Hydrogen storage in carbon nanofibers as being studied by Northeastern University. Technical evaluation report

PDF Version Also Available for Download.

Description

As part of the current technical evaluation effort, the author was tasked with going to Northeastern, interviewing Dr. Baker and his team, seeing a demonstration of the storage process, and making an assessment of the validity of the claim and the soundness of the research. Dr. Baker and his group have a process that, if proven to work, could be the breakthrough that is needed in the area of on-board hydrogen storage. One of the biggest problems may be the fact that the results look so good, that even if they are real, they will be viewed with skepticism by ... continued below

Physical Description

8 p.

Creation Information

Skolnik, E.G. June 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

As part of the current technical evaluation effort, the author was tasked with going to Northeastern, interviewing Dr. Baker and his team, seeing a demonstration of the storage process, and making an assessment of the validity of the claim and the soundness of the research. Dr. Baker and his group have a process that, if proven to work, could be the breakthrough that is needed in the area of on-board hydrogen storage. One of the biggest problems may be the fact that the results look so good, that even if they are real, they will be viewed with skepticism by many. The chemisorption value of 5.8 liters of hydrogen per gram of carbon that Dr. Baker claimed at the time of his proposal has now been surpassed many times. Dr. Baker has reported reproducible hydrogen take-up levels as high as 30 liters per gram, depending on fiber structure. The fibers are loaded with hydrogen at ambient temperature using a pressurized feed at levels of about 600--900 psi. The hydrogen will be retained at pressure, but can apparently be essentially totally recovered upon pressure release. This paper reports the findings from the trip to Northeastern.

Physical Description

8 p.

Notes

OSTI as DE99000523

Source

  • Other Information: PBD: Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99000523
  • Report No.: DOE/GO/10170--T7
  • Grant Number: FC36-96GO10170
  • DOI: 10.2172/674688 | External Link
  • Office of Scientific & Technical Information Report Number: 674688
  • Archival Resource Key: ark:/67531/metadc703478

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 13, 2015, 8:26 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Skolnik, E.G. Hydrogen storage in carbon nanofibers as being studied by Northeastern University. Technical evaluation report, report, June 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc703478/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.