Tritium recycling and inventory in eroded debris of plasma-facing materials

PDF Version Also Available for Download.

Description

Damage to plasma-facing components (PFCs) and structural materials due to loss of plasma confinement in magnetic fusion reactors remains one of the most serious concerns for safe, successful, and reliable tokamak operation. High erosion losses due to surface vaporization, spallation, and melt-layer splashing are expected during such an event. The eroded debris and dust of the PFCs, including trapped tritium, will be contained on the walls or within the reactor chamber therefore, they can significantly influence plasma behavior and tritium inventory during subsequent operations. Tritium containment and behavior in PFCS and in the dust and debris is an important factor ... continued below

Physical Description

18 p.

Creation Information

Hassanein, A. October 18, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Damage to plasma-facing components (PFCs) and structural materials due to loss of plasma confinement in magnetic fusion reactors remains one of the most serious concerns for safe, successful, and reliable tokamak operation. High erosion losses due to surface vaporization, spallation, and melt-layer splashing are expected during such an event. The eroded debris and dust of the PFCs, including trapped tritium, will be contained on the walls or within the reactor chamber therefore, they can significantly influence plasma behavior and tritium inventory during subsequent operations. Tritium containment and behavior in PFCS and in the dust and debris is an important factor in evaluating and choosing the ideal plasma-facing materials (PFMs). Tritium buildup and release in the debris of candidate materials is influenced by the effect of material porosity on diffusion and retention processes. These processes have strong nonlinear behavior due to temperature, volubility, and existing trap sites. A realistic model must therefore account for the nonlinear and multidimensional effects of tritium diffusion in the porous-redeposited and neutron-irradiated materials. A tritium-transport computer model, TRAPS (Tritium Accumulation in Porous Structure), was developed and used to evaluate and predict the kinetics of tritium transport in porous media. This model is coupled with the TRICS (Tritium In Compound Systems) code that was developed to study the effect of surface erosion during normal and abnormal operations on tritium behavior in PFCS.

Physical Description

18 p.

Notes

INIS; OSTI as DE00751854

Medium: P; Size: 18 pages

Source

  • Advanced Research Workshop on Hydrogen Recycle at Plasma Facing Materials, St. Petersburg (RU), 09/15/1999--09/17/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-100226
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 751854
  • Archival Resource Key: ark:/67531/metadc703460

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 18, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 4:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hassanein, A. Tritium recycling and inventory in eroded debris of plasma-facing materials, article, October 18, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc703460/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.