Contact modeling for robotics applications

PDF Version Also Available for Download.

Description

At Sandia National Laboratories (SNL), the authors are developing the ability to accurately predict motions for arbitrary numbers of bodies of arbitrary shapes experiencing multiple applied forces and intermittent contacts. In particular, the authors are concerned with the simulation of systems such as part feeders or mobile robots operating in realistic environments. Preliminary investigation of commercial dynamics software packages led them to the conclusion that they could use commercial software to provide everything they needed except for the contact model. They found that ADAMS best fit their needs for a simulation package. To simulate intermittent contacts, they need collision detection ... continued below

Physical Description

5 p.

Creation Information

Lafarge, R.A. & Lewis, C. August 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

At Sandia National Laboratories (SNL), the authors are developing the ability to accurately predict motions for arbitrary numbers of bodies of arbitrary shapes experiencing multiple applied forces and intermittent contacts. In particular, the authors are concerned with the simulation of systems such as part feeders or mobile robots operating in realistic environments. Preliminary investigation of commercial dynamics software packages led them to the conclusion that they could use commercial software to provide everything they needed except for the contact model. They found that ADAMS best fit their needs for a simulation package. To simulate intermittent contacts, they need collision detection software that can efficiently compute the distances between non-convex objects and return the associated witness features. They also require a computationally efficient contact model for rapid simulation of impact, sustained contact under load, and transition to and from contact conditions. This paper provides a technical review of a custom hierarchical distance computation engine developed at Sandia, called the C-Space Toolkit (CSTk). In addition, they describe an efficient contact model using a non-linear damping term developed by SNL and Ohio State. Both the CSTk and the non-linear damper have been incorporated in a simplified two-body testbed code, which is used to investigate how to correctly model the contact using these two utilities. They have incorporated this model into the ADAMS software using the callable function interface. An example that illustrates the capabilities of the 9.02 release of ADAMS with their extensions is provided.

Physical Description

5 p.

Notes

OSTI as DE98006150

Source

  • International conference - control and application, Honolulu, HI (United States), 12-14 Aug 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98006150
  • Report No.: SAND--98-1816C
  • Report No.: CONF-980824--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 656763
  • Archival Resource Key: ark:/67531/metadc703598

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 8:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lafarge, R.A. & Lewis, C. Contact modeling for robotics applications, article, August 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc703598/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.