Various ATA Notes: 60, 79, 116, and 136

G. Caporaso, B. Denhoy, C. L. Hanson, and F. W. Chambers

October 24, 1994

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.
Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The purpose of this note is to outline the reasons why it is important to develop and test a steam ejector for use on the Differential Pumping Station.

The steam ejector (see attached figure) is mounted in the beam line (Stage I) and serves as a barrier between the air in Stage I and the 100 percent water vapor atmosphere in Stages II, III, and IV. The 100 percent water vapor atmosphere in these stages permit high volume pumping by super-cold surfaces.

To show the advantages of cryo-pumping water vapor over mechanical pumps/air, let us isolate Stage II and III and find out what vacuum equipment is required in each case.

A. One Hundred Percent Water Vapor and Cryopumping

For viscous flow

\[C = 20A \times \frac{\text{viscosity of air}}{\text{viscosity of steam}} \]

where:

- \(C \) = conductance, liters/second (l/s)
- \(C \) = conductance, liters/second (l/s)
- viscosity of air = 0.018 centipoise
- viscosity of steam = approximately 0.010 centipoise

\[C = 20 \times \pi \times (1)^2 \times \frac{0.018}{0.010} = 113 \text{ l/s} \]

\[A = \text{area of orifice, cm}^2 \]

For two orifices in series

\[\frac{1}{C_T} = \frac{1}{C} + \frac{1}{C} = \frac{1}{113} + \frac{1}{113} \]

\[C_T = 57 \text{ l/s} \]
Find Flow Rate thru Orifices:

where:

\[Q = C_1(P_2 - P_3) \]

- \(Q \) = flow rate, torr-liters/second
- \(C_1 \) = conductance, 1/s

\[Q = 8.55 \text{ torr-liter/second} \]

- \(P_2 \) = upstream pressure, torr (15 torr)
- \(P_3 \) = downstream pressure, torr (1 x 10^{-4} torr)

Find Conductance of 12" I.D. Tube Between Chamber and LN\(_2\) Cooled Surface in Trap

For molecular flow

where:

\[C_3 = 3.81 \sqrt{\frac{T}{M}} D^2 \]

- \(C_3 \) = conductance, 1/s
- \(T \) = temperature of gas, °K (293°K)
- \(M \) = molecular mass of molecule = 18 for H\(_2\)O
- \(D \) = diameter in cm = 12" x 2.54 = 30.5 cm
- \(L \) = length of tube, cm = 14" x 2.54 = 35.6 cm

\[C_3 = 12,251 \text{ 1/s} \]

Since the vacuum at the LN\(_2\) cooled surface in the trap is \(\leq 1 \times 10^{-6} \) torr, because of the low vapor pressure of ice at LN\(_2\) temperatures, the pumping speed of the system is equal to the conductance of the tube. Then, \(S_3 = C_3 = 12,251 \text{ 1/s} \).

Find Pressure in Stage III (Use two LN\(_2\) traps)

where:

\[P_3 = \frac{Q}{S_3} = \frac{8.55}{24,502} \]

- \(Q \) = flow into chamber = 8.55 torr-liters/second
- \(S_3 \) = pumping speed, 1/s
- \(P \) = 3.5 x 10^{-4} \text{ torr} (3 torr)

\[S_3 = 2 \times 12,251 \text{ 1/s} = 24,502 \text{ 1/s} \]
B. Air Atmosphere and Mechanical Pumps

Assume that the pressures in Stages II and III are the same as obtained with cryopumping and that the gas pumped is air rather than water vapor. How many Sargent Welch vertical turbopumps (1500 l/s pumping speed) would be required to attain 3.5×10^{-4} torr vacuum in Stage III?

Find Conductance of 2 cm Orifice (Air)

$$C = 20A = 20 \times \pi \times (1)^2 = 63 \text{ l/s}$$

for two in series

$$C = \frac{63}{2} = 32 \text{ l/s}$$

Find Flow Rate into Stage III

$$Q = C \Delta P = 32(1.15 - 3.5 \times 10^{-4}) = 4.8 \text{ torr-liter/second}$$

Find Conductance of Tube to Turbo Pump

$$C = 3.81 \sqrt{\frac{T}{M}} \frac{D^3}{L}$$

$D = 6'' = 15.2 \text{ cm}$
Differential Pumping Station, ETA

\[C = 3.81 \sqrt{\frac{293}{29}} (15.2)^3 \]
\[L = 6" = 15.2 \text{ cm} \]
\[C = \frac{2,800}{1/s} \quad \text{M = 29 (air)} \]
\[T = 293^\circ \text{ K} \]

Find Overall Pumping Speed of 6" Tube and Turbo Pump (One Unit)

\[S = \frac{1500 + 2800}{1500 + 2800} = 0.5 \]
\[S = 977 \text{ l/s} \]

Find System Pumping Required to Maintain \(3.5 \times 10^{-4} \) Torr Pressure at a Gas Load of 4.8 Torr-Liter/Second

\[S_3 = \frac{0.48}{3.5 \times 10^{-4}} = 13,714 \text{ l/s} \]

Find Number of Turbo Pumps Required to Produce Pumping Speed of 13,714 l/s

\[N \cdot \frac{S_3}{S} = \frac{13,714}{977} = 14 \text{ turbomolecular vacuum pumps} \]

The above exercise in calculations dramatically illustrates the attractiveness of cryogenic pumping of 100 percent water vapor gas. Two ten-inch LN\(_2\) traps will produce a vacuum which would require fourteen 1500 l/s turbo pumps, if air were pumped instead.

The proposed differential pumping system is based on the premise that no air will enter Stage II thru the 2 cm orifice connecting it to Stage I. Since air would pass at near sonic velocity from Stage I to II because of the pressure difference, some mechanism is required to reverse the direction of flow and replace air with 100 percent water vapor. The water vapor must also move at sonic velocity to prevent air from entering Stage II. An ejector using superheated steam (see attached figure) will perform this function very well.

Other advantages for using the steam ejector are:

1. The high temperature steam will mix with and heat incoming air, thus reducing air flow thru the 2 cm orifice.
2. The momentum of the steam exhausting from the ejector will counterbalance the momentum of airflow through the 2 cm orifice, thus reducing airflow into Stage I. The effects of one and two will reduce vacuum-pumping requirements for Stage I.

3. The steam ejector functions as a vacuum-pumping stage and removes gas from the tube adjacent to Stage II.

The above listed benefits make the use of a steam ejector very attractive. The next question to be answered is: Can we build a steam ejector which will function properly under our particular conditions? Terry Alger, Laser Isotope Program, LLL, was asked to evaluate the proposed design. Terry has had experience with supersonic wind-tunnel experiments as a graduate student at the University of Utah. His PhD. research dealt with two-phase nozzle flow studies. His evaluation of the ejector design and recommendations for its improvement are attached.

Conclusion

1. The cryogenic pumping of 100 percent water vapor is attractive because high-pumping speeds are obtained. With this system, it is possible to build a shorter (overall length) differential pumping station with larger-diameter beam orifices than with an air-atmosphere vacuum system.

2. It appears that an in-line steam ejector will function satisfactorily in our configuration and conditions, but will require testing to be certain. The results of these tests will also help finalize the design of the remaining stages.
Differential Pumping Station
Top View

- Solenoid Coil
- Return Current Rods
- LN₂ Traps
- Stage III
- Stage II
- Freon Cooled Trap
- Vacuum Roughing Pump Port
- Stage I
- Steam Ejector
- 10 Torr
- 15 Torr
- 5 x 10⁻³ Torr
- 5 x 10⁻⁴ Torr
- 2 cm Orifice
- Steam Condenser
- Ball Valve
- Atmospheric Pressure
- Superheated Steam at Sonic Velocity
- Air 760 Torr
- 10 Torr

10" Vacuum Pumps

84°
The optimally expanded exhaust pressure of the nozzle array, given the inlet condition of superheated steam at 5 psia and 600°F, will be near 0.2 psia (10 torr). This pressure will be determined by the nozzle throat and exhaust areas chosen for the final design.

The worst case for pressure recovery in the conical diffuser would be for a normal shock to occur at, or just downstream of, the nozzle exit. For this case, the fluid pressure would increase from 10 torr to 80 torr across the shock. However, this operating condition should be avoided since the normal shock would be located upstream of the area to be pumped and, therefore, would cause a pressure of 80 torr to be in a region where 10 torr is desired.

For the design geometry, the best pressure recovery would be obtained by locating a normal shock wave somewhere in the constant area channel following the conical diffuser. In this case, a pressure rise from 10 torr to near 160 torr would occur. However, to achieve this flow condition, the proper "starting" procedure must be incorporated. This involves starting the steam flow system with a sufficiently low back pressure (<80 torr) to move the normal shock wave out through the nozzle/ diffuser assembly and into the constant area channel. Once the shock wave has moved through the system, the back pressure could theoretically be raised to the 160 torr. In practice, due to losses in the conveying diffuser, the full pressure rise to 160 torr will probably not be achieved. Also, the heat exchanger and noncondensable pumping units must be sized to account for the lower back pressure necessary to start the steam flow system.
4) For shockless flow throughout the complete nozzle/diffuser and constant area duct, the pressure at the duct exit would be near 100 torr. Thus, based upon this result and the results presented in sections 2) and 3), the desired pressure recovery from 10 torr to 100 torr seems quite reasonable.

5) The 15 degree converging diffuser half angle is rather high and may cause boundary layer separation and an associated, complex system of oblique shock waves to occur. This could result in a smaller pressure recovery than that defined earlier. In general, diffuser designs typically incorporate a near six-degree half angle to minimize the possibility of boundary layer separation and stagnation pressure loss. However, there is published data that indicates high efficiency diffusers have been demonstrated at 20-degree converging half angles. Thus, it is recommended that the converging half angle be made as small as possible within the other design constraints of the overall system.

vz 0798z
Two Stream Description

We describe the two stream interaction by the following dispersion relation:

\[D(\omega, k_{i}, k_{l}) = 1.0 - \frac{\omega_{pe}^{2}}{\omega(\omega+i\nu)} \]

\[\omega_{B}^{2} \left[\left(\frac{1}{\sqrt{3}} + \frac{T_{net}}{T_{e}} \right) \frac{k_{i}^{2}}{k^{2}} + \frac{1}{\gamma} \frac{k_{l}^{2}}{k^{2}} \right] \right] = \omega_{B}^{2} \]

\[\left(\omega - V_{B} k_{i} + i k_{i} \Delta V_{i} + i k_{l} \Delta V_{l} \right)^{2} \]
With:

\[v = 6.4 \times 10^9 \, p \text{ (torr)} \]

\[\omega_B^2 = \frac{4\pi n_e e^2}{m_e}, \quad \omega_{pe}^2 = \frac{4\pi n_e e^2}{m_e} \]

\[\frac{\Delta V_i^2}{C^2} = \frac{I_{\text{net}}}{I_A}, \quad \Delta V_{ii} = \frac{\Delta V_i^2}{2C^2}, \quad I_A = 17050 \, I \text{ (Amps)} \]

\[k_L = \frac{n_L \bar{\lambda}}{a}, \quad n_L = \frac{1}{2} \text{ is the lowest mode} \]

\[k_{ii} = \omega_{pe} / V_B \text{ usually assumed} \]

And with beam parameters:

\[I_B = I_{\text{net}} = 10000 \, \text{Amps} \]

\[x = 10 \sim 5 \, \text{MeV} \]

\[T_{\text{pulse}} = 40 \, \text{nsec} \]

\[a = 0.5 \, \text{cm} \]

The gas parameters when used are assumed to be:

\[\frac{dE}{dx} = 2.52 \, \text{MeV cm}^2 / \text{gm} \]

\[\rho = 1.7 \times 10^{-6} \, \text{gm/cm}^3 \times p \text{ (torr)} \]

\[\Delta E = 33.75 \, \text{eV/ion pair} \]
Maximum Growth Rate

To compute the two stream growthrate for any p, n_e we need merely solve the polynomial ΔR numerically to obtain the growthrate as seen in figure 1. For $p = 0$ we can also use the approximate analytical solution:

$$\omega_1 = \frac{\sqrt{3}}{2} \left(\frac{\omega_p^2 \omega_e}{2} \right)^{1/3} - k_{\|} \Delta V_{\|} - k_{\perp} \Delta V_{\perp}$$

The maximum observed growthrate at $n_e = 3.0 \times 10^{12}$ is $\omega_1 = 7.6 \times 10^9$ corresponding to an e-folding length of 4 cm. Assuming we can tolerate a growth of 5 e-foldings this means the extent of the unstable region must be less than 20 cm.

Extent of the Unstable Region

The instability can not occur at pressures below that required for charge neutralization. For our assumed beam and gas parameters this pressure is ~ 0.01 torr. The maximum pressure for instability is ~ 5 torr so one concludes the differential pumping must drop the pressure from 5 torr to 0.01 torr in 20 cm. If the pressure drop is assumed linear then the transition from $\sim 0 - 760$ torr could take place in 30 m. However, assuming a more realistic density profile; namely $p = p_0 e^{z/L_p}$, we find the distance L_p over which the pressure must drop by $1/e$ is $L_p = 3.22$ cm. The drop from $p = 5.0$ torr to $p = 0.01$ torr would have to take place over 20 cm. This would place a severe constraint on the pumping system. However, this calculation greatly overestimates the severity of the constraint imposed by the twostream because it assumes that the instability can grow at the maximum computed growthrate for the entire range of unstable pressures.

To better calculate the extent of the unstable region we should consider the instability at a fixed $k_{\|}$ (and not at $k_{\parallel} = \omega_{pe}/\nu_B$ where ω_{pe} varies with n_e). Essentially the plasma density will sweep through a range of values where a given $k_{\|}$ mode will be unstable.
For a given k_n, the varying plasma density will sweep through the resonant region at $k_n = \omega_{pe}/v_B$. We assume that when the density has changed by a factor of e the instability shuts off. Thus the requirement for significant two-stream growth is that the instability e-fold five times in the length that the density e-folds once, $L_p = 20$ cm. One could go from $p = 5.0$ to $p = .01$ torr in 1.25 m. This estimate is much more realistic than that of the previous paragraph.

Comments:

In doing the aforementioned approximations for the pulse response we have assumed the instability moves with the beam and the spatial instability is characterized by the exponentiation length

$$\lambda_e = c/\omega_i.$$ Since for the weak two-stream interaction $v_g = \partial \omega/\partial k = 2/3 v_B$ the first assumption is adequate. The second assumption is that the two-stream mode is convective, this assumption is weaker since a slowly growing temporal mode could still reach large amplitudes during the pulse time. To completely justify the assumptions made would require a detailed inhomogeneous pulse response calculation.

Results are presented here for ETA; however, as seen in figure 2 the growthrates and hence exponentiation lengths are quite similar for ATA.

These approximate calculations are very conservative; a more detailed analysis, if warranted, would lead to somewhat less stringent constraints on the pumping system.
Growthrate Contours in ne, p

ETA parameters

Figure 1
Growthrate Contours in ne, p

Figure 2

Ata parameters
Steam Ejector Prototype Unit Stage I

Differential Vacuum Pumping Station

C.L. Hanson

The steam ejector prototype unit (Stage I) has been successfully operated with a 2 cm diameter aperture opened to the atmosphere. A 10 torr vacuum was obtained on the suction side of the ejector during this test.

Stage I is one of four stages of the differential pumping station (Fig. 1) which will be connected to the end of the accelerator to provide an unobstructed passage from a high vacuum (5×10^{-6} torr) to the atmosphere. The accelerator beam will be focused through a series of 2 cm (.79") diameter openings without the use of foil windows. To remove the gas load from the adjacent higher pressure region, a vacuum pumping stage will be mounted between the 2 cm diameter openings.

The differential pumping stages consist of:

1) A superheated steam ejector, condenser and mechanical vacuum pump.
2) A freon-cooled trap and mechanical vacuum pump.
3) LN$_2$ traps and oil diffusion vacuum pumps.
4) Cryogenic vacuum pumps.

The flow of atmospheric air into the first stage is reduced by the injection of superheated steam into the air stream. Vacuum in the first state is produced by a steam condenser which remove the water vapor and a liquid ring mechanical vacuum pump which removes the air. A steam ejector has been built into the beam line to block off air flow into Stage II and produce a lower vacuum.

The water vapor in the second stage is removed by a freon cooled trap.
operating at -50°C. This trap is connected to a roots blower and mechanical vacuum pump to remove the noncondensable gases.

The third stage consists of LN$_2$ traps and diffusion vacuum pumps to remove water vapor and residual non-condensable gases. Stage IV consists of a pair of cryogenic type vacuum pumps with high water vapor pumping capacity. The vacuum in the fourth stage will be equal or higher than that in the accelerator beam tube.

The flow schematic of the Stage I prototype test unit is shown in Fig. 2. 315°C (600°F) superheated steam is supplied to the ejector nozzles (5 total) and to a mixing station in the beam line on the atmospheric side. The steam ejector is supplied with 150 lbs/hr. of superheated steam at 550 torr pressure and develops a vacuum of 10 torr. The quantity of atmospheric air entering the condenser is reduced from 120 scfm to 15 scfm by mixing with 200 lbs/hr. of superheated steam. The steam is condensed by a direct cooling spray system and 70 sq. ft. of cooling plate surface. The air is removed by mechanical vacuum pumps (500 cfm pumping speed). The pressure in the condenser during the test was 60 torr.

Since the test of the Stage I prototype has been successful, design and procurement of parts for the remaining three stages can proceed as the program plan permits. Stage I is essentially complete and ready for mounting on a support structure yet to be designed for the differential pumping station.
ATA Differential Pump
Survey of Pumping Methods

PURPOSE:

The purpose of this note is to present the results of a survey done to find the commercially available equipment to meet differential pump requirements for the Advanced Test Accelerator.

SITUATION:

Differential Pumping Unit requirements for the Advanced Test Accelerator were set forth as its ability to remove the air or any other selected gas that enters into the accelerator beam tube through a 2 cm diameter aperture. The differential pumping unit should maintain a base pressure of 10^-6 torr in the beam tube. The maximum pressure differential across the 2 cm diameter aperture can be from 760 torr to 2 x 10^-6 torr.

Conductance of an orifice (c) = 20 A x 2/sc.

where A = orifice area in cm^2

A = 22/4 = 3.14 cm^2

C = 20 x 3.14 = 62.8 l/sec

= 62.8 x 60/28 = 134.57 CFM

= 134.57 x 0.079 x 60

= 605 lb/hr.

C = 11.7 x A l/sec

(High pressure region)

The equipment will be sized to handle the theoretical gas load of 135 SCFM leaking into the differential pumping unit.

To meet the basic requirements of the ATA differential pump one can divide the differential pumping system into a finite number of pumping stages. The actual number of the stages required to meet the system requirement will depend on the type of equipment used.

Figure No. 1 shows a differential pump divided into six stages. There is a 2 cm diameter orifice between each stage. Please note that beam focusing and steering magnets are installed inside the vacuum environment. The installation of the steering magnets inside the vacuum tank will require a smaller diameter magnet compared with installing the magnet on the outside. This will be cost effective.
Table #1 presents the vacuum calculations for the six stage differential pump shown in Figure #1.

FIGURE # 1
FIVE STAGE DIFFERENTIAL PUMP

<table>
<thead>
<tr>
<th>Stage</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Torr-CFM</td>
<td>-</td>
<td>102,600</td>
<td>10260</td>
<td>945</td>
<td>67.5</td>
<td>2.2</td>
<td>0.02</td>
</tr>
<tr>
<td>P-Torr</td>
<td>760</td>
<td>76</td>
<td>7</td>
<td>0.5</td>
<td>2 x 10^{-2}</td>
<td>2 x 10^{-4}</td>
<td>2 x 10^{-6}</td>
</tr>
<tr>
<td>C-CFM</td>
<td>-</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>S-CFM</td>
<td>-</td>
<td>1350</td>
<td>1466</td>
<td>1890</td>
<td>3375</td>
<td>7900</td>
<td>7900</td>
</tr>
</tbody>
</table>

TABLE #1
VACUUM CALCULATIONS FOR A FIVE STAGE DIFFERENTIAL PUMP

where:

\[Q = C \times P_i \quad \text{TCFM} \]

\[C = 20 \text{ A} \quad \text{s/sec} \quad \text{high pressure region} \]

\[C = 11.7 \text{ A} \quad \text{s/sec} \quad \text{low pressure region} \]

\[P_i = \text{inlet pressure - torr} \]

\[P = \text{stage pressure - torr} \]

\[S = \text{pumping speed required at the stage to maintain stage pressure} \]

\[= C \times \frac{P_i}{P} \]
The pressure profile through the differential pump is shown in Figure No. 2. An extensive vacuum pump manufacture literature study was undertaken to locate the vacuum pumps to do the job by using conventional vacuum pumps available from the vacuum pump manufacturers. To provide sufficient pumping speed at each stage to maintain the stage pressure as shown in Table No. 1. My study showed that vacuum pumps are available, with six to eight month delivery, that have the required through put to accomplish the task on hand.

I contacted a large number of vacuum pump manufacturers and narrowed my selection to three. The reason being that these three manufacturers made the pumps that are genetically different. In my judgement these manufacturers represent a good cross section of the vacuum pump industry.

I. Steam Jet Ejector

Figure #3 shows the use of steam ejectors for the high pressure stages. To pump down a 2 cm diameter aperture from 760 torr to 0.1 torr will require 2500 lb/hr steam, and 500 GPM of cooling water for the intercoolers. The estimated cost for a boiler, five ejectors with intercoolers is about $300,000.

The steam ejectors are not very efficient below 0.1 torr base pressure. Therefore, this scheme will require diffusion pumps or some other means for the lower pressure stages at additional cost.

The steam boiler and ejector package is available from Kinema Inc. and others.

II. Combination of Liquid Ring Pumps, Mechanical Boosters and Diffusion Pumps

The system using this combination is shown in Figure #4. The pumps alone for this scheme will cost about $175,000. There will be additional expenses for plumbing, instrumentation, interlocks and installation. These pumps can be purchased from Kinney Vacuum Co. and others.

III. Combination of Roots Pumps, Turbomolecular Pumps and Cryopumps

Figure #5 shows the combination of the above pumps. One should use combination of roots pumps for high pressure stage. The turbomolecular pumps and cryopumps should be used for lower press stages. Leybold-Heraeus among others manufacture roots pumping with pumping speeds up to 9000 CFM. A few inspections of these pumps, and some input from the users, gave me the assurance that these are high quality and very reliable machines. The estimable cost for the pumps for the scheme is about $175,000.
Conclusion

After studying the various options, I would recommend the third scheme. The use of roots pumps combined with turbo and cryopumps. The required sizes of the pumps to do the job are available. This scheme will provide us with a dependable, clean and less complicated system to do the job.

0562p/prw
PRESSURE PROFILE THROUGH THE DIFF. PUMPING SYSTEM

1ST STAGE

2ND STAGE

3RD STAGE

4TH STAGE

5TH STAGE

6TH STAGE

LENGTH - FEET.

DATE 12-3-80
FIGURE NO. 4.
BEAM

6 5 4 3 2 1

$2 \times 10^6 \text{T}$ $2 \times 10^4 \text{T}$ $2 \times 10^2 \text{T}$ 0.1T 3T 60T

FIGURE NO. 5