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1. INTRODUCTION 

For two-dimensional linear elasticity. Williams [ 11 has shown that the displace- 
ment field u = { i l k } .  k = 1 . 2  ic the vicinity of a crack tip is given by 

where, as illustrated by Figure 1. r and 8 are polar coordinates at  the tip. In 
this figure, the mathematical crack results when the interior angle occupied by the 
material is %T> i.e.,  cy = T >  and the crack surfaces correspond to 8 = & T .  In both 
finite and boundary element fracture analysis. the main approximation is in the 

Figure 1. Definition of the coordinate systems ( 5 1 .  ~ 2 )  and ( r .  8) for a notch or 
crack geometry. The shaded portion represents the interior of the domain. 

representation of the displacement. and attention has appropriately focused on 
capturing the v‘F behavior in the approximation. This term leads to the cor- 
responding l/J;; singularity in the stress field. and the characterization of the 
fracture in terms of stress intensity factors (SIF).  The ‘quarter point’ element [2.3] 
is the dominant technique employed. and it is well known that use of special ele- 
ments at the crack tip siqnificnntly improves the accuracy of SIF calculations [4]. 
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For boundary integral fracture analysis. usin? either the displacement discontinu- 
ity method 15.61 or an approach n-hich combines the displacement and traction 
boundary integral equations :i.Sl. oniy the displacement o n  t h e  crack snr fuces  
I 8 = 57 1 .  is approximated in the calculation. Thus. an appropriate near-tip crack 
surface interpolation of the displacement is crucial for accurate SIF calculations 
iising these methods. 

This paper points out that the expansions for the displacement on the two 
sides of the crack are related. in that 

C k (  7 )  = C k (  -77) . 

Equivalently. the linear term in the jump in displacement Au( T - )  G u+(T)-u- ( r )  = 
uir. 7 )  - U(T-. - T )  across the crack surface vanzshes. The importance of this result, 
we beliere. is that its inclusion in numerical approximations should improve the 
accuracy of the solution and the subsequent SIF evaluations. The discussion below 
outlines a general proof of this result in two dimensions. based upon a boundary 
integral formulation. The specific case of two dimensional elasticity and a traction 
free flat crack will be examined. .I more complete discussion of Eq. (2) ,  including 
a proof utilizing the eigenfunction expansion method. will be published elsewhere 
191. 

2. CRACK TIP LIMITS 

The basic idea of the proof of Eq. (2) is to enforce the applied boundary 
condition at  the crack tip. In this case. this implies that the traction must remain 
finite as the crack tip is approached along t h e  crack surface. The crack tip singular 

x:! 
b 

Figure 2. Illustration of the double limit process. 

integrals in the hypersingular boundary integrai equation for surface traction are 
therefore defined in terms of this limit process. F i p r e  2. These integrals are 





integrals are continuous crossing the boundary. Thus. the opposite orientation of 
the tn-o crack tip elements ensures that the two integrals cancel. and it suffices to 
examine the square root and linear coefficient terms. 

The crack tip element is assumed to he [-aZ.O]. a ,  > 0. parametrized as 
Q ( x j  = ( ~ ~ x . 0 ) .  -1 5 x 5 0. Sote that the integrations over the top y = O+ 
and bottom y = 0- of the crack only differ by a sign. and thus it is sufficient to 
integrate over the top surface. -11~0. the traction integral (the right hand side of 
Eq. ( 3 ) )  over the crack vanishes due to the stress-free boundary conditions. Thus. 
using an interior normal n = N = (0.1) on the top crack surface y = O+: the 
inteqal to be computed is 

0 

c-0 lim 6-0 lim L, ( b ,  ~5 + c,x) S l k m  (P' .  &(XI) dx ( 7 )  

The rather lengthy calculations are easily carried out using symbolic computation 
[13]. ;1 listing of the symbolic computation programs used in this analysis can be 
found in Reference [9]. 

2.1 Square Root Mode: uk = hl;J;- 

X straightforward calculation of the integral in Eq. (7) results in a complicated 
function of E and 6. The evaluation of the limit t o  the boundary is accomplished 
by employing the Taylor expansion. 

Fortunately, as noted above. all of the lengthy algebra is easily handled via sym- 
bolic computation. For N = (0,1),  the traction vector on the crack surface is 
r = ( g 1 2 , 0 2 2 )  and the calculation yields the simple result 

The main interest of this calculation is that no potentially singular terms appear. 
This will not be the case for the linear term. 

2.2 Linear Mode: uk = ckr 

is approached only requires the simple observation that 
For this term. evaluation of the limiting value of the integral as the crack tip 

The potentially singular terms which arise in the evaluation of the crack tip trac- 
tions are 

I 
where c r  = C~(I 71. Thus. n finite d u e  at the tip requires that Eq. (2 )  be 
5 atisfied. 



3. coscLusIoss 

It has been shown that  in the expansion of the crack opening displacement as 
a function of distance irom the tip. [here is no linear term present. It is hoped 
i hat exploitins this information in either finite or boundary element analyses, will 
lead to improved accuracy of the near tip fields. and consequently improved stress 
intensity factor results. Computational tests incorporating Eq. ( 2 )  are currently 
heins implemented. 

The appearance of the condition Ey. ( 3 )  and its derivation from a boundary 
integral formulation are not unexpected. The interpolation constraint and the 
method of analysis are natural extensions. to the limiting case of a crack, of pre- 
1-ious work dealing with corner geometries [1.1.13]. In particular, the limit to the 
boundary process used to evaluate the hypersingular integrals (enforcing the trac- 
tion boundary conditions on the crack faces) is essentially the same as employed 
in [ 1.11. -\ complete discussion of techniques for evaluatine; hypersingular integrals 
can be found in 1161. 

While a traction free flat crack has been treated herein. the boundary integral 
argument is considerably more general. The constraint, Eq. (2) .  holds for an ar- 
bitrary crack geometry (i.e.. multiple. non-planar ), non-zero boundary conditions. 
and equations other than elasticity. The only assumption required is that the the 
form of the near tip crack surface displacement includes only a square root and 
a linear term. Eq. (1). Note however that even if more complicated boundary 
conditions or geometry (multiple, interacting cracks) should produce a term of the 
form T', 0 < X < 1 ( A  # 1/2). it is unlikely that this will contribute a logarithmic 
singularity in the expression for the near tip traction. Thus, the argument leading 
to Eq. (2) would remain unaltered. 

It is highly likely that the arguments presented here can be carried over to three 
dimensional crack problems. The three-dimensional computations will necessarily 
he more involved. but based upon previous analysis of a corner geometry [15] the 
extension of the limit procedure argument should be more or less straightforward. 
Work in this direction is currently being pursued. 

This research was sponsored by the U. S. Department of Energy, Defense Pro- 
grams Office of Economic Competitiveness Sational Information Infrastructure 
Sfajor Partnership, under contract DE-XC05-S40R21400 with Martin Marietta 
Energy Systems. Inc. 
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