Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals

PDF Version Also Available for Download.

Description

Development of high damage threshold, 50 cm, rapidly grown KF*P frequency triplers for operation of the National Ignition Facility (NIF) in the 14 J/cm2, 351 nm, 3 ns regime requires a thorough understanding of how the crystal growth parameters and technologies affect laser induced damage. Of particular importance is determining the effect of ionic impurities (e.g. Cr3+, Fe3+, Al3+) which may be introduced in widely varying concentrations via starting salts. In addition, organic particulates can contaminate the solution as leachants from growth platforms or via mechanical ablation. Mechanical stresses in the crystals may also play a strong role in the ... continued below

Physical Description

15 p.

Creation Information

Runkel, M.; Tan, M.; De Yoreo, J. & Zaitseva, N. December 20, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Development of high damage threshold, 50 cm, rapidly grown KF*P frequency triplers for operation of the National Ignition Facility (NIF) in the 14 J/cm2, 351 nm, 3 ns regime requires a thorough understanding of how the crystal growth parameters and technologies affect laser induced damage. Of particular importance is determining the effect of ionic impurities (e.g. Cr3+, Fe3+, Al3+) which may be introduced in widely varying concentrations via starting salts. In addition, organic particulates can contaminate the solution as leachants from growth platforms or via mechanical ablation. Mechanical stresses in the crystals may also play a strong role in the laser-induced damage distribution (LIDD), particularly in the cases of large boules where hydrodynamic forces in the growth tank may be quite high. WE have developed a dedicated, automated damage test system with diagnostic capabilities specifically designed for measured time resolved bulk damage onset and evolution. The data obtained make it possible to construct characteristic damage threshold distributions for each sample. Test results obtained for a variety of KDP samples grown from high purity starting salts and individually doped with Lucite and Teflon, iron, chromium, and aluminium show that the LIDD drops with increasing contamination content. The results also show that solution filtration leads to increased damage performance for undoped crystals but is not solely responsibility for producing the high LIDDs required by the NIF. The highest LIDD measured on a rapidly grown sample indicate that it is possible to produce high damage threshold material using ultrahigh purity, recrystallized starting salts, continuous filtration and a platform designed to minimize internal stress during growth.

Physical Description

15 p.

Notes

INIS; OSTI as DE98052077

Other: FDE: PDF; PL:

Source

  • 29. annual Boulder damage symposium on optical materials for high power lasers, Boulder, CO (United States), 6-8 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98052077
  • Report No.: UCRL-JC--128091
  • Report No.: CONF-9710116--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 647027
  • Archival Resource Key: ark:/67531/metadc703398

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 20, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 1:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Runkel, M.; Tan, M.; De Yoreo, J. & Zaitseva, N. Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals, article, December 20, 1997; California. (digital.library.unt.edu/ark:/67531/metadc703398/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.