Update on terrestrial ages of Antarctic meteorites

PDF Version Also Available for Download.

Description

Terrestrial ages of Antarctic meteorites are one of the few parameters that will help us to understand the meteorite concentration mechanism on blue-ice fields. Traditionally, terrestrial ages were determined on the basis of {sup 36}Cl in the metal phase, which has an uncertainty of about 70 ky. For young meteorites (< 40 ky), the terrestrial age is usually and most accurately determined using {sup 14}C in the stone phase. In recent years two methods have been developed which are independent of shielding effects, the {sup 10}Be-{sup 36}Cl/{sup 10}Be method and the {sup 41}Ca/{sup 36}Cl method. These methods have reduced the ... continued below

Physical Description

146 Kilobytes pages

Creation Information

Welten, K C; Nishiizumi, K & Caffee, M W January 14, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Terrestrial ages of Antarctic meteorites are one of the few parameters that will help us to understand the meteorite concentration mechanism on blue-ice fields. Traditionally, terrestrial ages were determined on the basis of {sup 36}Cl in the metal phase, which has an uncertainty of about 70 ky. For young meteorites (< 40 ky), the terrestrial age is usually and most accurately determined using {sup 14}C in the stone phase. In recent years two methods have been developed which are independent of shielding effects, the {sup 10}Be-{sup 36}Cl/{sup 10}Be method and the {sup 41}Ca/{sup 36}Cl method. These methods have reduced the typical uncertainties in terrestrial ages by a factor of 2, to about 30 ky. The {sup 10}Be-{sup 36}Cl/{sup 10}Be method is quite dependent on the exposure age, which is unknown for most Antarctic meteorites. The authors therefore also attempt to use the relation between {sup 26}Al and {sup 36}Cl/{sup 26}Al to derive a terrestrial age less dependent on the exposure age. The authors have measured the concentrations of cosmogenic {sup 10}Be, {sup 26}Al and {sup 36}Cl in the metal phase of {approximately} 70 Antarctic meteorites, from more than 10 different ice-fields, including many new ones. They then discuss the trends in terrestrial ages of meteorites from different ice-fields.

Physical Description

146 Kilobytes pages

Source

  • 31st Lunar and Planetary Science Conference, Houston, TX (US), 03/13/2000--03/17/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-137138
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 756734
  • Archival Resource Key: ark:/67531/metadc703546

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 14, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 6, 2016, 2:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Welten, K C; Nishiizumi, K & Caffee, M W. Update on terrestrial ages of Antarctic meteorites, article, January 14, 2000; California. (digital.library.unt.edu/ark:/67531/metadc703546/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.