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VIBRATION-BASED DAMAGE DETECTION IN ROTATING MACHINERY
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Abstract: Damage detection as determined from changes in the vibration characteristics of a system has
been a popular research topic for the last thirty years. Numerous damage identification algorithms have
been proposed for detecting and locating damage in structural and mechanical systems. To date, these
damage-detection methods have shown mixed results. A particular application of vibration-based damage
detection that has perhaps enjoyed the greatest success is that of damage detection in rotating machinery.
This paper summarizes the state of technology in vibration-based damage detection applied to rotating
machinery. The review interprets the damage detection process in terms of a statistical pattern recognition
paradigm that encompasses all vibration-based damage detection methods and applications. The motivation
for the study reported herein is to identify the reasons that vibration-based damage detection has been
successfully applied to rotating machinery, but has yet to show robust applications to civil engineering
infrastructure. The paper concludes by comparing and contrasting the vibration-based
applied to rotating ~machinery with large civil engineering infrastructure applications.

damage detection

L INTRODUCTION

Vibration-based damage detection for rotating machinery (RM) has been repeatedly applied with success to
a variety of machinery elements such as roller bearings and gears. In the past, the greatest emphasis has
been on the qualitative interpretation of vibration signatures both in the frequency and (to a lesser extent) in
the time domain. Numerous summaries and reviews of this approach are available in textbook form,
including detailed charts of machinery fault analysis, e.g., see [1]-[6]. The approach taken has generally
been to consider the detection of damage qualitatively on a fault-by-fault basis by examining acceleration
signatures for the presence and growth of peaks in spectra at certain frequencies, such as multiples of shaft
speed. A primary reason for this approach has been the inherent nonlinearity associated with damage in
RM and the inability to make measurements at locations other than the exterior housing of the machine.
Recently, more general approaches to damage detection in RM have been developed. These approaches
utilize formal statistical methods to assess both the presence and level of damage on a statistical basis, e.g.,
see [7] and [8]. A particular y detailed and general treatment of mechanical signature analysis is presented
in [9].

In this review, the damage detection process for RM is posed in terms of a statistical pattern recognition
paradigm that encompasses all vibration-based damage detection methods and applications. For RM the
qualitative methods of vibration signature interpretation cited above primarily fall into the category of non-
model-based pattern recognition, in that the identification of damage is based only on changes in recorded
vibration signatures. Although not discussed in this summary, many of the cited references list typical

1



c

. t

vibration characteristics of machine faults at the machine and component (bearing, gear, etc.) level and
~ provide physical explanations for these characteristics.

The study reported herein was motivated by two considerations. First, the authors are investigating
applications of vibration-based damage detection to systems that, although not rotating, can not be
instrumented on their interior. Second, the authors have been involved in several studies of damage
detection in large civil engineering infrastructure. These studies and other similar studies reviewed from
the technical literature have show mixed results, at best [10]. Therefore, this study was undertaken to
identify the aspects of the RM applications that have allowed vibration-based damage detection to exhibit a
high degree of success and to become a standard practice for this industry. This paper concludes by
comparing and contrasting the RM application of vibration-based damage detection to the large civil
engineering structures application.

2. THE DAMAGE DETECTION PROCESS

In the context of statistical pattern recognition the process of vibration-based damage detection can be
broken down into four parts as summarized in Fig. 1. The topics summarized in this flow chart are briefly
discussed below.

2.1. Operational Evaluation

An operational system is here defined to be one that can perform or is performing its intended function.
Operational evaluation attempts to answer three questions regarding the implementation of a damage
identification investigation:

1.

2.

3.

How is damage defined for the system
identify which are of the most concern?
What are the conditions, both operational
functions?
What are the limitations on acquiring data

being investigated and, for multiple damage possibilities,

and environmental, under which the system to be monitored

in the operational environment?

Operational evaluation begins to set the limitations on what will be monitored and how the monitoring will
be accomplished. This evaluation starts to tailor the damage detection process to features that are unique to
the system being monitored and tries to take advantage of unique characteristics of the damage that is to be
detected.

2.2 Data Acquisition and Cleansing

The data acquisition portion of the health monitoring process involves selecting the types of sensors to be
used, the location where the sensors should be placed, the number of sensors to be used, and the data
acquisition/storage/transmittal hard ware. Again, this process will be application specific. Another
consideration is how often the data should be collected.

Because the data can be measured under different conditions, the ability to normalize the data may be
important to the damage detection process. When environmental variability is an issue, the need can arise to
normalize the data in some temporal fashion to facilitate the comparison of data measured at similar times
of an environmental cycle.
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Fig. 1 Flow Chart for Implementing a Damage Detection/lIeahh Monitoring Program.

Sources of variability in the data acquisition process should be identified and minimized to the extent
possible. In general, all sources of variability can not be eliminated. Therefore, it will be necessary to
make the appropriate measurements such that these sources can be statistically quantified.

Data cleansing is the process of selectively choosing data to accept for, or reject from, the feature
extraction process. The data cleansing process is usually based on knowledge gained by individuals
directly involved with the data acquisition.

Finally, is should be noted that the data acquisition and cleansing portion of a health-monitoring process
should not be static. Insight gained from the feature selection process and the statistical model
development process will provide information regarding changes that can improve the data acquisition
process.

2.3 Feature Selection

The portion of the damage detection process that receives the most attention in the technical literature is the
identification of data features that allow one to distinguish between the undamaged and damaged

3



*

,

component or system. Inherent in this feature selection process is the condensation of the data. The best
, features for damage detection are typically application specific.

A variety of methods are employed to identify features for damage detection. Past experience with
measured data from a system, particularly if damaging events have been previously observed for that
system, is often the basis for feature selection. Numerical simulation of the damaged system’s response to
simulated inputs is another means of identifying features for damage detection. The application of
engineered flaws, similar to ones expected in actual operating conditions, to specimens can identify
parameters that are sensitive to the expected damage. Damage accumulation testing, during which
significant structural components of the system under study are subjected to a realistic accumulation of
damage, can also be used to identify appropriate features. Fitting linear or nonlinear, physical-based or
non-physical-based models of the system response to measured data can also help identify damage-
sensitive features.

The operational implementation and diagnostic measurement technologies needed to perform health
monitoring often produce a large amount of data. A condensation of the data is advantageous and
necessary particularly if comparisons of many data sets over the lifetime of the structure are envisioned.
Also, because data may be acquired from a structure over an extended period of time and in an operational
environment, rob’ust data reduction techniques must be developed to retain sensitivityy of the chosen features
to the structural changes of interest in the presence of environmental noise. To further aid in the recording
of quality data and feature extraction needed to perform the structural damage detection process, the
statistical significance of the data changes should be characterized and used in the condensation process.

2.4. Statistical Model Development

The portion of the health monitoring process that has received the least attention in the technical literature
is the development of statistical models to enhance the damage detection process. Statistical model
development is concerned with the implementation of the algorithms to operate on the extracted features
and unambiguously determine the damage state of the structure. The algorithms used in statistical model
development usually fall into three categories and will depend on the availability of data from both an
undamaged and component or system. The first category is group classification, that is, placement of the
data into respective “undamaged” or “damaged” categories. Analysis ofoutliers is the second type of
algorithm. When data from a damaged system are not available for comparison, do the observed features
indicate a significant change from the previously observed features that can not be explained by
extrapolation of the feature distribution? The third category is regression analysis. This analysis refers to
the process of correlating data features with particular types, locations or extents of damage. All three
algorithm categories analyze statistical distributions of the measured or derived features to enhance the
damage detection process.

The damage state of the system could be described as a five-step process along the lines of the four-step
process discussed in [11] and answers the following questions: 1. Is there damage in the system
(existence)?; 2. Where is the damage in the system (location)?; 3. What kind of damage is present (type)?;
4. How severe is the damage (extent)?; and 5. How much useful life remains (prediction)? The steps in the
process also represent increasing knowledge of the damage state. This process usually requires that data
from the specific types of damage are available to be correlated with the observed features.

Finally, an important part of the statistical model development process is the testing of these models on
actual data to establish the sensitivity of the damage detection and to study the possibility of false
indications of damage. False indications of damage fall into two categories: 1.) False-positive damage
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indication (indication of darnage when none is present), and 2). False-negative darnage indications. (no
indication of damage when damage is present). Although the second category is usually very detrimental to
the damage detection, false-positive readings can also erode confidence in the damage detection process.
This paper will now summarize the state of technology in vibration-based damage detection as applied to
RM by interpreting this damage detection application in terms of the statistical pattern recognition
paradigm.

3. OPERATIONAL EVALUATION FOR RM

The definition of damage is often very straightforward for RM. Often, there are a limited number of
damage scenarios that are being monitored and the possible locations of that damage are known a priori.
The primary operational limitation on acquiring data is that the machine will typically be in operation and
performing its normal function or will be in a transient start-up or shutdown mode. In its in situ
environment many other machines wil 1 most Iikel y produce additional vibration sources that must be
accounted for in the damage detection process. Limitations to acquiring vibration data can vary widely.
For many applications the limitations will be based on administrative criteria such as the availability of
personnel to make the necessary measurements. In other applications the machine may be located in
hazardous environments allowing for only limited access time.

4. DATA ACQUISITION FOR RM

Data acquisition issues for RM include the type of sensor and number of sensors that should be used, the
location where these sensors should be placed, how the sensors should be mounted, environmental effects
on the sensors, how the signals from these sensors should be recorded, for what duration and how often
should the signals be recorded, and what type of averaging and windowing should be applied to the signals.
Also, what steps can be taken to make the data acquisition as repeatable as possible. Finally, what are the
necessary measurements that will al10w one to quantify the uncertainty in the data acquisition process.

Data acquisition transducers and recording equipment used to monitor RM are discussed in detail in
References [1]-[6]. The selection and placement of appropriate transducers depends upon the type of
machinery and its construction. Further, the appropriate placement of transducers is discussed in detail in
[4].

The primary vibration transducer used for damage detection and condition monitoring of RM is the
accelerometer. Piezoelectric accelerometers have a broad operating frequency range and are well suited to
monitoring of roller bearings and gear trains. Accelerometers are typically used in conjunction with single-
channel signal analyzers so that the machinery vibration output signal can be viewed in the frequency
domain as well as a function of time, i.e., amplitude-frequency, amplitude-time, and waterfall plots.
Velocity transducers and non-contact displacement transducers are also widely used. Non-contact (Eddy
current) displacement transducers find application in the monitoring of shaft motion and position relative to
fluid-film bearings. A set of two transducers, mounted at right angles, is often used to determine the orbit
of the shaft in its bearing.

5. FEATURES USED TO IDENTIFY DAMAGE IN RM

There exist numerous detailed charts of anticipated characteristic faults of a variety of machines and
machine elements (e.g., see Table 6.0,’’Illustrated Vibration Diagnostic Chart”, in [1]; or the charts on pp
88-92 in [2]). Features are those parameters derived from the measured data that robustly indicate the
presence of these faults. Features might be partitioned into two categories: Qualitative Features and
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Quantitative Features. Qualitative features would include the classical indicators of damage such as listed
~ in rotating machinery diagnostic charts (e. g., see References [1]-[6]). The most complete chart appears to

be in Table 6.0, “Illustrated Vibration Diagnostic Chart”, Reference [1], pp. 515-522. This chart is updated
semi-annually and is commercially available. While labeled “qualitative”, these features have in fact been
widely used to successfully detect the presence, location (e.g., roller bearing as opposed to gear trains), type
of fault (e.g., outer race damage), and degree of damage. Commercially available software specifically
designed for the isolation of faults based on vibration signatures is readily available. For example, an
automated, expert diagnostic system is evaluated in [12].

Qualitative features include, for example, the presence of peaks in acceleration spectra at certain multiples
of shaft rotational frequent y and their growth or change with time. The important qualitative features are
quite distinct to the type of machine element, the specific fault, and in some cases to the level of damage.
Therefore, it may be possible to locate the defective machine element (bearing, gears, etc.), isolate the
specific fault in the element, and determine the level of damage (or remaining life) based purely on these
qualitative features.

These classical, qualitative tabulated features are highly specific to not only the type of machine element
but to the particular fault and, in some cases, to the level of damage as well. Quantitative features used to
date have some of the same characteristics: Detection of each fault is fundamentally different. Recent
progress has, however, been reported [7] on generalized failure prediction indices capable of monitoring the
condition of a wide variety of manufacturing equipment.

Quantitative features could be further broken down into the following categories: Time-domain methods,
Transformed-domain methods, and time-frequency methods. Included in transformed-domain methods are
the well-known frequency-domain methods as well as Cepstrum (transform of a transform, specifically the
inverse Fourier transform of the logarithm of the Fourier spectra magnitude squared) techniques. Briefly,
frequency domain methods characterize changes in machine vibrations over a given time window. Time
domain and time-frequency methods have application to non-stationary faults, i.e., those associated with
machines that exhibit different phenomena in different phases of the machine cycle. Each of these methods
is now briefly described.

5.1. Time Domain Methods

These methods have particular application to roller bearings, as roller bearings typically fail by localized
defects caused by fatigue cracking and the associated removal of a piece of material on one of the contact
surfaces of the bearing. Ref. [13] summarizes these methods (particularly for roller bearing analysis) as:
peak amplitude, rms amplitude, crest factor analysis, kurtosis analysis, and shock pulse counting. As an
example, Ref. [14] utilizes Kurtosis measurements in the detection of surface damage to machined surfaces,
such as occurs in roller bearings, etc. Kurtosis is the fourth statistical moment of the data. If surface
roughness attributes are used as an indicator of damage, then for a good surface, the profile is random
corresponding to a Gaussian profile distribution with an infinite-sample theoretical value of 3.0. A Kurtosis
value other than 3.0, denotes that the profile is no longer Gaussian, therefore indicating the presence of
damage [14] and [15]. Proprietary time-domain methods and associated instrumentation are commercially
available for the detection of defects involving repetitive mechanical impacts, primarily associated with
roller bearings [16].

5.2. Frequency Domain Methods
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Approaches summarized in Ref [13] for roller bearings in this category include Fourier spectra of
synchronized-averaged time histories, cepstrum analysis, sum and difference frequencies analysis, high

“frequency resonance technique, and short-time signal processing. Quantitative evaluation of fauits in gears
using peaks in the cepstrum as indicators of harmonics is proposed in [17]. Thresholds distinguishing
normal, moderate and serious wear in gears are determined quantitatively. Other cepstral approaches for
spectral-based fault detection as applied to helicopter gear boxes are presented in [18].

5.3. Time-Frequency Methods

These methods have their application in the investigation of rotating machinery faults exhibiting non-
stationary vibration effects. Non-stationary effects are associated with machinery in which the dynamic
response differs in the various phases associated with a machine cycle. Examples include reciprocating
machines, localized faults in gears, and cam mechanisms. The wavelet transform is discussed in [19] and is
applied to fault detection and diagnosis of cam mechanisms in [20] and in a helicopter gearbox in [21]. An
application to fault detection utilizing three widely differing methods falling in the above categories
(Fourier Transform, Power Cepstrum, and Wavelet transform) as applied to two meshing spur gears with an
induced local fault on one gear is shown in [22]. A comparative study of various quantitative features that
fall into the time-domain and frequency-domain categories is presented in [23].

6. STATISTICAL MODELS APPLIED TO DAMAGE DETECTION IN RM

Once features have been selected and extracted from the data recorded on the RM, the next step is to infer
whether or not damage is present, the type of damage, and possibly the level of that damage. This process
can generally be described as a problem in pattern classification. Informally, a skilled individuals can use
their experience with previous undamaged and damaged systems and the changes in the features associated
with previously observed damage cases to deduce the presence, type and level of damage. This is an
example of the application of informal supervised learning. In this context supervised learning implies that
examples of data from undamaged and damaged systems are available for analysis. For example, it is
possible to examine acceleration signals in the frequency or time domain and deduce in some cases from
the presence and location of peaks the type, location and extent of damage of a rotating machinery
component. As cited above, extensive tables are commercially available to facilitate this process.

More formal methods founded in machine learning have been recently introduced. These methods place the
system of interest (as represented by one or more features) into either an undamaged category or one or
more damaged categories [24]. The classification techniques fall into three general categories: Bayesian
Classification, Km-nearest neighbor rules, and artificial neural network classifiers [25]. A particularly
powerful technique is that of artificial neural nets for statistical pattern classification [26]. As an
illustration, artificial neural nets were used in Ref. [22] cited above for each of the three fault detection
methods used to distinguish between “faulty” and “good” gears. Use of neural nets differs from other
expert systems that depend on a set of rules, such as fuzzy logic, in that neural nets are capable of learning
without rules. As discussed in [27], Neural nets can be classified as either supervised or unsupervised.
Supervised Neural Nets are provided with a learning set in which both input and output are known. The
Neural Nets adjust their weights until the error between their output and the actual output is minimized.
Then data from unknown inputs can be placed in the appropriate categories. In the case of Ref. [27], the
problem of rotor imbalance of a multi-disk shaft is investigated with Neural Nets. The “input” to the neural
net is conditions of imbalance; the “output” is measured bearing reactions. A learning algorithm is then
used to “train” the net to relate bearing reactions with presence (and possibly level) of imbalance. The
authors have had recent success [28] in applying a related, well-deveioped procedure for group

classification, the linear discriminant operator referred to as “Fisher’s Discriminant” [29] to vibration-based
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damage detection. The procedure falls into the general category of neurai nets. The procedure requires data
to be available from both the undamaged and damaged systems for training sets. It provides an estimate of

‘ the probability that new data falls within a finite number of sets (e.g., damaged and undamaged). An
attractive feature of this statistical model is that it was applied to response data only. A pattern recognition
anal ysis scheme, as applied to roller bearing condition monitoring, is presented in [24]. Features relating to
the sum frequency components of bearing defect frequencies and their harmonics are extracted. A linear
discriminant operator is then developed to detect localized damage to bearing components. Unsupervised
learning, in this context the case where data are available from only the undamaged system, has received
little attention in the RM damage detection literature.

7. CONTRASTING THE ROTATING MACHINERY APPLICATION WITH APPLICATIONS TO

CIVIL ENGINEERING INFRASTRUCTURE

A general conclusion reached by the authors during, the
vibration-based damage detection to RM has made

review reported above was that the application of
the transition from a research topic to actual

implementation by practicing engineers. In contrast, vibration-based damage detection in larger structures,
such as bridges, has been studied for many years, but this application has, in most cases, not progressed
beyond the research phase. By compacing and contrasting the RM application with the civil engineering
infrastructure application it is hoped that some insight will be gained into the limitations of this technology
for applications related to civil engineering infrastructure applications and how
made for this application.

A highway bridge will be the civil engineering structure used for this comparison,
has been the focus of numerous vibration-based damage detection studies [10].

improvements might be

as this class of structure

1.

2.

3.

4.

5.

Motivation: Damage detection in bridges has been primarily motivated by the prevention of loss of life;
damage detection in rotating machinery is motivated largely by economic considerations often related
to minimizing production downtime. Clearly, there are exceptions where bridges are being monitored
to facilitate timely and cost-effective maintenance and where failure of RIM can have life-safety
implications.
Availability: Highway bridges are generally one-of-a-kind items with little or no data available from
the damaged structure. RM are often available in large inventories with data available from both
undamaged and damaged systems. It is much easier to build databases of damage-sensitive features
from these inventories and, hence, supervised machine learning can be much more readily
accomplished for RM.
Definition of Damage: For RM there are a iimited number of well-defined damage scenarios that are
being monitored and the possible locations of that damage are limited to a fairly small spatial region.
Many bridge damage detection studies do not define the damage that is being monitored and attempt to
perform the monitoring with a relatively few number of channels distributed over a relatively large
spatial region
Operational Evaluation: In practical applications, measured vibration inputs are not app}ied to either
class of system. Rotating machinery typically exhibits response to a harmonic-like input, while traffic
tends to produce inputs that are typically assumed to be random in nature.
Data Acquisition: Because the approximate location of the damage is generally known, vibration test
equipment for rotating machinery can consist of but a single sensor and a single-channel FFT analyzer.
For damage ID on a highway bridge, 30-50 data acquisition channels represent a sparsely instrumented
bridge. A permanent in silu data acquisition system for bridge structures can be represent a significant
capital outlay and further funds are needed to maintain such a system over extended periods of time.
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6.. Feature Selection: A well developed database of features corresponding to various types
been developed by the RM community. Many of these features are qualitative in nature

of damage has
and have been

developed by comparing vibration signatures from undamaged systems to signatures from systems with
known types, locations and levels of damage. Many of the features observed in the vibration signatures
of RM result from nonlinear behavior exhibited by the darnaged system. Features used to identify
damage ,in bridge structures are most often derived from linear modal properties such as resonant
frequencies and mode shapes. These features are identified before and after damage and require a

distributed system of sensors. Few studies report the development of damage-sensitive features for

bridge structures based on nonlinear response characteristics.
7. Statistical Model Building: The RM literature reports many more studies that investigate the application

of statistical pattern classifiers to the damage detection process than have been reported for civil
engineering infrastructure applications. Rotating machinery is often sited in a relatively protected
environment and operates under relatively consistent conditions. The primary sources of extraneous
vibration inputs are other RM in the vicinity. Changes in damage-sensitive features caused by
environmental and operational variability are significant and must be accounted for in bridge
applications through statistical pattern classifiers. However, the literature shows almost no applications
of this technology to bridge damage detection studies.

Clearly, the application of vibration-based damage detection to RM is a much more mature technology than
the applications to large civil engineering infrastructure. Based on this comparison, the authors believe that
the a pressing need for the civil engineering applications is to define a limited number of damage scenarios
to be monitored that minimize the need for a distributed sensing system that must cover a large spatial area.
Also, to account for variability in ambient traffic loading conditions and environmental variability, it is
imperative that the civi 1 engineering community adopts the statistical pattern classifier technology.
Without this technology it will be difficult to determine if changes in dynamic properties are caused by
damage or changing operation/environmental conditions.

8. SUMMARY AND CONCLUSIONS

In this review, the detection of damage or faults in rotating machinery is approached by interpreting the
damage detection process as a problem in statistical pattern recognition. The proposed paradigm is very
general and can be shown to encompass all vibration-based damage detection methods and applications.
Key to the process is the selection of a suitable features sensitive to the damage as well as the application of
a statistical model to quantitatively evaluate whether damage is in fact present and perhaps the location,
type and degree of damage.

These features for rotating machinery were interpreted as either qualitative or quantitative. Quantitative
features were further broken down by associating them with one of the following categories: Time-domain
methods, Transformed-(omain methods, and Time-frequency methods. Time-domain and time-frequency
methods have their application in the investigation of rotating machinery faults exhibiting non-stationary
vibration effects. Non-stationary effects are associated with machinery in which the dynamic response
differs in the various phases of a machine cycle. Transformed-domain methods are generally associated
with the detection of stationary faults with the cepstrum being a notable exception.

The paper concluded by comparing the rotating machinery vibration-based damage detection problem to
the vibration-based damage detection in large civil engineering infrastructure. This comparison notes many
aspects of the rotating machinery applications that have allowed this technology to develop and mature to
the point that ‘it is used as standard practice by this industry, This comparison also identified several
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improvements to the civil engineering application that can be adopted directly from the rotating machinery
, application.
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