, a pseudoplastic fluid (carboxymethyl cellulose) 

was chosen to compare the different results of average channel 
velocity and Nusselt number between a modified power law fluid 
and the conventional power law model. The results show, 
depending upon the opexating conditions, that if the correct model 
is not used, gross errors can result. 

1. INTRODUCTION 
The problem under consideration is laminar nanrrai convection 

between vertical parallel plates. The plates are of height H of 
infinite width with a spacing of 2b and both have constant and 
equal temperatures, T,. Figure 1 is a schematic of the physical 
and coordinate systems. 

The fluid between the plates has a modified power constitutive 
equation given by Eq. (1) and illustrated in Fig. 2 for a 
pseudoplastic fluid. As reported by Park et al. (1993). this 
equarion shows good agreement with experimental viscosity 
measurements. 
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Examination of Eq. (1) and Fig. 2 reveals that for “low values” 
of the shear rate (y) ,  Region I, Eq. (1) becomes Newtonian in that 
the apparent viscosity becomes independent of shear rate. At 
large values of shear rate, Region III, Eq. (1) becomes, 

q, = K(Y)*-’ (2) 

which is the constitutive equation for a conventional power law 
fluid. Between these two extremes is a transition region (Region 
11). Because non-Newtonian natural convection flows have 
characteristically low velocities (and thus low shear rates), they 
often operate in Regions I or I1 in Fig. 2 even though they might 
be power law fluids at higher shear rates. Equation (1) used in the 
appropriate field equations will yield solutions for all three 
regions in Fig. 2. In such flows as described above, it would be 
most advantageous to know in which of the three regions a 
particular system is operating. As a result of the analysis to 
follow, a similarity parameter, a, will be identified which specifies- 
that particular region. 
A number of investigations have been published on the flow of 

Newtonian fluids between parallel vertical plates (Aung, 1972; 
Aung et al., 1972; Bodia and Osterle, 1962; Miyatake et al., 
1972). However, only a few studies have been repofied where a 
power law fluid is considered (Irvine et al., 1982; Irvine and 
Schneider, 1984). Both Newtonian and power law solutions are 
asymptotic solutions in this analysis and can therefore be used to 
validate the solutions to be presented. The quantities of most 
interest in this problem are the average flow velocity between the 
plates and the average Nusselt number. These will be presented 
along with the hydrodynamic and thermal entrance lengths for a 
variety of operating conditions. 

*This work was  performed under the ausp ices  of the U1.S. Department of Energy. 



2. ANALYSIS 
The appropriate field equations will be given here only in 

dimensionless form (see Nomenclature). A more detailed 
derivation can be found in the dissertation by Lee ( 1992). 

Nusselt numbers were then calculated from the exit temperature 
and velocity fields from the equations, 

Nu = (Bo) ln QTlolal 
Continuity: 

where (3) 

Momentum: (9) 

(4) 3. RESULTS 
3.1 Asymptotic Solutions 

A variety of asymptotic solutions are available to confirm the 
validity of the modified power law analysis. These include fully 
developed and developing flows for Newtonian and power law 
fluids. Such asymptotic solutions can be obtained from Eqs. (3-7) 
by specifying the values of Gr,, n, Bo and a. For large values of 
a, Eqs. (3-7) describe the flow of a power law fluid while small 
values of a describe a Newtonian fluid. The shear rate parameter 
a and its following ranges are applicable to any purely viscous 
non-Newtonian fluid whose constituitive equation is described by 
Eq. (1) .  More specifically, if 

Energy: 

Global Continuity: a s  l o 2  
a 2  10' 
10' s a s IOz 

Newtonian fluid, Region I, Fig. 2 
Power law fluid, Region 111, Fig. 2 
Transition region, Region 11, Fig. 2 

I 

* dy = uo* 
0 

3.2 Fully Developed Flow 
Several asymptotic solutions for fully developed Newtonian and 

power law flows can be obtained by direct integration of Eqs. (3- 
7). If Gr, is low enough or if the channel height is large 
compared to the plate spacing, fully developed flow will occur. 
Under these conditions, the fluid temperature approaches the wall 
temperature and the pressure gradient becomes zero (Aung, 1972). 
Thus, an energy balance on the fluid yields, 

where x+ = x/H, y+ = y h ,  u+ = u/u' and \t = (v/i ) (Wb). The 
boundary conditions for Eqs. (3-5) are, 

(7) 

The solutions for the dimensionless average velocity and Nusselt 
numbers for Newtonian (Eqs. 11, 12) and power law fluids (Eqs. 
13, 14) are: 

Because of the temperature and velocity coupling between Eqs. 
(4) and (5) ,  both the dimensionless average velocity, ug+, and the 
average Nusselt number, Nu, will be functions of a large number 
of parameters, Le., Gr,, Bo, a, n. This makes it difficult to present 
comprehensive results of the analysis. Because of space 
limitations, only characteristic solutions in tabular and graphical 
form will be given and discussed. More comprehensive results 
can be found in Lee (1992). 
Equations (3-6) and the boundary conditions (7) were cast in an 

implicit numerical form and solved by iteration. The parameters 
Bo, GrN, n and a were specified, and the number of dimensionless 
mesh points was 100 in the y+ direction and 140 in the x'direction. 
It should be noted that the entrance velocity uo* is not a boundary 
condition but is obtained from the numerical solution as follows. 
A value of 4' was assumed at x+ = 0 and the equations solved to 
x+ = 1 where the value of P'+ is again required to be zero. 
Different values of &+ were assumed until P" = 0 (in this case, 
P" < IO"). Using the solution for the correct 4+, the average 

uo*/GrN in = 1/3 

%/(Gr;Pr,) = uo*/GrN In 

(1 + Or)'" uo*/GrN - - 
2 n + l  

112. - n 
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Note that Eqs. (13, 14) revert to Eqs. (I 1. 12) if n = I and a 
approaches zero. The above exact solutions were checked against 
the present numerical solutions from Eqs. (3-7) by specifying that 

and a+= (au*/ay'yl (power law). The comparisons are shown in 
Tables I and 2 where it is seen that satisfactory agreement occurs. 

r = I and aP'+/ax+ = V+ = au+/axt = o and, q,+ = 1 (Newtonian) 

TABLE 1 
Comparison between numerical and exact solutions for a = lo4 in 
fully-developed-flow case. 

~~ - 

U"+ 
GrM 

Numerical Exact 
~~ 

0.1 0.10540 0.10541 
1 .o 0.33333 0.33333 
10. 1.05412 1.05402 
10' 3.33360 3.33333 

TABLE 2 
Comparison between the numerical and exact solutions for 
a = IO4 and n = 0.7 in fully-developed-flow case. 

ua+ 
Gr, 

Numerical Exact 

0.1 0.0563 15 0.056312 
1 .o 0.291655 0.29 1667 
10. 1.51051 1 1.5 10680 
10' 7.823352 7.824529 

In addition, Fig. 3 shows the results from the numerical analysis 
if all three regions shown in Fig. 2 are considered for fully 
developed flow. It can be seen in the figure that both u,,+ and 
care quite sensitive to the value of the shear rate parameter, a. 

3.3 Developing Flow Literature Comparisons 
Figure 4 and Table 3 compare the Newtonian results with those 

of Bodia and Osterle (1962) where Gr, is used as the variable 
parameter. 

TABLE 3 
Comparison of present numerical results to Bodia and Osterle 
(1 962) for a Newtonian fluid: a = lo4 and Pr, = 0.7. 

10' 0.6094 0.6064 1.9687 1.9537 
10. 0.5099 0.5114 0.9522 0.9493 
1.0 0.2938 0.2916 0.2056 0.2041 
0.1 0.1034 0.1039 0.02288 0.02299 
I O z  0.03333 0.03328 0.002333 0.00233 

analyses is again reasonable. 
In Figure 5, the agreement between the numerical analyses is not 

as good as in the Newtonian case. The maximum deviation is 
1.9% but the data in Irvine et al. (1982) are only given in the form 
of a log-log graph and it is possible that a portion of the 
differences comes from reading-errors. As was the case for 
Newtonian channel flow, the entrance lengths for power law fluids 
presented in Fig. 5 have not previously been reported in the 
literature. 

3.4 Modified Power Law Solutions 
Because of the large number of parameters involved in the 

solutions of Eqs. (3-7), only a few representative results can be 
presented here. For those interested in a particular case, the 
equations must be solved independently. Details of the solution 
method are given in Lee ( I  992). In general, the solution method 
consists of specifying the properties qo, K, n, k, cp, p, p, and 
(T,, - TJ plus the geometric quantities b and H. Then it is 
possible to specify the parameters Gr,, GrM, a. n, Bo for a 
particular solution. This will be illustrated in a numerical example 
to be presented later. 

Figure 6 illustrates the developing velocity and temperature 
profiles for a modified power law fluid in the transition region 
(Region 11) where the shear rate parameter a = 10. It is seen in the 
figure that most of the flow is in the thermally developing region 
and only becomes fully developed at the exit (T+ = 1). The 
hydrodynamic entrance length is small because of the large 
Prandtl number (Pr = 5). 

Figure 7 shows representative values of u,,+, Nu, xfET and x +EM 

for flow in the transition region, a = lo-'. This is the type of 
graph that can be obtained by solving Eqs. (3-7) for particular 
parametric values. One check on the validity of the solution is 
that at Gr, = lo" where the flow is approximately fully-developed 
hydrodynamically, the value of u; agrees with Eq. (1 1) for fully 
developed flow. 

3.5 Numerical Example 
Equations (3-7) were solved for the following practical example 

using the properties, geometric dimensions and temperature 
differences for a fluid consisting of 2500 ppm of CMC in water. 
The viscous properties were obtained from Park, et al. (1993) 
which agreed well with the modified power law equation. 

q,, = 0.06454 Ndm' 

n = 0.5 b = m 
k = 0.597 W/mK 
cp = 4.18 x 10' JkgK 

p = 999.1 kdm' 
K = 1.026 1 Ns"/m2 p = 2.06 x 104 K-I 

H = 0.20 m 
AT=1, 10and100K 

Using the above quantities resulted in the following values of the- 
shear rate parameter, a: 

a AT(K1 - 
' 1  0.0905 
10 0.1649 
100 0.3003 

Figure 4 includes calculations of the thermal and hydrodynamic 
entrance lengths x + ~  and x'EM where aT/ax+ = 10" at x+= and 
au+/ax+ = lo-' at x+~,. It should be noted that these entrance 
lengths have not previously been reported in the literature. Figure 
5 compares the power law calculations from the present analyses 
with those of Irvine et ai. (1982) where GrM is the variable 
parameter on the abscissa. The agreement between. the two 

All of the above are in the transition region and numerical 
calculations using Eqs. (3-7) were made to compare the modified 
power law results for u,,+ and Nuwith those if the power law 
equations were incorrectly used. The results are shown in Fig. 8. 
From Fig. 8, as expected, the differences between the two models 
increase as the temperature differences decrease (aMpL < aPJ. It 
is also clear that large errors can occur if the incorrect model is 



ussd. For example. from Fig. 8 at a temperature difference of 
IO K the average velocities differ by over an order of magnitude. 
These discrepancies can be eliminated if the correct model which 
specifies the appropriate shear rate range as determined by a is 
used. 

4. CONCLUSIONS 
Numerical results have been presented for the free convection 

flow and heat transfer characteristics of a modified power law 
non-Newtonian fluid between vertical parallel plates. The results 
indicate that if a simple power law constitutive equation is used, 
under some operating conditions gross errors can occur. A shear 
rate similarity parameter is presented which determines when it is 
necessary to use the modified power law model. 

NOMENCLATURE 
b 
Bo 
Gr,, 
GrN 
H 
K 
n 
Nu 
P 
P' 
PI+ 
PrN 
Q 
r 

_. 

U* 

a 
a T  

P 
Y 

?a+ 

?a 

+ 
- 

N 
M 
-I 0 
W 

half-channel spacing (m) 
Boussinesq number = Gr, . PrNZ 
Modified Grashof number = Gr, . ( I+a)2 
Newtonian Grashof number = (g/3(T,v - T,)b4)/(voH) 
duct height (m) 
power law consistency (Nsn/m2) 
flow index 
Nusselt number = blk 
channel pressure (N/m2) 
modified channel pressure (N/m2) = P(x)-P,+p_gx 
dimensionless channel pressure = P'lpu'? 
Prandtl number = vdaT 
heat transfer per unit width (W/m) 
dimensionless fluid temperature = (T(x,y) - T,)/(T,, - T,) 
reference velocity (ds) = [gP(TW-T,)H]"* 

Greek Svmbols 
shear rate parameter = (q&) . (u'/b)'" 
thermal diffisivity (m2/s) 
thermal expansion coefficient (K1) 
shear rate (s") 
apparent viscosity (Ns/mZ) 
dimensionless apparent viscosity = (I+a)/[ I+a(au+/ay+)'*] 

Suoencriots 
dimensionless quantity 
average quantity 

Subscriuts 
refers to Newtonian region 
modified, as in Gr, 
entrance conditions 
wall 
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FIGURE 1 
Schematic of vertical channel. 

- .  

I 

H 

t 
L 



10' 

1 oo 

I 
I 

I 
I 

FIGURE 2 
Typical flow curve for a pseudoplastic fluid: I-Newtonian region, 
11-Transition region, 111-Power law region. 
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FIGURE 4 
Average velocities, Nusselt numbers and entrance lengths. 
P ~ 0 . 7 ,  Newtonian region. Data (dots) from Bodia & Osterle 
(1962). 
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FIGURE 3 FlGUKE 5 
Variation of u,,+ and 6 with a and Gr, for fully-developed-flow. Average velocities, Nusselt numbers and entrance lengths, power 

law region. Data (dots) from Irvine et al. (1982). 
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