Characterization of an energy storage capacitor in abnormal thermal environments

PDF Version Also Available for Download.

Description

There are applications of high-voltage, energy-storage, capacitors where it is desirable that the energy storage capability can be reliably and predictably negated in abnormal environments such as fire. This property serves as a safety feature to prevent events of unintended consequence. The present paper describes studies of the thermal response characteristics of a cylindrically wound, discrete Mylar film/foil capacitor design. The experimental setups that simulate fires will be presented. Three different heat input geometries were employed: uniform radial input, spot radial input, and axial input. Heat input was controlled via feedback system to maintain specific temperature ramp rates. Both capacitor ... continued below

Physical Description

8 p.

Creation Information

Edwards, L. R.; Chen, K. C. & Baron, R. V. January 5, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There are applications of high-voltage, energy-storage, capacitors where it is desirable that the energy storage capability can be reliably and predictably negated in abnormal environments such as fire. This property serves as a safety feature to prevent events of unintended consequence. The present paper describes studies of the thermal response characteristics of a cylindrically wound, discrete Mylar film/foil capacitor design. The experimental setups that simulate fires will be presented. Three different heat input geometries were employed: uniform radial input, spot radial input, and axial input. Heat input was controlled via feedback system to maintain specific temperature ramp rates. Both capacitor voltage and current were monitored during the thermal excursion to ascertain the failure temperature, i.e. when the capacitor permanently shorts. Temperature of failure data is presented for the three heat input cases along with a statistical analysis of the results and application implications. The physics of failure will be described in terms of the thermal/mechanical properties of the Mylar.

Physical Description

8 p.

Notes

OSTI as DE00750204

Medium: P; Size: 8 pages

Source

  • 20th Capacitor and Resistor Technology Symposium, Huntington Beach, CA (US), 03/06/2000--03/10/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2333C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 750204
  • Archival Resource Key: ark:/67531/metadc703434

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 5, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 3:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Edwards, L. R.; Chen, K. C. & Baron, R. V. Characterization of an energy storage capacitor in abnormal thermal environments, article, January 5, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc703434/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.